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Abstract 

Loss distributions have a number of uses in the pricing 
and reserving of casualty insurance. Many authors have 
recommended maximum likelihood for the estimation of 
the parameters. It has the advantages of asymptotic opti- 
mality (in the sense of mean square error) and applicabii- 
ity (the likelihood function can always be written). Also, it 
is possible to estimate the variance of the estimate, a use- 
ful rool in assessing the accuracy of any results. The only 
disadvantage of maximum likelihood is thar the objective 
function does not relate to the actuarial problem being 
investigated. Minimum distance estimates can be tailored 
fo reflect the goals of the analysis and, as such, should 
give more appropriate answers. The purpose of this paper 
is to demonstrate that these estimates share rhe second and 
third desirable qualities bt,ith maximum likelihood. 

1, DEFINITIONS, NOTATION, AND AGENDA 

We start with a definition of a minimum distance estimate. Let 
G(c; fl) be any function of c that is uniquely related to AC; 6), the 
probability density function (pdf) of the population. By uniquely re- 
lated we mean that if you know A you can obtain G and vice versa. 
Call G the model functional. Let f,(c) be the empirical density. It 
assigns probability l/n to each of the n observations in the sample. 
Let G,(c) be found from f, in the same way that G is from f. Call G,, 
the empirical functional. The objective function is 

3ifl 
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Q(e> = i w; [W,; 0) - G,(q)] * , 
i=l 

(1.1) 

where cl < c2 < . ..< ck are arbitrarily selected values and 
WI, w2, *.a, wk > 0 are arbitrarily selected weights. The weights can be 
selected either to minimize the variance of the estimate or to place 
emphasis on those values where a close fit is desired. The ci will al- 
most certainly be the class boundaries for whatever grouping was 
used in the initial presentation of the data. The minimum distance es- 
timate is the value of 0 that minimizes Q(0). 

There are two functionals that appear to be appropriate for casu- 
alty work. The first is the limited expected value (LEV) which is 
useful in ratemaking. It is the expected loss when losses are capped at 
a specified value. This quantity is fundamental for calculating deduct- 
ibles, limits, layers, increased limits, or the effects of inflation. This 
quantity is also useful for reserving if information about the distribu- 
tion of outstanding claims is desired. Many practitioners make it a 
point to verify that the model LEVs (after estimating the parameters 
by maximum likelihood) and the empirical LEV match. Using the 
LEV as a distance measure gives this the best chance of happening. 

The specific relationships are (when dealing with the LEV we will 
use L in place of G): 

L(c; e) = 1 *CC; e)dx + c jfl~; e)dx 
0 c 

(1.2) 

and 

L,(C) = I/, i min (Xi , C) . (1.3) 
i=I 

It should be noted that to compute L,(Ci) all that is needed is the num- 
ber of observations, ni, that are between Ci- 1 and ci (where c, = 0) 
and the average, ai, of these observations. Then 
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L,,(ci) = 

i’ 

i n,Uj + ci(n - i nj) /n = C;,+ i ni(fi - C;)/n . 1 (1.4) 
j=l j= I j= I 

A second functional, one that makes sense for loss reserving, is 
the distribution function. As will be seen in the second example, loss 
distributions can be used to estimate the number of incurred but not 
reported (IBNR) claims. The key to the calculation is that the distri- 
bution function is evaluated at the highest lag for which losses have 
been reported. Using F for G we have 

FCC; e) = ~,flx; e)d\- ( 1.5) 

and 

F,(C) = I/n (number of Xi I c) . ( 1.6) 

There are a number of steps that need to be taken to make this 
method practical. 

1. Techniques for minimizing Q. 
2. Verification that the solution possesses desirable statistical 

properties. This would include being unbiased, consistent, 
and, if not minimum variance, at least providing for calcula- 
tion of the variance. 

3. A demonstration that estimators obtained from this method 
are not unlike those obtained by maximum likelihood, at 
least when the data actually come from the distribution fam- 
ily being fitted. 

4. Construction of a hypothesis test based on Q. This would 
allow for verification that the model selected is reasonable 
as well as for comparison with competing models. 

This paper addresses Issues 1 and 2 in full and makes a proposal 
relative to Issue 4. The third issue requires a fairly substantial simula- 
tion, something we have elected not to do at this time. This paper 
includes two examples and a small simulation to illustrate the feasi- 
bility of the method. 
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2. MINIMIZATION OF Q 

There are three reasonable approaches to finding the minimum. 
The first is the simplex method. It has been discussed in several other 
places; the original idea is by Nelder and Mead [4], and a com- 
prehensive treatment can be found in the book by Walters, et al. [7]. 
The only input required is the function to be minimized and a starting 
value. It proceeds cautiously and slowly, but is almost always suc- 
cessful in finding the minimum. The second approach is to use a 
packaged minimization routine. Such routines sometimes require that 
partial derivatives of the function be available. The third approach is 
to obtain a set of equations by equating the partial derivatives to zero. 
The multi-variate version of the Newton-Raphson method could then 
be used to find the solution. When derivatives are needed they can be 
obtained by differentiating either Equation 1.2 or 1 S. The examples 
in this paper were done using the simplex method. 

For the second and third approaches it is easy to write the partial 
derivative of Q. 

dQ/‘aej = 2 C W; [ G(c;; 0) - G,(ci)] G” ) (ci; 0) (2.1) 
i= I 

where the final factor (G (‘I (Ci; 0)) is the partial derivative of the 
model functional with respect to 0,. To simplify the notation, the 
model functional evaluated at Ci will be written Gi, the reference to 
8 being implicit and the dependence on Ci being reflected by the sub- 
script. Similarly, the empirical functional will be written G,, i . Equa- 
tions 1.1 and 2.1 become 

Q = ~ Wi (Gi - G,,, j)’ 
i=l 

and 

&me j = 2 C Wi (Gj - G,,, i 1 G1” * 
i=l 

(2.2) 
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3. STATISTICAL PROPERTIES OF MINIMUM DISTANCE ESTIMATES 

The minimum distance estimate is an implicit function (as given 
in Equation 2.1) of G,, the vector of empirical functionals. The prop- 
erties of such an estimator can be obtained by using Theorem 2 and 
Corollary 1 from Benichou and Gail [2]. The theorem requires that 
the estimator be an implicit function of random variables to which the 
Central Limit Theorem can be applied. This is true for both situations. 
The LEV is a sample average of independent observations and the 
empirical distribution function is a binomial proportion. We have 

n’%, -p) + WO,Z:) . (3.1) 

The irh element of p is pi = E(G .) = Gi (at least for the two function- 
..% als used in this paper). Let the ZJ element ofs be aij. 

The next item to be satisfied is that the k functions in Equation 2.1 
have continuous first partial derivatives with respect to the elements 
of 8. These form a p x p matrix A. The jlth element is 

k h 

njr=a2Q/aBj6~=2CWjGj”Gj”+2CM’i(Gi-G,t,i)G/J”1. (3.2) 
i=l i= I 

So, to satisfy the conditions of the theorem, the model functional 
must have continuous second partial derivatives with respect to the 
parameters. This is true for most distributions in common use for in- 
surance losses. It is also necessary that A have a non-zero determi- 
nant when evaluated at the true parameter value. All that is necessary 
to complete this analysis is that it be non-zero at the estimated value 
0f 8. 

The next matrix, B (‘JJ x k), hasjl rh element 

(J ) bj I= iTQ/&j G,, I= -2~) Gl . (3.3) 

It is necessary that A-‘B have at least one non-zero element. 

The theorem then states that, as the sample size goes to infinity, 
there will be a unique solution, 8, to the equations and 
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&(8 - e) -+ N(0, A-‘BT$B’A-‘). (3.4) 

This verifies that the minimum distance estimator is consistent and 
asymptotically unbiased and, even though it is not likely to have min- 
imum variance, at least we will be able to estimate the variance. 

4. EXAMPLES 

Example One 

The first example consists of losses from the Insurance Services 
Office (ISO) increased limits project for general liability (Table 2) 
coverage. The accident year is 1986 and the losses are those reported 
at Lag 1. Actual losses are given in Table 1. This example uses fewer 
size-of-loss intervals. For simplification, the average loss in each in- 
terval was taken as the midpoint. One problem is the existence of 
multiple policy limits in the IS0 data set. These are difficult to deal 
with as it is unlikely that actual losses can be determined for those 
cases that exceed the upper limit. There are two such cases in this 
data set. One loss is known to exceed $25,000; the other exceeds 
$500,000. The easiest reasonable way to adjust for this problem may 
be to replace these values with the conditional (on being above the 
upper limit) median (as the mean may not exist) from a rough esti- 
mate of the final model. For this illustration the values $38,865 and 
$769,061 were used. They were incorporated in the calculation of the 
empirical LEVs in Table 1. 

For this illustration, the only distribution being considered is the 
Pareto distribution. IS0 rejected it as a useful model (opting for a 
mixture of two Pareto distributions), but it will serve as a good exam- 
ple mostly because all the required derivatives are easy to compute. 
About the only other distributions that have this property are the 
lognormal and inverse Gaussian. Should analytical derivatives not be 
available. approximate differentiation must be employed. This exam- 
ple also proves to be somewhat simple, as there is no deductible 
involved. The relevant quantities for the Pareto distribution where 
8 = (a, h)’ are: 
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(4.1) 

Maximum likelihood estimation produced the estimates 
& = 1.482595 and i = 705.785. The estimated covariance matrix of 
these estimators is 

[ 

0.0020473 1.3680 1 1.3680 1,090.S . 

Minimization of Q using weights of 1 at all endpoints (the value 
10,000,000 was arbitrarily selected to replace M) produced the mini- 
mum LEV estimates of & = 1.3388257 and X = 590.32670. The value 
of Q at the minimum is 8,619 compared to a value of 196,244 using 
the maximum likelihood estimates (which were used as a starting 
point for the simplex method). Table 2 shows the LEVs for both max- 
imum likelihood and minimum LEV estimation. The wide discrep- 
ancy between these two estimators may well indicate that the Pareto 
model is not suitable for these data. 
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Lower Limit 

$ 0 
50 

100 
150 
200 
250 
300 
400 
500 
600 
700 
800 
900 

1,000 
1,500 
2,000 
2,500 
3,000 
3,500 
4,000 
4,500 
4,999 
5,000 
6,000 
7,500 
9,999 

10,000 
12,000 
15,000 
20,000 
25,000 
35,000 
50,000 
75.000 

100,000 
250,000 
500.000 

I ,ooo,ooo 

Total 

Upper Limit Number of Losses LEV (at upper limit) 

$ 50 482 $ 48.19 
100 574 92.41 
150 478 132.68 
200 431 169.54 
250 343 203.49 
300 337 234.89 
400 616 290.52 
500 518 337.64 
600 311 378.53 
700 263 415.10 
800 256 447.78 
900 170 477.26 

1,000 212 503.86 
1,500 501 610.12 
2,000 297 686.4 I 
2,500 181 744.74 
3,000 116 791.91 
3,500 93 831.24 
4,000 72 864.37 
4,500 40 893.29 
4,999 32 919.45 
5.000 I8 919.50 
6,000 59 962.39 
7.500 53 1.014.12 
9,999 60 I ,079.07 

10.000 6 I ,079.09 
12,000 21 1,117.10 
15,000 27 1.163.30 
20.000 22 1,221.89 
25,000 23 1,263.58 
35,000 I5 1,318.42 
50.000 I5 1.366.87 
75.000 6 1.4-08.19 

100,000 3 I ,432.60 
250,000 3 I ,5 I I .48 
500.000 0 I ,586.60 

I ,ooo.oOO 2 1,661.72 
00 0 l&61.72 

TABLE 1 

IS0 Loss DATA 

6,656 
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Limit 

s SO 
IO0 
I50 
200 
250 
300 
400 
500 
600 
700 
800 
900 

I .OOO 
I.500 
2,000 
2,500 
3,000 
3.500 
4.000 
3,500 
4%YY9 
5,000 
6.000 
7,500 
9.999 

10,000 
12,000 
15.000 
20,000 
25.000 
35.000 
50.000 
75,000 

100,000 
250,000 
500,000 

I ,OOo.ooo 
I o,OOo.ooo 

TABLE 2 

LEVs 

Empirical LEV MLE LEV 

9 48.19 5 47,.5x 
92.41 90.59 

132,68 12Y.8X 
169.54 165.90 
203.49 I9Y.OY 
234.x9 229.80 
290.52 284.Y2 
337.64 333.10 
378.53 37S.70 
415.10 413.7? 
447.7x 447.Y3 
477.26 47X.93 
SO3.X6 507.19 
6 I 0. I 2 61X.64 
6X6.4 I 697.87 
744.74 757.9s 
791.91 xos.ss 
83 I .24 X44.47 
X64.37 877.08 
X93.29 YO3.Y2 
9 19.45 929.02 
Y lY.50 92Y .Oh 
962.39 Y69.06 

1.014.12 I .()I 1.Xh 
1 J79.07 I .06X.76 
I .079.(r) 1.05X.77 
1.117.10 i.100.01 
1.163.30 1.13s.2s 
1.231.X9 1.176.1 I 
I ,263.5X I ,20 I .so 
I ,3 I X.42 1.24233 
I .366.X7 I ,276.h 1 
1.408. I9 I ,309.30 
I .432.60 1.329.01 
I.51 I.48 I .376..53 
I J86.60 I .JOO.Y3 
1.66 I .72 I A I X.4 I 
I ,66 I .72 1,457 70 

MinLEV 

s 47.34 
X9.97 

12X.66 
l64.00 
196.47 
226.44 
2x0. I4 
327.03 
368.4’9 
405.53 
338.9 I 
46Y.23 
496.93 
607. I I 
6X6.67 
147.94 
797.21 
X38.05 
X72.70 
Y02.63 
Y2X.X2 
‘)2x.x7 
Y72.YX 

I .024.62 
I .0X7. I8 
I J87.20 
I, 124.49 
1.167.65 
1.21Y.33 
1256.37 
I .307.X3 
I v356.64 
I .405.70 
I .336.75 
I .s I x.03 
I .564.89 
I.601 .Y9 
I ,7 12.80 
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To estimate the asymptotic variance we need the variance of the 
empirical LEVs which are computed using: 

E[min(X, cJ2] - (E[min(X, cJ]l’. 

They are: 

(Ti i = Var (min (X, Ci)) 

ct 
= x*flx;e)dx+c: 1 I [ 

- F(Ci; e) - Lf = 2Li i - L: , 
0 1 

Oij = Cov(min (X, Ci), min (X, Cj)) 

r, 5 
= I X*~~; B)dx + I Ci xf(X; e)dX + CiCj 

0 
[ 

1 - F(Cj; e)] - L,Lj 
c 

=zLij-LiLj, fori<j. (4.2) 

Note that if there is a deductible, d, the integral must start at d and the 
pdf and cumulative density function (cdf) must be modified to reflect 
the truncation. 

For the Pareto distribution, with i Ij, 

2h2 
zLij = [a - 2)~~ - 1) - 

h(“( h + Ci)-a + ’ (aCi + 2h) h~(h + Cj)-a + ‘Ci 

(a-2)(a- 1) - (a-l) * 
(4.3) 
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Using the 38 intervals and the estimated parameters produces a 
38 x 38 matrix, which will not be presented here. The square root of 
the diagonal elements measures the standard deviation of the empiri- 
cal LEVs based on a single observation. The standard deviation of the 
actual empirical LEVs can be estimated by dividing these values by 
the square root of the sample size (81.58). These standard deviations 
are presented for selected values in Table 3. 

Calculation of the matrix B is relatively simple as Equation 3.3 
requires only the first partial derivatives of the model LEVs. These 
were given in Equation 4.1. This matrix is not presented here. 

Calculation of A requires the second partial derivatives of the 
model LEV. They are 

L’2’ 
L!*. 2) _ 1 

Lj c;ha- *(h + r, - aCi) 
_ 

I h A*+--- (h+ci)af’ 
(4.4) 

For the data of the example, the matrix is 

A = 204,021,910 -169,261.81 

[ -169,261.81 1 148.34278 ’ 

The estimated covariance matrix, A-‘BZB’A-‘16,656 (the denomi- 
nator is the sample size for this problem), is 

[ 

0.03475 1 33.57 1 1 33.571 32,765 ’ 

As expected, the minimum LEV estimator is inferior to maximum 
likelihood. 



MINIMUMDISTANCEESTIMATION 261 

TABLE 3 

STANDARDDEVIATIONSOFEMPIRICAL LEVs 

Limit LEV Std. Dev. 
$ 100 $ 92 0.3 

250 203 1.0 
500 338 2.3 

1,000 504 4.6 
2,500 745 9.9 
5,000 920 15.7 

10,000 1,079 23.2 
25,000 1,264 36.0 
50,000 1,367 48.3 

100,000 1,433 63.3 
500,000 1,587 113.4 

1 ,ooo,ooo 1,662 144.2 

Example Two 

The second example concerns medical malpractice claim count 
development. The data are from Accomando and Weissner [ 13. Cu- 
mulative numbers of claims were recorded at intervals of six months 
through 168 months. The data are presented in Table 4. 

Maximum likelihood estimation revealed that the Burr distribution 
provides a good fit. The distribution function is 

F(x) = - 

1 

hT a 
1 - ilT +xT i 1. 

AT a - 
l ! hT+ 16gT 

(4.5) 
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Lag Claims Fn 

6 4 0.0086 
12 IO 0.0216 
18 18 0.0389 
24 56 0.1210 
30 101 0.2181 
36 137 0.2959 
42 199 0.4298 
48 232 0.501 I 
54 261 0.5637 
60 285 0.6156 
66 307 0.663 1 
72 331 0.7 I49 
78 352 0.7603 
84 369 0.7970 
90 380 0.8207 
96 389 0.8402 

102 396 0.8553 
108 409 0.8834 
114 414 0.8942 
120 416 0.8985 
126 423 0.9 136 
132 440 0.9503 
138 44s O.Y6 I I 
144 453 0.9784 
150 455 0.9827 
IS6 461 0.9Y57 
162 463 I .oooo 
168 463 I .OOOO 

MINIMUM DISTANCE ESTIMATiOh’ 

TABLE 4 

MEDICAL MALPRACTICE CLAIM CWWT DEVELOPMENT 

F-MLE I c -- Mid 

0.0020 0.0026 
0.0 173 0.0194 
0.0574 0.0604 
0.1257 0.1276 
0.2142 0.2139 
0.3 IO1 0.3079 
0.4025 0.3998 
0.4860 0.4838 
0.5585 0.5576 
0.6207 0.6212 
0.6736 0.6754 
0.1 I88 0.7216 
0.7574 0.76 I I 
0.7907 0.7949 
0.8195 0.8241 
0.8447 0.8493 
0.8668 0.8714 
0.8863 0.8907 
0.9036 0.9077 
0 .Y I 90 0.9229 
0.031”) O.Y363 
0.0454 (I.‘)484 
0.9567 0.4592 
O.Yh69 0.9690 
O.Y763 0.9778 
0.984’) O.Y85Y 
KYY27 0.9933 
I .00(X) I .oooo 
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The denominator is required to reflect the truncation of the data at 
168 months, The maximum likelihood estimates of the parameters are 
& = 0.40274, R = 34.224, and 2 = 3.118 1, The values of F(x) for this 
model are presented in Table 4. 

The asymptotic covariance matrix of the maximum likelihood es- 
timates is 

i 

0.017336 0.57018 -0.035566 
0.57018 20.656 -1.2135 . 

-0.035566 -1.2135 0.10703 1 
For minimum distance estimation, the weights were selected as 

follows: if F,, i < 0.5 the weight is 4, while if F,,, i 2 0.5 the weight is 
l/[ F,,, i (1 - F,,, i)], This places the smallest emphasis on the early 
durations and makes the weights proportional to the reciprocal of the 
variance at later durations (due to the omission of the sample size). 
Because the value of F,, at the last duration (162) is 1, the weight here 
is set equal to the one at duration 156. An alternative is to use the 
model distribution for the weights, changing them at each iteration as 
the parameters change. The minimum distance estimates are 
& = 0.48798, i = 36.989, and $ = 2.9496. These turn out to be very 
similar to the maximum likelihood estimates. A look at the distribu- 
tion function in Table 4 verifies that this model does a better job of 
matching the distribution function, especially after the 95rh percentile. 

Estimation of the variance is messier than for the previous exam- 
ple due to the additional parameter and the complexity added by the 
denominator in Equation 4.5. For this illustration, the elements of A 
and B were obtained by numerical differentiation. When this approxi- 
mation was applied to the previous example, the answers matched to 
two significant digits. The elements of J$ are much easier to obtain. 
The ij th element is 

oij=F;(l-Fj), ilj. (4.6) 

The estimated covariance matrix is 
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0.08 1077 2.6655 -0.16625 
2.6655 89.507 -5.5313 . 

-0.16625 -5.5313 0.33525 I 
This is about four to five times greate.r than the variances for the max- 
imum likelihood estimate. 

The goal of this application is to forecast the number of claims 
that will be reported after Lag 168. Using the Burr distribution it can 
be estimated as 

$ = 463[1/F(168; rj) - l] = 
463 a 3 (4.7) 

where F is the untruncated Burr distribution. Inserting the maximum 
likelihood estimates yields E = 72.3998, while doing the same for the 
minimum distance estimates yields fi = 58.7556. An estimate of the 
variance of these estimators can be obtained by finding the vector of 
partial derivatives (with respect to the parameters) of p, 8, and then 
computing S SS where 2 is the covariance matrix of the parameter es- 
timates For the maximum likelihood estimate, the variance is 60.703 
while for the minimum distance estimate it is 103.09. In the latter 
case, we can be about 95% confident that there are between 39 and 79 
unreported claims. 

5. A GOODNESS-OF-FIT TEST 

If the model selected is correct, the empirical G,,, , will have an 
approximate multivariate normal distribution with a mean equal to 
the model G and a covariance matrix given byZ/rl. If the true param- 
eters were known, 

n(G,, - G)‘f(G,, - G) . (5.1) 



MINIMUM DISTANCE ESTIMATION 265 

where G is the vector of functionals at the true parameter value, 
would have a chi-square distribution with k degrees of freedom. With 
the parameters being estimated, it is not so clear what to do. The re- 
mainder of this section addresses that problem. The approach used 
here is similar to the one used to derive the distribution of the chi- 
square goodness-of-fit test statistic. An excellent exposition can be 
found in Moore [3]. It is based on the work of Rao [S]. 

Let V,(8) be a k x 1 vector with ith element WY [G,z(cJ - G(c; I O)] 
so Q = V,,’ (O)V,(fl). Let 0, be the true parameter value and R be a 
k x p matrix with ijth element 

l/z aG(Ci I 0) 
‘ij= W; 

aej I 
8, =e(), . (5.2) 

From Equation 2.2, we have 

i wr[ G*(Ci)-G(CiI8)]~j=O, j= 1, .*.,p 
i=l 

(5.3) 

where Fj j is rij except with the derivative evaluated at Bj. Next write 

G,(ci) - G(Ci 18) = G,(Ci) - G(c~ I $) + G(c~ I 00) - G(Ci IO) (5.4) 

= G,(q) - G(q I 9,) - t[ w,“rij+Op(l)](~j-e*j) 
j=I 

using a Taylor series approximation. Multiplying both sides by WY 
and arranging the elements in a k x I vector produces 

V,(8> = V,(e,> -R@- 0,) - op(l> (8-W. (5.5) 

Assuming continuity of the elements of R as a function of 0, 
Yij = ‘ij + o,,( 1). Substituting this and Equation 5.5 into Equation 5.3 
gives 

0 = CR’ + op( l))V,(& 

= CR’+ op(l>> w,a) -RB - &I - o&l> (0 - e,)i 



= R’V,&> - R’R@ - 0,) + q,(l) . 

Rearranging gives 

B-e,=(R’R)-‘R’V,,(B,)+o,(i). 

(5.6) 

(5.7) 

Substituting Equation 5.7 into Equation 5.5 yields 

V,(B) = Ue,,) - WW-’ R’V,,Ce, ) + o,,( 1) 

= [I - R(R’R)-’ R’]V,,(e, ) + <I,,( 1) 

=cv,(e,)+qu. (5.8) 

Note that C is idempotent and assume that it is of rank k -p, as will 
most certainly be the case. Next observe that 

vNce,) - N(o, ~-‘w!‘2~w’C) . (5.9) 

where W” is diagonal with ith diagonal element \,*:’ and 2 is as in 
Equation 3.1. Therefore 

v,,(e) - N(0, s = ,1--‘cw~2~w~“c) . (5.10) 

In general, if X- N(0, S) then X’S X - x’(m) where m is the rank 
of S and S- is a generalized inverse (Moore [-?I, Theorem 2). One 
definition (among many that are equivalent) of a generalized inverse 
is that x = S-v solves 4’ = Sx provided J is in the column space of S. 
That is, if there is a solution to the equation, then S- will provide it. A 
discussion of generalized inverses can be found in Searle [6]. At first 
it appears that this test is arbitrary, because the generalized inverse is 
not unique. But, for X in the column space of S, X’ S-X will take on 
the same value, regardless of the form of the generalized inverse 
selected. For the normal distribution, the probability that this will 
happen is 1. Because the normal distribution in Equation 5.10 is 
approximate, it is possible that in practice, the value will depend 
slightly on the form of the generalized inverse selected. The test 
statistic is then 
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V,,(&‘S-V,,(8) = (G,, - G)‘W”S-W”(G,, - G), (5.1 I) 

which is very similar to Equation 5.1. 

For the second example, the value using Equation 5.1 is 70.53; it 
is 70.1 15 using Equation 5.11 with the Moore-Penrose generalized 
inverse. Both values clearly exceed the 5% critical value for 24 de- 
grees of freedom (36.42). 

This test indicates that a better choice of weights would have been 
appropriate. One such choice, from pure statistical (as opposed to 
actuarial) considerations, would be the reciprocals of the diagonal 
elements of 2. Aside from, being an advance attempt to pass the 
hypothesis test, it makes sense in that the expected value of each term 
of Q is l/n. Thus, each term is making an approximately equal con- 
tribution to the criterion. For the Pareto example, a look at Table 3 
shows that the weights would be decreasing with ci, Again, this 
makes statistical sense, as for low limits virtually any reasonable 
model will produce an LEV that is just a little bit below Ci , and the 
empirical LEV will also be in that range. At the larger limits, there is 
likely to be much more sampling error and, therefore, wider varia- 
tions should be tolerated. However, for actuarial purposes, one might 
come to the opposite conclusion. Once put to use, the model will be 
evaluated only at the larger limits, and so it is there where deviations 
from the sample should be small. 

A more direct form of hypothesis test would be one based on Q. 
This would be similar to the Cramer-von Mises test for comparing a 
model cdf to the empirical cdf. It has the advantage of being inde- 
pendent of the weights in the sense that the parameter estimate is, by 
definition, the one that minimizes the test statistic. However, this 
involves extra work as the distribution of Q under the null hypothesis 
is not so easy to obtain and depends heavily on the unknown 8. 

6. SIMULATION 

The theorem and hypothesis test are both asymptotic results. Also, 
both employ the replacement of the true parameter value by the esti- 
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mate to complete the calculations. In this section, a simulation study 
is conducted to provide some feel for the accuracy of the method. 

The true mode1 selected for the study is Pareto with a = 3 and 
h = 500. The empirical LEV is obtained at I2 points: 20, 40, 65, 90, 
130, 180, 250, 350, 575, 850, I .300, and 2,000. At each simulation, 
500 observations were generated. The parameters are then estimated 
by the minimum LEV method using weights of I, I, 1, 1, 1, I, 1, 2, 4, 
8, 16. and 16. The covariance matrix was also estimated, using Equa- 
tion 3.4. Finally, the chi-square goodness-of-fit test statistic was com- 
puted using both Equations 5.1 and 5.11. The latter was done with 
two different algorithms for the generalized inverse, the Moore-Pen- 
rose and a sweep method. If the results in Sections 3 and 5 hold, the 
following should be observed: 

1. The sample mean of the parameter estimates should be close 
to the true value. This will indicate that the estimator is unbi- 
ased. 

2. The sample covariance matrix of the parameter estimates 
should be close to the matrix given by Equation 3.4 using 
the true parameter values. This will indicate that the theorem 
gives reasonable results for samples of size 500. 

3. The estimated covariance matrices should have an average 
that is close to the matrix given by Equation 3.4 using the 
true parameter values. This will indicate that the replace- 
ment of the true values by the estimates does not distort the 
covariance estimation (on average). 

4. The goodness-of-fit test statistics should have a sample 
mean of 10 and a sample variance of 20. This will indicate 
that the chi-square distribution with IO degrees is reason- 
able. Also, 95% of the time the test statistic should be less 
than 18.307, and 99% of the time it should be less than 
23.209. This will confirm that the significance level is as ad- 
vertised. 

A run of 1,000 simulations was conducted. The asymptotic covari- 
ante matrix for maximum likelihood estimation is 
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0.3217 66.89 

I 66.89 14,750 ’ 

The asymptotic covariance matrix for minimum LEV estimation is 

[ 

0.6640 120.3 

I 120.3 21,830 ’ 

The sample means of the minimum LEV estimates were 3.161 for 
a and 535. I for h. The standard errors for a and il are 0.023 and 4.9, 
respectively, indicating that, for a sample size of 500, there is bias in 
these estimates. The sample variances were 0.5 I33 for a and 24,150 
for h, and the sample covariance was 108.8. These are close to those 
given by the asymptotic approximation, indicating that Point 2 holds 
for this problem. With both estimates having a positive bias, there is 
some cancellation of error. For example, the true mean is 
500/2 = 250 while the mean of the Pareto distribution using the sam- 
ple means is 535.1j2.161 = 247.62. Using the approximation for the 
covariance matrix yielded average variances of 1.178 and 54,196. 
These considerably overstate the true values, and so Point 3 does not 
hold. Finally, the basic chi-square test (Equation 5.1) accepted the 
model 94.8% of the time when a 5% significance level was used and 
99.3% of the time when a 1% level was used. Using Equation 5.11 
with the Moore-Penrose inverse yielded acceptance rates of 95.5% 
and 99.4%, while the sweep inverse accepted the model 95.4% and 
99.4% of the time. Another indication of accuracy is the mean and 
variance of the chi-square statistics. They were 10.002 and 19.542 for 
Equation 5.1, 9.843 and 18.849 for the Moore-Penrose inverse, and 
9.846 and 18.847 for the sweep inverse. Finally, the absolute differ- 
ences in the chi-square statistics were averaged for each of the three 
possible comparisons. For Equation 5.1 versus Moore-Penrose, the 
average absolute difference was 0.158; and versus the sweep inverse, 
it was 0.162. The two versions of Equation 5.11 had an average 
absolute difference of 0.016. It appears that any of the three tests are 
likely to be valid. 
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