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This pupc~r addresses the problem of estimuring futrrrc claim 
payments when two r-un-o&f triangles ure uvuilahle: one of the 
number of claims, the other of total amolmts. Euch single 
claim can hn\le partial payments included in the total for se\?- 
era1 development periods. The method does not require addi- 
tional information, such as measures of esposure and claims 
injlutiou. The approach udopted is to model the mean claim 
amount us u fhction of operutional time, using genetalixd 
Iineur models. Techniques are described for- jitting und com- 
puring a number- of models of this type, and fbr predicting the 
total cjf fhu-e claims from the best fitting model. Formal sta- 
tistirul tesrs are used for compuring models. It is shown how 
the root-mean-squur-e (RMS) error- of prediction can be calcu- 
lated, muking due ullowance for modelling error and random 
variution in both the number and amounts of future payments. 
Models are for-m&ted to muke explicit allowance ,for- claims 
inflation and purtiul payments. Assumptions are minimal, and 
diagnostic techniques are descr-ibed,for checking their validity 
in euch application. Numerical examples are given. 
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1 _ IN’l’KOIlI’(“llON 

This paper complements a previous work bq the author 1 101. That 
paper, like many others on stochatic claims reserving in property/casu- 
alty insurance. deals with methods applicable when the past run-off of the 
number of claims is not known (a common situation for actuaries in the 
U.K.). This paper addresses the problem of’ claims reserving when at least 
two run-off triangles are available: WC 01‘ the number 01‘ claims, the other 
of claim amounts. These primary triangles may be: 

(a) the number of claims closed, and the total of all payments on all 
claims closed (partial payments assigned to the development pe- 
riod of settlement): 

(h) the total number of payments, including partial payments, and 
the usual paid claims triangle (with each partial payment as- 
signed to the development period in which it was made); or 

(c) the number of claims closed. and the usual paid claims triangle 
(with each partial payment aa4gncd to the development period 
in which it was made). 

Of these possibilities, (a) and (b) are the simplest to model. and are 
considered first. They are equivalent to each other as far as the modelling 
and prediction methods proposed in this paper are concerned. Later, it is 
shown how basically the same methods can be applied in situation (c), 
which is more common in practice. 

If M’ is used to label origin (i.e., accident, report. or policy) years, and 
d to label development periods. the two run-off triangles can be denoted 
Y,,,, and N,,,‘, , respectively, where M’ runs from 1 to W, and d runs from 0 to 
T - 1. This notation is used for the incremental. rather than the cumula- 
tive, run-off. For example, in case (a), N,tC, is the number of claims closed 
in development period d of origin year H‘. and Y,,, is the total of payments 
on these claims made in development period tl and previous development 
periods. In case (c), N,,,, is the number of claims closed as in (a), but Y,,, is 
the total amount of all partial payments made in development period tl of 
origin year ~$1. including partial payments on claims not yet closed. In both 
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cases (a) and (c), N,,,(, should exclude claims settled with no payment if 
possible. Such claims do not contribute to Y,,,(, , so their inclusion in N,,, 
introduces an undesirable element of additional random variation. 

As in [IO], the methods described here do not involve an assumption 
that the run-off pattern has been the same for all origin years; indeed, the 
shape of the run-off may be different for each origin year. Similarly, there 
is no assumption that the claim size distribution is the same for all devel- 
opment periods. It is common for larger claims to take longer to settle so 
that the mean claim size increases with n. Higher moments of the distri- 
bution may also depend on d. The methods allow projection as far into the 
future as is necessary, not limited by the extent of the data. The data 
triangles may have missing values. This does not cause any problems 
provided the total number of data points is sufficient to fit an adequate 
model. The occasional negative values which occur in real data can also 
be handled without special treatment. 

The approach used in [IO] is to derive a model for the known data Y,,,(, 
from more basic models for the unknown quantities N,,,, and the individ- 
ual claim amounts X,$?, (also unknown). The assumptions of the models 
for N,,,, and X,,(, are then checked indirectly by applying diagnostic tests to 
the resulting model for Y,,,(, , If satisfactory, the model that is fitted to the 
Y,,.(, is used to project into the future. The logical progression of this 
approach to situations where N,,,, is known would be to formulate models 
for N,,.,, and Xur, separately (as before), but then to test each of these 
models directly from the data. This should allow good models to be found 
for each of these components. These models could then be used to project 
N,,,(, and X,,,(, separately, and the projections combined into projections for 
the total payments Y,,,, . However, the calculation of standard errors for 
predictions of Y,,(, obtained in this way is complex. Hayne 131 deals with 
the case when, for each origin year, the distribution of future claim 
amounts X,,,, does not depend on the development period d. The intention 
in this paper is to remove this restriction (as, for example, when larger 
claims tend to take longer to settle than smaller claims). In this case, the 
calculation of standard errors for the predictions would be extremely 
complex using real-development time, because the precise time of settle- 
ment of each future claim (hence, the appropriate claim size distribution) 



is uncertain. The problem is simplified in this paper by making use of the 
concept of opwtiond finzc. This concept seems to have been used first in 
claims reserving by Reid [7] and later taken up by Taylor [S, 91, but a 
fresh approach. including a number of innovations. is proposed in this 
paper. 

Operational time, 2, is defined as the proportion of all claims closed to 
date. Thus, for each origin year, operational time starts at 0, and increases 
ultimately to I. If the individual claim amounts X can be modelled as a 
function of operational time z rather than development time d. then there 
is no need for a separate model of the number of claims. This is because 
the dependence of the number of claims on operational time is known 
exactly: it follows trivially from the definition of operational time. Projec- 
tions of future payments Y can therefore be obtained from the mode1 of 
claim size X,,, alone, and the problem is an order of magnitude simpler 
than when X,,,(, and N),.,, are both projected. 

The data IV,,,, is used at three points in the operational time approach: 

l to estimate the ultimate number M,, of claims for each origin year 
MS (obviously. numbers of claims reported arc also useful for this 
estimation, if available); 

l to calculate a triangle of operational times (for use as the explana- 
tory variable in the claim size mode1 ): and 

l to calculate the observed mean claim sizes Y,,,,/N,,,, (for use as the 
dependent variable in the claim size model). 

There are often substantive reasons for expecting the size of individual 
claims to depend more on operational time than on development time. 
The main reason is that changes in claim handling procedures may affect 
the actual delay to settlement but should not affect the size of claims. The 
plausibility of such arguments need not be left entirely to judgment. It is 
possible to use the figures themselves to verify this basic hypothesis of 
operational time methods. This is shown in Appendix B. 
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Summwy cf Later- Sections 

Sections 2 through 6 deal with circumstances (a) or (b); that is, when 
the claim counts triangle gives the number of individual components of 
each element of the claim amounts triangle. Section 7 describes special 
procedures and enhancements to the method of earlier sections which 
may be necessary for case (c). All sections conclude with a numerical 
example. The data for the examples have been taken from Berquist and 
Sherman 111, and are reproduced in Appendix A. The data are actually of 
type (c), so the methods of Sections 2 through 6 are not wholly appropri- 
ate. They are applied purely for illustrative purposes. Section 7 also con- 
tains an analysis of the data used by Taylor 191. They are also of type (c), 
and are given in Appendix A. 

Section 2 gives a complete account of the method applicable in cases 
(a) or (b), under several simplifying assumptions. The assumptions are 
unrealistic but are made initially in order to simplify the presentation. 
Sections 3 through 5 show how the assumptions can be relaxed. The 
assumptions used in Section 2 are that: 

I. The expected claim size at each operational time z is the same for 
all origin years, after allowing for claims inflation. In other 
words, the mean claim amount in real terms is a function of T but 
not W. It can therefore be denoted m, . (In the presence of infla- 
tion, the mean claim amount will depend on w also. See Section 
4.) 

2. The coefficient of variation of individual claim amounts is the 
same for all operational times z, that is: 

Var(X,)=cp’.m:, (1.1) 

where X, is the size of an individual claim at operational time T, 
and cp is the coefficient of variation. 

3. The data Y,,(, have been adjusted for inflation so the triangle is in 
constant money terms. 

4. The ultimate number of claims M,. is fully known (that is, there 
is no uncertainty) for each origin year W. 



Assumption I is the only condition that must hold in order to predict 
future claim payments using methods proposed in this paper. Even As- 
sumption I needs not be an assumption in the sense that its validity can be 
checked using the data themselves. (This is the subject of Appendix B.) 
Section 3 describes how Assumption 3 can be tested and relaxed if neces- 
sary. Assumption 3 cannot often be valid in practice because the rate of 
claims inflation is usually unknown. Section 4 4110~s how the rate of 
inflation can bc estimated and removed fmm the data at the same time as 
fitting the claim size model, rendering preadjustment unnecessary. As- 
sumption 4 only holds in practice if the origin years are report years. 
Often with accident or policy years. thcrc will bc considerable uncertainty 
in the estimates of ultimate numbers M,, Section 5 describes how this 
uncertainty can be taken into account. 

The main point of Sections 2 through 4 is to discover how the mean 
and the variance of an individual claim X, depend on the operational time 
z. When this has been achieved. since WC know the operational time r ot 
every future claim (from the definition of operational time I. we can find 
the expected value and the variance of every future claim. This, in turn. 
can be used to find the expected value mnd the variance of the total of all 
future claims. 

A broad outline of how predictions can bc mndc from a fitted opcra- 
tional time model was provided in the previous paragraph. (Here the term 
“model” refers to the mathematical representation of the relationship be- 
tween operational time and the mean and variance of X, .) The details of 
prediction are given in Appendices D. E, and F. These are more complex 
than would be expected from the comments above: first. because of pa- 
rameter uncertainty (that is, the fitted model will not be exactly right); 
second. because uncertainty in the ultimate numbers M,, implies uncer- 
tainty in the operational time of each future claim; and, third. because of 
uncertainty about future claims inflation. Section 6 shows how uncertain 
future claims inflation can be included in the predictions obtained from an 
operational time model. This is necessary to comply with standard reserv- 
ing practices. 

All the models proposed in this paper are ,, ~v~~wruli~d liwiu. rnr~dt~l~s. 
Such models can be fitted using an algorithm hnown as Fisher’s scoring 
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method. This is the algorithm used in the well-known statistical package 
GLIM, which was used for all the numerical examples in this paper. 
Fisher’s scoring method maximizes the so-called qltusi-likelihood, or 
equivalently, minimizes the del*iance. The deviance can be regarded as a 
generalization of the weighted sum of squared differences between ob- 
served and fitted values. The weights are determined from the assumed 
variances of the observations. The generalization is that the variance of 
each observation may be a function of its mean, which, of course, is not 
known. The purpose of fitting the model is to estimate the mean. Fisher’s 
scoring method sometimes gives conventional maximum likelihood esti- 
mates. In other cases, it gives estimates which have all the desirable 
properties of maximum likelihood estimates (asymptotically unbiased, 
efficient, and Normal) although they may not actually be maximum likeli- 
hood estimates. An approximate variance/covariance matrix for the pa- 
rameter estimates is also produced by the algorithm. Further details are 
not given here as they are well documented elsewhere: the theory in 
McCullagh and Nelder [5], briefly in Hogg and Klugman [4], and practi- 
cal aspects in the GLIM manual [6]. The application of GLIM in actuarial 
work has previously been advocated by Brown [2]. 

2. SIMPLIFIED SCENARIO 

Assumptions 

Throughout Section 2, the four assumptions listed in Section 1 are 
made. These assumptions are not thought to be realistic, but are made at 
this stage to simplify the presentation. Assumptions 2, 3, and 4 are re- 
laxed in later sections. 

Transformation of the Data 

In order to model the dependence of claim size on operational time, 
the original data triangles I’,,(, and Nnd must first be transformed into a 
triangle z,,(/ of operational times, and a triangle Sbrtl of observed mean 
claim amounts. In the subsequent modelling, T will be the explanatory 
variable, and S will be the dependent variable. 
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Operational time, t, which has previously been defined as the propor- 
tion of claims closed, is an alternative to development time, cl. This defi- 
nition gives the value of operational time hct\i’ec>u claim settlements. In 
this paper, the value of operational time uf each claim settlement is de- 
fined to be the mean of the values immediately before and after settle- 
ment. So, for example, if there are M claims for a certain origin year, the 
operational time of settlement of the Nrh claim is given by z = (N - 'h/M. 
The values of operational time for each claim settlement are 
('/5)/M, (%)/M...., (M - '/5)/M. These values are shown as crosses in 
Figure 1, which illustrates a typical relationship between operational time 
and true development time. The mean operational time of the N,,,, claims 
in development period cl of origin year M’ can be calculated as: 

LI = W,,: I + Nw. 2 + . . . + N, (,- , + 'h N,,,, J/M,, . (2.1) 

Note that only half of N,,,,, is included in the numerator in order to give the 
nwm operational time for these claims. 

The sample mean size S,,, of the N,,.,! claims from origin year w 
observed at mean operational time z can bc calculated as S,,, = Y,,.,,/N,,.,, . 
As S,,, is a sample mean, its expected value is equal to the mean of the 
underlying population: 

E(S,,.,) = 1~1, . (2.2) 

The variance of Slt4 is the population variance divided by the sample 
size. Using the population variance of Assumption 2 (Equation I. I ) gives: 

Equations 2.2 and 2.3 are actually approximations in general because the 
N,.,, claims do not have exactly the same mean and variance. Equation 2.2 
is exact if IPI, is linear in T, and equation 2.3 is exact if 1~: is linear in t. 
Both are good approximations if nrT does not vary greatly within each de- 
velopment period. 
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FIGURE 1 

TYPICAL RELATIONSHIP BETWEEN OPERATIONAL TIME AND REAL DEVELOPMENT TIME 

Development Year d Real Development Time ( t ) 



The form of Equation 2.3 for the variance of S,,., can be: 

l tested (as described below) and if‘ not true. modified (as described 
in Section 3), and 

l used to test and compare alternatives for the systematic component 
of the model: that is, the dependence of mr on t (also described 
below). 

It is not necessary to have any further knowledge about the distribution of 
the data S in order to fit models of “generalized linear” type for the M, ; 
the variance alone is sufficient. 

Equation 2.1 defines a relationship between r. M’, and tl for the ob- 
served data. Given any two, the third can be found. By virtue of this 
known relationship, N,,.,, can alternatively be expressed as N,., , and this is 
done for the remainder of the paper. 

Models jiw the Mealt Cluint Six> 

An expression is needed to describe how expected severity varies as a 
function of the length of time a claim is open. A number of possible 
relationships between m, and z are considered: 

1. m, = exp (p,, + /3, . z + p, In(r)) 

7 -. m, = exp (b,, + p, r + & r’) 

3. l?IT = (8,) + p, ty 

4. rn, = l/(& + p,/z) 

All these models are of generalized linear form; that is, the mean nt, 
of the data S,,, is some function of a known linear form of the unknown 
parameters j3: 

h(n2,) = x, p. 

where 
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h(m,) is a known function, 

X, is a known vector, and 

P = CP,,? PI? I%>. 

Table 1 gives h(m,) and x, for each of the models. 

TABLE 1 

Appendix C shows how models for the mean claim size as a function 
of operational time can be interpreted in terms of real development time. 
Such models often correspond to simple relationships between the mean 
claim size and the distribution function of the delay. A graph of m, for 
each of the models is given in Figure 2. Although Figure 2 shows typical 
shapes, each model embodies a family of curves, and different shapes can 
be obtained within each family by varying the P-parameters. Of course, 
many other generalized linear models for m, could be formulated. All 
such models can be fitted, tested, and projected using the methods de- 
scribed below. The four models considered here have been chosen arbi- 
trarily, for illustrative purposes. 

Testing the Val-iawe Assun~ption 

As all the proposed models for mt are of generalized linear form, they 
can be fitted efficiently, given a second moment assumption, using 
Fisher’s scoring method. First, it is necessary to test the proposed second 
moment assumption (Equation 2.3). This can be done by fitting a model 
(referred to as “Model 0”) which makes minimal assumptions about the 
form of nz, . 



FIGURE 2 

TYPICAL SHAPES OF VARIOUS MODELS RELATING MEAN SEVERITY TO OPERATIONAL TIME 
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A suitably minimal assumption is that the expected claim size m, is a 
piecewise exponential function of z; that is, ln(m,) is a piecewise linear 
function of z. The important point is that this form of model is very 
flexible. Any reasonable function m, can be well approximated in this 
way if the intervals are sufficiently small. It is probably sufficient to take 
a number of sub-intervals of equal width, the number being equal to the 
observed number, T, of development periods. A subscript, j, is used to 
label these sub-intervals of the observed operational time range. 

Model 0 can be expressed as: 

m, = exp CP,, + C Pj zj) , (2.4) 

where each Tj is the amount of z lying in each of the sub-intervals of the 

operational time scale such that z = c . Zj . This gives a continuous 

piecewise linear function in the expone:t of Equation 2.4. The & are the 
slopes of the line segments. See Figure 3. An example of this piecewise 
exponential form for m, is shown in Figure 4. No assumption is made 
about the relationship between the pj values asj varies from zero to T. 

In terms of h(m) and x,, Model 0 is: 

h(m) = In(m) 

x, = (1, 71, 72, f,, .-*, ‘tT). 

If all the sub-intervals of operational time have the same width U, then X, 
is of the form: 

where (k - 1)~ < T < k . u and zk is the fractional part in this sub-interval. 
Of course, k and ~~ may differ for each data point S,,, , but since T is 
known for each data point, x, can be determined and the model fitted to 
estimate the parameters pi for j = I to T. 
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FIGURE 3 

TYPICAL MODEL ZERO (ON LOG SCALE ) 
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FIGURE 4 

FITTED MEAN SEVERITIES FOR BERQUIST AND SHERMAN DATA 
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Consider the quantities: 

(2.5) 

If the variance of S is indeed as specified by Equation 2.3 then these 
quantities have E(R,,) = 0 and Var (R,,) = (p’. After fitting Model 0 (by 
Fisher’s scoring method), the R,,, can be estimated by using the fitted val- 
ues for the m, (these estimated R,,= arc the standurdizecl wsiduuls). 

The variance assumption can be tested by plotting the R,, against 2. 
The variance should be constant: that is, it should not depend on z. In 
such a case, (p2 can be estimated as follows: 

q$ = ( c R;,,/(n - T - I)), (2.6) 
\%“I 

where 

n is the total number of points in the triangle, and 

T + 1 is the number of P-parameters. 

If the residual plot shows heteroscedasticity (that is, the variance ap- 
pears to depend on z), then the variance assumption (Assumption 2 of 
Section 1) should be modified. (See Section 3.) 

Testing Models for the Mean Claim Six 

Model 0 is so flexible that we can be fairly confident it will provide a 
good fit. The quality of fit of other models can therefore be assessed by 
comparison with the fit of Model 0. When the variance assumption has 
been validated, any other model for m, of generalized linear form can be 
formally tested as follows. After fitting by Fisher’s scoring method, the 
standardized residuals can be calculated from: 

R,,, = (S,,, - m,) . K7-/rn, (as for Model 0). 

From these, another estimate of (p2 is given by: 
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cp: = ( c ey(n - p), H7 
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(2.7) 

where 

n is the total number of points in the triangle, and 

p is the number of parameters in the model (the ps), either two 
or three for each model listed in this section. 

The following statistic can then be calculated: 

F=[(p:+-p)/(T+ 1 -+&((n-T- l)/(T+ 1 -p)]/& Gw 

where cpi is the estimate of (p2 obtained from Model 0. 

This should be compared against the theoretical F-distribution with 
(T + 1 -p) and (n - T - 1) degrees of freedom. If the F-statistic is too 
large, then the current model for m, cannot be accepted. In such a case, 
the lack of fit may well be apparent from the plot of residuals against 2. 
For some values of z, the mean may appear to be significantly different 
from zero. If the F-statistic could reasonably have come from the theoret- 
ical F-distribution, then the fitted means m, obtained using Model 0 do 
not vary significantly from the form assumed in the current model. There- 
fore, the current model can be accepted. Several of the models proposed 
in this section may give reasonably small F-statistics. If so, tables will 
indicate which F-statistic corresponds to the largest tail probability, but it 
may be safer to use a more general model, of which all acceptable models 
are special cases. 

Estimates of (p2 (hence F-tests) alternatively may be based on the 
minimized deviance rather than the sum of squares of the standardized 
residuals. This is more satisfactory in view of the likely skewness of the 
data. The deviance is less sensitive to the incidence of large claims than 
the residual sum of squares, so it will be more stable. The deviance is: 
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from which: 

hence an F-statistic from Equation 2.8. 

The choice between using the residual sum of squares or the deviance 
to construct F-statistics arises because in neither case is the distribution 
truly the F-distribution. With an infinite number of data points, and mod- 
els which were restricted cases of Model 0, both alternatives would have 
the true F-distribution. Neither of these conditions is satisfied, but the 
F-statistic based on the minimized deviance provides an effective, prag- 
matic technique for testing and comparing models. It is of no practical 
consequence that precise probability levels cannot be assigned to the 
F-statistics. Further details on the relevant theory are given by McCullagh 
and Nelder [ 51. 

If a simple model is found with an acceptably small F-statistic (not 
much greater than one), then it can be used for predicting future pay- 
ments. The expected value of each future claim is obtained by evaluating 
the fitted mean nrT at the operational time r as defined earlier. Similarly, 
the variance of each future claim is obtained by evaluating Equation 1.1, 
using the fitted mean mT, and the estimate of cp’ given by the minimized 
deviance as described in the preceding paragraphs. Assuming the amounts 
of future claims are stochastically independent. the mean and variance of 
the total can be obtained as the sum of the figures for the individual 
claims. The resulting variance must then be augmented to allow for esti- 
mation error in the fitted means m, . Details are given in Appendix D. 
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Numerical E.rample 

The data used in the examples are the medical malpractice data pub- 
lished in Berquist and Sherman [l]. They are given in Appendix A. To 
satisfy Assumption 3 of Section 1, the YYl,d values of Appendix A were 
brought up to 1976 terms using an assumed inflation rate of 15% (the rate 
used by Berquist and Sherman) before calculating the sample means 
S,,, = Y,.,/N,.,, . The triangle of operational times was calculated using 
Equation 2.1 and is given in Table A.4. A plot of the sample means S,, 
against operational time 7 is given in Figure 5. 

Model 0, which has nine parameters (one intercept parameter, and a 
slope parameter for each of eight subintervals of the observed range [O.O, 
OX?] of operational time) gave a minimum deviance of 1,803. The plot of 
standardized residuals against z is shown in Figure 6. This shows clear 
evidence of heteroscedasticity. The spread of the points decreases as z 
increases. This indicates that the variance assumption (Assumption 2, 
Equations 1.1 and 2.3) is false. Consequently, all results obtained using 
this variance assumption are invalid. The minimized deviance, the num- 
ber of residual degrees of freedom, and the F-statistic for each mean 
claim size model are given in Table 2. The number of degrees of freedom, 
dfi is the number of data points less the number of model parameters. It 
appears in the denominator of Equation 2.7. 

TABLE 2 

Model Deviance 

1 3,417 

2 2,685 

3 3,52 I 

4 4,52 1 

3 F 

33 4.0 

33 2.2 

34 3.7 

34 5.8 

It is stressed that the clear falseness of the variance assumption rend- 
ers the above figures meaningless. They are presented here merely to 
illustrate orders of magnitude, and to show how the F-statistic relates to 
the deviance. The example is continued in Section 3. 
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FIGURE 5 

OBSERVEDMEANSEVERITYAGAINSTMEANOPERATIONALTIME 
(DATAFROMBERQUISTANDSHERMAN) 
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FIGURE 6 

RESIDUAL PLOT FOR MODEL ZERO WITH a = 2 
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3. RELAXING TtIE \‘ARf/\S(‘II ~ASSl~MPTION 

If the initial variance assumption (Assumption 2. Equations I. 1 and 
2.3) is found to be incorrect when tested as described in Section 2, then an 
alternative must be tried. The coefficient of variation of individual claims 
may depend on the mean claim size or,. Since this is usually an increasing 
function of z, the nature of the dependence should be apparent from the 
plot of standardized residuals against z for Model 0. For example. if this 
plot suggests that the variance is decreasing as t increases. then the coef- 
ficient of variation decreases as the mean r?ry increases. Such a case can 
probably be modelled adequately by replacing Assumption 2 from Sec- 
tion I with: 

Var (X,) = rp’ n$ . for some a < 2. (3.1) 

In terms of the sample mean S,, , this is: 

Var (S,,.,) = ‘p’ HrE(/N,,., . (3.2) 

Model 0 can be refitted on this basis (details are given below) and the 
standardized residuals examined to determine whether a needs to be fur- 
ther adjusted. The standardized residuals are given by: 

Similarly, if after fitting Model 0 using the initial assumption the stan- 
dardized residuals fan out, then the model should be refitted with a > 2. 

When the variance has been satisfactorily modelled in this way for 
Model 0, the other models can be fitted using the variance function de- 
fined by Equation 3.1, with a taking the value found using Model 0. 

The deviance to be minimized when a is not equal to one or two is 
given by: 
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Q = 2 . c A’,,, . [S,,., $S;, a - ITI; - *)/‘( I - a) - (St, Q - rn; - a)/(2 - CX) 1. 
wl 

(3.4) 

This is the quantity which is used to calculate F-statistics for testing and 
comparing the different models for the mean claim size 171, . (See Section 
2.1 

The example of Section 2 has been rerun using an index a = I .S in the 
variance function, instead of a = 2. The minimized deviance for Model 0 
(which has nine parameters) is now 2,404. The plot of standardized resid- 
uals against operational time z is given in Figure 7. It shows no evidence 
of heteroscedasticity, so the variance assumption (Equations 3.1 and 3.2 
with cx = 1.5) is acceptable, and the results of modelling under this as- 
sumption are valid. The minimized deviance and the F-statistic for each 
of the models of Section 2 are listed in Table 3. 

TABLE 3 

Model Deviance 

1 5,829 

2 3,567 

3 5,053 

4 6,568 

df ~~.~ __ 
33 

33 

34 

34 

F 

6.41 

2.18 

4.25 

6.68 

Table 3 shows that none of these models fit the data very well. For a 
model to be acceptable, the F-statistic must be much closer to one. 

An F-value of 1.22 is achieved by the following four-parameter 
model, which is a generalization of Models 1 and 2: 

11(m) = In(m) 

x, = (1, z, r2, In(~)) 

The estimated parameters (with their standard errors) are: 
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PI, -3.90 ( 1.08) 

PI 18.3 (2.87) 

P2 -12.8 (2.29) (coefficient of T’> 

P3 -0.87 (0.33) (coefficient of In(z)) . 

This model has five fewer parameters than model zero, so the F-statis- 
tic has five and 27 degrees of freedom. Statistical tables indicate a greater 
than one-in-three chance of an F-value as large as 1.22, if the model is 
true. In other words, the variation of the fitted values m, , obtained using 
Model 0, around the curve obtained under the present model could well 
be purely random. So, the present model gives a good representation of 
the underlying pattern in the data. This is confirmed by Figure 4, which 
shows the fitted values of m, under both models. The difference between 
the two curves is insignificant compared to the random variation in the 
data. 

Figure 4 also shows that the fitted curve for m, decreases for z greater 
than about 0.66. This decrease exists in the data (Figure 5), but there are 
no data for operational times greater than 0.82. It is reasonable to question 
whether a decreasing curve for m, should be projected beyond this value. 
It is shown in Section 7 that the decrease in the observed mean claim 
amounts is caused largely by the presence of partial payments. In the 
terms of the primary triangles in Section 1, the data is actually type (c), 
not (a) or (b). It is analyzed here as if it were type (a) or (b) purely to 
illustrate the method. In practice, one should be very wary of projecting a 
decreasing curve for m, beyond the observed range of operational times, 
in either case (a) or (b). 

The fitted model also has a minimum at z = 0.05 and m, tending to 
infinity as z tends to zero. Although unrealistic, this is not important 
because projections are required only for operational times greater than 
0.064 (the present operational time for the latest year of origin, 1976). 

Table 4 gives the following quantities for each origin year: estimates 
of expected total of future payments, approximate standard errors of these 
estimates, estimates of standard deviations of total future payments, and 
approximate root-mean-square (RMS) errors of prediction. 
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Columns I and 3 have been calculated by totalling the estimated mean 
and variance for all future claims, as described in Section 2. Column 2 is 
the standard error of Column 1 arising from uncertainty in the estimated 
P-parameters of the mean ~7~. It has been calculated using the formulae 
derived in Appendix D. Column 4 is the combination of Columns 3 and 4, 
calculated as the square root of the sum of their squares. This is appropri- 
ate because the uncertainty represented by the standard errors in Column 
2 is independent of the uncertainty rcprcsented by Column 3. Column 2 
arises from random variation in past claims, whereas Column 3 arises 
from random variation in future claims (as described in Appendix D). 

TABLE 4 

Year 

I969 

1970 

1971 

1972 

1973 

(1) 
Expected 

Total Future 
Payments 

3,350 

6,260 

14,835 

25,177 

35,842 

(3) (4) 
(2) Standard Root-Mean- 

Standard Error Deviation Square Error 

1,209 959 1,543 

1,875 1,382 2.329 

3,422 2,239 4,089 

4,497 2.999 5,405 

5,120 3,607 6,263 

1974 40,098 4,642 3,779 5.985 

1975 47,265 4.92 1 4,032 6,362 

1976 59.00 1 5.989 4,46 1 7,467 

All 23 1,828 3 I.270 X.960 32,528 

The final row (labelled “All”) is for all origin years combined. The 
predicted total of future payments for all origin years combined is $232 
million. This is simply the sum of the figures in Column I. The uncer- 
tainty represented by Column 2 is highly correlated between origin years, 
because the same set of parameter estimates (p,. given earlier in this 
section) is used for all origin years. Therefore, the standard error repre- 
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senting this source of uncertainty for all years combined (3 1,270) is only 
slightly less than the sum of the standard errors for each origin year (the 
sum of Column 2 is 3 1,675). Full details of this calculation are given in 
Appendix D. In contrast, the uncertainty represented by Column 3 is 
stochastically independent between origin years, because the future 
claims for each origin year are mutually disjoint sets. Therefore, the stan- 
dard deviation for all years combined (8,960), is simply the square-root of 
the sum of the squares of the figures in Column 3. The RMS error of 
prediction for all origin years combined can be calculated in the same 

way as for a single origin year; i.e., 32,528 = 3 1,270’ + 8,960’, because 
the first component represents uncertainty arising from random variation 
in past claims, and the second component represents uncertainty arising 
from random variation in future claims. A reasonably safe reserve (for all 
origin years combined) can be calculated by adding one RMS error 
($32.5 million) to the best estimate ($23 1.8 million) to give $264 million. 
However, since the data were adjusted to remove claims inflation, this is 
in 1976 terms. Section 6 shows how future claims inflation can be in- 
cluded in the predictions. Also, the assumed past inflation rate of 15% 
may not be correct, and no allowance has been made for the uncertainty 
in the estimates of ultimate claim numbers, M,. , used in the calculations. 
These two matters are dealt with in Sections 4 and 5, respectively. 

4. SIMULTANEOUS ESTIMATION OF INFLATION 

Basic Assumptions 

This section describes techniques that can be applied to data Y,,d that 
has not been adjusted for inflation. For some of the models specified in 
Section 2, the force of claims inflation can be estimated from the data at 
the same time as estimating the other parameters. 

The sample mean payment amounts S,, are now calculated as 
S,,, = Y,,,~,/N,,, using the unadjusted Y,., . The expected value of S,,, will 
now depend on the origin year w (as well as z ) because of inflation, so is 
denoted PI,, . However, by assumption 1 of Section I, the mean in real 
terms is the same for all origin years. Thus, rnHT is of the form: 
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n1ti-T = exp ~ (M’ + t//P) i ) nr5 (4.1) 

for some M, which are the same for all origin years. Here, i represents the 
annual force of claims inflation: P represents the number of development 
periods per year; and M’ + LI/P is, therefore, the calendar time (in years) of 
each data point. 

The initial variance assumption is that the coefficient of variation of 
individual claims is constant, which implies: 

Var (S,,.,) = ‘p’ 1l7t.JN,,.~ . 

As before. this can be generalized, if necessary. to: 

(4.2) 

Given a model for nzr, Equation 4.1 yields a model for the mean m,,, 
of the data S,,, . If i is to be treated as a parameter to be estimated, then 
the model for nz, must have hum,) lincar in the unknown parameters in 
order for ~7,,.~ to be of generalized linear form: 

/7(~7,,.~) = x,.~ b, for some known vector x,., . 

Thus, of the models for ~7~ proposed in Section 2. only Models 0, 1. and 2 
can be fitted directly using Fisher’s scoring mcthod. Thcsc all have 
/7(m) = In(m). 

Ifp=(i, p,,, p,, . ..) w h ere the Bj are the same as in Section 2, then the 
vector x, is given by: 

Model 0: x, = (IZ’ + d/P, II, . . . II. ‘I,, 0, . . . 0) 

Model 1: x,,,~ = (M’ + d/P, I, t. In(x) ) 

Model 2: x,,,~ = (W + <f/P. 1. z. z’) 

X, is known for each data point as M’, tl, and r arc known. 



STOCHASTIC CLAIMS RESERVING 283 

Model fitting and testing can proceed with these models exactly as 
described in Sections 2 and 3, except that the number of parameters in 
each mode1 has increased by one. If T is the number of operational time 
intervals used in Model 0, the number of parameters of the model is now 
T + 2. The number of residual degrees of freedom is therefore II - T - 2. 
This should replace n - T - 1 in Equations 2.6 and 2.8. Similarly, the 
number of parameters p of Models 1 and 2 is now one greater than 
previously. 

The question remains of how to fit models such as Models 3 and 4 
which do not have h(m) = In@), when the rate of claims inflation is not 
known. The following procedure can be employed. First, fit Models 0, 1, 
and 2 as described above (generalizing the variance assumption if neces- 
sary). If none of these models gives an acceptable fit when compared to 
Model 0 (using F-tests as in Sections 2 and 3), then use the force of 
inflation estimated using Model 0 to adjust the data Ywrl into constant 
money terms. All models can then be fitted to the inflation adjusted data 
as described in Sections 2 and 3, and the best model determined. If the 
best model is one such as Models 1 or 2, then the version fitted to the 
unadjusted data should be used. 

Although x,,,~ can be determined from the data for each cell of the 
triangle, it is not fully known for cells corresponding to the future. The 
relationship between z, d, and MI for the future depends on the rate at 
which claims will be settled, which is uncertain. Having fitted a model, 
the formulae of Appendix D apply only to the factor m, of Equation 4.1 
so the predictions are in constant prices. A further stage of estimation is 
necessary before claims inflation can be incorporated in projections. This 
approach is illustrated in Section 6. 

Note that the methods described here assume that past claims intlation 
has been at a constant rate. In cases where this is considered to be a poor 
approximation, the data Y,,.,/ should be preadjusted to remove any non- 
constant elements of claims inflation believed to be present. 
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The methods of Section 4 are illustrated by repeating the example of 
Sections 2 and 3, this time with the sample means S,,., calculated from the 
unadjusted data Y,,.,, and N,,.,, from Appendix A. As in Section 2, the 
residual plot from Model 0 with a = 2 shows that this value is incorrect, 
and as in Section 3, the value a = I .S is found to be acceptable. 

Table 5 gives the minimized deviance and the F-statistic for compar- 
ing each of Models 1 and 2 to Model 0. These F-statistics each have six 
and 26 degrees of freedom. The table also gives the estimated force of 
claims inflation (and its standard error) obtained from each of the models. 

TABLE 5 

Model Deviance 4f 
0 1,961 26 

I 4,896 32 

2 2,865 32 

E Inflation 

- 0.132 (0.035) 

6.49 0.141 (0.047) 

2.00 0.138 (0.036) 

From statistical tables, there is only about a one-in-10 chance that an 
F-variate with six and 26 degrees of freedom is as large as 2. Therefore, 
neither Model I nor 2 adequately represents the data. This implies that all 
results obtained from these models are invalid, including the estimates of 
the force of claims inflation given above. 

However, the model used in Section 3 still gives a good fit when 
applied to the unadjusted data with an additional parameter for inflation. 
The minimized deviance is 2,402, which gives an F-value of I. I7 on five 
and 26 degrees of freedom. The estimated parameters (with their standard 
errors) are: 

p:l 

0. I35 
-3.7 I 

PI 17.8 

p2 -12.5 

P7 -0.80 

(0.034) 
( 1.06) 

(2.80) 

(2.20) (coefficient of Z’) 

(0.33) (coefficient of In(z)) . 
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The figure 0.135 for the force of claims inflation corresponds to a 
14.5% annual rate. 

The final results in 1976 terms are: 

TABLE 6 

Year 

1969 

1970 

1971 

I972 

1973 

1974 

1975 

1976 

(1) 
Expected 

Total Future 
Payments 

3,450 

6,397 

15,034 

25,360 

35,962 

40,132 

47,279 

59,015 

(2) (3) 
Standard Standard 

Error Deviation 

1,169 898 

1,800 I.287 

3,261 2,07 I 

4,27 I 2,76 1 

4.873 3,3 12 

4,464 3,464 

4,796 3,696 

5.876 4,089 

(4) 
Root-Mean- 
Square Error 

1,475 

2,213 

3,863 

5,086 

5,892 

5,65 1 

6,055 

7,158 

All 232,630 29,988 8,229 3 I ,096 

Adding one standard error to the best estimate gives a reserve for all 
origin years combined of $264 million, in 1976 terms. Although these 
results hardly differ from those obtained in Section 3, more confidence 
can be placed in them now, because the inflation rate has been estimated 
from the data themselves, and not based on any prior assumptions. How- 
ever, no allowance has yet been made for the uncertainty in the ultimate 
numbers of claims M,,. 

5. ALLOWING FOR UNCERTAINTY IN 1ILTIMATE NUMBER OF CLAIMS 

In previous sections, it has been assumed that the ultimate number of 
claims, M,, , is accurately known for each origin year w (Assumption 4, 
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Section 1). This assumption is realized in practice only if the origin years 
are report years. For any other definition ot’ origin year, there will be an 
unknown number (possibly zero) of IBNR claims. This number has to be 
estimated in order to arrive at an estimate of M,,. It is shown in this 
section how the uncertainty in the M,,. estimates can be taken into account 
in calculating standard errors of the final results. First, the source of the 
M,,. estimates is briefly considered. 

For reserving purposes, the origin years must usually be either acci- 
dent years or policy years. In such cases, in addition to the triangle of the 
number of settled claims, N,,.,, , it may also be possible to obtain a triangle 
of the number of reported claims. Such a triangle will often give more 
information about the ultimate number of claims M,,. than does N,,, , 
because claims are reported before being settled. However. the reported 
claims triangle will include those claims eventually settled with no pay- 
ment, whereas N,.,, and M,, should not. These matters should bc consid- 
ered carefully when estimating the ultimate number M,. of non-zero 
claims. Whether reported claims, settled claims, or both. are available for 
estimating M,,. , the stochastic method previously dcvcloped by the author 
[IO] can be used. As well as estimates of M,, , this method gives standard 
errors of the estimates, L’,,. . The following paragraphs describe how these 
standard errors can be used. 

The quantities M,,. are used at two points in the methods described in 
previous sections: in calculating the triangle of operational times 7 (Equa- 
tion 2.1) and in calculating predictions from the fitted model (Appendix 
D>. 

In the following paragraphs, the effect of variability in M,, is consid- 
ered for each of these in turn. 

If M,. is overestimated for a particular origin year LI’, then the opera- 
tional times for that origin year will all be underestimated by a certain 
factor. (M,. appears in the denominator of Equation 2.1.) The observed 
average claim amounts S,, for that origin year, therefore. will be for later 
operational times than those calculated and will tend to overestimate the 
true mean claim amount for the calculated operational times. Conversely, 
if M,. is underestimated, then the mean claim sizes will also bc underesti- 
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mated. However, estimation of the mean claim size nr5 is done by fitting a 
mode1 to the data for all origin years simultaneously. Provided the esti- 
mates M,. are unbiased and not highly correlated, the effects will tend to 
cancel out across origin years. There will be more variability in the data 
S,, across origin years M* than there would otherwise be, but this variabil- 
ity is already taken into account through the estimate of the scale parame- 
ter (p2. The additional effect on the variability of the final results is 
therefore minimal and can reasonably be ignored. 

Experience with a number of data sets has confirmed these comments. 
Ultimate counts M,. may be estimated by a variety of methods, but the 
parameter estimates of the fitted model for nr, are invariably very similar 
whichever set of estimates MW is used to calculate the operational times. 
Usually, it is only the last few origin years that have much uncertainty in 
the ultimate number M,, . and these origin years contribute only a few 
data points (2, S) for the modelling. Therefore, the results of the model- 
ling are relatively insensitive to the choice of estimates M,,, . 

Having estimated the parameters pJ of a model relating mean claim 
size m, to operational time, the method described in Appendix D has been 
used in previous sections to project the fitted mod:] and to calculate the 
mean-square-error of the projections. An estimate p of the expected total 
of future payments for a single origin year is calculated by summing the 
fitted mean mT over the operational times z of each expected future claim. 
The values of z for this summation are given in Equation D. I. 

In Appendix E it is shown that, whatever the fitted model/for nz, , each 
increment of one in the estimate h ‘11 WI cause the estimate p to increase 
by approximately [T,, . 17~~) + $/&, where ‘t, is the operational time 
reached for the origin year, and m, is the fitted mean valte corresponding 
to T(~. This implies that the additional uncertainty in f.r caused by the 
uncertainty in M is represented by a standard error II given by: 

u = [To . m, -k pi& . 1’ ) (5.1) 

where v is the standard error of the estimate A. 
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Continuing with the example of Section 4. Table 7 gives the quantities 
in Equation 5.1 for each origin year. 

TABLE 7 

Year G 
1969 3.450 

I970 6,397 

1971 15.034 

1972 25,360 

I973 35,962 

1974 40, I32 

1975 47,279 

1976 59.0 IS 

To “41 lb 
0.85 12.67 2,664 
0.79 15.94 2,896 

0.70 IX.65 4.065 

0.62 18.41 4.77 1 

0.53 IS.27 5,280 

0.4 I 8.87 4,837 

0.25 3.03 5,169 

0.06 0.66 6.257 

70 

102 

148 

21s 

314 

461 

690 

I .097 

II 

845 

1,505 

2,484 

3,580 

4.67 1 

5,4X I 

6,843 

10.393 
A 

G is the best estimate of future payments as given in Section 4. A4 and 1% 
come directly from Appendix A. r. is the row total N,, of the number-of- 
claims-settled triangle divided by M. HIP) is calculated from t,, using the 
fitted model, which is: 

with 

m, = exp (p,, + PI z + p, r’ + p; In(r)) , 

p,,= -3.71, PI = 17.8, p2 = -12.5. pj = -0.80. 

14 is given from the other quantities using Equation 5. I. 

Table 8 gives the final results. Columns I. 2. and 3 are as in Table 6 
and Column 4 holds the new component of uncertainty. 
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TABLE 8 

Year 

1969 

1970 

1971 

1972 

1973 

1974 

197s 

1976 

(1) 
Total 

Expected 
Future 

Payments 

3,450 

6,397 

15,034 

25,360 

35,962 

40, I 32 

47,279 

S9,O 1s 

(4) 
Additional 

(2) (3) Uncertainty 
Standard Standard (Number 

Error Deviation of Claims) ~~ __ 
1,169 898 845 

1,800 1,287 1,505 

3,261 2,07 I 2,484 

4,27 1 2,761 3,580 

4,873 3,312 4,67 I 

4,464 3,464 S,48 1 

4,796 3,696 6,843 

5,876 4,089 10,393 

(5) 
Root- 
Mean- 
Square 
Error 

1,700 

2,676 

4,593 

6,220 

7,5 I9 

7.872 

9, I37 

12,620 

All 232,630 29,988 8,229 15,122 34,578 

The uncertainty in Column 4 for all years combined has been calcu- 
lated on the assumption that the estimates M,, are mutually independent. 
It is the square root of the sum of the squares of the separate origin year 
figures. If non-zero covariances for the M,. were known, they could easily 
be brought into the calculation. 

The three components of error (Columns 2, 3, and 4) are always 
mutually independent (to a good approximation), so the overall RMS 
error (Column 5) is simply the square root of the sum of the squares of 
these three columns. 

Allowing for uncertainty in the number of claims outstanding has 
resulted in an increase in the overall standard error from $3 I. I million to 
$34.6 million. The reserve based on best estimate plus one standard error 
has changed from $264 to $267 million, an increase of I .Ol %. 

To demonstrate the validity of Equation 5.1, the variation of l? with h 
has been investigated empirically. In Table 9, the first column gives the 
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theoretical rate of change of fi with h for each origin year; that is, the 
quantity in square brackets in Equation 5.1. The remaining columns show 
the actual changes in 1 per unit change in M, when M is changed by the 
amount shown at the head of each column. A dash indicates that a result 
could not be calculated because the changed value for M was less than the 
number of claims paid to date, N,, . 

For example, in Table 9, the figure 16.56 in the fifth column for 1972 
was obtained as follows: The best estimate 3.77 I of the ultimate number 
of claims M was increased by 100 to 4,871. Since the number N,, of 
claims to date is 2,938, this implies 1,933 claims remaining. The fitted 
mode1 m, of Section 5 was summed over the 1,933 different values 
z = 2,93&S/4.87 I to z = 4,870.5/4.87 I. This gave the result 27,016. This 
is 1,656 greater than the best cstimatc of 25.360: and, since M was in- 
creased by IOO, the mean rate of change is 16.56. 

TABLE 9 

Change in M 

(1) 
Theoretical (2) (3) (4) (5) (6) (7) (8) (9) 

Year Value -10 IO -100 I 00 -500 so0 -1.000 1,000 

1969 12.08 12.00 12.15 Il.29 12.79 ~ 14.82 - IS.85 
1970 14.75 14.70 14.80 14.22 IS.10 Il.36 16.26 - 16.48 
1971 16.78 16.78 16.79 6.67 16.86 IS.80 16.91 13.64 16.59 

1972 16.65 16.66 16.64 6.73 16.56 16.89 16.15 16.55 15.56 

1973 14.88 14.89 14.86 5.00 14.75 15.51 14.27 16.06 13.74 

1974 II.89 I I.90 I I.88 1.98 II.81 12.38 I I.51 13.02 II.22 

1975 9.92 9.92 9.92 9.93 9.90 IO.0 I 9.85 IO.14 9.80 
1976 9.47 9.47 9.47 9.47 0.47 9.47 9.47 9.48 9.47 

These results show that, for all origin years. the rate of change is 
almost constant within the range A4 + I’, and is close to the theoretical 
value, so Equation 5. I is a good approximation. 



STOCHASTIC CLAIMS RESERVING 291 

6. FUTURE INFLATION 

Theory 

Previous sections have been concerned with finding a model m, of the 
mean claim amount in constant money terms, and using the fitted model 
to calculate predictions in constant money terms. This section is con- 
cerned with the inclusion of future claims inflation in predictions, with 
due allowance for the inevitable uncertainty. This is necessary if the pre- 
dictions are to be used as a basis for setting reserves, because reserves are 
conventionally in current money terms (not discounted). 

Uncertainty in future claims inflation arises from two sources: 

1. uncertainty in the future rate of claims inflation, and 

7 uncertainty in the timing of the run-off of future payments. I. 

Appendix F shows how both these elements of uncertainty can be 
taken into account simultaneously. Obviously, if the run-off of future 
claim payments is expected to take many years, moderate uncertainty in 
the future rate of claims inflation may lead to substantial uncertainty in 
current price predictions, because of the exponential effect of inflation. 

Numerical Example 

To illustrate the method of Appendix F, future inflation is introduced 
into the predictions obtained in Section 5. An exponential run-off of the 
remaining claim settlements over development time is used for all origin 
years. The time scale of the run-off can be estimated by examining the 
triangle of operational times (Table A.4). 

Since the origin years are accident years, the mean delay to settlement 
is approximately d years for claims closed in development year d (except 
d = 0, for which the mean delay is about 0.33 years). The triangle of 
operational times indicates a “half life” of just over three years. The 95% 
confidence range for the half life is judged to be 2.8 to 3.6 years. This 
corresponds to a best estimate of 3.2, and a coefficient of variation of 
about 0.06. In the notation of Appendix F: U, = 0.06’ = 0.0036. 



From Equation F. 13, the best estimate of the parameter p of the expo- 
nential distribution is: 

p = 3.2/ln(2) = 4.6 years. 

Using Equation F.14, the remaining real delay I corresponding to fu- 
ture operational time t is estimated (in years) to be: 

r=H(r)=-4.6.Inl (1 -r)/(I -t,,) 1. 

For this example. it is assumed that the estimate of the average force 
of future claims inflation (from mid- 1976 onwards) is 0. I with a standard 
error of 0.02. Thus, it is expected that inflation will be less in the future 
than in the past, but the 95% confidence range of 0.06 to 0. I4 contains the 
best estimate 0.135 of the average past force of inflation (Section 4). In 
the notation of Appendix F. i = 0.1 and I!, = 0.02’. Equation F.7 gives 
0.02 1’ for the variance I/, due to both uncertainty in the future force of 
intlation and uncertainty in the future time scale. This is only slightly 
greater than ti, . indicating that the second element of uncertainty is rela- 
tively minor. 

The current price predictions for each origin year are given in Table 
IO. 

TABLE IO 

Year 
I969 
1970 
1971 
1972 
1973 
I973 
197s 
1976 

(1) 
Expected 

Total 
Future 

Payments 
5.531 
Y,934 

22.7Y4 

3x.233 
54.79X 
63.436 
79.899 

109,297 

(2) 
Standard 

Error 
2.056 

3,202 
6,027 

X,374 

10.254 
10,329 
12.21 I 
16,480 

(5) 
(3) Additional 

Additional (4) Uncertainty 
Uncertainty Standard (Number of 
(Inflation) Deviation Claims) 

735 I.306 YOO 
1.230 l.XOI 1,629 
2,657 2.x19 2,767 
4,345 3.735 4.160 

6,YO 4.530 5.791 
7.752 4,Yl7 7.702 

IO,903 5,5x0 I I.197 
17.05-l 6.658 19.209 

(6) 
Root- 
Mean- 
Square 
Error 

2,699 
3.203 
7,6X0 

10.966 

34,103 
IS.821 
20,603 
3 I.236 

All 383,Y23 68.658 SO.Y76 12. I24 34.X I2 X9.86 I 
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Columns I, 2, 3, 4, and 5 are as in Table 8, except that each expected 
claim amount nz, has been inflated using the factor exp (i . H(z)) before 
finding the total for each origin year. The new Column 3 gives the addi- 
tional element of uncertainty calculated from Equation F. 11. The figure 
for all years combined (50,976) is simply the sum of the figures for the 
separate origin years (this comes from repeating the argument given in 
Appendix D using the variance-covariance matrix of Appendix F). Intu- 
itively, it is clear that this new component of uncertainty will be highly 
correlated between origin years, because the projections for all origin 
years are based on the same estimate of future inflation. If we overesti- 
mate future inflation, then we overestimate the reserve for all origin years 
simultaneously. The apparent perfect correlation (additivity of Column 3) 
is an approximation resulting from the use of first order Taylor series for 
these standard errors (Appendices D and F). The use of Taylor series 
approximations does not induce apparent perfect correlation in Column 2 
(68,658 is less than the column total of 68,933) because these standard 
errors represent uncertainty in more than one parameter estimate (the 0s) 
and the estimation errors are not perfectly mutually correlated. 

Column 6 gives the overall mean-square-error calculated as the square 
root of the sum of the squares of Columns 2,3,4, and 5. 

It is interesting to look at the delays and inflation factors of the last 
claims as given by the estimated function H(z). The expected ultimate 
number of claims is 6,257 for origin year 1976. The operational times of 
the last three claims for this origin year are therefore 0.99960, 0.99976, 
and 0.99992. The expected delays from accident to settlement of these 
claims (calculated from t = -4.6 In( I - 2)) are 36.0, 38.3, and 43.4 years, 
respectively. Using the estimated force of inflation i = 0. I, the estimated 
inflation factors are 36.6,46. I, and 76.7. These factors are obviously very 
sensitive to the estimate i, which is why the extra element of uncertainty 
can be substantial. 

In practice, the function H(T) would be estimated more carefully than 
in this example, making use of any additional information on likely de- 
lays. The estimated time scale parameter (4.6 in the example) need not be 
the same for all origin years. The method detailed in [lo] can be applied 
to the number of claims triangle to obtain an estimate and a standard error 
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(hence a value for I/,) for each origin year. A Gamma, rather than an 
exponential run-off can be used to construct H(r) if necessary, but this is 
unlikely to make much difference to the results except for the last one or 
two origin years. The use of a Gamma run-off is illustrated in the example 
of Section 7. 

7. PARTIAL l’:ZYMt~‘JTS 

Paid claims run-off triangles are usually of type (c) (see Section I) in 
practice. That is, the counts triangle N,,.,, is the number of claims closed in 
each development year cl of each origin year H’. but the paid amounts 
triangle Y,,.,, is the total of all payments made in development period d of 
origin year MS. Each Y,,.,, includes partial payments on claims settled at 
some later development period, as well as the settlement payments 
counted in N,,,(, . The following paragraphs describe special procedures 
that may be necessary when the partial-paymcnr component of Y,,.,, is 
substantial. 

Dropping the subscripts H’ and tl temporarily. each Y has two compo- 
nents: 

Y = Y, + Y? . 

where 

Y, is the total of payments made on claims closed, and 

Y1 is the total of payments made on claims not closed. 

N, will denote the number of settlement payments: thal is. the number 
of individual payments making up Y,. Similarly, N, will denote the num- 
ber of prepayments on claims not yet closed: the number of individual 
payments in Y2 These quantities are not all known: the data consists only 
of Y and N,, for each ~7. tl combination. The mean claim amount which 
can be calculated from the data is: 

s = (Y, + Y>)/N, (7.1) 



STOCHASTIC CLAIMS RESERVING 295 

Since the expected values of Y, and Y, may follow two different pat- 
terns as operational time 7 varies from 0 to 1, the form of the expected 
value of S (as a function of z) is likely to be more complex than when the 
component Yz is not included (situation (a) from Section 1). Furthermore, 
random variation of S around its expected value will be negatively corre- 
lated with random variation in N,. This is explained further in the follow- 
ing sections. 

Both N, and N2 are subject to random variation. Initially it is assumed 
that they are stochastically independent. This will be discussed further 
below. If N, is higher than expected (it just happens that a large number of 
claims reach the settlement stage at about the same time), Y, will be 
correspondingly high, as it is the total of the N, settlement payments. But, 
N2 (hence YJ will not be affected, so S will tend to be lower than ex- 
pected. Conversely, a low value for N, will tend to give a high value for S, 
because Y, will be proportionately low, but Yz will not. 

There is an argument which suggests that N, and N2 may be positively 
correlated. This would limit the negative association between N, and S 
described above, and would eliminate it completely if the expected value 
of Nz, given N,, were proportional to N,. The argument is that both N, and 
N, may be affected in the same direction by a common cause: namely, 
increased activity by the insurance company on claim payment proce- 
dures, regardless of whether the payments are settlements or prepay- 
ments. This is discussed further in Appendix G. There are also arguments 
which suggest that N, and N2 may be negatively correlated. This would 
substantially increase the negative association between N, and S de- 
scribed above. First, if the number of claims closed in a certain develop- 
ment period is unusually large, the number of claims left outstanding at 
the end of the period will be correspondingly small, so the number of 
partial payments on such claims will also tend to be small. Second, if 
many claims are ready for settlement at about the same time, the demand 
on resources made by these settlements may reduce the resources avail- 
able to deal with prepayments on outstanding claims. 

Previous sections have been concerned with modelling the expected 
value nzT of the sample means calculated from S = Y,/N,. (In the terms of 
Section 1, this is situation (a).) It is shown in Appendix G that, under 
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certain assumptions, the effect of including partial payments Y, in the 
numerator of S is approximately the same as increasing the mean rrrT by a 
factor of exp (C R),,J, where c is a constant, and R,,,<, is the ratio of the 
number of claims outstanding in development period rl to the number 
settled during development period d. That is. if LM.(, is the number of 
claims outstanding, then R,.,! = L,,.,,/N ,,,‘, . The coefficient C’ represents the 
expected partial payment per outstandin, ~7 claim (including those with no 
partial payments), as a proportion of the mean size of settlement pay- 
ments. For example, if the average number of partial payments in any 
development period is one for every five outstanding claims. and the 
mean size of these partial payments is half the mean size of settlement 
payments, then c = 0.2 x 0.5. 

If the model for nr5 has a linear form for In(nz,), then the factor 
exp (C R,,.,,) simply introduces a further term to the linear exponent. If 
Rw,d is known, C’ can be estimated in the same way as the other parameters 
of the model. For example, in the models of Section 4. the parameter 
vector becomes: 

and the vector X, of known explanatory variables becomes: 

Model 0: x,,, = (RI,.,), MI + d/P. II ._. 11, 2,. 0 . 0) 

Model 1: x, = (R,,[, w + d/P. I, r, In(t)) 

Model 2: x,,,~ = (R,,.,,, M’ + d/P, 1, z, 6). 

Other models (such as Models 3 and 4) can be fitted by first dividing 
each observation S by exp (C . R,,,J, using the value of (’ estimated from 
Model 0. This procedure is similar to the preadjustment for intlation 
described in Section 4. 

Appendix G also shows that if m, represents the mean with the factor 
exp (C . R,J included, then Equation 2.3 for the variance of S becomes 
approximately: 

Var (S,,) = (p2 &(exp (C R,,,(,) N,,.,,) (7.2) 
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Therefore, to fit the models above, the factor N,,., must be replaced by 
exp (C . R,,,J NH,{, in the deviance (Equation 2.9). An initial estimate of c 
is required for this purpose. If the estimate of c obtained by fitting Model 
0 differs significantly from the initial estimate, then other results should 
be disregarded and the model fitting should be repeated using the new 
estimate of c in the deviance. 

A number of assumptions are made in Appendix G, leading to the 
results quoted above. There is no need to consider too carefully how 
realistic these assumptions are in each application. The purpose of the 
mathematics in Appendix G is to find a broad model of which can be 
tested against the data. Standard statistical techniques, such as residual 
plots and F-tests can be used to determine whether or not the models 
adequately represent any particular data set. In a similar vein, although 
the mathematics of Appendix G deal only with the case a = 2 in the 
variance function, other values of a can be used in fitting the models of 
this section exactly as described in Section 3, if the data indicate that this 
is necessary. 

If the coefficient c is found to be significant, then forecasting is not as 
simple as in the pure operational time models of Sections 2 and 3. In 
order to include the partial payment effect in the forecasts, values of 
R = L/N must be projected for future operational times so that x,,~ is 
known. In some cases, R can be modelled as a function of operational 
time. Projections can then be obtained as described in earlier sections, 
with just one change. The expression at Equation D.2 for the variance of 
an origin year total (standard deviation columns in the results tables) is 
replaced by: 

CT’ = (p2 . c (mF/exp (C R,)). (7.3) 

This follows from Equation 7.2. The quantity ‘p’ . $/exp (1. RJ is 
the variance of the total of payments made over a single increment l/M 
in operational time. m, is the expected value. More generally, separate 
projections of R can be made for each origin year. The situation is much 
the same as for claims inflation. 
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If the reported number of claims triangle is not known, then L, the 
number of claims outstanding. is not known. In such a case. L can be 
defined as the number of claims not yet settled (whether reported or not). 
If the proportion not yet reported is approximately constant over develop- 
ment time, then L is increased by some constant factor under this alterna- 
tive definition, so the parameter C’ will bc decreased by the same factor. If 
the run-off of claims closed is approximately exponential from some 
point onwards, then R = L/N is approximately constant. This can simplify 
projections. If the run-off is exponential Irom operational time 0 onwards, 
then the parameter c will probably be insignificant because c R will be 
subsumed into the parameter p,, of I))~. In such a case, the models of 
Sections 2, 3, and 4 can be used even if partial payments are substantial. 

To illustrate, the methods described above are applied to the data from 
Berquist and Sherman [ I] used in previous cxamplcs. These methods are 
more appropriate for this data set than the methods of earlier sections 
because the claim amounts triangle includes partial payments. In the ter- 
minology of Section I, the data set is type (c). 

The variable R,,.,, was calculated using the numbers L,,.(, of claims 
outstanding given in Table A.5 Table I I gives the minimized deviance 
and F-statistics for the models described in this section. The F-statistic for 
Model 0 compares Model 0 to the less restrictive model of Appendix B. It 
has eight and 17 degrees of freedom. The F-statistics for Models 1 and 2 
compare each of these models to Model 0. They have six and 25 degrees 
of freedom. The models were fitted using the variance function given in 
Equation 7.2, with a prior estimate of 0.1 for (’ and an index a = 1.5, 
instead of 2. This gave satisfactory residual plots. Figure 8 shows the 
standardized residuals from Model 0 plotted against operational time. The 
same residuals are plotted against R,,,, in Figure 9 (for the reasons given 
in Appendix G). 



FIGURE 8 

RESIDUAL PLOT FOR MODEL ZERO 

X 

1.00 -x 
x 

x X x 

% X 

0.00 ~-~ ~- ~ - - ~ x 
x 

X 
- x 

;X 
X 

-1.00 - x x 

X X 

X 

X 

x 

x 

x 

x 
x X 

X 

X 

X 

-2.0; oo - - -02d- ~-~ ~- 

0.40 0.60 0.80 1.00 

Operational Time 



FIGURE 9 

2.00 - 

1 .oo 

0.00 - 

-1.00 

-2.000.00 

RESIDUAL PLOT FOR MODEL ZERO 
~ .~ 

X 

X 

X 

x 

X 
X 

X 

5 

>: 

X 

- ~_~ 

2.00 

>: 

x 

x >: 

x 

4.00 

Partial Payment Ratio (R) 

6.00 8.00 



STOCHASTIC CLAIMS RESERVING 301 

TABLE 1 I 

Model Deviance 

0 2,143 

1 3,909 

2 2,773 

~~ .dJ” ~ F 

25 0.29 

31 3.43 

31 1.23 

Model 2 appears to fit reasonably well. A direct comparison of the 
deviance with that obtained in Table 5 is not valid, because the prior 
weights have been changed but, compared to Model 0, the fit is consider- 
ably better than in Table 5. The parameter estimates (and standard errors) 
for Model 2 are: 

(’ 0.127 (0.044) 

P: 

0.176 (0.036) 

-1.04 (0.2 1) 

PI 9.56 (1.16) 

P2 -6.24 (I 26) (coefficient of ?) . 

The magnitude of c is consistent with its theoretical interpretation and 
is not significantly different from the prior estimate of 0.1 used in the 
weights. 

In the examples of previous sections, the fitted models m, have always 
been decreasing for large values of 7 (see Exhibit 4, for example). In 
Section 3, this decrease was attributed to the presence of partial payments 
in the data. In the present example, the partial payments have explicitly 
been taken into account by including the factor exp (c . R) in the model. 
Figure 10 shows that R tends to decrease from about z = 0.5 onwards, so 
the partial payment factor exp (C . R) also decreases. However, the other 
factor of the fitted model, exp (p,, + p, z + p2 . T’), also decreases for 
large values of T. This is shown in Figure 11. The next paragraph de- 
scribes how to test whether this remaining decrease is genuine or is due to 
estimation error. 
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The slope of the exponent p,, + p, T + & T.’ is b, + 2 & z, so the 
function does not decrease for z in the range (0, I ) if, and only if, p, is not 
negative and & is not less than -p,/3. If pi is defined by p3 = p, + p,/2, 
the exponent can be expressed as p,, + b, (r - t’/2) + p.: ?. and the 
condition for the function to be non-decreasing is that p, and pi should 
both be non-negative. This condition can be tcstcd by refitting the model 
using the new explanatory variable (7: - I’/?) instead of T. This is essen- 
tially the same model as before so the pnramctc~~ eslimatcs arc unchanged. 
p3 is estimated lo be - 1.46, which follows from the estimates of p, and & 
given above. However, fitting the model in this new form gives a standard 
error for p3 which cannot be calculated from the previous parameter 
estimates and standard errors. The valise is 0.7?--less than half the abso- 
lute value of the estimate itself, indicating that p3 is significantly negative. 
This is confirmed by refitting with p3 set to zero. The minimized deviance 
becomes 3.154, an increase of 38 1. givin, L o ‘tn I‘-statistic of 4.3 on one and 
3 1 degrees of freedom. 

The analysis described in the earlier paragraph shows that. for this 
data set, the decrease in the mean claim amount for large values of z is 
not fully explained by the partial payment faclor exp (c. R). However, 
this does not imply that the mean settlement payment decreases with z. A 
more plausible explanation is that the factor exp (C R) only partly ac- 
counts for the effects of partial payments. Full details of how this might 
occur are given Appendix G. Briefly. the explanation is that the rate at 
which partial payments are made on an open claim tends to decrease the 
longer the claim remains open. 

As the coefficient c is significant. it is necessary to estimate a value of 
R for each future operational time in order to project the fitted model. 
Experience with other data sets suggests that R shows little variation as z 
approaches one. With this in mind, a continuous piecewise linear approxi- 
mation for R has been estimated by eye from the observed values: 

RT = 1.40 for t < 0.2 I 

= -0.96 + 1 I .2s x ‘I: for 0.2 1 < t < 0.45 

= 7.25 - 7.00 x r for 0.45 < z < 0.65 

= 3.80- 1.70 x T for 0.65 < t . 



STOCHASTI(‘CI.AIhlS RESERVING 30s 

Figure 10 shows both the observed values of R and the piecewise 
linear approximation R,. 

In 1976 money terms, the formula for R, gives the results in Table 12. 
Column 3 has been calculated using Equation 7.3. 

TABLE 12 

Year 

1969 

1970 

1971 

1972 

1973 
1974 

I975 

1976 

(1) 
Expected 

Total 
Future 

Payments 

6,187 

10,119 

20,757 

3 1,795 
42,81 I 
46,865 

54,903 

68,59 1 

(21 (3) (4) 
Standard Standard Additional 

Error Deviation Uncertainty 

I,71 I 1,323 I.224 
2,434 1,710 1,869 

4, I38 2,467 2,705 

5,287 3,049 3,741 
6,029 3,506 5,074 
5,554 3,598 6,277 
5,913 3,828 7,930 

7,197 4,240 12,079 

(5) 
Root- 
Mean- 
Square 
Error 

2,485 

3,514 

5,525 

7,159 

8,625 
9,121 

10,607 

14,686 

All 282,027 37,839 8,828 17,327 42,544 

As no allowance has been made for uncertainty in the projected values 
of R, it is interesting to examine the sensitivity of the results to these 
projections. The piecewise linear function defined earlier implies an aver- 
age value of R over the entire range (0, I) of z of 2.47. Table I3 was 
obtained using this constant value for R. 
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TABLE L3 

Year 

(1) (5) 
EXpCCtCd Root- 

Total (2) (3, C-1) Mean- 
Future Standard Standard Additional Square 

Payments Error Deviation Uncertaint] Error 

1969 6.372 

I970 IO,345 
lY71 21.017 

1 Y72 3 I .X67 

1973 42, I x0 

1 Y7J 45,069 

1Y75 52.742 

I Y76 66.357 

All 375.X50 

I .77X 

3.5 12 

4.234 

5,373 

6.0X0 

5.541 

5.X7.3 

7.154 

3x. 15’) 

I .337 

1.723 

7,477 

3.05 I 
3.4x0 

3.555 

3.7x I 
3.lYO 

X.767 

I.344 

I .X7X 
7.67Y 

3.61 1 

1.710 

5.X64 

7.6X7 

1 I .677 

16,653 

2,544, 

3.578 
S.SXY 

7,156 

X.446 

X,X16 

1().3X6 

14.32 I 

42.547 

Between the two sets of results given in Tables 13 and I3 the estimate 
for the entire triangle differs by -just over $7 million. which is quite small 
compared to the RMS error of ahout $43 million. Thus, the uncertainty in 
future valises of R appears to be relatively unimportant. Experience with 
other data sets suggests this is true quite generally,. Figure I I shows the 
fitted model for ))I~ obtained using both the piecewise linear model for R 
(Curve 2) and the constant model (Curve 3). The difference between 
these two curves is slight, which explains the similarity in the two sets of 
results. Curve 3 is simply a scaled up version ol‘curve I which shows the 
fitted model with the partial payment factor exp ((, R) excluded. 

Table 14 gives results based on the piecewisc linear model for R in 
current money terms. Future inflation has been included using the meth- 
ods described in Section 6. The run-off of settlements over real develop- 
ment time was taken to be exponential with the same parameters as in 
Section 6, and the YSC/r confidence interval lhr the future force of infla- 
tion was taken as 0. IO to 0. I X. 
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Year 
1969 
1970 

1971 

I972 

1973 

1974 

1975 

1976 

(1) 
Expected 

Total 
Future 

Payments 

15,193 

24,570 

50.29x 

77,679 

106,385 

121.292 

155,2’)2 

220.25 I 

(2) 
Standard 

Error 
4,746 

7.202 

13,404 

1 X.976 

24,112 

25.5 IO 

3 I.440 

44,179 

TABLE 14 

(3) 
Additional 
Uncertainty 
(jnflation) 

3.317 

5,370 

I I.132 

17,3Y2 

24.200 

28,3YO 

38,697 

SY.6 I I 

(4) 
Standard 
Deviation 

3.176 

4.OY7 

5,994 

7.550 

X.932 

9,628 

11,172 

13.823 

(5) (6) 
Additional Root- 
Uncertainty Mean- 
(Number of Square 

Claims) Error 
I ,46 I 6.799 

2,378 IO.156 

3,780 1X.X 10 

S,XOY 27,447 

X,X55 36.404 

13.371 41.572 

21,330 55.369 

38,668 84.X03 

All 770,9SY i6Y,So4 188.109 24.66 I 47.574 258.82 I 

Berquist and Sherman produced several sets of projections, with to- 
tals ranging from $430 million to $750 million. The best estimate shown 
in Table 14 is comparatively high, but the RMS error is large. It would be 
interesting to see how these estimates compare to the actual experience. 

As a final example, the data set from Taylor [9] is analyzed using the 
methods developed in the present paper. This relates to a compulsory 
third party motor portfolio for the 12 accident years 1969 to 1980, broken 
down by development year. There were no claims closed in 1980 for 
origin year 1969, so the number of data points is 77. The triangles Y\,,(, and 
N,,.,, are given in Tables A.6 and A.7. The estimates of ultimate numbers 
M given by Taylor have been used. For the purposes of this example, the 
standard errors of these estimates have been taken as 5% of the number of 
claims estimated to be remaining (not yet settled). These figures are given 
in Table A.8. As the reported counts triangle is not given in 191, values for 
R = L/N have been calculated using the alternative definition of L given 
earlier in Section 7. This triangle is given in Table A. 10. 
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Figures 12 ; end 13 show the data S and K plotted against operational 
time r. Figure 14 shows the quantity S/exp (c, K) plotted against T using 
the prior estimate 0.1 for c’. This quantity is the mean payment per claim 
closed adjusted to remove the partial payment effect (see Appendix G). 
One data point has been excluded from Figures I2 and 14 for the sake of 
clarity: the value of (z, S) for r/= 1 1 of origin year 1970 is (0.995. 108.2). 
This value for S is more than double the largest value shown in Figure 12. 
However, it is based on only two settlements. and standardized residual 
plots show that it is not an outlicr. therefore, it has not been excluded 
from the analysis. 

Table IS gives the results of fitting models with both a partial pay- 
ment parameter and an inflation parameter to the unadjusted data shown 
in Figures I, 3 and 13. The variance index was taken to be CI = 2, and the 
prior estimate of the partial payment parameter for use in the weights was 
taken as c = 0.1. The plot of standardized residuals from Model 0 against 
operational time is shown in Figure IS. Thcrc is no evidence of 
heteroscedasticity. so the F-statistics are valid. The standardizcd residual 
for the point excluded from Figurca l_ ? and 13 is included in Figure 15. 

TABLE IS 

Model Deviance (?f F 
0 618.6 63 - 

I 860.4 72 3.74 
2 848.2 72 2.60 

The F-statistics indicate that ncithcr Model I nor Model 2 fit the data 
very well. However, the more general model with both ? and In(z) in the 
linear predictor (as in the numerical examples of Sections 3 and 4) fits 
well. The minimized deviance is 704.X. giving an F-statistic of I. IO on 
eight and 63 degrees of freedom. 
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PARTIAL PAYMENT RATIO (R) vs. OPERATIONAL TOME 
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FIGURE 14 

ADJUSTED MEAN SEVERITY vs. OPERATIONAL TIME 
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FIGURE IS 

RESIDUAL PLOT FOR MODEL ZERO WITH a = 2 
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The parameter estimates are: 

c 0.111 (0.024) 

i 0.131 (0.013) 

PO 5.17 (0.8 1) 

Pi -7.1 1 (1.88) 

P2 4.54 (I. 18) (coefficient of z’) 

P3 1.25 (0.34) (coefficient of In(z)) . 

Note that the estimate of c is not significantly different from the value 
of 0.1 used in the weights. Also, the average force of inflation estimated 
from the data does not differ significantly from Taylor’s prior estimate of 
0.117 (derived from the Australian Capital Territory Average Weekly 
Earnings Index). 

The function exp (8, + p, 2 + PI. 22 + p3 In(z)) represents the pay- 
ment per claim closed in constant 1980 terms, with the partial payment 
factor excluded. This is shown in Figure 16. This should be compared to 
the adjusted data shown in Figure 14. The slight decrease from 7.0 to 6.6 
over the range z = 0.27 to r = 0.52 is attributed to a declining partial 
payment rate on open claims, as explained in Appendix G. 

Figure 13 shows the observed values of R used in fitting the model. 
The form R = o. + a,/~ fits reasonably well to these data. Least squares 
estimation gives: a,, = 1.32 and a, = 0.463. The fitted curve is shown in 
Figure 17. Figure 18 shows the fitted mean payment per claim closed 
with the factor exp (c R) included, using the estimates c’ = 0.111 and 
R = I .32 + 0.463,‘~. This should be compared to Figure 12. The fitted 
curve tends to infinity as z tends to zero, but this is unimportant because 
projection is unnecessary for z less than 0.043. Table 16 gives the fore- 
casts obtained from this model, in constant terms: the units are thousands 
of 1980 Australian dollars. 



FIGURE 16 

FITTED MODEL WITH PARTIAL PAYMENT FACTOR EXCLUDED 
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FIGURE 17 

FITTED MODEL FOR PARTIAL PAYMENT RATIO 
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FIGURE 18 

FINALFITTEDMODELFORDATA FROMTAYLOR[~] 
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TABLE 16 

Year 

1969 

1970 

1971 

1972 

1973 

1974 

1975 

1976 

(1) 
Expected 

Total 
Future 

Payments 

0 

33 

33 

97 

315 

444 

774 

1,278 

(2) (3) 
Standard Standard 

Error Deviation 

0 0 

5 66 

5 66 

16 114 

49 203 

66 238 

102 301 

147 372 

(5) 
(4) Root-Mean- 

Additional Square 
Uncertainty Error 

0 0 

0 67 

0 67 

0 115 

15 209 

14 247 

37 320 

54 404 

1977 2,550 227 491 113 553 

1978 4,650 338 627 223 747 

1979 5,041 349 645 249 775 

1980 8,494 571 814 426 1,082 

All 23,708 1,741 1,436 558 2.325 

The RMS error (Column 5) for all years combined indicates that about 
10% must be added to the best estimate (Column 1) for a reasonably safe 
reserve. This gives $26 million in 1980 terms. 

To introduce future claims inflation, the method given in [IO] has been 
applied to the triangle of the number of settlements. This indicates that the 
run-off pattern does not differ significantly across origin years, the rate of 
settlement being proportional to exp ( 1.422 x In(t) - 0.897 x r), where t is 
real development time. Operational times have been converted to ex- 
pected real development times by numerically inverting the correspond- 
ing Gamma distribution function, and future claims inflation introduced 
using the method outlined in Appendix F. The best estimate of the force 
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of inflation in the future was taken as 0.12, and the combined uncertainty 
of this estimate and the real time scale was taken to be 0.02’. The results 
are given in Table 17: 

Year 

1969 

1970 

1971 

I972 

1973 

1974 

1975 

1976 

1977 

1978 

1979 

1980 

All 

0 

38 

38 

11s 

380 

540 

959 

1,612 

3.329 

6,275 

6,884 

12,113 

TABLE 17 

(1) (5) 
Expected (3) Additional 

Total (2) Additional (4) Uncertainty 
Future Standard Uncertainty Standard (Number of 

Payments Error (Inflation) Deviation Claims) 

0 0 0 0 

6 8 77 0 

6 8 77 0 

18 23 137 0 

59 65 250 IS 

81 8S 296 1s 

129 129 38X 3x 

193 195 494 5X 

317 343 692 12x 

486 542 934 27s 

SOS 552 976 318 

851 X66 I JO5 600 

32,283 2,539 2.8 17 2.141 74x 

(6) 
Root- 
Mean- 
Square 
Error 

0 

78 

78 

140 

265 

319 

430 

568 

844 

1.216 

1.27 1 

1 .X8 1 

4,419 

The additional uncertainty of future inflation means that the best esti- 
mate of 32,283 must be augmented by 13.7% fhr a reasonably safe re- 
serve. This gives $36.7 million. 
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8. CONCLUDING REMARKS 

Origin Year Effects 

All the methods described in this paper are based on the hypothesis 
that, in real terms, the mean claim amount as a function of operational 
time is the same for all origin years. The plausibility of this hypothesis 
should be considered for each data set before proceeding to apply the 
methods. If there is a trend change in the mean claim amount over the 
origin years, for fixed operational time, the test of Appendix B should 
give a warning. However, the basic hypothesis could be violated in other 
ways. A change in the mix of claim types over origin years might cause a 
significant violation. For example, in property insurance, the proportion 
of land subsidence claims may be increased for a certain origin year 
because of hot dry weather. Since subsidence claims tend to be large, the 
mean claim amount in real terms would be higher for such an origin year. 
The approach of Appendix B can be modified to test for the presence of 
such phenomena. For example, Model 0 could be generalized by having a 
separate level parameter (PO in Appendix B) for certain origin years. Plots 
of residuals against origin year should help in deciding which origin years 
are affected. 

If the basic hypothesis is violated because of a changing mix of claim 
types across origin years, there are two possible remedies: 

1. if there are sufficient data points in each group of similar origin 
years, a separate “level parameter” for each group can be re- 
tained throughout the analysis, or 

2. if the data are available, each claim type can be analyzed sepa- 
rately. 

Frequently in practice, the only data available is of type (c) (Section 
l), so the methods of Section 7 are appropriate. These methods are partic- 
ularly valuable when the triangle does not contain data over the full range 
of operational times, so that projection is necessary. For the Berquist and 
Sherman data, the highest observed operational time is about 0.85. Figure 
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4 shows the curve for the mean payment per claim closed fitted with no 
allowance for the presence of partial payments. This should be compared 
to Curve 2 of Figure 11 which was obtained by the methods of Section 7. 
The two fitted curves are in close agreement over the mnge of the data, 
because both fit the data well. However, their projections into the range 
(0.85, I) of operational time are very different, causing a substantial ef- 
fect on the forecasts (compare the results in Table 12 to those in Table 8). 
The improvement in projections possible by considering the effect of 
partial payments does not, of course. negate the need for caution when 
projecting a fitted curve beyond the range of the data. An informal Bayes- 
ian approach is appropriate. The indications of the particular data set 
under analysis (via F-tests, etc.) should be tempered by experience of 
more fully developed triangles for similar lines of business. 

Even when the full range of operational time is covered by the data, so 
that no projection of m, is necessary, the methods of Section 7 are recom- 
mended for data of type (c). The models of Section 7 usually explain 
more of the variation in such data than the models of earlier sections. This 
is indicated by a significant estimate of the partial payment parameter c. 
Consequently, the other parameters of l?rT will bc more reliably estimated 
if allowance is made for the partial payment effect. As the observed 
values for R = L/N differ between origin years, the models of Section 7 
effectively allow a different function nr, to be fitted for each origin year. 

The similarity between projecting the partial payment ratio R and 
projecting the run-off of settlements over real development time for the 
purpose of introducing future inflation, was mentioned in Section 7. For 
future intlation, the distribution function F, of settlement delays must be 
projected. The relationship between t and f can then be approximated 
using 7 = F, . The partial payment ratio R = L/N could similarly be ap- 
proximated using R = (1 - F,)/” where ,f; is the probability density func- 
tion of the delays (fj=dFJdt). This is the reciprocal of the hazard 
function of the delay distribution. Thus, projection of R could be based on 
the same model for the run-off of settlements over real development time 
as used to introduce future inflation. This possibility has not been fully 
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explored but would probably require unusually accurate estimation of F, 
for reasonably reliable estimates of R. 

For triangles which are not well developed (such as the Berquist and 
Sherman triangle used in the examples) experience with more fully devel- 
oped triangles for similar lines of business would be very valuable in 
estimating the real time scale of the remaining run-off. The technique 
used in the example in Section 6 of estimating the “half life” by examin- 
ing the triangle of operational times is not recommended for general use. 
Although not illustrated in the examples, the projected total of payments 
remaining for each origin year could, of course, be broken down by 
development year, given a projection for the remaining run-off of settle- 
ments. 

Integrtrtion into a Conprehensi\~e Approach 

The question of how the methods proposed in this paper can be com- 
bined with results obtained by other methods and additional items of 
information can obviously not be answered definitively because every 
reserving problem is different. A few suggestions are given below. 

If reliable case estimates are available for some of the outstanding 
claims, the estimate M can be reduced by the number of claims concerned 
so that the fitted model nr, is summed over those claims for which reliable 
case estimates are not available. This involves an assumption that the 
operational times of those claims with reliable case estimates are uni- 
formly distributed over the remaining interval of operational time, and 
that the presence of a claim in this class does not depend on its size. 

Because large claims are often assessed individually, and as accurately 
as possible, the entire method could be restricted to smaller claims only. 
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APPENDIX A 

DATA USED FOR THE EXAMPLES 

The first data set consists of medical malpractice triangles taken from Berquist and Sherman [ 11. The tri- 
angle below is Y,,,/ , the total amount of all payments made in development year d for each origin year W. 
This has been calculated from Exhibit E of Berquist and Sherman. The units are thousands of dollars, not ad- 
justed for inflation. 

Year 0 

1969 125 
1970 43 
1971 295 
1972 SO 
1973 213 
1974 172 
1975 210 
1976 209 

1 

TABLE A. 1 

d 

2 3 4 5 6 7 

281 1,037 1,543 1,481 3,712 4,459 3,177 
486 1,487 1,625 3,882 6,772 4,688 
852 1,332 2,592 6,328 6,308 
736 3,024 5,961 8,747 
620 2,766 7,693 

1,415 4,680 
1,355 



The triangle below is NlcId , the number of claims closed in development year d for each origin year MI. 
2 

This has been derived from Exhibits C and E of Berquist and Sherman [I]. The final column is No, the total 
of the N,,.d for each origin year. 

TABLE A.2 
d 

Year 0 1 2 3 4 5 6 7 No 

5 
1969 311 521 349 179 161 293 261 191 2.266 

i 
x 

1970 391 52Y 271 178 303 367 240 2.279 5 
‘Z 
2 1971 418 764 236 526 487 422 2.853 ‘: 
r 

1972 311 854 523 629 621 ‘,Y38 g 
7 1973 294 1.146 691 657 2.788 Q 

1974 332 1.015 613 1.960 z 
z 197s 406 907 1.313 < 

1976 398 398 g 



Table A.3 is the number of non-zero claims reported in each development year, from Exhibits C, D, and 
E of Berquist and Sherman [I]. The final two columns are the best estimate of the ultimate number of claims, 
and its standard error. These were obtained by applying the stochastic method detailed in [lo] to the reported 
numbers triangle. 

TABLE A.3 
d - 

Year 0 1 2 3 4 5 6 7 M 1 
Y 
8 

; 
1969 1,060 612 511 383 -11 24 29 17 2,664 70 z 
1970 1,051 826 463 379 48 27 24 2,896 102 F! 
1971 1,296 1,215 627 605 116 50 4,065 148 

2 
I 

1972 1,354 1,372 790 
w 

695 249 4,771 215 a 
1973 1,382 1,446 843 994 5,280 314 K 

? 
1974 1,365 1,400 8.58 4,837 461 z 
1975 1,544 1,241 5,169 690 
1976 1,594 6,257 1,097 



The triangle below gives the mean operational times ~,,.ti calculated from the triangle I&d given in Table ; 

A.2 and the estimates M given in Table A.3 using Equation 2.1. 

TABLE A.4 

1969 
1970 
1971 
1972 
1973 
1974 
1975 
1976 

0.058 0.215 0.378 0.477 0.54 1 0.626 0.730 0.815 
0.068 0.226 0.364 0.442 0.525 0.641 0.746 
0.05 1 0.197 0.320 0.414 0.538 0.650 > 

r; 0.033 0.155 0.299 0.420 0.55 1 6 
0.027 0.164 0.338 0.466 

2 
B 

0.034 0.174 0.342 g 
0.039 0.166 E 

0.032 



Below is the triangle of average numbers of claims outstanding calculated from the triangles given in 
Tables A.2 and A.3. These figures are the L,+‘d of Section 7. 

TABLE A.5 
d 

Year 0 1 2 3 4 5 6 7 

1969 375 795 921 1,104 1,120 
1970 330 809 1,053 1,250 1,223 
1971 439 1,104 1,525 1,760 1,614 
1972 522 1,302 1,695 1,861 1,708 
1973 544 1,238 1,464 1,709 
1974 517 1,226 1,541 
1975 569 1,305 
1976 598 

900 649 446 3 
925 647 2 

is 1,242 0 =! 

!2 







Table A.8 gives the estimated ultimate number of claims, M, for each origin year, and the standard error, 
:g 

v, of this estimate. M has been taken directly from Taylor [9], and v has been calculated (for the purposes of 
the second example in Section 7) as 5% of the number not yet settled (M - No). 

TABLE A.8 
Year M 1’ 

1969 523 0 
1970 643 0 
1971 676 0 
1972 672 0 
1973 807 1 
1974 670 1 
1975 516 3 
1976 544 5 
1977 622 12 
1978 715 23 
1979 660 25 
1980 894 43 



The triangle below gives the mean operational times TMad calculated using Equation 2.1 from the data in 
Table A.8. 

TABLE A.9 
d ___. .~ ____. 

Year 0 I 2 3 4 5 6 7 8 9 10 I1 

1969 0.095 
1970 0.036 
1971 0.033 
1972 0.033 
1973 0.032 
1974 0.019 
1975 0.016 
1976 0.015 
1977 0.030 
1978 0.016 
1979 0.023 
1980 0.021 

0.337 
0.222 
0.206 
0.190 
0.136 
0.142 
0.121 
0.134 
0.141 
0.106 
0.138 

0.591 
0.517 
0.490 
0.372 
0.366 
0.407 
0.333 
0.330 
0.291 
0.264 

0.778 
0.732 
0.69 1 
0.568 
0.673 
0.665 
0.565 
0.502 
0.494 

0.894 0.949 0.976 0.988 0.994 0.997 0.999 1.000 2 
0.827 0.887 0.942 0.970 0.984 0.992 0.995 5 
0.822 0.931 0.975 0.984 0.989 0.994 5 r; 

0.807 0.935 0.965 0.973 0.984 ? 
” 

0.870 0.935 0.957 0.969 5 
0.813 0.889 

z 
0.934 E m 

0.743 0.853 2 
52 0.700 0 



The triangle in Table A. 10 gives the mean number of claims not yet settled, calculated as the difference is 

between M (from Table A.8) and the cumulative values of N,,,d (from Table A.7). These figures were used 
for LMsd in the second example of Section 7. 

---.___ .~.._. 
Year 0 1 2 3 

1969 473.5 
1970 620.0 
1971 654.0 
1972 649.5 
1973 781.0 
1974 657.5 
1975 508.0 
I976 536.0 
1977 603.5 
1978 703.5 
1979 645.0 
1980 875.0 

347.0 
500.5 
536.5 
544.0 
697.5 
575.0 
453.5 
47 1 .o 
534.0 
639.5 
569.0 

214.0 
310.5 
344.5 
422.0 
512.0 
397.0 
344.0 
364.5 
441.0 
526.5 

116.0 
172.5 
209.0 
290.5 
264.0 
224.5 
224.5 
27 1 .O 
315.0 

TABLE A. 10 
d ~- 
4 5 

55.5 26.5 
111.0 72.5 
120.5 46.5 
130.0 44.0 
105.0 52.5 
125.0 74.5 
132.5 76.0 
163.0 

6 7 8 9 10 

12.5 
37.5 
17.0 
23.5 
34.5 
44.0 

6.5 3.0 1.5 0.5 
Y 
8 

19.5 10.5 5.0 3.0 $, 
IO.5 7.5 4.0 5 ri 
18.0 10.5 ? 

25.0 
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APPENDIX B 

TESTINGMODELZERO 

This appendix is concerned with testing the hypothesis that the mean 
claim amount in real terms is a function of operational time only. This 
hypothesis underlies all the methods proposed in this paper, and should be 
checked for each data set before applying these methods. Intuitively, the 
most likely violation is that there may be a trend across the origin years in 
the mean claim amount at a certain operational time. Such a trend would 
give a different mean claim size for the earlier origin years than for the 
later origin years, for a certain operational time. This can be tested as 
follows. 

The run-off triangle is bisected into Regions A and B as shown in 
Figure 19. If P is the number of development periods per annum (for 
example, P = 4 for quarterly development) then calendar time r ’ is given 
by: 

r’=d+P.(w- 1). (B-1) 

If d runs from 0 to T - 1, then t ’ also varies from 0 to T - 1, so data for 
the last calendar period (represented by the hypotenuse of the run-off tri- 
angle) is given by T - 1 = d + P . (w - l), which is equivalent to: 

u’= 1 +(T- 1 -d)/P. 03.2) 

Note that data exists for the latest calendar period only for those d-values 
that give an integer value for W. 

The boundary between regions A and B is therefore given by: 

w=OSx( 1 +(T- 14)/P}, 

so region B is defined as those data points satisfying: 

w>OSx{ I +(T- 14)/P}. 



FIGURE 19 

Development Period d 

P 
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Model 0 of Section 2 is generalized to allow the mean claim amount 
as a function of operational time to differ between the Regions A and B. 
This less restrictive model can be expressed as: 

(B-3) 

03.4) 

where the explanatory variables Zj are the same simple functions of z used 
in Model 0. Model 0 is the special case p;’ = # for all j, and can be tested 
against the more general model using an F-test in the usual way. How- 
ever, Model 0 could appear to be unacceptable when tested in this way if 
an incorrect inflation rate has been used to preadjust the data. For this rea- 
son it is better to use unadjusted data and include an inflation parameter. 
Model 0 of Section 4 is generalized to: 

m$ = exp (i . (M* + d/P) + pf + C Pp . Zj) . (B.6) 

In the example of Section 4, Model 0 has 10 parameters (including i) 
and gives a minimized deviance of 1,961 using an index a = 1.5 in the 
variance function, The less restrictive model specified in Equations B.3 
and B.4 has 19 parameters, but only 18 can be estimated due to an 
absence of data in Region A for the last operational time band. The 
minimized deviance (using the variance function with a = 1.5) is 1,676. 
Residual plots confirm the assumption a = 1.5. As there are 36 data 
points, the model has 18 degrees of freedom, giving an estimate of 93.1 
for the scale parameter. The mean increase in the deviance per degree of 
freedom under Model 0 is (1,961-1,676)/8 = 35.6, so the F-statistic is 
35.6/93.1 = 0.38 on eight and 18 degrees of freedom. The lack of signifi- 
cance indicates that Model 0 fits the data as well as the 18-parameter 
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model, so the hypothesis that the mean m, does not vary across origin 
years for any z is verified. 
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APPENDIX C 

INTERPRETATION OF OPERATIONAL TlME MODELS FOR 

MEAN CLAIM AMOUNT 

When formulating models for the mean claim amount as a function of 
operational time, it is helpful to discover what such models imply about 
the mean claim amount as a function of real development time. This 
Appendix describes how this can be done, and illustrates the techniques 
by giving the real-time interpretation of certain special cases and general- 
izations of the models proposed in Section 2. The following notation is 
used: 

m, = mean claim amount as function of operational time z, 

ltt = mean claim amount as function of real development time t, 

M = ultimate number of claims closed, 

F, = distribution function (over individual settlements) of delay t, 

N, = cumulative number of claims closed by real development 
time t, 

C, = expected cumulative amount paid by real development time t. 

By definition of z , T and t are related by: 

T=NJM. Cl) 

Each of the M claims has probability F, of being closed by time t (by 
definition of F,), so N! is binomially distributed with parameters M and 
FI . Therefore we have: 

E(N,)=M.F, and Var(N,)=M.F,.(l-F,). (C.2) 

Hence, using Equation C. 1: 

E(2lt)=F, and Var(zIr)=F,.(l -F,)/M. (C.3) 

So, if M is reasonably large, to a good approximation we have: 
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z=F,. (C.4) 

That is, operational time is simply the distribution function of the real 
delay. 

By definition of m and p, we have: 

p, = nz, 

Using Equation C.4, this gives: 

P, = MF,) . (C.5) 

Given a functional form for m,, equation C.5 immediately gives a 
relationship between p, and F,. For example, Model I of Section 2 in the 
case p, = 0 is: 

nf, = exp $4, + Pz In(G) 

= k ,y 

Using Equation C.5, this is equivalent to: 

That is. in real time, the mean claim size is a power function of the delay 
distribution function. 

By definition, 

t 

C, = M s p, (IF, 

If M is sufficiently large, then from Equation C.4 we have, to a good ap- 
proximation, 
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CC.61 
0 

For certain functional forms IZI~, the integral on the right of Equation 
C.6 is analytically tractable and can be expressed simply in terms of m,. 
In such cases the equation can be rearranged to express the mean claim 
amount in terms of C,. 

For example, consider Model 1 or 2 of Section 2 in the case p2 = 0: 

t 

nz, = exp (PO + p, T) =$ I m, dcs = (m, - nz,,)/p, , 

0 

and, using Equation C.6, we have: 

C, = M (m, - m&P, . 

Rearranging gives: 

IA = PO + PI . C, /M. (C.7) 

As a second example, consider the generalization of Model 3 of Sec- 
tion 2: 

m, = Cl% + PI . z>” . 

It is straightforward to show that this implies: 

t 
I m, do = [n$+ ‘I” - mf + “‘“I/[$ . (6 + 1) I. 
0 

Hence, using Equation C.6 and rearranging: 

p, = [pf+ ‘) + (6 + 1) . p, . C/M]“““+ ‘). 
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Model 3 is the case 6 = 3 &, so is equivalent to the real-time relationship: 

p,= [ p:, + 3. p, C/M 1:'. 
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APPENDIX D 

PREDICTION WHEN ULTIMATE NUMBERS ARE KNOWN 

We have E(X,) = m, and Var (X,) = ‘p’ . my where: 

X, is the size of the individual claim payment (in constant money 
terms) made at operational time z, and 

nzT is a function of several parameters which can be expressed as a 
vector p. 

Sections 2 through 4 of the paper describe how the data triangles can 
be used to decide on the functional form of m,, and to estimate the 
parameters p, a, and cp. The estimation algorithm (Fisher’s scoring 
method) also gives the variance-covariance matrix V for the estimates of 
p. This Appendix describes how the fitted model can be used to predict 
totals of future claims, under the assumption that the ultimate number of 
claims M is fully known for each origin year. 

Consider a single origin year. If M is the ultimate number of claims, 
and N,, is the number to date, then there are M - N,, claims in the future. 
The operational times of these future claims are: 

z = (NC,+ 0.5)/M,(N, + 1.5)/M,..., (M-0.5)/M. (D.1) 

If R represents the total of future claims, and ~1 and o2 denote the mean 
and variance of R, respectively, then since separate claim amounts are 
mutually independent we have: 

p=xm, and 02=‘pz.~rn~, 

r r 
(D.2) 

the summation being over the values of z given at Equation D. 1. 

Hence, an estimate j? can be obtained using the fitted model: 

(D.3) 
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where A, means m, evaluated using the estimated values of p. 

This is the “best estimate” of R given in Columns 1 of the example 
result tables in Sections 3 through 7. 

Now consider the mean-square-error of the estimate for a single origin 
year given by Equation D.3: 

E(R - $)’ = E[(R - kt) + (kt - 6) I’ 

= E(R - kt)’ + E(;i - cc)’ - 2 E(R - j.t) (fi - /L) . 03.4) 

The last term of Equation D.4 is zero because R and b are stochastically 
independentAThe randomness in R comes from future claims, and the ran- 
domness in p comes from past claims. 

The first term of Equation D.4 is simply (3’ and can be estimated by 
using the estimated parameters in the expression at Equation D.2. This 
gives the quantity in the standard deviation columns of the examples. 

For the middle term of equation D.4, note that p is a known function 
of the parameters p. See Equation D.2. Using a first order Taylor series, 
we have: 

where 6 is the vector of first derivatives of p with respect to the j3s. 

Hence : 

Taking expected values, 

E(;i - p)’ zz #. V .& 

where V is the variance-covariance matrix of the estimates i. 

(D.5) 

The vector of derivatives 6 can be calculated from Equation D.2: 
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6; = dp/dp; = C dm,/dpi . 

343 

03.6) 

Each term dm,/df& can be evaluated using the estimated p-values. 

The standard error for a single origin year is given by the square root 
of the estimated right-hand side of Equation D.4: 

(b2+:T. V4) . 

This is the quantity given in the RMS columns of Tables 4 and 6. The 
standard error columns of these tables are from: 

Now consider the prediction of total future payments for all origin 
years combined. The best estimate is obtained simply by summing the 
estimates given by Equation D.3 for each origin year. The mean-square- 
error of this estimate cannot be obtained so simply. The estimate of 
CF’ (given by using the estimated parameters in Equation D.2) can be 
summed over all origin years, because all future claims are mutually 
independent. However, the “estimation error” component (given by Equa- 
tion D.5 for a single origin year) cannot be summed over all origin years, 
because the same estimates B are used in equation D.3 for each origin 
year, so the estimates are not mutually independent. 

Corresponding to the middle term of Equation D.4, we need to evalu- 
ate E[ (Cl) - (Cp) I’, where the summation is over all origin years. 

An analysis similar to that in Equation D.5 shows that: 

E[ ($)-(Z~)]‘=-DTWD, (D.7) 

where V is the variance-covariance matrix of the estimates p, and ZI is the 
vector of first derivatives of Zp with respect to the 0s. That is, 
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where, again. summation is over all origin years. 

The figure for the total over all origin years, in the second columns of 
the examples, is the square root of the right-hand side of Equation D.7. 

If the number of outstanding claims A4 -N,, is large for some origin 
years, the amount of computation involved in evaluating Equations D.2, 
D.3, and D.6 may be substantial. However, when A4 is large the variation 
in the summands from one point in operational time to the next is usually 
so small that the sums can be well approximated by integrals. That is, 
Equation D.2 can be replaced by: 

(D.8) 

If the form of m, is such that either or both of these definite integrals 
are analytically tractable, the burden of computation can be substantially 
reduced. If the first of these is tractable, the 6; can easily be obtained from 
the first part of Equation D.6: 

6, = clCl/tl pi, 

after finding p as a function of j3 by analytic integration. 

Otherwise, the integration corresponding to the second part of Equa- 
tion D.6 may be tractable for some i : 

Note that for models m, with a log link function, the partial derivatives 
required for calculating the 6, have a particularly simple form: 

m, = exp (x, . b) => dm,/d pi = .\-Ti m, . 
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APPENDIX E 

PREDICTION WHEN ULTIMATE NUMBERS ARE UNCERTAIN 

Appendix D deals with the distributions of future claim totals condi- 
tional on the ultimate number of claims M. These conditional distribu- 
tions are relevant for forecasting when M is known. In practice, M is 
rarely fully known. This appendix shows how uncertainty in M can be 
allowed for in forecasting. Briefly, the problem is that uncertainty in M 
for a particular origin year implies uncertainty in the operational times of 
future claims, given at Equation D.1. The uncertainty affects both the 
number of future values of z and the values themselves. 

Replacing the summation in Equation D.2 by integration (as suggested 
in Appendix D), and making the conditioning on M explicit, we have: 

(E.1) 
T/O 

and 

Var (R IM)= (p2 .M. n$ dz, (E.2) 

to 

where the integration is from the present operational time T,, (= N,JM) to 
1. 

It is shown below that both these functions are sufficiently near linear 
in M (compared to the magnitude of the uncertainty in M) to ensure that 
good approximations of their expected values are given by replacing M 
by its expected value. That is, 

E(E(R I M)) = E(R I M = E(M)), (E.3) 

and 
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E(Var (R I M)) = Var(R I M = E(M)). 

In this appendix. p and c? arc used to dcnotc the unconditional mean 
and variance of the total R of‘ future claims for an origin year. Thus. 

p = E(R) = E(E(R I M)) = E( R I M = E(M)) (E.4) 

using Equation E.3, and 

(T’ = Var(R) = E(Var(R I M)) + Var(E(R I M)) 

=Var(RIM=E(M) )+Var(E(RIM)). (E.5) 

Equation E.4 implies that the best cstimatc of R is given by evaluating 
the right-hand side of Equation E. 1 using the estimate fi = E(M) in place 
of M. Similarly, the first term 011 the right of Equation E.5 is simply the 
right-hand side of Equation E.2 cvaluatctl using the estimate h = E(M). 
Thus, the estimates of the unconditional p and (5’ arc exactly the same as 
the estimates of the conditional p and 0’ given in Appendix D, except for 
the addition of the second term on the right of Equation E.5. Equation D.4 
remains valid, and as the estimate $ is unchanged, the middle term of 
Equation D.4 (the estimation error) can be evaluated exactlj as described 
in Appendix D. Therefore, the only change newwary to the mean-square- 
error given in Appendix D is the addition ot’ the xecond term on the right 
of Equation E.S. 

Using the usual approximation derived from a first order Taylor series: 

Var(E(R I M)) = jdE(R I Mb’rIM)’ V:\r(iZ/I). 

From Equation E. 1 

dE(R 

But. 
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I 

d/dM s m, clz = -m,, dz,,/dM = m,, q/M , 

?I 

where 

m. = m, evaluated at z = r(,, , 

and 

m, dz = E(R I M)/M. 

3) 

Hence, 

d E(R I M) E(R I M) 
dM - M + m. to . 

Using the estimate b = E(M) to evaluate the first term gives: 

d E(R I M) 
dM 

= (i/b + m,, . 2,) . (E.6) 

The accuracy of this approximation is demonstrated in the example of 
Section 5. 

The approximations quoted at Equation E.3 are derived in this section. 
For any analytic function h(M), a second order Taylor series about E(M) 
gives: 

E(h(M)) = h(E(M)) + t/2 h N (E(M)) Var (M), 

so 

EMW) = W(M)) (E.7) 

if t/z. I h ” (E(M) ) I . Var (E(M)) <:< h(E(M)). 
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In the remainder of this section, E(M) is shortened to h. because the 
best estimate of M is its prior expected value. 

It is straight-forward to show that if: 

h(M)= M g(z) A. (E.8) 

where ,q is any analytic function, then: 

h "M = -(N'/M') ,q '(N/M). 

Also, if ,e is increasing, 

h(M)>(M-N)>g(N/'M), (E.9) 

so for functions h(M) of the form in Equation E.8 with *q increasing. a suf- 
ficient condition for Equation E.7 is: 

‘/I (N’/h3) s’ (N/i) .Var(M) << (L-N) ,s(N/b). 

Writingf(z) for In(,q(z)) so thatf“ (t) = ,v’ (z)/,r(z), and assuming s(r) > 0, 
this becomes: 

f’(N/i) << 2 2 A (M-N)/(N'. Var (M)). 

Writing t for N/M and R for the coefficient of variation of 
M (Q’ = Var(M)/&) this becomes: 

f’(r) << 2 (I - r)/(Q r)? (E.lO) 

The functions in Equations E.1 and E.2 arc of the form given in 
Equation E.8 with <y(r) positive and increasing. In terms off(r) = In(,q(z)), 
the mean (Equation E.l) is the case: .f(r) = In(nl,), and the variance (Equa- 
tion E.2) is the case: ,f(t) = 2 In(cp) + a In(nr,). 

Therefore, using Equation E.10. a sufficient condition for Equation 
E.3 is: 
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a dln(m,)/dT << 2 . (1 - z)/(Q . T)’ . (E. I I) 

This is invariably satisfied by fitted models m, . This appendix 
demonstrates this for the example of Section 5. 

Although the fitted model nl, of Section 5 is not strictly increasing 
(because of partial payments), it is mostly increasing and the inequality in 
Equation E.9 remains true for most z. The fitted model has a = 1.5, and 

In(m,) = -3.7 1 + 17.8 . z - 12.5 . z2 - 0.80 . In(s) . 

Therefore, 

dln(m,)/dT = 17.8 - 25 . z - 0.8/T . 

Table E. 1 gives both sides of Equation E. I 1 evaluated for each origin 
year using figures z = TV, and R = 1IVar(M)/M from Table 7. 

TABLE E. 1 

Year ?, 

1969 0.85 

1970 0.79 

1971 0.70 

1972 0.62 

1973 0.53 

1974 0.41 

1975 0.25 

1976 0.06 

R 

0.026 

0.035 

0.036 

0.045 

0.060 

0.095 

0.134 

0.175 

LHS RHS 

-6.6 614 

-4.4 549 

-1.3 945 

1.5 976 

4.6 930 

8.4 778 

12.5 1,337 

4.5 17,052 

These figures indicate that, for this example, the exclusion of non-lin- 
ear terms at Equations E.4 and ES leads to an error of no more than about 
I% in the mean and variance of total future payments for each origin 
year. The near-linearity of E(R I M) is demonstrated more directly in Sec- 
tion 5. 
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APPENDIX F 

From Appendix D. the cxpcctcd constant-price total of future claims 
for a single origin year is given by: 

fi = c ,:I,. (F.1) 

where A, is the fitted mean claim amount in constant terms. and summa- 
tion is over the operational times t of all cxpcctcd future claims (given in 
Equation D. I ). 

If r represents the real calendar time corr-caponding to operational time 
5 (with the convention t = 0 when r = z,,), and if the force of future claims 
inflation is i. the current price total is obviously given by: 

$ = c cxp (i I) -;:I, (F.2) 

To evaluate the current price prediction fi’ from equation F.2. the 
relationship between t and r is needed. This can bc approximated using a 
continuous curve. A typical shape is shown in Figure 20. The shape can 
usually be well approximated using an exponential distribution function, 
although a Gamma distribution function is sometimes necessary for later 
origin years. There is usually uncertainty about the real time scale. 

Thus, we have z = F(cp’ t) for some known function F. The uncer- 
tainty in the real time scale is represented by the random variable cp’. 

Rearranging: 

!=q.H(r). (F.3) 

where H is the inverse of F, and cp = l/q’. A following section will de- 
scribe how the function H can be found in cases where the run-off of set- 
tlements is approximately exponential. 



FIGURE 20 

TYPICALTAILRELATIONSHIPBETWEENOPERATIONALTIMEANDREALDEVELOPMENTTIME 

0 --- 
Real Development Time (2) 
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Substituting from Equation F.3 into Equation F.2. and writing 8 for 
i. cp gives: 

fi ’ = c exp (0 H(t) ) I?!, . (F-4) 

In general, there is uncertainty in bolh the rate of future claims intla- 
tion and the real time scale. so both i and cp are random variables. The 
expected values are denoted ?and $, and the variances (representing the 
uncertainty) are denoted Uj and U, . respcctivcly. Since 8 is the product 
of these two random variables. its mean is given by 6= ?. 6 and its 
variance by: 

U, = U, U, + f2 ii, + G2 U, . (F.5) 

It is always possible to have $ = 1 by scaling the function H (Equation 
F.3). When this is done, we have 8 = ? Equations F.4 and ES become: 

fi ’ = C exp (P. II(T)) ;I,. (F.6) 

and 

Ue = U, . U, + f’ (J, + U, . 

Writing A, for the inflation factor exp (f. H(z)). we have: 

$=-&r:,;. 

(F.7) 

(F.8) 

Current price predictions can be calculated using the methods de- 
scribed in Appendices D and E with the following changes: 

I. The estimate of the total of future payments is given by Equation 
F.8 instead of Equation D.3. 

2. The “future process variance” (given in the standard deviation 
columns in the examples) is not given by Equation D.2, but by: 
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if the model was fitted using inflation adjusted data (as in Sec- 
tions 2 and 3), or: 

if the model was fitted using unadjusted data (as in Section 4). 

3. In calculating the estimation error as described in Appendix D, 
the variance-covariance matrix V of the estimated P-parameters 
is extended to: 

u, 0 . . . 0 
0 
. v 

0 

and the vector 6 is extended to have a first component S,, given 
by: 

S,, = dp ‘/cl; = c H(z) A, . m,. (F. 10) 

The effect of this is simply to augment the mean-square-error by an 
amount: 

(dp ‘/d$ . u(j . (F.11) 

Note that E(R ’ I i) and Var (R ’ I i) are not nearly linear in i, (where R’ 
is the total of future claims for an origin year in current prices). There- 
fore, using the best estimate i in these functions, as done in Equations F.8 
and F.9, will not give such good approximations to the unconditional 
mean and variance as in the case of M (Equations E.4 and ES). Also, it 
may be noted that the additional element of variance was regarded as part 



of the “future process variance” & in Equation E.5. whereas it is regarded 
here as an element of the “estimation error.” Tttih is unimportant, but it 
seems more natural to regard Var (E(R’ I i)) as chtimation error because in 
cases where We has a log link-function (such as Models I and 9 of Scc- 
tions 3 and 3). i is exactly like one of the P-parameters of‘ the model !N~ . 

The exponential model for the run-oft‘ ot’ the remaining ( I - q,) M 
claim settlements over real development tirnc is: 

F(t) - 1 - (I - To) exp (-f/(J) . (F.12) 

where 

p In(Z) = expected time for half 
the remaining claims to bc closed. (F. 13) 

Inverting this gives: 

t = -0 In[ ( 1 - t)i( I - z,,) ] 

Comparing with Equation F.3. in order to have 6 = 1. M’C must have: 

H(T) =-(I In[I - T)/( 1 - T,,) I. (F. 14) 

where 
the esti!ite fi 

IS the best estimate given by Equation F.13. The uncertainty in 
obtained from Equation F. 13 can bc used to give a value 

for the variance U, of cp. A numerical example ih given in Section 6. 
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APPENDIX G 

MODELS FOR PARTIAL PAYMENTS 

35s 

Each figure from the claim amounts triangle has two components: 

Yd = Y‘/ I + Yd 1 ’ 

where 

Y,, , = total of settlement payments, and 

Y,, 2 = total of partial payments on claims not yet closed. 

In this appendix, the second subscript is used to distinguish between 
these two components. The origin year subscript M’ is dropped to simplify 
the presentation. Thus: 

N,, , = number of claims closed, and 

N,, 2 = number of partial payments, in development period cl. 

This appendix is concerned with the distribution of Y,, , and Y,,, condi- 
tional on N,, , . This is relevant for the modelling of Y,, when N,, , is 
known. 

nr, = expected size of settlement payment at operational time z, and 

cp = coefficient of variation of settlement payments 
(assumed the same for all z), 

then: 

Wd 1) = NC/ I .m, and Var(Y,,,)=N,,, .q’.rr~f, (G.1) 

where z is the “mean” operational time of development period d. 
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It is assumed that: 

l the expected size of a non-zero partial payment = r 111, (for some 
constant I-, the same for all ~1. and 

l the coefficient of variation of non-zero partial payments = cp (the 
same as for settlement payments). 

It is assumed that each open claim gcncrates partial payments accord- 
ing to a Poisson process with parameter 1) (/-I is the expected number of 
partial payments per year of delay until the claim is closed). Therefore, if 
L,, represents the mean number of claims outstanding at the end of devel- 
opment period tl. the number of prepayments NdJ is Poisson distributed 
with parameters L,, ‘1’. Initially it is assumed that l-7 is constant for all M’ 
and ~1. that is, the partial payment Poisson process is homogeneous over 
real development time and the rate is the same for all claims. Alternatives 
are considered shortly. 

Under the above assumptions, Y,,, has a compound Poisson distribu- 
tion. Using standard results from risk theory. 

E( Y,, 2) = p I- L,, tt~, . 

and 

Var(Y,,,)=(l +cp’)./‘,r’.L,,.$. cc.21 

Cotditionul Distt-ihutim c~f‘Puytwttt PO. C’luittr C’lost~cl 

Conditional on N,, , and L,,, Y,, , and Y t/Z are mutually independent, so 
the variance (as well as the mean) is additive. Adding Equations (3.1 and 
G.2 gives: 

Et Yc/) = N,, , [ 1 + C’ K,,] tn, . 

an d 

Var (Y,,) = N, , [q? + (1 + @) I- (’ K,,I tnz , 
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where: 

The payment per claim closed, S,, = Y/N,, , therefore has: 

E(S,)=[l+(‘.R,].nz,, 

and 

(G.3) 

Var(.S,,)=$.[l +(I +l/(p2).r.~..Rd].m:/Nd,, 

If c . R,, < 1 (as is usually the case) then we have: 

E(S,) = exp (C . R,,) . m, . (G.4a) 

If (I + I/q?) ’ I- = 1 (this seems plausible; e.g., cp = 1, I- = 0.5), then we 
have: 

Var (S,,) = (p2 exp (c R,,) . &Nd, 

= (P2 . E(&)‘/[exp (C . RJ .Nd I]. (G.4b) 

Equations G.4 can be used to estimate the parameter c by Fisher’s 
scoring method in the case of a log-link model for m,. 

Equation G.4b for the variance of S is more approximate than the 
expression for the mean. This is acceptable because the variance is only 
of secondary importance. Its role is to determine the weights in fitting the 
model for the mean. The expression for the variance can be checked 
empirically via residual plots. The approximation (1 + I/$) . I- = 1 can 
be monitored by plotting standardized residuals against R,. Fanning out 
indicates that ( 1 + l/(p2). r z 1. 

If c is known, the data S can be preadjusted to remove the partial 
payment effect: 

S& = S,,/exp (C . R,) . 

We then have: 



an d 

E(S,,‘) = ttjT = mean siLe ol‘~ttlcment payments. 

Var (S,,‘) = ‘P’ n$[cxp (c’ K,,) N,, ,]. ((3.5) 

If C’ = 0 (i.e.. 1, = 0 or r = 0; no non-zero partial paymcntx). Equations 
G.3 and G.4 reduce to Equations 2.2 and 2.3. 

In previous paragraphs it was assumed that until a claim is closed, it 
yields partial payments at a constant rate 17 per development year. This 
implies that the total number of partial payments (and hence the total 
claim amount) depends on the real time scale. An obvious generalization 
is to allow the partial payment rate to be a function of d. say I)(,. Intu- 
itively, one might expect the rate to decrease with d: for example, 
/>11 = k/d (’ or p,, = L- exp(-a d). The l’ornl of‘ Equation G.4 is unchanged 
ifp,, is not constant. For example, I>,, = k/cl (’ gives the same equations but 
with c = k . r and R,, = L,J(d * N,, ,). However. for any function /I(, , the 
expected total number of partial payments. and hence the expected 
amount of each claim, will depend on the real time scale. 

Earlier portions of this appendix have all been concerned with the 
partial payment rate over real development time. An alternative is to 
consider the partial payment rate over operational time (defined in terms 
of the number of claims closed). The simplest model of this type (analo- 
gous to the constant p,, model presented earlier) is that the partial payment 
rate over operational time is constant. That is, each claim outstanding at 
operational time t has a fixed probability of yielding a partial payment in 
the next increment of operational time, the probability not depending on 
5. In terms of the partial payment rate over real devclopmcnt time this can 
be expressed as I>,, = k I N, ,/M. for some constant X (because N,, ,/M is 
the increase in operational time). This implies that the expected number 
of partial payments on a claim is proportional to the operational time of 
settlement of the claim, and does not depend on the real time scale. (This 
is invariance in Taylor’s sense; see 191). 
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Using this expression for I),, in the development leads to equations of 
the same form as Equation G.4 but with (’ = k I- and R,, = L/M instead 
of R,, = L/N,, , . 

If the ratio of the number of claims outstanding (i.e., reported but not 
closed) to the total number not yet closed is approximately constant, then 
we have L,,/M = rt (1 - t), where n is a constant. In such a case we have 

E(S,,) = exp (c x (1 - z)) m, , (G.6a) 

an d 

Var (S,) = ‘p’ E(S,,)‘/[exp (c n: . (1 - 2)) . N,, , ] , (G.6b) 

where (’ = k . r. Note that the factor exp (r. . 7~ (1 - z)) decreases mono- 
tonically as z increases from zero to one. Thus, although the mean settle- 
ment payment ~II, will usually increase, the mean payment per claim 
closed may decrease for some values of 2. As operational time pro- 
gresses, the number of claims which may contribute partial payments to 
the payment per claim closed decreases, so E(S,) may decrease. 

Throughout this appendix, E(S,,) denotes the expected value of S,, 
conditional on N,, , . The absence of any dependence on N,, , in Equation 
G.6a implies that the Cov(S,,, N,, ,) = 0, so the negative association be- 
tween S and N, described in Section 7 does not exist under the assump- 
tions presented earlier. However, this is not usually plausible for the 
reasons given in Section 7. Empirical studies have confirmed the exis- 
tence of a negative association between S and N, (for example, Taylor [8], 
Section 6). 

In previous paragraphs, the notation p(/ has been used for the rate (in 
real time) at which partial payments are made on each claim outstanding 
in development period d. Similarly, 17~ will be used to denote the rate (in 
operational time) at which partial payments are made on each claim out- 
standing in the development period corresponding to operational time z. 
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Thus. 

p/M = expected number of partial payments per l/M increase 
in operational time (per outstanding claim). 

Therefore: 

P,I = N,, I MM. 

Previous sections have considered the cases: 

p,) = constant (above, in this appendix), 

1~~ = constant, that is, p,/ = X N,, ,/‘A4 

In the real world, the truth probably lies somewhere between these 
two extremes. The arguments of Section 7 suggest that /I~, increases with 
the number of settlements N,, I but not proportionately. In other words, p,, 
increases but />r decreases as N,, , increases. 

This can be modelled using I)(~ = p,, + k N,, ,/M, for some constants p. 
and A. This implies that /J,~ decreases from some value of tl onwards, as 
suggested earlier. By varying the ratio of I?,, to k, any situation between 
the extremes of p(, constant and />r constant can be attained. Repeating the 
development and using this expression for p,, leads to: 

E(S,,) = exp (c,, L/N,, l + (‘, L/M) m, , 

and 

Var (S,,) = $ E(S,,)‘/[exp (l.,, .L,,/N,, , + c, L,JM) N,, I ] , (G.7) 

where c,, = [j. I and c, = k . I. 

If the ratio of the number of claims outstanding IO the total number not 
yet closed is approximately constant at rt. then we have 
L,,/M = x (I - r). If ln(m,) includes a constant term and a term linear in 
z (for example Models 1 and 2 of Section 2). the factor exp (c, L/M) 
can therefore be subsumed into ni, and we have: 
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E(SJ = exp ((a,, . L/N,, , ) m, , G.8) 

which is the form obtained in Equations G.4a and G.4b under the assump- 
tion, p,/, constant. The only difference is that in Equation G.4a, m, is the 
mean settlement payment, so would normally be a monotonic increasing 
function of z, whereas, here, with pd not necessarily constant, nt, includes 
the factor exp (c, . n . (1 - z)) of the partial payment effect, and is not 
necessarily monotonic increasing. 

Since I’, is not estimated (it is confounded with other parameters of 
m,), the factor exp (c, LJM) cannot easily be included in the denomina- 
tor of Var (S,). Since C, is probably small, it seems reasonable to omit this 
factor from the prior weights in fitting the model. Residual plots will 
indicate if this is unreasonable. 


