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Ahstruct 

This pupor- .shou~.s that the optimal credibility split hctti~een 
two estimutora is related to hon’ n)ell euc.h estimutor predicts 
the underlying esperience. First, un eqwtion is dwnw n+ic~h 
espsesses the credibility assigned to rcrc,h cstimutor in terms oj’ 
the u\wug:c prediction error of the othclr cstimutor und the UI*- 
eruge squured diference betMwn the tww cstimutors. That 
eqlrntion is \>erified wing the cIu.s.sic Buyjsian credibility 
n/(n + k) ,forrnrrla and a fcwmulu ,fiw nvighting prior oh.ser\~a- 
lions of time series that MUX de\vzloped by the uuthor. An en- 
hancement to the classics Buyesiun method for c~luss 
credibilitic~.s is shown. Finally. the uuthor shoncs thut optimal 
credibility is proportionul to thug ucc~rruc~q of cur~h estimator, 
less the extent to which both estimutors muke the same errors. 
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1. INTRODUCTION 

Much of historical credibility emanates from one of three philoso- 
phies: 

1. The square root rule and its cousins. 

2. The Bayesian n/(n+k) formula. 
3. Alternative Bayesian philosophies that assume that losses are 

distributed according to some member of a family of distribu- 
tions, and assign some judgmental probabilities to the distribu- 
tions within the family. 

Each of these approaches has its own set of problems. 

Approach 1, the square root rule, apparently is little more than an ad 
hoc formula to graduate credibility from 0 to 1 in a fashion that: 

a) tends to assign relatively high credibilities to small samples; and 

b) achieves full credibility at some point. 

Approach 2, the n/(n + k) formula, is based upon a presumption that 
the sample mean is from a distribution chosen from a set of distributions. 
The complement of the credibility is to be assigned to the grand mean of 
all possible distributions. However, many credibility situations are not 
characterized by the process of first choosing a distribution randomly and 
then sampling from that distribution. For example, consider the case 
where a rate change indicated by a state’s data is credibility-weighted 
against straight trend. While some might argue that the choice between 
the state’s data and straight trend is just such a “distribution of distribu- 
tions,” clearly straight trend applied to the last rate indication is not the 
grand mean of that family of distributions. Further, when those assump- 
tions do apply, such as in the class ratemaking problem, the grand mean 
must also be estimated. 

Approach 3, the alternative Bayesian approach, relies on a presump- 
tion that the distribution of potential losses is a member of some family of 
distributions. The major problem with this approach is that the typical 
real-world loss distribution is not a precise mathematical curve. Further, 



this approach usually imposes some second probability distribution upon 
the choice of a distribution. An ideal method should be distribution-free. 

To avoid these difficulties, it is worthwhiic to list some of the attri- 
butes of a good approach to credibility. 

1. Since the purpose of credibility is to hone an estimate of losses, 
it should do so in the best fashion possible. Specifically, it 
should produce optimum estimators of the unknown mean ex- 
pected loss. 

2. It should work in a wide variety of situations; e.g., when the 
complement of the credibility is assigned to trend, econometric 
projections, alternative methods of estimating the sample mean, 
or a sample of a larger but related distribution. 

3. It should be distribution-free. it should not work solely when 
losses approximate some specific mathematical probability dis- 
tribution. 

4. Intuitively, it seems that the credibility should, in some sense, be 
related to how effectively the observed sample losses approxi- 
mate the underlying propensity for loss. Further, whatever statis- 
tic receives the complement of credibility should receive greater 
weight as its effectiveness in estimating the underlying propen- 
sity for loss increases. 

One method that meets ail these criteria involves minimizing the ex- 
pected squared error in estimating the propensity for loss. Specifically, if 
we seek to credibility-weight two statistics .v, and .\-? to approximate Y, 
and if: 

zf = E[ (s, - Y)’ ] ; i.e., tf is the expected error of.\-, as an estimator; 

zz = E[ (,I-~ - Y)’ ] ; i.e., T: is the expected error ~f’.t-~ as an estimator; 

ii;‘? = E[ (x, - .v$ ] ; i.e., Sf2 is their expected squared difference; 

then 
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produces the estimate 

z.r, + (I - z) .Yz , 

which minimizes the error in estimating Y; i.e., 

E[ (Z.r, + (I - Z).u, - Y)’ ] = min. 

The proof is provided in Appendix A. 

A quick review of the above criteria will show that this approach does 
indeed fulfill ail four: it is optimal by design, works with a wide variety 
of estimators, is distribution-free, and assigns credibility in accordance 
with predictive accuracy. 

3 1. USING OBSERVED ACCURACY 

Before going further, it might be worthwhile to note that this method 
produces the same value of 2 when we attempt to predict an observed 
value Y’ rather than the actual propensity for losses Y. 

In particular, if Y is the propensity for loss, then let Y’= Y + A be the 
observed losses. In this case, A would be independent of Y, x,, and +x2, 
and have a mean of 0 and a variance of S’. 

Then, since the x and A are independent, 

71 12 = TT + s? 

T/ = z; + s*, 

and 
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Hence, computing Z for actual observed losses produces the same Z as 
that appropriate for predicting the underlying propensity for loss. Further. 
since 2,‘2, z2”, and hi2 may then be estimated from historical observed 
losses, Z may be estimated from actual observed losses. 

One aspect of using historic predictive accuracy must bc noted-it is 
impractical with the highly-skewed distributions typically associated with 
individual risks and small pools of losses. 

The classic example is the credibility of a medium-size commercial 
insured’s own experience relative to industry experience. Even when the 
insured has average exposure (i.e., the unmodified manual rate is right for 
the insured), the insured will typically experience loss ratios in the 40% to 
50% range year after year. However, every five to IO years it will experi- 
ence a loss ratio in excess of iOO%,. That is because the loss size distribu- 
tion, and hence the insured’s aggregate loss distribution. is highly skewed. 
Simply stated, the insured is exposed to very large, but relatively infre- 
quent, losses. Because those losses are so large, they represent a dis- 
proportionately large part of the insured’s exposure to loss. Because they 
are so infrequent, they do not show up in the insured’s loss experience 
every year. 

The naive observer might conclude after viewing several years of low 
loss ratios that the insured’s own low loss experience is a much better 
predictor of that insured’s loss experience than the manual rate. The 
previous section of this paper would seem to support that statement. 
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Actual observed accuracy is misleading, however, because of the partial 
observation of prediction error. Over the last four years or so, only a 
portion of the distribution of prediction errors (specifically the low side) 
has been observed. When a large loss occurs, the full range of prediction 
error can be glimpsed. Depending on how long it takes for that large loss 
to occur, the manual rate may then appear to be either too high or too low. 

Many of the standard actuarial treatments for skewed distributions 
correct this problem. For instance, one could compare an insured’s histor- 
ical loss experience with the following year’s basic limits losses and an 
industry provision for excess losses. One could also replace the industry 
excess loss provision with, say, 30 years of the insured’s own trended 
excess losses. Alternatively, one could compare the estimating accuracy 
of a large body of similar insureds. Although each member insured’s 
observed losses may not be fully representative of the full error distribu- 
tion, a large enough body of insureds should approximate all probable 
prediction errors. 

Before proceeding further with an analysis of how this method may be 
applied in practice, it is worthwhile to investigate whether it reproduces 
some of the credibility formulae that are already known. 

E.wnple I. Clussir Bayesiat? Credibility 

Let s be the result of a two-stage process. First, a mean 8 E o is 
selected randomly from a set of means o with (grand) mean M. Then x,, 
-u,, . . . . x,, are selected from a distribution with mean 8 and variance S*. 
Their mean .U is, of course, dependent on 8, but each si - 9 is indepen- 
dent, not only of the other Sj - 8, but also of 8. Further, let the 8 E o have 
variance 02. Then, classic credibility [I] says 

Z (.u, M, 0) = n/[n + (S2/02) 1. 

To prove this, note that independence of the si and 8 implies: 

r,; = (SVn) , 

z&= 02, and 
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Then, the formula states: 

In other words, the classic Bayesian credibility is reproduced. 

Let s(t) begin at some .v(O) and then bc changed infinitesimally often 
by infinitesimally small, but variable, perturbations. In other words, the 
change in .1-(t) from time to time is a result of a very Iargc number of very 
slight random occurrences, just like those affecting most econometric 
time series. The random nature of the perturbations assures us that .v(t) 
will be distributed normally about .v(O) + tp (where lo is the average rate 
of change), and the variance of .r(t) is to’ (where CT’ ir, the unit variance).’ 
In fact, 

and 

To simplify matters, let us consider the case where p = 0. Further, as in 
most practical problems, when x(I). x(3), . . . . .\-(,I) are estimated by .$(I). 
-G(2), . . . . .?(,I), there should bc some estimation errors A,. So, 
.?(i) =x(i) + Ai, and the Ai are independent and identically distributed with 
mean 0 and variance S’. Then, when weighting .?( I ), .?(2). .?(3), etc. to es- 
timate .Y(.(II), the weights 

’ The limited reading of this author on Poisson proccsscs suggcs15 that ~nc of the con- 
clusions on the mean and variance may be com1no11 know ledge of statisticians. 
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w; = s’ (‘I - ‘$7; , 

where the F, are defined recursively by 

F,= I; 

F2 = S’ + 0’ ; and 

F;+,=(2S’+o’)Fi-S’F;- I 

produce the optimal estimate. To test this, only the two-point estimate 
will be verified. Unfortunately, similar credibility estimators for three or 
more estimators are very unwieldy. The two-point estimate involves an 
estimate for ,?(3) given $2) and G( 1). 

According to our formula, the result should be 

A(3) = s’,S ( 1)-t CT2 + S’) .gK) . 
cJ* + 2s’ ’ 

i.e., it should be true that 

Note that, since .~i - -pi is orthogonal to -~j - .\:i and .ri - ,yi: 

zf= E] (d?(2) - $3) )’ ] 

= E[ (u;(2) -s(2) )” ] + E[ (s(2) -s(3) )’ ] + E] (x(3) - $3) )2 ] 

= s2 + (-y + s* = 29 + (3* . 

T; = E[ (a?( I ) - d?(3) )’ ] 

= E[ &I) - .I-( 1) )’ ] + E[ (s( 1) -s(3) )2 ] + E[ (s(3) -<c(3) )2 ] 

= s* + 20’ + s* = 29 + 20’ . 
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6f2 = E[ (w;( I ) - .?( 2) )’ 1 

= E[ (.:(I) --A( 1) )’ ] + E[ (.Y( I) -x(3) )’ 1 + El (x(2) - .;(2) )’ ] 

= s* + (-J* + s2 = 29 + (3’ . 

Thus, 

z (;(2), $( 1) ;(3) ) = 2sz + ~0’ - (2,P + 0’) + 2s2 + 0’ = s’ + d 
9 2 (29 + 02) 2s’ + CT’ 

So, in at least two cases, this approach does reproduce credibilities al- 
ready known from other analyses. 

To be truly useful, an approach should yield new methods. The true 
classification ratemaking problem will now be addressed. 

3. CLASS CREDIBILITIES 

The objective is to produce a rate for a subgroup cx of a large group I-. 
The means of a and I- are unknown, but have been estimated using: 

ti = ( l/n)C U; ; Cli E a for pn and 

R=(l/(m+n)) (~~~i+~ll,); h,E p=r-a. 
i i 

Further, Var (Cli) = 0; and Var (hi) = pi have been estimated from actual 
data. 

-- 
Before proceeding, note that weighting Cr with F using Z (u, 8, pa) ef- 

fectively assigns a portion of the complement of the credibility back to .5 
since 2 = (na + mTi)/(n + m). So, it may be more worthwhile to evaluate 

and then use 



CREDIBILITY BASED ON ACCURACY 17s 

-- z (ii, 75, &J (n + m) - n z (@ R, pa> = ~ -~ ~~..~m--. _ . 

Note that 

Var (a) = (~i)/n ; Var (5) = (o$/m ; and 

z;=E[ (Z-Q2]=o;/n. 

Since the hi are independent, and the 6; - & have mean 0, 

C: = E[ (5 - /J,$ ] = c$/m + (J+ - pa)’ ; 

and 

S:, = E[ (a - fi)‘] = E[ (2 - Q2] + E[ (& - pP)‘] + E[ (h - &#] 

= (o~/n) + (p, - pp)* + (c$/m) . 

Hence 

= 
(#j/m) + (p, - pp)’ - (0:/n) + (0:/n) + (p, - VP)* f (02,/m) 

2 ( (&W + (cl, - clp)* + (+W > 

n 
= n + [oi/( (c$/m) + (p, - pp)’ ) ] ’ 

Or, if m is much larger than n 

Of course, ai and (cl, - P,-)~ are unknown, but they may be estimated 
using the sample variance of ui E a and the difference between the exist- 
ing rate for a and the overall average rate. 
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This formula illustrates several key points: 

1. Highly heterogeneous classes (high o:~.) should receive lower 
credibilities. 

3 I. Extremely high or low rates [high (pa - pr)?] should be based 
more heavily on their own expericncc than on the overall aver- 
age rate. 

3. For classes that form a statistically large proportion of the group, 
the complement of the credibility should be assigned to the mean 
of the remainder of the group. not the group mean. 

4. A NlfMEKICAI. ESAMPLLI 

Suppose that one is attempting to find the underlying mean, p,, of a 
distribution given last year’s observation X,, , _ , of the distribution. and 
last year’s observation of X,, , _ ,, a related statistic. Further. assume X, ; is 
thought to be cyclic and biased as a predictor of X,. ,, and its year-to-year 
variations are thought to be independent of those of X,. Whether X, is 
cyclic or stationary is not known. The observations are shown in Table 1. 
Of course, the values X,. , + , and X,. I + , arc unknown at time i, but the 
goal is to find the Zj such that Z, X,. , + ( I - Zj) X,, , is an optimum estima- 
tor of p, at time i + 1. 

In this case, since X, and X2 arc independent predictors of p., , 
E[ (X, - X3)’ 1 reduces to tz. , + r;, 1 , so Z becomes Z = rz, /(ri. , + K:. J. 
X, ‘s error, z:. ,, may be estimated by S’f, ,, the sample variance of the X,,; 
seen to date. *Since Xz,i *is biased, rf.? will be estimated by 
s:-. 2 + (X2. ; + , - Y,)’ , where Y; is the last estimate of p,. Th@ method 
recognizes both the cyclic nature of X1 (by using X,, , + , - Y, ) and a 
potential cyclic pattern in X, because it considers just the last observed 
values, not the history of X, and X,. Arbitrarily, the first credibility was 
chosen at 50%‘. Results are shown in Table 2. 
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TABLE I 

Year 

I 

2 

3 

4 

5 

6 

7 

8 

9 

IO 

Xl 
72.44 

79.06 

72.98 

79.74 

66.69 

86.38 

68.97 

78.61 

88.97 

74.97 

Year xl,i x2. I 

1 72.44 104.15 
2 79.06 114.66 
3 72.98 1 12.75 
4 79.74 99.01 
5 66.69 103.04 
6 86.38 102.80 
7 68.97 106.23 
8 78.61 97.79 
9 88.97 101.63 
10 74.97 102.83 

TABLE 2 

OBSERVED HISTORY 

x2 7; = s;. , . , 6 2 (X2 - PJ2 

104.15 - - - 

I 14.66 43.82 1 IO.46 694.85 

112.75 13.51 3 I .34 1018.25 

99.0 I 15.04 54.02 656.90 

103.04 28.82 44.75 527.70 

102.80 47.86 38.36 1175.98 

106.23 47.38 3 I .97 368.38 

97.79 42.08 36.02 61 1.08 

101.63 56.66 32.82 478.30 

102.83 50.8 1 29.5 I 158.61 

~- 
- 50% 

805.31 95 

1049.59 99 

710.92 98 

572.45 95 

1214.34 96 

400.35 89 

647.10 94 

511.12 90 

188.12 79 

88.30 

80.84 

73.38 

X0.07 

68.5 I 

87.04 

73.07 

79.76 

90.24 

80.82 
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In this case p, looks like a poor predictor of cl., at I’ + I 

However, when the true p., is considered, P is a very good estimator of 
l-h. The Xl., were generated using a normal distribution with mean 
p, = 80 and variance 0.: = 100 . The X,, ; were generated using a normal 
distribution with mean 100 and variance 100 for X,, ,. and successively 
generating each new X,~ ;+, using a normal distribution with mean 
100 + .X (X2. i - 100) and variance 36. One can show that the resulting 
X,,, all have a marginal distribution that has mean 100 and variance 100 
since 36 = 100 (1 - (.8)‘) . Therefore, a priori, the credibility of X, should 
be ( IO0 + 400)/( 100 + 400 + 100) = .83333. However, that credibility 
should vary with where X, happens to be in its cycle. 

It just happened that the X,, , tended to fall on the low side of the 
distribution, and that the X2,; began on the high side of the distribution 
and tended to stay there. 

In any event, the average squared prediction error of 9 is 44.86, 
roughly a 20% reduction in the prediction error of X, alone (55.46 as a 
predictor of the value p., = 80). In fact. the error of 9 is even below 45.6, 
which results from what retrospectively turns out to be the best possible 
fixed credibility (96%). That is because this method gives greater weight 
to X, when it is close to P . m t h e cycle, and less weight when it is further 
away. So, in this example, the theory works. 

5. CREDIBILITY DEMYSTIFIED 

One of the side benefits of this approach is that it offers an explanation 
of credibility that can be understood by laymen. The credibility of each 
estimator is proportional to its accuracy as an estimator, less the extent to 
which the two estimators say the same thing. Clearly this explanation is 
much more desirable than “we’ve always done it this way,” and more 
understandable to lay people than “we look at the process variance and 
the variance of the hypothetical means.” But it has yet to be shown that 
the above explanation is true. 
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Note that 

Further 

= E[ ( (x, - Y) - (s2 - y) I2 ] 

= E[ (s, - y>’ ] + E[ (s2 - y> >* ] - 2E[ (x, - y> (-x.2 - Y) ] . 

Further, assuming that -xl and s2 are unbiased estimators, p, = ~1~ = Y, so 

s;* = z; + z; - 2Cov(.u,, x2) 

And when that is included in the formula for Z, 

z (x,, x2, Y) = 
7; - T: + 7: + T$ - 2Cov(s,, x2) 

22; + 22; - 4Cov(x,, x*) ; 

22; - 2Cov(x,, x*) 

= 22; + 22; - 4COV(X,) X-J ’ 

72’ - Cov(x,, l-2) 
= 

z; + 2: - 2Cov(x,, x*) * 

Dividing top and bottom by 2:~: yields 

( 1 A:) - (z?:,/T, z,) 
z (x,, x2, Y) = -~____~~ * 

(l/z?) + (l/T:> - 2 (f?:*/Z,Q ’ 

where Rf2 is the correlation of X, and x2. Clearly, if 2: is the error of .yl, 
then l/z: must be s,‘s accuracy. Further, RF2 is the extent to which s, and 
x2 vary together, and the division by T~Z: normalizes it relative to the in- 
verse squared errors. Hence, the credibility of each estimator is propor- 
tional to its accuracy, less the extent to which the estimators say the same 
thing. 



6. PRACTICAL APPf.l~‘AT1ONS AND f~ORMI:f.~\I: 

One criticism of this approach is that, like optimum credibility, the 
appropriate credibility formula depends on the circumstances. For in- 
stance, if the two estimators are not heavily skewed, their historic accu- 
racy 12/c (x, ,., - Y’)’ and n/c (.v2,., - Y’)’ may bc used to derive the 
optimum credibility as shown in Section 2. Per Exalnple 2. the formula 
(1 + (o’/S’) )/(2 + (o’/S’) ) may be used with o’/S’ estimated using the 
historic year-to-year changes in .?. As shown in Section 3, the credibility 
of a class’s own experience should be 4(n + ($,/(K,, - I.,-)‘) ), where II is 
the number of exposure units, ,S,i is estimated by comparing each year’s 
class experience to a long-term average. and I’,, - I’[. is the difference 
between the current rate for class a and the current aver~gc rate. Altema- 
tively, Sk could be presumed to be constant across all classes and one 
could then find the SzX that minimized the average squared error (weighted 
by exposures) when such a formula uses last year’s experience to predict 
this year’s data. 

The most important results are: 
1. The credibility of a piece of data and the formula used to derive 

it vary with the specific situation. 
2. Using the formulae in this paper, one may derive credibility for- 

mulae that, up to determining a constant or two, represent the 
best credibility formulae. The constants can then be determined 
using historic data to find the constants that minimize the aver- 
age squared error. 

3. The fundamental truth of this paper, that credibility should be 
based on accuracy, makes intuitive sense and can be understood 
by laymen. 

7. SUMMARY AND~‘ONCl.I~SIONS 

In summary, this approach seems to hold promise and appears to offer 
opportunities to improve the accuracy of loss estimates. However, it will 
only truly be useful when the estimation errors zf and T; are evaluated. 
Whether one believes in this approach or not, this author believes that the 
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large ratemaking organizations should collect statistics on the effective- 
ness of the various loss estimators they use. Even if other credibility 
procedures are used, it only makes sense that their effectiveness be moni- 
tored. Futher, this author believes that greater understanding of how cred- 
ibility should work can only improve the actuarial work product. 
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APPENDIX A 

If zf = E[ (x, - Y)’ ] . z; = El (.I-~ - Y)’ 1. and S;., = E[ (I, - .,->)’ J , 

the goal is to set 

Q(Z) = E( (Z-l-, + (I - Z) .I’ - Y)’ I = min , 

But algebra gives 

E[ (Zx, + ( 1 - z) .\‘? - Y)’ I 

= E( (Z (xl - Y) + (1 -Z) (x2 - Y) )’ ] 

= Z’ E[ (x, - Y)’ ] + (1 -Z)’ E[ (x2 - Y)’ ] 

+2Z(l -Z)E[ (.v,-Y)(x-Y) ] 

=Z’z;+(l -.3%;+2Z(l -Z)E[ (.v,-Y)(.\v~-Y) 1. 

Using2(A-C)(B-C)=(A-C)‘+(B-Cl’-(A-B)’. 

2 E[ (s, - Y) (x2 - Y) 1 

= E[ (.I-, - I’)’ ] + E[ (.I-? - Y)’ 1 - E[ ( -\‘, -x1)’ I 

= Tf + T; - sfz . 

Substituting that back in the overall squared error (Q>) equation, 

a, (Z) = E[ (Zx, + (1 -Z) x2 - Y)’ 1 

= Z’rf + ( 1 - zyt; + Z( 1 - Z) [r;’ + r; - S;l,] 

=Zzf+(l -z)z;+(z2-z)6;,. 

This is minimized when 



or 

or 
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Now, this is only a minimum when 

However Sf2 is always non-negative. 

Note that Z may be negative; i.e., when 

But, fortunately, that occurs only where (x2 - Y) and (x, - x2) tend to have 
the same sign overall; i.e., x2 is generally between xl and Y. Thus, there 
may be cases where zero credibility is warranted; i.e., xl is not a useful 
predictor. Alternatively, where 

full credibility should be assigned to xl. 
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APPENDIX B 

JUST HOW DISTRIBUTION-FKEE IS I~IS7‘KIR1ITION-FREE’! 

As noted in the Section 1 of this paper. the credibility. Z. produced by 
this method produces the lowest expected squared error attainable using 
the Z\--, + ( I -Z) sJ (additive weighting) formula. That credibility does not 
depend on the particular characteristics of each estimator’s distribution, 
but only on how well each estimator predicts the unknown quantity Y, and 
on the average squared difference between the two estimators. However, 
it does assume that the best estimator of the unknown Y is the one that 
minimizes the expected squared estimating error, and that it uses a 
ZV-, + ( I -Z) .\-? formula. One should consider whether each of these im- 
plicit assumptions really produces the best estimator of the unknown Y. 

Aside from the fact that the expected squared error function is ubiqui- 
tous in mathematics and related disciplines. there is a practical reason for 
using it as a penalty function whose minimum defines the best estimator. 
Conceptually, one might begin by viewing the expected absolute error 
E [ I estimator - Y I ] as the best penalty function, since it measures the 
actual error of the estimator. That approach, however, has one consider- 
able drawback. An extremely large error receives the same weight as a 
small error, even though extremely large errors may have catastrophic 
consequences. For example, if a rate would produce precisely the re- 
quired profit 19 years out of 20 but threaten the company’s solvency one 
year out of 20, prudence would dictate that the one year out of 20 receives 
a disproportionate share of attention. One logical approach is to weight 
each absolute error with the size of that absolute error-in effect to use 
E[l estimator - Y I 1 estimator - Y I] or Ej(estimator - Y)’ 1 . 

The use of an additive weighting is less supportable. This author 
knows of no reason why an estimator of the form, say .I?. .I$’ - ” would 
not be a better estimator. It is clear that if .\-, is biased. some 
Z\-, + (1 -Z) (.\-? - C) formula is better. Superficially, it appears that a 
rigorous analysis, perhaps using calculus of variations, could produce 
different formulae for different families of distributions. 



CREDIBILITY BASED ON ACCURACY 185 

On a more positive note, there are two reasons for using an additive 
weighting formula. When the two estimators .Y, and x2 are known to be 
normally distributed about unknown means, but T;, z& and S:, can be 
estimated, the additive weighting formula is best.’ Also, additive weight- 
ing has a long history in ratemaking. 

’ The author doubts he truly discovered this. Witness the argument in [2]. 


