
Volume LXXX, Part 2 No. 153 

PROCEEDINGS 
November 14,15,16,17,1993 

ASSET/LIABILITY MATCHING (FIVE MOMENTS) 

ROBERT K. BENDER 

Abstract 

It is well known that re-investment risk can be greatly 
reduced tf the assets which are assigned to support liabili- 
ties are “matched. ” In particular matching two properties 
of the asset and liability cash flows, the dollar duration 
(DDl) and dollar convexity (DD2). can provide a signi$- 
cant reduction in re-investment risk. This paper provides a 
rigorous mathematical treatment of the asset/liability 
matching problem. 

This paper initially shows that DDl and DD2 are the 
first two moments of a set of cash flows (DDn). By means 
of a Taylor expansion of the present value of a set of cash 
flows, the paper then shows why matching individual mo- 
ments of an asset jlow with the corresponding moments 
associated with a liability flow can reduce re-investment 
risk. 

Finally, for every cash flow and pair of interest rates, 
there exists a characteristic time T. Even if the flow is 
originally priced to yield the first interest rate, and it is the 
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second interest rate that prevails, the initial yield rate can 
be achieved by selling the flow at time T. The puper shows 
how this relates to asset/liabili[y matching, and how T call 
be expressed in terms of the generalized moments, DDn. 

The author wishes to thank William A. Bailey for his helpful corn 
ments and suggestions after reading an earlier version of’this paper. 

1. LNTRODUCTION 

Whenever a liability takes the form of future cash outflows and 
assets earn interest, it is reasonable to discount the liability for inter- 
est before deciding whether or not assets are sufficient to “cover” the 
liability. In the discounting process, several assumptions are made. 
One assumption is that the size and timing of the cash outflows are 
known. A second assumption is that the interest rate used in the 
discounting process can be realized in asset yield. Both of these as- 
sumptions introduce an element of risk into the matching process. 
The latter risk has two distinct elements: Credit risk due to possible 
defaults as to principal and interest, and re-investment risk due to 
interest rate changes during the life of the asset. 

The sources of re-investment risk and ways to reduce that risk 
have been the subject of several recent papers and articles (see [ I]- 
[6]). It has been demonstrated that re-investment risk can be greatly 
reduced if two moments of the asset and liability cash flows are 
matched; namely dollar duration (MI 1). and dollar convexity (002). 
Another simpler moment, weighted term duration (WTD), is men- 
tioned, but usually not considered further. 

Two moments in time are also discussed when considering the 
reduction of re-investment risk: the initial time (implicit in the re-in- 
vestment rate) and one implied by Ferguson’s Table C in which a 
characteristic time equal to 4.13 years is shown to have special signif- 
icance for a five-year, 9% par bond [I]. With the exception of Appen- 
dix B in Ferguson’s paper, relationships between the five moments 
listed above are usually demonstrated by means of examples, rather 
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than by a more rigorous mathematical exposition. Following the spirit 
of Ferguson’s appendix, this paper recasts the discussion into a math- 
ematically rigorous format, and, in Appendix B, applies the results to 
reflect higher order terms in Ferguson’s bond example. In the process 
we gain some insight into the nature of the relationships and see that 
all of them are approximations. It is not the objective to produce a 
better method for reducing re-investment risk but, rather, to place the 
current work into a unified theoretical framework. Credit risk is be- 
yond the scope of this paper. 

2. DEFINITIONS 

Assume a set of discrete cash flows {U,), where CF, is the flow 
at time, t. These flows may represent either an income producing 
asset (in which case the CF represents inflows) or a liability (in which 
case the CF represents outflows). 

The nominal value of the flow is given by the sum of the flows 
over time. as follows: 

Nom= 2 CF,, (2.1) 
t = 0 

where w is the largest value of t for which CF, is non-zero. The I need 
not be an integer, and some CF, with t < w can be zero. 

The present value of the flow, under an assumed interest rate, i, is 

PV= 2 v(i)’ CF, , (2.2) 
f=O 

where 

v(i) = l/(1 + i) . (2.3) 

The weighted term duration is defined by 
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WTD= 2 rCF,/g CF,. 
t=0 t= 0 

(2.4) 

The dollar duration is given by 

DDl(i) = 2 I v(i)’ CF, / 2 v(i)’ CF, . (2.5) 
t=o t= II 

The usual notation does not explicity draw attention to the fact 
that DDl depends upon the assumed interest rate. For much of what 
follows, this dependence will be significant. Dollar convexity is de- 
fined as the second moment (in time) of the cash flow, as follows: 

DD2(i) = 2 ?v(i)’ CF, / 2 v(i)’ CF, . 
t=o t = 0 

Again, this notation explicitly displays the dependence of the dol- 
lar convexity upon the assumed interest rate. Continuing on, higher 
moments of the cash flow distribution are defined by: 

DDn(i) = 2 tfl v(i)’ CF, / 2 v(i)’ CF, . 
t=o t=o 

As was previously mentioned, the time scale can be drawn as 
finely as the cash flow pattern dictates. For some flows, the payment 
pattern will be nearly continuous. For those flows, approximate the 
set of discrete flows, (CF,), with a flow rate o(t) such that o(t)& 
represents the cash flow from time t to t + dt (an infinitesimal time 
later). Further, define a normalized discounted flow density p(i, r) as 
follows: 

w 

p(i, r) = v(i)’ o(t)/j v(i)’ o(r) dt (2.8) 
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Using the definition of p(i, t), Equations 2.1, 2.2, and 2.4-2.7 can 
be recast into continuous form: 

w 

Nom = a(t)dt , I 
0 

(2.9) 

PV = j v(i)’ o(t)dt , 
0 

(2.10) 

w 

WTD=jtp(O,t)dt=DDl (0) 
0 

(2.11) 

w 

DDl(i)=jtp(i,t)dt, 
0 

(2.12) 

co 

DD2(i) = I t2 p(i, r) dt , and 
0 

(2.13) 

w 

DDn(i) = s t“ p(i, t) dt. (2.14) 

In this form, the integrals for DDn (n = 1,2,3....) are clearly mo- 
ments of the distribution (of cash flows) given by p(i, t). 

While the weekly payments of workers’ compensation lifetime 
disability benefits may be reasonably approximated by a continuous 
cash flow, very few assets yield a nearly continuous cash flow. 

A final definition allows the rigorous dealing with any discrete 
cash flow as if it were continuous-allowing us to work in the contin- 
uous case whenever the mathematical manipulations are easier. The 
device is called a Dirac delta, Q-X,). Standing alone, the Dirac 
delta is undefined; but its action within an integral is well defined. 
Consider a functionflx), then 
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b 

(2.15) 

If one writes, for the discrete set CFto, CF,,, CF,?, . . . 
1 

CF, i. , 
w> 

~(0 = 2 CFt,,, 6U - r,,,) . (2.16) 
m = 0 

then, for example, 

w 

I o(r)dr = 2 CF, and (2.17) ,,I 
0 m = I) 

3. ASSET/LIABILITY MATCHING: CASE 1 

The usual case considered is when a discounted liability cash 
flow. 

PV, (i) = j l(i)’ CT,, (r) dr , (3.1) 

is matched with (set equal to) an asset with an identical present value 
(but not, necessarily, identical cash flows). 

PVA (4 = 7 i(i)’ ~3~ (r) dr 
0 

(3.2) 

at time equals zero, the interest rate changes to j. The asset and liabil- 
ity continue to be matched if 
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PV, 0’) = PV, 0’) . (3.3) 

The trivial (in a mathematical sense) solution to Equation 3.3 in- 
volves selecting an asset for which: 

OA @) = OL @) . (3.4) 

In this case, while both PV, (i) and PV, (i) are functions of the inter- 
est rate, their difference, 

tnax(wt,. mAI 

PV,~ (i) - PV, (i) = I v(i)’ . 0 dr = 0 (3.5) 

is independent of i. 

One could always transfer the liability to a third party in exchange 
for a single payment equal to the selling price of the asset (remember, 
we are not considering timing risk or default risks, so the price should 
equal the present value). The purchase of zero coupon bonds, which 
mature as the liabilities become due, produces just such a solution to 
the re-investment risk problem. 

When the two o(r) are not identical, approximate solutions to 
Equation 3.3 may be found via a Taylor expansion of the present 
value as a function of the interest rate, i. In particular, for j = i + Ai , 

pv,, 0’) = 2 (i/n!) [d’PV,< (k)/dk”] I k = ; (Ai)“, 
r, = 0 

(3.6) 

pv, 0’) = 2 (i/n!) [d”pv, (k)/dk”] 1 k=; (Ai)“, 
I, = 0 

(3.7) 

or 
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PV, 0’) - PV, 0’) = 

2 (i/n!) [d “PV, (k)/dk ’ - d “PV, (k)/dk “1 I k = ; (Ai)“. (3.8) 
lt=O 

The set {(Ai)“! for Ai not equal to zero and for 
n = 0, 1,2, 3.... forms an independent basis for a vector space. As 
such, a null vector, implying PV, (j) = PV, (‘j) , can only be obtained 
if each component, 

a,=l/n! [d”PV,(k)/dk”-d”PV, (K)/dk”] Ikzi (3.9) 

is zero. We therefore conclude that the solution for Equation 3.3 ob- 
tained by setting (3, (r) equal to 0, (t) is not only the trivial solution, 
but it is the only exact solution (since satisfying Equation 3.9 to all 
orders would cause the two functions to be identical). For small i, the 
higher order terms in the Taylor series can be expected to decrease 
rapidly, allowing for an acceptable degree of error to remain if only 
one or two terms are matched (i.e., Equation 3.9 is satisfied). 

The zero order terms are initially equal if the asset and liability 
have equal present values before the (time zero) interest rate change. 
The first order term requires a matching of (from Equation 3.9 with 
n= l), 

dPV, (k)/dk I k = i = dPv, (k)/dk I k = , (3.10) 

From Equation 3.1, 

dpv, (k)/dk I k = i = J CT~ (t) dv(k)‘/dk I k = i dr (3.11) 

w 

=-v(i) I n(i)’ oL (r) dr 
0 
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=-v(i) DDl, (i) PVL (i) . 

Likewise, for the asset, 

dPV, (k)/dk I k =; = -v(i) DDl, (i) PV, (i) . (3.12) 

Equation 3.10 will be satisfied, in view of Equations 3.11 and 
3.12, if 

DDl, (i) = DDl, (i) , (3.13) 

which is the usual condition that dollar durations be matched. (Note 
that PV, = PV, when the asset was originally selected.) 

The next term introduces convexity. Setting 

d2PV, (k)/dl2 I k = i = d*PVA (k)/dkz I k = i 

produces matching to second order in Ai, 

w 

d2PV (k)/dk* I k = i = 1 O(t) d2v(k)/dk2 I k = i, 
0 

(3.14) 

= v(i)* 7 (t* + t)v(i)‘o(t)dt 

= v(b2,;D2(i) + DDl(i)] PV(i) . 

As long as PV and DDl have been matched, Equation 3.14 adds the 
convexity matching requirement, or 

002, (i) = 002, (i) (3.15) 

for second order agreement. 

While higher order terms can be matched, a small Ai raised to a 
large power makes the terms less significant. Nonetheless, we ob- 
serve that each additional order introduces an additional moment 
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along with the previously matched moments. Again, if all of the 
moments are equal, the two distributions must be equal. Practically 
speaking, it may be extremely difficult to match 002, let alone to 
find assets for which higher orders of DDn are matched. 

It is interesting to note that expressions for the change in price 
frequently omit terms and factors from the Taylor series. (Ferguson 
draws attention to the missing Actor of \*(i) in the first order term.) In 
particular, both Babbel and Stricker [5], and Diembiec, et al 121 omit 
the DDl contribution to the second order term, and the l)(i) factor at 
all orders. The correct expression is 

APrice/(Original Price) = [PVfj) - PV(i)]/PV(i) (3.16) 

= -v(i) DD 1 (i)Ai 

+ ‘/z v(i)*[DD2(i) + DDl(i)](Ai)* 

+ R(Ai7) 

where R is a residual term of order Ai’ and higher. The previously 
published residual term contains contributions of the same order as 
those that are explicity displayed. The expressions also appear to con- 
fuse price with Aprice/original price. Of course. the missing terms 
and factors are common to both the asset and the liability, so their ab- 
sence in the price expansion does not introduce any errors into the 
matching process, or the conclusion that convexity matching is a sig- 
nificant improvement over dollar duration matching. 

4. ASSET/LIABILITY MATCHING: CASE 1 

Ferguson alludes to a second method of re-investment risk man- 
agement. Given an initially matched asset and liability and an initial 
change of interest rate, there is some time, 7: (not equal to zero) at 
which the asset and liability could be exchanged (assuming no inter- 
vening interest rate changes). He implies that T is equal to the dura- 
tion (which is true only to first order in Ai). 



ASSET/LIABILITY MATCHING 239 

Before demonstrating the degree of approximation in this asser- 
tion, it will be shown that this second time of price equality can be 
determined exactly in closed form. As in the previous case, assume 
that the asset and liability are price matched under the initial interest 
rate assumption, 

PV, (i) = PV, (i) , (4.1) 

and that at time t = 0, interest rates abruptly change from i to j. We 
have already seen that, if the change is small and DDl(i) and DD2(i) 
are equal, then W&J will be approximately equal to PV,u). 

After some time has elapsed, there is a time, T, at which the asset 
can be sold such that the accumulated value of prior payments at the 
new rate, j, plus the sale price (determined at the new rate, j, for the 
remaining flows) yields the original rate, i. If the corresponding lia- 
bility has the same characteristic r an exchange could be made at 
time T without suffering the consequences of re-investment risk. 

At the original yield rate and price, PV,(i) would have accumu- 
lated to PV,(i) . (1 + i)r by time T Instead, the prior payments will 
have accumulated to 

2 (1 + j)T- ’ CF, = 2 v(j)‘- ’ CF, , (4.2) 
t=o t=o 

using the discrete notation for simplicity. The present value of the fu- 
ture payments at time Tare given by 

selling price = 2 v(j)‘- ’ CF, . 
l=T+l 

(4.3) 

Combining Equations 4.2 and 4.3 to obtain the total wealth after 
selling the asset at time T and comparing it to the original asset price, 
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Pi’,(i)* (I +i)T=i v(j)‘-‘CF,+ 2 v(j)‘-“CF, (4.4) 
t = 0 I:T+ I 

= ( 1 + j) 5 v(j)’ CF, 
I = 0 

= (1 +j)“ PV,, 0’) , 

where PV, (j) is the original price of the asset under an assumed in- 
terest rate, j. Solving for T gives the exact solution, 

T(i,j) = ln[PV,4 o)/PV, (i)]/ln[( I + i)/( 1 + j)] . (4.5) 

While any logarithm base could be used, we have selected the 
natural base. T depends upon both interest rates, so it is not a function 
of the original bond price alone (as one might believe after reading 
Ferguson’s example). 

To see how T is related to LID1 and 002, expand T in a Taylor 
series to first order in (Ai). Here, however, the derivatives are not 
quite as simple as they were for the PV expansion. The Taylor series 
in powers of Ai = j - i is given by 

T(i,j) = T(i, k) I k = i + dT(i, k)/dk I k = ; Ai + R(A,i?) . (4.6) 

Due to the presence of ln[PV(k)/PV(i)] in the numerator of T(i, k) 
and ln[( 1 + i)/( 1 + k)] in the denominator, each of these terms in- 
volves the indeterminate form O/O when k is set equal to i. One or 
more applications of I’Hopital’s rule (see Appendix A) allows us to 
evaluate each term giving 

T(i,j) = 001(i) - l/2 v(i)[DD2(i) - DDl (i)‘]Ai + R(Ai’) . (4.7) 
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APPENDIX A 

Zero Order Term, T(i, k) I k = i 

Using 1’Hopital’s rule for the form O/O. we replace 

Limit T(i, k) = Limit In(PV(k)/PV(i)j/ln(( 1 + i)/( I + k)] (A.l) 
h-3; k+i 

with the equivalent 

Limit T(i, k) = 
k+i 

Limit d/dk In[PV(k)/PV(i)1/Limit d/dk In[ (1 + ;)/( 1 + k)] , (A.2) 
k+i h+i 

and evaluate the derivatives, 

Limit T(i, k) = Limit [N(k)-’ dPV(k)/dk]/Limit I( 1 + k) d( 1 + k)-‘/dk] . 
I;+; k--t; kii 

L4.3) 

This expression can be evaluated further if the discrete form ex- 
pression for W(k) is substituted, as follows: 

Limit T(i, k) = Limit [(d/dk 2 v(k)’ CF,)/ 2 v(k)’ CF,]/Limit (-v(k)) 
k+i k-ti ,= 0 I =I) X+i 

= 2 w(i) CF,/ 2 v(i)’ CF, , (A.4) 
I = 0 t = 0 

which is quickly identified as the discrete form of DDl(i). Therefore, 

T(i,k)I,=;=DDl(i). (A.3 
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First Order Term dT(i, k)/dk I k = i 

The first order term involves taking the first derivative of T(i, k) 
with respect to k, or more specifically, 

dT(i, k)/dk = { ln[( 1 + i)/( 1 + k)] . d/dk ln[PV(k)/PV(i)] (A.6) 

-In[PV(k)/PV(i)] . d/dk ln[( 1 + i)/( 1 + k)]/ 

+ {ln[( 1 + i)/( 1 + k)]}2, 

an expression which is rich in indeterminate forms when k = i. 

The derivative in the first term is identical to the numerator in 
Equation A.2, -v(k)DDl(k), and the derivative in the second term is 
identical to the one taken in Equation A.2, or -v(k). Making these 
substitutions into A.6 gives 

dT( i, k)/dk (A-7) 

= (-ln[( 1 + i)/( 1 + k)] . v(k) . DDl(k) + v(k) . ln[PV(k)/PV(i)]j 

+{ln[(l +i)/(l +k)]r, 

which is clearly of the form O/O when k = i because v(k) and LID1 (k) 
are finite positive numbers for all non-negative interest rates. 

L’Hopital’s rule, therefore, can be applied to the right side of 
Equation A.7 in order to determine dT(i, k)/dk as k approaches i. The 
application of 1’Hopital’s rule to Equation A.7 involves the algebraic 
manipulation of some rather lengthy expressions. To simplify the 
process we define A, B, and C as follows: 

A(k) = v(k) ln[PV(k)/PV(i)] , (A.8a) 

B(k) = ln[( 1 + i)/( 1 + k)] v(k) DDI (k), (A.8b) 

C(k) = { ln[( 1 + i)/( 1 + k)]}2 . (A.&) 
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In terms of A, B, and C, Equation A.7 becomes 

dT(i, k)/dk = [A(k) - B(k)]/C(k) , 

and I’Hopital’s rule leads to 

dT( i, k)/dk I k = i 

= [Limit dA(k)/dk - Limit dB(k)/dk]/Limit dC(k)/dk 
k+i k+i k+i 

from which each term may be evaluated separately. 

dA(k)/dk = ln[PV(k)/PV(i)] dv(k)/dk 

+ v(k) d/dk ln[PV(k)/PV(i)] 

=-v(k)’ ln[PV(k)/PV(i)] - v(k)’ DDl(k). 

dB(k)/dk = v(k) DDl (k) d/dk ln[( 1 + i)/( 1 + k)] 

+ ln[(l + i)/( 1 + k)] v(k) d 

t dk ( 2 m(k)’ CF,/ 2 v(k)’ CF,~ 
t=o r = 0 

= -v(k)2 DDl (k) - v(k)’ DD 1 (k) ln[( 1 + i)/( 1 + k)] 

+ ln[( 1 + i)/( I + k)] v(k)2 DDl (k)’ 

- v(k)’ DD2(k) ln[( 1 + i)/( I + k)] . 

dC(k)/dk = d/dk {ln[( 1 + i)/( 1 + k)$ (A.13) 

= 2 In[( 1 + i)/( 1 + k)] v(k) . 

(A. 10) 

(A.1 1) 

(A.12) 

(A.9) 
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The full expression becomes 

dT(iy k)/dk I k = i (A.14) 

= -‘/2 
{ 
Limit v(k) ln[PV(k)/PV(i)/Limit ln[( 1 + i)/( 1 + k)] 
k-+i k-i I 

-% v(i) DDl(i) - L/2 v(i) [DD2(i) - DDl(i)2] , 

where the first term is still indeterminate! 

A reapplication of 1’Hopital’s rule to the first term quickly dis- 
closes (in view of the evaluation of the zero order term) that 

dT(i, k)/dk I k=j=-1/2 v(i) [DD2(i) - DDl(i)2] . (A. 15) 
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APPENDIX B 

A NUMERICAL EXAMPLE 

Consider a five-year, par $1,000 bond with 9% semi-annual cou- 
pons, redeemed at par. Table B.l displays the moments necessary to 
price the bond to yield 9% and to determine DDl(O.09) and 
DD2(0.09). Column 2 displays the set of cash flows, with CF, con- 
sisting of both the final coupon and the redemption of the bond. 
Columns 4-6 are the components of the zero, first. and second mo- 
ments of the discounted cash flow in time. 

An example of the type of re-investment risk to be managed 
would be an abrupt change in yield rates from the 9% assumed when 
the bond was priced to 6.5%. Assume that the change in yield takes 
place at time equals zero. 

Table B.2 repeats the first four columns of Table B. 1. but under a 
6.5% yield assumption. Had the actual re-investment rate been known 
when Bond I was priced, it would have cost $ I, I09.87 rather than the 
$ I ,007.70 purchase price. 

Using the two prices and yield rates together with the exact Equa- 
tion 4.5 for T(i,j), we find that Bond 2 can be sold to yield the 
original 9% rate at T(O.09. 0.065) = 4.1621 years (approximately two 
months into the fifth year). 

Solving for T(i,j) to four decimal places, by means of the Taylor 
expansion, gives T(i, j) = 

4.1383 years. using zero order term DD I (i) 

+ 0.0238 years, (first order correction term) 

6O.S7?/ error at 7ero order in j - i) 

= 4. I62 I years, to first order inj - i (0.00% error at first order inj - i) 

Given the rather straightforward nature of the exact solution, there 
would be little reason to use the Taylor series in lieu of Equation 4.5. 
Assuming that T(i,j) = DDl(i) would introduce an unnecessary error 
into the calculation. An advantage of using Equation 4.5 over the 
approximate DDl(i) is that the sensitivity to the magnitude of change 
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from i to j can be tested, because Equation 4.5 explicitly contains the 
new interest rate,j. 

If Equation 3.16 is solved for the new price, one obtains 

PVfj) = 03.1) 

PV(i) - v(i) * DDl(i) ’ PV(i) * o’- i) + Y2 . v(i)2 

* [DD2(i) + ON(i)] . PV(i) . (j- l)* + R(Ai3) . 

From Table B.2, PV(O.065) should be $1,109.87. The Taylor se- 
ries produces the following approximations. 

PVcj) = 

$1,007.70 to zero order in (‘j - i) (-9.21% error at zero order in (j - i)) 

+ $95.65 (first order correction) 

= $1,103.35 to first order in 0 -i) (-0.59% error at first order in (j - i)) 

+ 6.19 (second order correction) 

=$1,109.54 to second order in 0’ - i) (-0.03% error at second order in ij - i)) 

which verifies that, at least for this example, matching dollar convex- 
ity significantly improved the matching process. 



TABLE B. I 

BOND 1 
Years to maturity: five years 
Coupon rate: 9.00% paid semi-annually 
Par value: $1,000 
Redemption value: $1,000 
Priced to yield i: 9.00% annually 

(1) 
t (in years) 

0.0 
0.5 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 

Total 

(2) 
CFr 

0.00 
45.00 
45.00 
45.00 
45.00 
45.00 
45.00 
45.00 
45.00 
45.00 

1.045.00 

(3) 
v(i)’ 

l.ooooooO 
0.9578263 
0.9174312 
0.8787397 
0.8416800 
0.8061832 
0.772 1835 
0.7396176 
0.7084252 
0.6785483 
0.6499314 

(4) 
r0 * v(i)’ * WI ----- 

0.00 
43.10 
41.28 
39.54 
37.88 
36.28 
34.7s 
33.28 
31.88 
30.53 
679.18 
1,007.70 

(5) 
t1 * v(i>’ * CFr ~-_I-.- 

0.00 
21.55 
41.28 
59.31 
75.75 
90.70 
104.24 
116.49 
127.52 
137.41 

335.89 
4,170.14 

(6) 
t2 * v(i)’ * CFz --__-_ 

0.00 
L 

10.78 8 

41.28 
88.97 

z 
m 

151.50 
226.74 j 

312.73 
407.71 g 

0 
510.07 
618.33 

16.979.46 
I9,347.57 

W(i) = $1,007.70 = total (4) 
DD 1 (i) = 4.1383 = total (5) / total (4) 
DD2(i) = 19.1997 = total (6) / total (4) 
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TABLE B.2 
BOND 2 

Years to maturity: five years 

Coupon rate: 9.00% paid semi-annually 

Par value: $1,000 

Redemption value: $1,000 

Priced to yieldj: 6.50% annually 

(1) 
f (in years) 

(2) 
CF, 

0.0 

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

3.5 

4.0 

4.5 

5.0 

Total 

0.00 

45.00 

45.00 

45.00 

45.00 

45.00 

45.00 

45.00 

45.00 

45 .oo 

1.045 .oo 

(3) 
v(i)’ 

1 .ooooooo 

0.9690032 

0.938967 1 

0.909862 1 

0.88 16593 

0.8543306 

0.8278491 

0.8021884 

0.7773231 

0.7532285 

0.7298808 

(4) 
to * v(i)’ * CF, 

0.00 

43.61 

42.25 

40.94 

39.67 

38.44 

37.25 

36.10 

34.98 

33.90 

762.73 

1‘109.87 

PI’(j) = $1,109.87 = total (4) 


