
QUANTIFYING THE UNCERTAINTY IN 
CLAIM SEVERITY ESTIMATES FOR AN EXCESS LAYER 

WHEN USING THE SINGLE PARAMETER PARETO 

GLENN G. MEYERS, PH.D. 

Abstract 

This paper addresses the question: How valuable is a 
sample of excess claims in determining the expected claim se- 
verity in an excess layer of insurance? 

An established procedure to estimate this expected claim 
severity is to first fit a model distribution to claim size data 
and then, using the fitted distribution, estimate the expected 
claim severity in the given excess layer. One of the more 
popular models used is the single parameter Pareto. This pa- 
per provides a means of quanttfiing the uncertainty in these 
excess claim severity estimates when using the single pa- 
rameter Pareto. This approach requires one to incorporate 
prior opinions about the distribution of the Pareto parameter 
using Bayes’ Theorem. 

1. INTRODUCTION 

Ever since Robert Miccolis’s [2] classic paper on increased limits 
ratemaking was published, it has been an established procedure 
among members of the Casualty Actuarial Society to estimate the 
expected claim severity in an excess layer of insurance by first fitting 
a model distribution function to claim severity data and, using the 
fitted distribution, to estimate the expected claim severity in the given 
excess layer. One of the more popular models used is the single 
parameter Pareto. Its properties have been discussed on many occa- 
sions and the reader can consult the Proceedings for a very readable 
account by Stephen Philbrick [3]. 

An often stated concern in excess limits pricing is the uncertainty 
of the estimates of the excess claim severity. The purpose of this 
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paper is to describe a Bayesian method of quantifying the uncertainty 
in excess claim severity estimates. This method is very easy to apply 
in the case of the single parameter Pareto. 

2. A REVLEW OF THE SINGLE PARAMETER PARETO 

The single parameter Pareto describes claims that are above a 
given truncation point, k. The cumulative distribution function is 
given by: 

The probability density function is given by: 

Ax)=& x9+’ for x 1 k . 

(2.1) 

(2.2) 

Let x1, x2, . . . , x,, be a sample of n claims that are larger than k. 
The likelihood function, L(q), is given by: 

Solving for the $ that maximizes the likelihood function yields: 

n ;= ~-~--. .~-.. 

c ln(xi) - n In(k) 
i=l 

(2.3) 

3. THE CONDITIONAL DISTRTBUTION OF ; 

Let us temporarily assume that q isAknown. The purpose of this 
section is to describe the distribution of q in terms of q, with the final 
result being given in Equation 3.7 below. 

We first note that: 
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From Equations 2.3 and 3.1, we get: 

(3.1) 

(3.2) 

We next note that: 

E[ln(x)2] = qk”/ -!!!&f & = ln(k)2 + ?!!f!? + ; . 

k x4+1 

(3.3) 

From Equations 3.1 and 3.3, we see that: 

Var [In(x)] = E[ln(x)2] - E[ln(x)12 = 1 . 

Thus from Equations 2.3 and 3.4, we get: 

(3.4) 

(3.5) 

Now the central limit theorem states that the distribution of 

i (,> In x, 
i=l 

will have an approximately normal distribution for sufficiently 
large n. 
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Thus, for known q, 14 has an approximately normal distribution 
with mean l/q and variance llnq2. The conditional distribution of l/G 
given q is: 

Now the distribution of G given q is: 

= 
d- 

(y-$)? n 

“Be- “1 

2R 2 2q’ (3.7) 

4. BAYESIAN ESTIMATION 

The treatment above consider: q as the known quantity and $ as 
the random variable. In practice, q is known and q is unknown. How- 
ever, in many instances, we will have some prior knowledge or be- 
liefs about the distribution of q. In other instances, we may have very 
little prior knoyledge of the distribution of q. Our task is to use our 
knowledge of q to refine our knowledge about the distribution of q. 
To accomplish this, we ,use Bayes’ Theorem. 

We first consider the discrete case where q can take on values qo, 
41, q2, . . . 3 q,. Let the prior probabilities be given by F’r(q = q;) =Pi. 
By Bayes’ Theorem, the posterior probability function of qi is given 
by: 

dGlqi)Pi Nqh) = ,,, . (4.1) 

C c(&?j)Pj 
J==l 
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For the continuous case, the posterior probability density for q is 
given by: 

b(&) = m c(hl)P(q) 7 (4.2) 

where p(q) is the prior probability density of q. 

Now it is a common practice for Bayesian statisticians to express 
the conditional, the prior, and the posterior distributions in simplest 
terms by ignoring all coefficients that do not depend upon q in the 
probability or density functions. The distributions, with the ‘coeffi- 
cients removed, are referred to as weight functions. In keeping with 
this practice, we replace c with v, b with w, and p with r and write: 

c&q) 0~ v&q) = qe G 

in place of Equation 3.7, 

b(q,l$) 0~ W(qil$) E v($Iqi)ri 

in place of Equation 4.1, and 

(4.3) 

(4.4) 

(4.5) 

in place of Equation 4.2. 

It is often necessary to determine the constant of proportionality 
for Equations 4.4 and 4.5. This is usually done after the fact by 
finding the constant, T, which forces the total probability to be equal 
to 1. That is: 
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T=m ’ or T= 1 

Cv(hj)rj jV($q)r(q)& 
j=l 0 

(4.6) 

An advantage of this practice is that it is no longer necessary to 
require that r(q) be a proper distribution. The function r(q) becomes a 
weighting function that can sum to anything, including infinity. The 
only requirement is that the sums in Equation 4.6 be finite. Prior 
distributions that sum to infinity are called improper, or diffuse, pri- 
ors. They are useful when it is felt that there is little or no prior 
knowledge. 

A rather interesting example can be constructed for the single 
parameter Pareto with the diffuse prior p(q) 0~ r(q) = l/q. We have 

w(&) = dW-(cd 

(4.7) 

By comparing Equation 4.7 with the standard normal distribution 

q(x) = e 2a2 , 

we see that $e posterior distribution b(ql$) is normal with mean $ 
and variance q%. 

This result should be compared to a standard “non-Bayesian” 
treatment. The distribution of 4, for a given q, is asymptotically nor- 
mal with mean q and variance q2/n. It has become common practice, 
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using the methods demonstrated by Hogg and Klugman,’ to express a 
confidence interval for q in terms of an approximately normal distri- 
bution with mean $ and variance 2/n. This is admittedly an approxi- 
mation. For the single parameter Pareto, the above Bayesian result 
provides a set of assumptions that make this approximation more 
meaningful. 

5. THE DISTRIBUTION OF EXCESS CLAIM SEVERITY ESTIMATES 

Obtaining the posterior distribution of q is only an intermediate 
step toward obtaining the posterior distribution of excess claim sever- 
ity estimates. We now turn to the completion of this task. 

In what follows, we will use a discrete prior distribution. This 
makes the procedure for getting the posterior distribution easy to set 
up on a spreadsheet program. The steps for constructing such a 
spreadsheet program are shown in Table 1 with the results given in 
various exhibits. 

All examples in this paper assume that a maximum likelihood 
estimate of 1.75 has been obtained using data with a value of k equal 
to $100,000. The task is to estimate the expected severity for a layer 
between $1 ,OOO,OOO and $5,000,000. 

It is important to note that the expected severity estimates in this 
paper will be conditional on the claim being greater than $100,000. 
To use these results in practice, one must also consider the number of 
claims above $100,000. 

The prior means have little meaning if the prior distribution is 
improper and the means do not exist. The posterior mean and stand- 
ard deviation of the qis are given by: 

’ See, for example, Section 4 of Chapter 3 in Loss Disrtiburions, by Hogg and KIug- 
man [ 11. Examples 1 and 4 in this section are very pertinent to this discussion. 
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Column 

4i 

b(&) 

B(q&) 

E[-Qil 

TABLE 1 

SPREADSHEET DEFINITIONS 

Description 

Values of qi that have a specified start and end. These 
are divided into m equally spaced intervals. (We use 
m = 30 for the examples in this paper.) 

Prior weights for qi . 

Conditional weights for $ given qi, as given by Equa- 
tion 4.3. 

Posterior weights for qi, which equal the product of 
the prior two columns as given by Equation 4.4. 

Posterior probabilities for qi, which equal: 

m 

wtqilG)/C w (YjG). 
j=l 

Cumulative posterior probabilities for qiy which equal 
the sum of the posterior probabilities of qj for jli. 

Layer average severities given qi, i.e., the expected 
severities for a given layer. For the single parameter 
Pareto, the layer average severities between retention 
R and limit L are given by the formula: 

for qi = 1 
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m 

E[q&l = xqib(q&) and Std[q&] = 
i=l 

The posterior mean and standard deviation off the E[Xlqi]S are 
given by: 

In 

E[E[J&I = ~Wbilb(&) and 
i=l 

Std [E[Xl$]] = 

It is a rare event for a qi or an E[Xlqi] to hit exactly on a fh or a 
(l-Qrh percentile, so we adopt the following convention for this pa- 
per.* The ih percentile of qi is the last qi before the cumulative prob- 
ability exceeds t. Similarly, the (l-t)‘h percentile of qi is the last qi 
before the cumulative probability exceeds (1-r). We would proceed 
similarly for E[Xlq,] except that E[Xlqi] is a decreasing function of qi= 
So in this case we replace t with l-t for the ih percentile and (1-t) 
with t for the (l-t)fh percentile. In the examples, we use t = 2.5 
percent to calculate a 95 percent confidence interval. 

For the sake of comparison, we also provide the “classical” estimates 
based on the estimate, G, and the estimate oft put into Equation 5.1. 

‘It is likely that various textbooks will define percentiles differently than is done 
here. A possible alternative would be to interpolate between the qis. The motiva- 
tion here is that this definition is easy to implement with the typical spreadsheet 
program and the final decision made as the result of the confidence interval is un- 
likely to be affected by the choice of confidence interval definition. 
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It is often helpful to describe the posterior distributions of qi and 
E[Xlq,] graphically. This is straightforward for the posterior distribu- 
tion of qi. One simply plots qi on the horizontal axis and h(q&) on the 
vertical axis. An additional consideration for plotting E[Xlqi] is that 
the values of E[XlqJ are not evenly spaced. If we want the graph to 
have approximately the same shape as the corresponding continuous 
posterior distribution, we must plot E[Xlqi] on the horizontal axis and 

wl,+l~~) - m-Jb 
E[Mqi-tl -E[Mqi+~l = B’(E[Mqil) 

on the vertical axis. The plots corresponding to Exhibit 1 are on Fig- 
ures 1 and 2. 

FIGURE 1 

POSTERIOR DISTRIBUTION OF q 
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FIGURE 2 

POSTERIOR DISTRIBUTION OF E[xlq] 
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6. THE EFFECT OF SAMPLE SIZE 

What is noticeable about the example shown in Exhibit 1 is the 
large width of the confidence interval and the difference between the 
posterior mean and the classical estimate of the expected severity. 
Exhibits 2 and 3 show what happens when the sample size is in- 
creased to 1,000, and then 10,000 claims. Table 2 takes the key 
numbers from these exhibits. 

Source 
Exhibit 

I 
2 
3 

TABLE 2 

Approximate 95% 
Sample Classical Posterior Posterior Confidence Interval. 

Size ~&timate Mean Std I&v Low High 
100 16,619 19,062 IO.640 6,922 54,964 

1 ,ooo 16,619 16,847 2,769 12,755 23.7 I 1 
10,000 16,619 16,642 859 15,213 18,703 
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Here we see that one must have a sample size of 10,000 to get the 
length of the confidence band down to 21 percent of the posterior 
mean claim severity. 

Table 2 does point out a possible danger inherent in using the 
maximum likelihood estimate, q, directly in Equation 5.1. If one truly 
believes that the prior distribution of q is proportional to I/q. then the 
classical estimate can produce a significant understatement of the 
posterior mean. This is especially true for small sample sizes. 

7. ON THE CHOICE OF A PRIOR DISTRIEWTION 

The bias for small sample sizes noted above may be a function of 
the prior distribution. In this section, we explore the implications of 
using different prior distributions. 

In our fist example, shown on Exhibit 1, we chose a prior distri- 
bution for q that was proportional to l/q. This had the effect of giving 
more weight to the smaller qs. Exhibit 4 shows the effect of choosing 
a prior distribution for q that is proportional to q. This has the effect 
of giving more weight to the larger qs. The summary of results for 
each exhibit is provided in Table 3. 

TABLE 3 

SUMMARY OF RESULTS 

Approximate 95% 
Source Classical Posterior Posterior Qdkknce Interval 
Exhibit Estimate Mean Std Dev Low High 

1 1.750 1.750 0.175 1.350 2.050 
1 16,619 19,062 10,640 6,922 54,964 

4; 4 1.750 I .785 0.173 1.400 2.050 
E[Mqil 4 16,619 17,154 9,432 6,922 47,245 
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Perhaps the most notable observation is that the understatement of 
the posterior mean by the classical estimate of E[XlqJ is reduced with 
the second prior distribution. But we would caution against choosing 
a prior for this reason. The reason for choosing a prior distribution 
should be based on one’s beliefs about the distribution of q. 

Figures 3 and 4 provide graphical comparisons of the results of 
Exhibits 1 and 4. 

A common sentiment of practitioners is: “I am extremely lucky to 
get 100 claims to analyze. Yet I can’t go to my company and say: 
‘On the basis of (for example) Exhibit 1, my recommended value for 
the expected severity is $19,000, but it could reasonably be as low as 
$7,000 or as high as $55,000.’ ” 

Many practitioners are, at least intuitively, aware of the large po- 
tential variability of the results and frequently override any outlying 
estimates citing “judgment.” As the following example shows, it is 
possible to blend the maximum likelihood estimate and one’s prior 
judgment by choosing an appropriate prior distribution. 

FIGURE 3 
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FIGURE 4 

POSTERIOR DISTRIBUTION OF E[X I q] 
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Let us assume that one is willing to accept that the expected sever- 
ity could be as low as $17,500, or as high as $25,000. Thus we allow 
q to be no lower than 1.612 or no higher than 1.732 (give or take 
some rounding error in q). Let us further assume that one feels that 
lower qs should be given more weight and selects a prior proportional 
to l/q. The resulting posterior distributions are in Exhibit 5. 

Now, since we have a priori bounds on the range of the qiS, it 
makes sense to talk about prior means. The prior means of the qiS and 
the E[Xlqi]S are 1.67 1 and $21,099, respectively. This should be com- 
pared with the posterior means of 1.675 and $20,85 I, respectively. It 
should also be noted that the approximate 95 percent confidence in- 
tervals are pretty much the same as the a priori ranges of the qp and 
the E[Xlq,]s. It would appear that, at least in this example, the infor- 
mation added by the 100 claims has a relatively minor impact on our 
estimated claim severity for the $1 ,OOO,oOO to $5,000,000 layer. 
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This example also makes the point that it is possible to observe a (; 
that isfutside the prior range of q. However, the posterior mean of q, 
given q, is within the prior range of q. 

8. OTHER DISTRIBUTIONAL MODELS 

In this section we indicate how one can proceed if a distributional 
model other than the single parameter Pareto is to be used. Let 
8 = {Cl.} be the parameter vector for the chosen model,f(xle), and let 
b={$}b th e e maximum likelihood estimate of 8. 

The procedure described in Section 5 will work with the following 
modifications. 

1. 

2. 

3. 

The parameter qi must be replaced with the vector 0,. 

Prior weights have to be assigned to each @. 

The conditional weights v@&) must be derived. De- 
pending upon the distributional form selected, it may be 
possible to derive the weights directly as was done in 
Section 3. If this fails, there is an alternative approxima- 
tion. As described by Hogg and Klugman3 the condi- 
tional distribution of 6, given 9, is asymptotically a 
multivariate normal distribution with mean 8 and covari- 
ante matrix C’, where C = (ajk}, and: 

ajk = -nE 

Then v(h3) = I& 
-&3,%&3,/2 

3Section 4 of Chapter 3 of Loss Distributions [I]. 
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4. The formula for E[Xlei] will depend upon the distribu- 
tional form OfAXlei). 

A bit of soul searching may be necessary to come up with a prior 
distribution for the parameter vector 8. One suggestion would be to 
place a prior distribution on E[Xl9] and translate the results into a 
prior distribution for 8. We came close to doing this in Exhibit 5 by 
choosing 9s that restrict the expected severity between $17,500 and 
$25,000. 

A complaint often heard is that one should be just as concerned 
about the model uncertainty as with parameter uncertainty. To ad- 
dress this complaint, one can put any number of models into this 
procedure, as long as prior probabilities for each model are assigned. 

The problems associated with other severity models may indeed 
be formidable. We are fortunate to have a simple and realistic model 
like the single parameter Pareto to provide us with a blueprint. 

9. A CONCLUDING REMARK 

As noted in the Introduction, it is currently a common practice to 
use a fitted claim severity distribution to estimate the expected claim 
severity for an excess layer of insurance. These fits are often obtained 
with sample sizes containing fewer than 100 claims. 

These estimates take a prominent role in insurance (and reinsur- 
ante) price negotiations. Insurance buyers will often readily accept 
estimates based on “their own data.” One expects a buyer with a 
relatively low estimate to cite this as evidence that they deserve a 
break in their rates, while those buyers with relatively high estimates 
are in much weaker negotiating positions. While there may be signifi- 
cant differences between insurance buyers, the examples given above 
illustrate the dangers of drawing such a conclusion based solely on a 
fitted distribution. Good prior information should also play an impor- 
tant role in these negotiations. 
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While many practitioners recognize this, they are often under 
pressure to recognize “real data” supplied by the (re)insured. This 
paper provides a way to recognize the data and integrate it with prior 
information. 
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EXHIBIT 1 

Prior Distribution Given Observed 

YO 

1.000 

Pi- 
1 .ooo 
1.050 
1.100 
1.150 
1.200 
1.250 
I.300 
1.350 
I.400 
I.450 
1.500 
1.550 
1.600 
1.650 
1.700 
1.750 
1.800 
1.850 
I.900 
1.950 
2.000 
2.050 
2.100 
2.150 
2.200 
2.250 
2.3W 
2.350 
2.400 
2.450 
2.5MI 

430 ‘i k Retention Limit 
r-- 
4 

2.500 Yq, 100,ooa 1 .ooo.ooo 5,ooo,ooo 1.75 

I .ooo 0.0001 
0.952 0.0004 
0.909 0.0011 
0.870 0.0032 
0.833 0.0086 
0.800 0.0211 
0.769 0.0477 
0.74 1 0.0990 
0.714 0.1895 
0.690 0.3336 
0.667 0.5407 
0.645 0.8067 
0.625 1.1081 
0.606 1.4015 
0.588 1.6320 
0.57 1 1.7500 
0.556 1.7280 
0.54 1 1.5713 
0.526 1.3159 
0.513 1.0149 
0.500 0.7209 
0.488 0.47 16 
0.476 0.2842 
0.465 0.1577 
0.455 0.0806 
0.444 0.0380 
0.435 0.0165 
0.426 0.0066 
0.417 0.0024 
0.408 0.0008 
0.400 0.0003 

SUMMARY OF RESULTS 

Classical Posterior Posterior 
Mean- St&Dev 
1.750 0.175 

19,062 10,640 

Jk*mate 
For qr 1.750 

For E[Xlqi ] 16,619 

W(qiG) &&) 
0.000 1 o.owo 
o.Om3 o.omo 
0.0010 0.000 1 
0.0028 0.0003 
0.0072 0.0008 
0.0169 0.0019 
0.0367 0.0042 
0.0734 0.0084 
0.1353 0.0 154 
0.2301 0.0262 
0.3604 0.041 I 
0.5205 0.0593 
0.6926 0.0789 
0.8494 0.0968 
0.9600 0.1094 
I .oooo 0.1140 
0.9600 0.1094 
0.8494 0.0968 
0.6926 0.0789 
0.5205 0.0593 
0.3604 0.0411 
0.230 I 0.0262 
0.1353 0.0154 
0.0734 0.0084 
0.0367 0.0042 
0.0169 0.0019 
0.0072 0.0008 
0.0028 0.0003 
0.0010 0.0001 
0.0003 o.owo 
0.0001 0.0000 

B(q&) __-- 
o.owo 
0.0000 
o.Oim2 
0.0005 
0.0013 
0.0032 
0.0074 
0.0158 
0.0312 
0.0574 
0.0985 
0.1578 
0.2368 
0.3336 
0.4430 
0.5570 
0.6664 
0.7632 
0.8422 
0.9015 
0.9426 
0.9688 
0.9842 
0.9926 
0.9968 
0.9987 
0.9995 
0.9998 
1 .omo 
l.OQOO 
1 .oooo 

n 

100 

WQil 
160,944 
137,822 
118,085 
101,229 
86,826 
74,512 
63,979 
54,964 
47,245 
40.63 I 
34.96 I 
30,099 
25,926 
22,343 
19,265 
16,619 
14,344 
12,387 
10,702 
9,25 1 
8,000 
6,922 
5,992 
5,189 
4,496 
3,897 
3,380 
2,932 
2,545 
2,210 
1,920 

Approximate 95% 
Confidence &g-al 

-Low Hi& 
1.350 2.050 

6,922 54,964 
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EXHIBIT 2 

Prior Distribution Given Observed _ ~~ 
40 430 ri k Retention Limit G 

1.540 1.990 ‘4, 100,ooo 1 ,OOO,OOo 5,000,OOu 1.75 

!I-- ‘1 
1.540 0.649 
1.555 0.643 
1.570 0.637 
1.585 0.631 
1.600 0.625 
1.615 0.619 
1.630 0.613 
1.645 0.608 
1.660 0.602 
1.675 0.597 
1.690 0.592 
1.705 0.587 
1.720 0.581 
1.735 0.576 
I.750 0.571 
1.765 0.567 
I.780 0.562 
1.795 0.557 
1.810 0.552 
1.825 0.548 
1.840 0.543 
1.855 0.539 
1.870 0.535 
1.885 0.531 
1.900 0.526 
1.915 0.522 
1.930 0.518 
1.945 0.514 
1.960 0.510 
1.975 0.506 
1.990 0.503 

For qi 
For E[Xlqi] 

Classical Posterior 
Estimate h&q. ~. -.- 

1.750 1.750 
16,619 16,847 

dl9i) u~(qil;) btyrl;) 
0.0011 0.0007 0.Ow1 
0.0031 0.0020 o.m2 
0.0079 0.0050 0.0005 
0.0186 0.0117 0.0013 
0.0406 0.0254 0.0027 
0.0824 0.0510 0.0055 
0.1553 0.0953 0.0103 
0.2719 0.1653 0.0179 
0.4424 0.2665 0.0288 
0.6686 0.3992 0.0432 
0.9389 0.5556 0.060 I 
1.2250 0.7185 0.0777 
1.4850 0.8633 0.0934 
1.6724 0.9639 0.1042 
1.7500 1.0000 0. 108 I 
1.7013 0.9639 0.1042 
1.5368 0.8633 0.0934 
1.2897 0.7185 0.0777 
1.0056 0.5556 0.060 I 
0.7285 0.3992 0.0432 
0.4903 0.2665 0.0288 
0.3066 0.1653 0.0179 
0.1782 0.0953 0.0103 
0.0962 0.0510 0.0055 
0.0482 0.0254 0.0027 
0.0225 0.0117 0.0013 
0.097 0.0050 o.Om5 
0.0039 0.0020 0.0002 
0.0015 o.Om7 0.0001 
0.0005 o.OcQ3 o.owo 
o.coo2 0.0001 0.0000 

SUMMARYOFRESULTS 

B(qi@ ElXlqil 

0.0001 31,012 
0.0003 29,652 
O.ooO8 28,353 
0.0021 27,111 
0.0049 25,926 
0.0104 24,793 
0.0207 23,711 
0.0386 22,677 
0.0674 21,689 
0.1105 20,745 
0.1706 19,844 
0.2483 18,982 
0.3417 18,158 
0.4459 17.371 
0.5541 16.619 
0.6583 15,901 
0.7517 15,213 
0.8293 14,557 
0.8894 13,929 
0.9326 13,329 
0.9614 12,755 
0.9793 12,207 
0.9896 11,683 
0.9951 11,181 
0.9979 10,702 
0.9991 10,244 
0.9997 9,805 
0.9999 9,386 
l.OC@O 8,985 
1.0000 8,602 
I .oooo 8,235 

n 

1 WJ 

Posterior 
s&E!? 

0.055 
2,769 

Approximate 95% 
Confidence Interva! 

Low !!I!- 
I .630 1.840 

12,755 23,711 



111 SINGLE PARAMETER PARETO 

EXHIBIT 3 

Prior Distribution Given Observed 

40 
1.670 

q30 ri k Retention Limit G 
I .820 l/l& 100,ooo 1,000,000 5,000,ooo 1.75 

A 
1.670 
1.675 
1.680 
1.685 
1.690 
1.695 
1.700 
1.705 
1.710 
1.715 
1.720 
1.725 
1.730 
1.735 
1.740 
1.745 
1.750 
1.755 
1.760 
1.765 
1.770 
1.775 
i ,780 
1.785 
1.790 
1.795 
I .aoo 
1.805 
1.810 
1.815 
1.820 

For qi 
For E[Xlqi] 

LL V&Ii) 4&) WA) 
0.599 0.0000 0.0000 O.OtXlO 
0.597 O.CHX? O.ooOl 0.0000 
0.595 0.0006 0.0003 o.oooo 
0.593 o.oo17 0.0010 O.ooOl 
0.592 0.0047 0.0028 o.oaI3 
0.590 0.0121 0.0072 o.oooa 
0.588 0.0287 0.0169 o.oo19 
0.587 0.0625 0.0367 0.0042 
0.585 0.1255 0.0734 0.0084 
0.583 0.2321 0.1353 0.0154 
0.581 0.3957 0.2301 0.0262 
0.580 0.6218 0.3604 0.0411 
0.578 0.9004 0.5205 0.0593 
0.576 1.2016 0.6926 0.0789 
0.575 1.4779 0.8494 0.0%8 
0.573 1.6752 0.9600 0.1094 
0.57 1 1.7500 l.ooOO 0.1140 
0.570 I .6848 0.9600 0.1094 
0.568 1.4949 0.8494 0.0968 
0.567 1.2224 0.6926 0.0789 
0.565 0.92 12 0.5205 0.0593 
0.563 0.6398 0.3604 0.0411 
0.562 0.4095 0.2301 0.0262 
0.560 0.2416 0.1353 0.0154 
0.559 0.1313 0.0734 0.0084 
0.557 0.0658 0.0367 0.0042 
0.556 0.0304 0.0169 0.0019 
0.554 0.0129 o.oo72 0.0008 
0.552 0.0051 O.OO28 0.0003 
0.55 I 0.0018 O.oolO O.Oool 
0.549 0.0006 o.om3 o.olxJo 

SUMMARY OF RESULTS 

Classical 
Estimate 

1.750 
16,619 

Posterior Posterior Confidence Interval 
Mean Std Dev LOW -High 
1.750 0.017 1.710 1.780 

16,642 859 15,213 18,703 

B(&) 
0.0000 
0.0000 
0.000 1 
o.ocQ2 
0.0005 
o.oo13 
0.0032 
0.0074 
0.0158 
0.0312 
0.0574 
0.0985 
0.1578 
0.2368 
0.3336 
0.4430 
0.5570 
0.6664 
0.7632 
0.8422 
0.9015 
0.9426 
0.9688 
0.9842 
0.9926 
0.9%8 
0.9987 
0.9995 
0.9998 
I .oooo 
1 .oooo 

Approximate 95% 

EWil 
2 1,055 
20,745 
20,440 
20,140 
19,844 
19,552 
19,265 
18,982 
I 8,703 
I 8,429 
18,158 
17,892 
17,630 
17.37 1 
17,117 
16,866 
16,619 
16,376 
16,137 
15,901 
15.668 
15,439 
15,213 
14,991 
14,772 
14,557 
14,344 
14,135 
13.929 
13,726 
13,526 

n 

10,000 
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Prior D&-@&on -Given Observed 

40 430 6 k Retention Limit t 
l.ooo 2.500 qi 100,ooo I,ooo,ooo 5.000,000 1.75 

!L 
1.000 
I.050 
I.100 
1.150 
1.200 
1.250 
1.300 
1.350 
1.400 
1.450 
I.500 
I.550 
I.600 
I.650 
I.700 
1.750 
1.800 
I ,850 
I.900 
1.950 
2.m 
2.050 
2.100 
2.150 
2.200 
2.250 
2.300 
2.350 
2.400 
2.450 
2.500 

r 
1.&o 

dh) 
O.ooOl 

1.050 0.0004 
1.100 0.0011 
1.150 0.0032 
1.200 0.0086 
1.250 0.02 11 
1.300 0.0477 
1.350 0.0990 
1.400 0. i 895 
1.450 0.3336 
1.500 0.5407 
1.550 0.8067 
1.600 i.1081 
1.650 I.4015 
I.700 1.6320 
1.750 I .7500 
I ,800 1.7280 
1.850 1.5713 
I.900 1.3159 
1.950 1.0149 
2.ooo 0.7209 
2.050 0.47 16 
2. 100 0.2842 
2.150 0.1577 
2.200 0.0806 
2.250 0.0380 
2.300 0.0165 
2.350 0.0066 
2.400 0.0024 
2.450 O.OOO8 
2.500 0.0003 

w(q&) 
o.ooo 1 
o.ow4 
0.0012 
0.0037 
0.0103 
0.0264 
0.0620 
0.1337 
0.2653 
0.4837 
0.8110 
1.2504 
1.7730 
2.3124 
2.7744 
3.0625 
3.1104 
2.9070 
2.5602 
1.9790 
1.4418 
0.9669 
0.5968 
0.3392 
0.1774 
0.0855 
0.0379 
0.0155 
O.oO58 
0.0020 
O.OM6 

h7iG) 
0.0000 
o.ocQo 
0.0000 
o.ow I 
o.ow4 
O.oolO 
o.oo23 
o.oo49 
0.0098 
0.0178 
0.0299 
0.046 1 
0.0653 
0.0852 
0.1022 
0.1 129 
0. I I46 
0. IO7 I 
0.092 I 
0.0729 
0.053 I 
0.0356 
0.0220 
0.0125 
0.0065 
0.003 I 
0.001‘l 
0.0006 
0.0002 
0.0001 
o.owo 

B(qd$) 
0.0000 
o.oooo 
0.ooo1 
0.0002 
0.0006 
0.0016 
0.0038 
0.0088 
0.0185 
0.0364 
0.0662 
0.1 123 
0.1777 
0.2629 
0.365 1 
0.4780 
0.5926 
0.6997 
0.7919 
0.8648 
0.9179 
0.9535 
0.9755 
0.9880 
0.9946 
0.9977 
0.999 1 
0.9997 
0.9999 
I .owo 
1 .oooo 

Classical 
Estimate 

For qi 1.750 
For E[Xlq;] 16,619 

SINGLE PARAMETER PARETO 

EXHIBIT 4 

n 

JW%l 
160,944 
137,822 
118,085 
101,229 
86.826 
74.5 12 
63,979 
54,964 
47,245 
40,63 I 
34,961 
30,099 
25,926 
22,343 
19,265 
16,619 
14,344 
12,387 
10,702 
9,251 
a,m 
6,922 
5,992 
5,189 
4.4% 
3,897 
3,380 
2,932 
2,545 
2.2 10 
1,920 

SUMMARY OF RESULTS 

Posterior Posterior 
Mean Std Dev 
1.785 0.173 

17,154 9,432 

Approximate 95% 
Confidence Interval 
Low High 
1.400 2.050 
6,922 47,245 



Prior Distribution ~~ 

qo q30 ri 

I.612 1.732 ‘/4, 

4, r. 

1.612 0.620 
1.616 0.619 
1.620 0.617 
1.624 0.616 
1.628 0.614 
1.632 0.613 
1.636 0.611 
1.640 0.610 
1.644 0.608 
1.648 0.607 
1.652 0.605 
1.656 0.604 
1.660 0.602 
1.664 0.60 I 
1.668 0.600 
1.672 0.598 
1.676 0.597 
1.680 0.595 
1.684 0.594 
1.688 0.592 
1.692 0.591 
1.6% 0.590 
I.700 0.588 
I.704 0.587 
1.708 0.585 
1.712 0.584 
1.716 0.583 
1.720 0.58 1 
1.724 0.580 
1.728 0.579 
1.732 0.577 

For q; 
For E[Xlq;] 

Classical Posterior Posterior Confidence Ir+rval 
Estimate Mean Std Dev -LQY High 

1.750 I .675 0.035 1.612 1.728 
16,619 20,85 I 2,198 17,734 25.015 

SINGLE PARAMETER PARETO 

EXHIBIT 5 

Given 
,i 

.Observed 
Retention Limit G n 

113 

100,000 1 ,OOO,OOo 5,000,000 1.75 

dl%) dqd$) 
1.1812 0.7328 
I .2054 0.7459 
1.2294 0.7589 
1.2532 0.7717 
1.2768 0.7843 
1.3001 0.7967 
1.3232 0.8088 
1.3460 0.8207 
1.3685 0.8324 
1.3906 0.8438 
1.4123 0.8549 
1.4335 0.8657 
I .4544 0.876 1 
1.4747 0.8863 
1.4946 0.8%0 
1.5139 0.9054 
1.5327 0.9145 
1.5508 0.923 1 
1.5684 0.9314 
I .5853 0.9392 
1.6016 0.9466 
1.6171 0.9535 
1.6320 0.9600 
1.6461 0.9660 
1.6595 0.9716 
1.6721 0.9767 
1.6839 0.9813 
1.6949 0.9854 
1.7051 0.9890 
1.7144 0.992 1 
1.7229 0.9947 

SUMMARY OF RESULTS 

b(d) 
0.0265 
0.0270 
0.0275 
0.0280 
0.0284 
0.0289 
0.0293 
0.0297 
0.0302 
0.03O6 
0.03 10 
0.03 14 
0.0317 
0.032 I 
0.0325 
0.0328 
0.033 1 
0.0334 
0.0337 
0.0340 
0.0343 
0.0345 
0.0348 
0.0350 
0.0352 
0.0354 
0.0355 
0.0357 
0.0358 
0.0359 
0.0360 

B(qil;) 
0.0265 
0.0536 
0.081 I 
0.1090 
0.1374 
0.1663 
0.1956 
0.2253 
0.2555 
0.2860 
0.3170 
0.3484 
0.3801 
0.4122 
0.4447 
0.4775 
0.5106 
0.5440 
0.5778 
0.6118 
0.6461 
0.6806 
0.7154 
0.7504 
0.7856 
0.8210 
0.8565 
0.8922 
0.9280 
0.9640 
1 .oooo 

Approximate 95% 

WW 
25,015 
24,7 19 
24,427 
24,138 
23,852 
23,570 
23,292 
23,016 
22,744 
22,476 
22,210 
2 1,948 
2 1,689 
2 1,433 
21.180 
20,931 
20,684 
20.440 
20,199 
19,961 
19,726 
19,494 
19,265 
19,038 
18,814 
18,593 
i 8,374 
18,158 
17,945 
17,734 
17,526 

100 


