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THE COMPUTATION OF AGGREGATE LOSS DISTRIBUTIONS 

JOHN P. ROBERTSON 

Paul R. Halmos recently hailed the fast Fourier transform 
as one of the 22 most sigmjicant developments in mathematics 
in the last 7.5 year-s. This paper provides an application of this 
tool to the computation of aggregate loss distributions jiiom 
arbitrary frequency and severity distributions. All necessary 
mathematics is delveloped in the paper, complete algorithms 
arc given, and examples are provided. Slrfficient details are 
given to ullo~~ implementation in any computer’ language, and 
sample APL computer language routines are gillen. The final 
section includes a discussion of excess loss distributions where 
computation is not limited to the fast Fourier transform based 
algorithm. 

I thank Walter R. Stromquist, Joseph L. (“Joth”) Tupper, Gary G. Venter, 
and the Committee on Review of Papers for their help with and suggestions 
regarding this paper. 

1. INTRODUCTION 

According to Halmos [ 11, the fast Fourier transform is one of this 
century’s most significant mathematical developments. This paper pre- 
sents an algorithm for computing aggregate loss distributions using this 
device. The algorithm assumes that one knows the claim count distribu- 
tion, T (the probability distribution of the number of claims that will 
occur), and the severity distribution of a single claim, S = S, = S2 = . . . (the 
distribution of the amount of a single claim). The algorithm computes the 
aggregate loss distribution, 

AGG = S, + S, + . . . + S, 



(the distribution of the total amount of claims). The algorithm applies to 
arbitrary frequency and severity distributions. 

As an example, claim counts might be expected to follow a Poisson 
distribution with mean 10, and severity might be expected to follow some 
distribution with mean $10,000. This implies that the mean of the aggre- 
gate distribution is $100,000 (10 times $10,000). In any given year, the 
total amount of claims might vary from $100,000 because the actual 
number of claims might differ from 10. and because individual claims 
will vary from the $10,000 mean. The aggregate distribution expresses 
the probabilities of the possible total amounts of claims in the same way 
the severity distribution expresses the probabilities of the amounts of a 
single claim. 

The algorithm given here is less of a “black box” than some other 
algorithms presented in these Procwrlin~~,s in the following way. The 
algorithm, as a matter of course, computes the distribution for the sum of 
n claims, where II is any number of claims with nonzero probability in the 
claim count distribution. While the computer routines presented herein do 
not Save these distributions, only trivial programming changes are needed 
to capture and save these distributions for later USC. Capturing these dis- 
tributions can be useful when the resulting aggregate distribution has 
unexpected properties and one wants to check that it is being correctly 
computed, or for other reasons. 

The method presented here should be considered to be approximate. 
Technically, it is an exact method, but it is generally necessary to use an 
approximation of the severity distribution as input, and this makes the 
output approximate. The running time for the algorithm is roughly pro- 
portional to the number of claims expected. For small numbers of claims, 
this method seems to be faster than other methods (e.g., Heckman and 
Meyers [Z]), but this advantage disappears as the number of claims 
grows. The algorithm presented here explicitly computes the entire aggre- 
gate distribution up to a specified limit, making it easy to derive any 
statistics of the aggregate distribution. 

A quick overview of the algorithm is as follows. Everything in this 
summary will be described fully below, as it is not possible to give brief 
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rigorous definitions of all the concepts used. The severity distribution will 
be given a discrete representation; that is, the severity distribution will be 
represented by a vector. The n-fold (discrete) cmvolutions of this vector 
with itself are computed. The result of these convolutions is very nearly 
the vector representation of the jr-fold sum of the severity distribution 
with itself. The precise representation of an n-fold sum will be obtained 
by computing the convolution of this result with another vector (de- 
scribed later) to “spread out” the result a bit more. This representation of 
the density function for the n-fold sum of claims is multiplied by the 
probability of there being exactly n claims, and these products are added 
to get the vector representation of the aggregate distribution. 

The discwte Fourier- transform is used to compute the convolutions, 
and the fbsf Foul-ier rnmsform is used for rapid computation of the dis- 
crete Fourier transform. Convolutions, discrete Fourier transforms, and 
fast Fourier transforms are defined and discussed in Section 2. The pur- 
pose of this discussion is to introduce these items and to give examples so 
the main structure of the algorithm will be clear, The technical details are 
in the appendices. Additionally, Section 2 discusses the vector used to 
“spread out” the n-fold convolutions of the vector representing the sever- 
ity distribution. Two tactics used to speed the overall computations are 
also covered. 

Section 3 of the paper walks through the full algorithm. Section 4 
gives examples and discusses use of the algorithm. Sufficient details are 
given throughout the paper that it should be possible to implement the 
algorithm in any computer language. As an example, various appendices 
show routines implementing the algorithm in the APL computer language. 

2. CONVOLUTIONS AND THE FAST FOURIER TRANSFORM 

Conwlutions 

The distribution of the sum of two random variables is given by the 
~~nr~~lur~~n of their respective distributions. Heckman and Meyers [2, p. 
321 discuss convolutions for the case of continuous random variables. In 
this case, if X, and X, are independent continuous random variables with 



density functions fand g, then the density of the sum of these two vari- 
ables, i.e., the density of the random variable X, +X,, is given by the 
convolution off’and ,q, f*g, defined as: 

fp,q) (I) = j f(f) g(.\- - 1) t/f 
0 

For the algorithm presented here, the probability distributions for the 
severity of a single claim and for the sum of II claims will be given certain 
discrete representations; that is, they will be represented by certain vec- 
tors. It will be necessary to compute the convolutions of these vectors. 
The definition of the convolution of vectors is similar to the above defini- 
tion of the convolution of continuous functions. Let U = (q,, II,. . . ., II,, _ ,) 
and V = (IS,,, I’,,. . ., I’,~ _ , ) be two vectors of the same length, 17. Their dis- 
crete convolution, W = U*V, is a vector of length II defined by: 

I, I 

M’i = c 
11, I’; -/ ? 

, -0 

where 0 <: i 5 12 - 1 and the indices of the terms I’; _ i arc taken module II. 
For example, if U = (1, 2, 3) and V = (4, 5, 6) , then 

U*V=(lx4+2x6+3x5, 1x5+2x4+3x6. 1x6+2x5+3x4) 

= (31, 31,28). 

This definition of convolution is not exactly what is needed here. The 
rro-lz~~~ cxvndrrfion of U with V is defined to have the following compo- 
nents: 

M’i = i ui I’; _ ; . 

, =o 

That is: 

I’() = 14() I’(], 

M’, = If0 I’, + Ii, 1’() , 
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M’l = U() 1’2 + 14, l’, + II? I’,, ) 

M’ ,I- I = f4,) l’,, _ , + 11, I’,, _ ? + . . . + u,, _ ] 1’(, . 

The no-wrap convolution of (1,2,3) with (4,5,6) is 
(1x4, 1x5+2x4. lx6+2x5+3x4)or(4, 13,28). 

The no-wrap convolution can be visualized, as below, by taking one 
vector, reversing it, and placing it so that its first element is directly below 
the first element of the other vector, Then successively shift the vectors 
together, multiply elements in the same column, and add the products. 
Repeat this until the vectors are completely aligned. 

No-wrap Convolution 

I 2 3 

6 s 4 

lx4 

In contrast, for regular 
around as shown below: 

1 2 3 1 2 3 
6 5 4 6 5 4 

1x5+2x4 1x6+2x5+3x4 

convolutions, the bottom vector is wrapped 

Regular Convolution 

I 2 3 1 2 3 1 2 3 

4 6 5 5 4 6 6 S 4 

1x4+2x6+3x5 1x5+2x4+3x6 1x6+2x5+3x4 

The analogy of the definition of no-wrap convolution for discrete 
vectors to the definition of convolution in the continuous case should be 
clear. 

One can obtain the no-wrap convolution of two vectors from a routine 
that computes (regular) convolutions by padding each of the two vectors 
to the right with enough zeroes to double the length of each vector, 
performing the regular convolution with these longer vectors, and then 
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taking just the left half of the result. For example. the first three compo- 
nents of the convolution ot u = (/I,,. II,. If,, 0. 0. 0) with 
V = (I-,,, r, ~ I’?, 0, 0, 0) are: 

M’(, = II,, \‘() + II, x 0 + 112 x 0 t- 0 x 0 + 0 x \‘, + 0 x I‘, 

W’, = 11() l’, + II, I’,, + II? x 0 + 0 x 0 + 0 x 0 + 0 x 1’2 

= II,, 1’, + II, \‘(, : 

M’? = II,) \‘? + II, \‘, + I& I’,, + 0 x 0 + 0 x 0 + 0 x 0 

The first definition ol‘ convolution will always hc ~~scd (unless other- 
wise noted). but generally Lcroes will be added lo the vectors being 
convolved so as to achieve a no-wrap convolution. 

Observe that the definition of convolulion i\ \,alid when the vector 
elements are complex numbers. 

A note on notation is needed. The vector U has components u,,, u,, +, 
etc., sometimes denoted U[O], UI 1 I. U13 J. etc. In parricular. the indices of 
vector elements start at zero. 

Complex numbers and complex roots of‘ unity are used extensively in 
what follows. The prin?iti\~c II r/1 _ I oot.v of’wzit~ arc 

cos(3m/r7) + i sin(kr/77). 

where (I and t7 are relatively prime and i is \‘-I The properties ot’ corn- 
plex numbers needed here are reviewed in Appendix A. and arc also 
given in Baase [3, p. 2791 and Aho. Hopcrati. and IJllman 14, p. 252). 

Given a complex (or real) vector Il. the discrete Fourier transform of 
lJ is a complex vector of the same length. As in Baase 13. p. 2691, for 
II 2 1, let 0 be a primitive lath root of unity, and let F be the II x 17 matrix 
with entriesf) . . , = w’.’ where 0 i i,,j < 17 - 1, The discrctc Fourier transform 
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(DFT) of the n-vector U = (u,,, II,, . . . . u,,- ,) is the product FU (with U 
treated as a column vector). This is a vector of length n with components: 

0 0 110 + II 0 If ] + . . . + 0 0 u,, - 1 + II 0 u,, - , , 
0 w I 44,) + 0 14, + . . . + 0 I, - ?lI ,I - 2 + 0” - ‘u,, - , * 

0 w u,, + 0’11, + . . . + w ‘(” - %,, _ 2 + d” - ’ )I,,, _ , , 

w 
0 

MO + 0 
r,-11~,+...+O(~1-l)(n-2)U,,_~+O(~1~I)(,I-I)U ,,-, . 

(Note that the DFT of U depends on the o chosen.) 

Let FU be the DFT of U. Given FL’, U is recovered (i.e., the inverse 
DFT is applied to FU) as easily as FU is computed from U. To obtain U 
from FU, compute the DFT of FU, divide each resulting term by II, and 
reverse the order of the last II - I elements of this result. 

The DFT helps compute convolutions because 

DIT(U*V) = DFT(U) x DFT(V) , or 

U:kV = INVDFT(DFT(U) x DFT(V)), 

where INVDFT is the inverse DFT. 

Thus, to compute the convolution of two vectors, one can compute the 
DFT of each vector, multiply the DFTs together pointwise, and compute 
the inverse DFT. This is known as the convolution theorem, proofs of 
which are given in Baase [3, p. 2781 and Aho, Hopcraft, and Ullman [4, p. 
2SS]. 

For example, let U be (I, 2, 3), let V be (4, 5, 6), and let 
0 = -0.5 -t 0.866i, a primitive third root of unity. Then FU is 
(6, -1.5 - 0.8661’. -1 .S + 0.8661’), FV is (15, -I .S - 0.866i. -1.5 + 0.866i), 
and the pointwise product, FU x FV, is (90, 1.5 + 2.5981, I.5 - 2.598i). 
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To compute the inverse DFT of this last vector. first apply the (forward) 
DFT to obtain (93, 84. 93). Then divide each element by 3 and reverse the 
order of the last two elements, giving (3 1. 3 I, IX). This matches the pre- 
vious computation. 

A more thorough example showin, u the convolution of two vectors 
representing severity distributions is given in Appendix B. This appendix 
also discusses the inverse DFT. 

The jksr Fourirr trun.yfhnr (FFT) is a particularly fast method for 
computing the DFl- (and the inverse DFT) for long vectors. Appendix C 
gives Baase’s 13. p. 27.31 version of the complete fast Fourier transform 
and inverse FFT. Appendix D gives an APL implementation of these 
algorithms. 

Why use such a complicated method to compute convolutions (i.e., 
using the convolution theorem and FFTs)? This method is used because, 
for long vectors, it’s much faster than more straightforward methods 
(such as computing directly from the definition of convolution). Knuth 15, 
Vol. 2, p. 65 1 ] discusses the number of calculations needed to compute 
the fast Fourier transform. Using the FFT to convolve vectors of length 
I .024 (2”‘) gives a gain in speed by a factor of about 60 compared to the 
“naive method” of convolution. The time needed by the naive method for 
computing convolutions of vectors of length II is proportional to II’. More 
precisely,’ it is O(n’). The time needed by the method using the convolu- 
tion theorem and the fast Fourier transform is proportional to 
nln(n)(O(,lln(n))), where )I is the length of the vectors convolved. For 
large II. trln(rz) increases more slowly than H’, 

In the literature there are several different definitions of the DFT and 
FFT that accomplish the same goals but differ in certain details. Be care- 
ful before trying to use the algorithms presented hcrc in conjunction with 
algorithms that appear in other sources or are available in libraries ot 

’ That the number ol’computations is OCf(u)) means that there 15 ;I constant c such that the 
number of computations is less than C’ x,f(ll) fix- all II greater than sonic’ II,.. See Knuth 
15. Vol. 1. p. 104). 
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computer routines. For example, using the forward FFT from another 
source with the inverse FFT given here could produce erroneous results. 
Other routines for the DFT and FFT can certainly be used, as long as all 
the routines used are consistent among themselves. 

In addition to Baase [3, p. 2681, the fast Fourier transform is discussed 
from several different viewpoints in Knuth [5, Vol. 21, Press, Flannery, 
Teukolsky, and Vetterling [6, p. 3901, Preparata (7, p. 2071, and Aho, 
Hopcraft, and Ullman [4, p. 2571. Each of these discusses the theory 
behind the FFT, thereby explaining what the FFT is doing and showing 
why the FFT is so efficient. Chiu [8] gives an introduction to the fast 
Fourier transform motivated by the problem of exact multiplication of 
large integers. A detailed implementation of the fast Fourier transform 
suitable for Fortran and similar languages is given in Monro 19, p. 1531. 
Convolution is discussed in Hogg and Klugman [IO, p. 421, Feller [ 11, p. 
61, and many other statistics books. 

Other methods that use the fast Fourier transform to compute aggre- 
gate loss distributions are given by I. J. Good in Borch [ 12, p. 2981 and by 
Bertram [ 13, p. 1751. The method presented in the latter is summarized in 
Biihlmann [14, p. 1161. 

3. THEALGORITHM 

The collecti\~e risk model will be used to model the claims process. 
That is, the aggregate loss distribution is the distribution: 

AGG=S, +Sz+ . ..+S., 

where T is a random variable for the number of claims and each Si is a 
random variable for severity. It is assumed that the Sj are identically dis- 
tributed and are pairwise independent and that the S, are independent of T. 
This definition of aggregate loss distribution is the same as that given by 
Algorithm 3.2 in Heckman and Meyers 12. p. 301. This model is discussed 
in Biihlmann [ 15, p. 541, Beard, Pentikiinen, and Pesonen [ 16, p. 501, 



Patrik and John [ 17, p. 4 121. and Maycrson. Jones, and Bowers [ 18, p. 
177). 

There are three inputs to the algorithm. The first. denoted M, is the 
smallest number of claims that has nonzero prohabilit!, in the claim count 
distribution. The second, P, is a \‘ector giving the probability density 
function of the claim count distribution. P(i) is the probability that there 
are exactly i + M claims for i 2 0. 

The third input, S, is a vector representing the severity distribution as a 
piecewisc uniform distribution. Due to technical considerations involving 
the fast Fourier transform. the length. II. of S will be an integral power of 
two; i.e., II = 2” for some positive integer X. Let 1. be the maximum size of 
claim considered. Then each element J, of S represents the probability 

that a given claim is at least ‘L but Icss thn 
(i+ 1) 

I1 /I 
L. The probability 

distribution is unifonn across each $uch interval. In other words, the 
probability density function.,f(.v). of the claim size distribution is: 

I 0. for .V < 0 or .Y L L. 

As an example, if L is $16,0(W) and S is (0.50, 0.30. 0.15, 0.05). then 
there is a 50% probability that any given claim is between $0 and $4,000, 
a 30% probability that the claim is between $4.000 and $8,0(K). etc. The 
density function is uniform over the intcrvai $0 to $4,000 at 
.000125 (= 0.50 + 4,000). Similarly, the density function is uniformly 
.00007S: i.e., (0.30 + 4,000) over the interval $4.000 to $X,OW, and so on. 
This is graphed in Figure I. Note that this specification of the severity 
distribution is the same as that in Heckman and Meyers 131 but rchtricted 
to uniform intervals. 

Define S’ inductively as follow%. Let S’ be the vector of length 2n 
obtained by catenating II zeroes onto S. That is. 

‘St! = 
5,. if 0 I i </I - I: 
0, ifn I i I 2rr - I. 
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FIGURE I 

DENSITY FUNCTION REPRESENTED BY S 

Density 
(times lo-') 

12.50 I 

I 

7.50 r-----l 

3.75 I 1 

1.25 1 
0 

0 4,000 8,000 12,000 16,000 
Severity 

Let S*’ = S’*S’ - ’ for i 2 2. 

Let S’ be the same as S*’ for the first II elements and be 0 for subse- 
quent elements. Then the first II elements of S’ are the first II elements of 
the no-wrap convolution of S with itself i times. 

Everything will be defined in greater detail below, but the algorithm is 
simply summarized as computing: 

N 

c 
P(i-M)xA'*S', 

I = M 

where 

M is the smallest number of claims with nonzero probability; N is 
the largest number, 
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P(i - M) is the probability of exactly i claims. 

A’ is a vector of “spreads” to be defined later. but. for example, 
A-’ = ( 1%. 7~. ‘hi. 0, 0, 0, . . . . 0). 

* is the discrete convolution operator. and 

S’ is the vector that is the no-wrap convolution of the severity distri- 
bution. S. with itself i times. 

Very roughly speaking, S’ is the dcnxity function of the sum of the 
original severity distribution, S, with itself i times. However, it needs to 
be “spread out” (in a way that will be made prccisc below). Certain 
vectors of coefficients, A’. to be defined shortly. will hc used to “spread 
out” the S’. The distribution of exactly i claims is given by A’ -:: S’. More 
precisely, A’ :j: S’[j] for 0 5,; I II - I is 

where F’(.Y) is the distribution function for the sum of the severity distri- 
bution with itself i times. For II 5,; :I 2r? - I the values of A’ 2: S’[,j] are not 
meaningful. 

To see why the A’ are needed, let S be a uniform distribution on the 
interval 0 to 1. Let 11 and L be 4. Then S = ( I. 0. 0.0). Doing the convolu- 
tions gives S’ = S’ = ( I, 0, 0, 0, 0, 0. 0, 0) for all i. But the distribution 
function of the sum of the uniform distribution on (0. I 1 with itself should 
have nonzero probability not only between 0 and 1. but also between I 
and 2. In fact, this distribution should be ( ‘A. ‘A. 0, 0. 0, 0, 0, 0). Simi- 
larly. the sum of this distribution with itself three times should be 
(l/b, Z/J, l/h, 0. 0. 0. 0. 0), which has three nonzero terms. A’ ~1: S’ will be 
(!h, I/“. 0, 0, 0, 0. 0, 0). and A’ ;/: S’ will be ( l/i,, 77. G,. 0. 0. 0. 0. 0). 

If S were a discrete distribution. instead of the picccwise uniform 
distribution used here, the A’ would not bc necess~y. (That S = (.s,), .Y,. . . . ) 

is discrete means that if .Y is 
i L. for some i from 0 to 11 - I. then the 
f? 
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probability that a claim equals s is si; for others, the probability is 0. An 
example is given in Appendix B.) 

Use of a piecewise uniform severity distribution roughly doubles the 
running time of the algorithm compared to the time required for a similar 
algorithm using a discrete severity distribution. The use of a piecewise 
uniform distribution is suggested because the author believes that fre- 
quently a piecewise uniform approximation with II vector elements gives 
a better approximation to the severity distribution than does a discrete 
approximation with 2n vector elements. If the severity distribution is 
more accurately approximated, then the resulting aggregate loss distribu- 
tion is more accurately approximated. Also, due to memory limitations in 
many computers, it is often possible to compute the aggregate distribution 
using the piecewise uniform approximation with II vector elements, but it 
is not possible (easily) to compute the aggregate distribution using a 
discrete approximation with 212 vector elements. 

In the next subsection the coefficients A’ are defined so they will 
provide the needed spread. Then, the following two subsections cover 
two special tactics that substantially speed the running of the algorithm. 
Then, the full algorithm is discussed. 

The Coe$%ients A’ 

Define a,; by: 

u;, = I/i! for i2 I, 

a; = 0 forj2 I, 

I a;= -; t I’ I 
(i-j)~jI~+o’+l)~;-’ 1 fori22,jZ 1. 

Table 1 gives the first few values of ui. For example, 

A’ is the vector of length 211 whose first II elements are given by the a;, 
and whose last 12 elements are zero. For example, 
A’ = (I/,4 I’/24 ‘Vi4 ‘h 0, 0, . . . , 0). -. . .i, 
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TABLE 1 

VALUES OF U; 

The probability that the sum of i unit rectangular distributions is be- 
tween ,j and ,j + 1 for i 2 1 andj 2 0 is U: This is the reason these coeffi- 
cients provide the needed spread. Appendix E shows this and gives a 
more detailed explanation of the reasons these coefficients are needed. 

The numerators of the (I;, i.e., i!uj , are known as Euleriun mnhw 
and are discussed in Graham, Knuth, and Patashnik [ 19, pp. 253-2581. 
Feller [ 11, pp. 26-291 gives formulae useful in working with Eulerian 
numbers, although he does not mention them by name. 

Two special tactics are applied to make the algorithm run faster. One 
is to “pack” the severity distribution into a vector, so that the computation 
of the discrete Fourier transform of a given real vector of length 2n is 
accomplished, instead, by the computation of the discrete Fourier trans- 
form of a related complex vector of length 12. This tactic roughly doubles 
the speed of the algorithm (with no effect on accuracy because the DFT 
of the original vector of length 2n is still what is finally computed), and is 
discussed in this sub-section. The second tactic is to compute the M-fold 
convolution of the severity distribution with itself using a method which, 
for M greater than 3, is faster than the naive method that computes M - 1 
convolutions. This tactic is discussed in the next subsection. 



AGGREGATE LOSS DlSTRlBUTlONS 71 

The fast Fourier transform operates on vectors of complex numbers, 
but here it is used only to transform vectors of real numbers. As such, half 
of the place values are not really being used, because the imaginary parts 
of the elements of the input vector are all zero. Clever use of certain 
symmetry properties of discrete Fourier transforms of purely real vectors 
and purely imaginary vectors, as discussed in Press, et al. 16, p. 3981, 
allows the following. 

To transform the length 2n vector V = (vo, v,, . . . . I’~,~- ]), where each V; 
is a real number, rewrite V as PV = (11~~ + iv,, v2 + A,,, . . . , Q,~ _ 2 + iq,, _ ,), 
where i is 6. This is now a complex vector of length II. PV is referred to 
as the ~‘crc$~d urztr-urz.sfo,med vector (it is packed because it is written in a 
more compact form; it is untransformed because the discrete Fourier 
transformation has not yet been applied). Compute the discrete Fourier 
transform of PV, and call it FPV. FPV is the packed trunsforn~ed vector. 
Some simple computations on FPV, called ~c~pucking, yield FV, the (un- 
packed) discrete Fourier transform of V. While FV is a vector of length 
212, if the first n + 1 elements of FV are known, then the remaining n - 1 
elements can be deduced using a formula from Appendix F. Similarly, one 
can pack the transformed vector in such a way that when the inverse 
discrete Fourier transform is applied, the untransformed vector appears in 
the form of PV. Note, in particular, that to apply the convolution theorem 
to real vectors of length 2n, one can instead work with complex vectors 
whose lengths never exceed II + I. 

Packing and unpacking the untransformed vectors is trivial. Depend- 
ing on how one represents real and complex vectors this might be a 
simple rearrangement, or just a redefinition of the meaning of each ele- 
ment of an array. Usually no calculations are needed. Packing and un- 
packing the transformed vectors does involve some calculation, but not a 
great amount. Details of the algorithms to pack and unpack are given in 
Appendix F, and an APL implementation is given in the functions PACK 
and UNPACK in Appendix G. 

Table 2 shows the steps involved in computing the convolution of two 
real vectors when one packs the vectors. 
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TABLE 2 

CONVOLUTION USING PACKED VE(‘TOKS 
Real or ‘I‘rall\~ ,)I 

S(q) Complc\ I .crlglll Cilllrarlsl 
stxt Real 7/i lintrarl~l 

Vector(s) 
v. w 

II 
PC’, PW’ 

u 

FPV, FPW 
u 

FV. FW 
8 

FU=FVxFW 
u 

FPU 
u 

PC: 
ii 

L’ 

While packing and unpacking add four steps to the above, the time 
saved by transforming vectors of length II instead of 2n is more than 
offsetting. In practice, the untransformed vectors are usually kept packed, 
thus further reducing the number of steps. 

Before discussing the second special tactic directly, consider an analo- 
gous question: how many multiplications are needed to compute 
2’““‘? One way to compute 2”“’ is to start with 2, and then repeatedly 
multiply by 2, doing 99 multiplications. Another way is to USC the foilow- 
ing formula: 

3°K’ II ((((( 2’ x 2 )‘)y x 2)‘)J . i 

Each operation of squaring is one multiplication and twice an interme- 
diate result is multiplied by 2, so this computes 3”K’ with only eight 
multiplications. 
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In general, to compute u” for II 2 1, one can apply the following algo- 
rithm. Express II as a binary number, h, and drop the left-most digit 
(which is always 1). Set r equal to m. Loop: if there are no digits left in h, 
then stop; f is u”. If there is at least one digit remaining in h, square 3. If 
the current left-most digit of h is 1, then multiply z by (I. Drop the left- 
most digit from h. Go back to the step labeled “Loop.” 

The binary representation of 100 is 1100100. Dropping the first digit 
gives 100100. Following the steps above, set z to 2, then square, multiply 
by 2, square, square, square, multiply by 2, square, and square. 

This is called a left-to-right binary nwtlml for c~,~l~oncrzriation and is 
discussed in Knuth [5, Vol. 2, p. 4411 (along with even faster methods). 

This is used as follows. For some applications of the overall algo- 
rithm, the smallest number of claims with nonzero probability, M, will be 
greater than one. In these cases, this method is used to compute 
s” =s * s 3: ... 1: S (with M factors of S, here the :/: is the no-wrap convo- 
lution). That is, M is written as a binary number, and the left-to-right 
binary method is applied, with no-wrap convolution at each step instead 
of multiplication. Since convolution is associative, SM is well defined, and 
this is a correct way to compute S”. 

Now the full algorithm can be described. Figure 2 outlines the algo- 
rithm using a flowchart. The notation used is described in the presentation 
of the complete algorithm, below. A summary of the meaning of each 
variable is given in Table 3. 

The complete algorithm is as follows. 

Al~cywithnz ji)r. Aggregate Loss Distribution: Let M be the smallest 
number of claims with nonzero probability, let N be the largest number of 
such claims (N 2 1 and N 2 M), let P be the vector of probabilities of 
M, A4 + 1) M + 2, . . . . N claims, and let S be the vector representing the 
density function of the claim severity distribution. The length of S is 
II = 2’ for some positive integer k. All vectors are indexed starting at 0, so 
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FIGURE 2 

FLOWCHARTFORCOMPUTATIONOF 
AGGREGATELOSS DISTRIBUTION 
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TABLE 3 

VARIABLES USED IN THE MAIN ALGORITHM 

INPUT VARIABLES: 
II Length of vectors which will be subjects of the Fm or inverse FFT. 

)j = 2” for some positive integer r(. 

M Smallest number of claims with nonzero probability. 

N Largest number of claims with nonzero probability. 

P Probabilities of M through N claims @II = probability of M claims. 
pt = probability ofM + I claims, . ..). 

S Severity distribution. S is a real vector of length II. 
s = (so, Sl, . . . . s,,- I) 

MAJOR VARIABLES: 
i Index giving the current number of claims. 

PSI Packed severilydistribution, 
(so + is 1, sz + iq, . . . .s,~ - 2 + ;,s,~ - I, 0. 0, . . . . 0). (Here i is 6.) 

FSI Transformed (unpacked) severity distribution. 

PSI Packed severity distribution convolved with self i times. 

SI Severity distribution convolved with self i times. (Unpacked PSI.) 
FSI Transformed severity distribution convolved with self i times. 

AI Vector of spread coefficients, (u[). a{, . ..) = A’ 
AGG Aggregate distribution. 

MINOR VARIABLES: 
PZERO Probability of zero claims. 

B/N Initialized to the binary representation of M, and used in the binary 
exponentiation tactic. 

F.VFLAC Flag to determine whether FSI has been computed for the current i. 

X Unpacked PSI. 
.i Index used in Step 7. 

Y Becomes AI*X. 
PY Packed Y. 

FAI Transformed Al. 
FY Transformed Y = FSI x FAI. 
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the indices for S run from 0 to II - I. The result will be AGG. ;t vector 
representing the aggregate distribution. 

I. 

3 i. 

3. 

4. 

5. 

[Some initializations. J Set AGG IO be ;I complex vector 01’ length 17 
all of whose elements are zero. Pack S into the complex vector PSI 
of length II so: 

PSI = 
i 

so + is,, .S? + is,. . . . . .\‘,) > + is,, ). 0, 0. . . . . 0 
) 

. 

Here i is ~5. Set PZERO, the probability of exactly 0 claims. to 0. 

[Branch depending on the value of M.] If M is 0, go to Step 1. ifM 
is I, go to Step 4. If M is greater than I. go to Step S. 

(Initialize if M = 0. ] Let PZFRO hc P( 0 I. Drop the first clement 
from P. Let M be I. 

(Initialize if A4 = 0 or I.] Let AGG bc P(O] times PSI. IfN i\ I, go 
to Step 10. Let FSI be the unpacked DFT of PSI. Let PSI bc the in- 
verse DFT of the packed pointwise product ofFSI with itself. Set 
the last /l/2 elements of PSI to 0. Let AZ bc the two-elcmcnt vector 
(0.5,O.S). Let I’ be 3. Go to Step 6. 

[Begin procedure if M > 1.1 Let H/N be the binary representation of 
M. Drop the first (left-most) digit from BIN. Let FSf and FSI be 
the unpacked DFT of PSI. 

5.1. [Convolve PSI with itself or PSI with itself. ] Let FSZ be FSI times 
itself. Let PSI be the inverse DFT of the packed FSI. Set the last 
rr/2 elements of PSI to 0. If the first digit of BIN i\ 0. go to Step 5.3. 

5.2. [Convolve PSI with PSI. ] Let FSZ be the unpiicked DFT of PSI. 
Let FSI be FSZ times FSZ. Let PSI be the inverse DFT of the 
packed FSZ. Set the last t1/2 elements of PSI to 0. 

5.3. ICheck whether finished.] Drop the first digit from HIN. If there are 
no digits left, go to Step 5.4 Othcrwi>e. let FSZ bc the unpacked 
DFT of PSI. Go to Step 5.1. 
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5.4. [Initialize AZ in the case M > I.] Use the formula: 

cl;, = l/i! fori 1, 

a; =o forj2 I. 

ll; = 
t I[ 

1 (i-j)ujIi +(,j+ I),:-‘] forik2, ,j> 1 I 
to compute AZ = A”’ = ut, a?, . . . . dt-, . Let i equal M. 

6. [Start main loop.] (When this step is reached for the first time, FSZ 
has been computed, PSI and AZ have been computed for some i at 
least 2, and AGG has been initialized.) Let FSlFLAG be 0 (will be 
used later to determine whether FSZ has been computed). If i is 
greater than or equal to 100 go to Step 8. 

7. [Convolve AZ and SZ without using DFTs. (SZ is the severity distri- 
bution convolved with itself i times.)] Unpack PSI and let X be the 
first 17 elements of the result. Letj be 0 and Y be a (real) vector of 
length II with all elements 0. 

7. I [Loop.] Let Y be Y plus AZ[j] times X. Add 1 to,;. Ifj is greater than 
i minus I go to Step 7.2. Drop the last element of X and add a 0 as 
the first element. Return to the start of this Step (7.1). 

7.2 [Exit Step 7.1.1 Add 17 zeroes to the end of Y, pack and call the re- 
sult PY. Go to Step 9. 

8. ]Convolve AZ and SX using FFTs.] If AZ is of length less than II, add 
zeroes until a vector of length 2n is achieved; otherwise take the 
first II elements of AZ and append II zeroes. Pack this vector, com- 
pute the DFT, unpack the result and assign it to FAZ. Compute the 
DFT of PSI, unpack, and assign the result to FSZ. Set FSIFLAG to 
1. Let FY be FSZ times FAZ. Pack FY, apply the inverse DFT, and 
assign the result to PY. Set the last /r/2 (complex) elements of PY to 
0. 

9. [Add new packed AZ * SZ ( = PY) to AGG.] Let AGG be AGG plus 
P[ i - M J times PY. 
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10. 

Il. 

12. 
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[Increment i.] Set i to i plus 1. If i is greater than N, go to Step 12. 

[Compute next AZ, PSI.] If FSfFLAG is 0. compute the DFT of 
PSI, unpack, and assign the result to FSZ. (If FSIFLAG is 1, it is be- 
cause FSZ was computed in Step 8.) Let FSZ be FSZ times FSZ. 
Pack FSZ, compute the inverse DFT, and assign this to PSI. Let the 
last n/2 elements of PSI be 0. Compute the next AZ using the for- 
mula in Step 5.4. Go to Step 6. 

[The end.] Let AGG be the first II elements of AGG unpacked. Add 
PZERO to AGGIOJ. 

The first two steps do some initializations and branch depending on 
the value of M. If M is 0, the algorithm essentially converts to the case 
where M is 1. If M is 1 (or 0) the first steps set AGG to be PSI, compute 
FSI, and compute PSI and AZ for i = 2. Then comes the main loop. If M 
is greater than 1, the binary exponentiation tactic is used to compute PSI 
for i = M. AZ is also computed for i = M. 

The main loop repeatedly computes the convolution of AZ with SZ, 
multiplies this by P[i - M], and adds the result to AGG (actually, the 
untransformed packed result is added to AGG). Note that the convolution 
of AZ with SZ is the distribution of exactly i claims. If i is less than or 
equal to N the next PSI and AZ are computed and one continues with the 
main loop. (Note that each PSI is computed from the PSI for the previous 
i.) If i is greater than N, one exits the main loop, reformats AGG. and 
folds in PZERO. Observe that FSZ is always recomputed from a current 
PSI which has had its “tail” (the last /r/2 elements) set to zero. This gives 
the no-wrap convolutions that are needed, instead of regular convolutions, 

Sometimes the algorithm computes the convolution of AZ with PSI 
through use of the convolution theorem and FFfs, and sometimes it per- 
forms this computation directly. For “short” AZ, implicitly defined above 
as having 100 or fewer nonzero terms. it is faster to compute the convolu- 
tion directly. Once AZ becomes “long,” it is faster to use the convolution 
theorem. In another implementation (using different hardware or soft- 
ware), it might be more efficient to set this cut-off of 100 to a higher or 
lower number. 
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Note that if there are fewer than II nonzero terms in AZ only the 
nonzero terms are kept, and one pads to the right with zeroes when a 
vector of length n is needed. This differs slightly from definitions of AZ 
given earlier. 

APL functions implementing the complete algorithm are given in Ap- 
pendix H. 

4. EXAMPLESANDADDITIONALDISCUSSION 

This section will give some examples of the use of the algorithm, 
show how parameter uncertainty can be reflected in the aggregate distri- 
bution, and discuss the computation of aggregate excess distributions. 
Comments in the first two areas are specific to this fast Fourier transform 
algorithm, but comments on the third topic apply generally. 

Escrmples 

Three examples of use of this algorithm will be given. The first is 
simple and is intended to be easy to reproduce in order to test an actual 
implementation. It is not meant to be realistic. The second example is 
more typical of actual distributions that arise in practice. The third exam- 
ple is reasonably realistic, but is really meant to illustrate the flexibility of 
the algorithm . 

The first example will compute the distribution of esactfy five claims, 
with each claim following a uniform severity distribution. Let k = 5, so 
n = 32. (That k = 5 has nothing to do with the fact that the distribution of 
five claims is being computed; this is a coincidence.) The claim count 
distribution is defined by setting M = 5, and making P be a vector with 
one element, (1). The severity distribution, S, is a vector of length 32 (= 
n), and L is set to 6.4, so each element of S covers a range of 0.2 (= 
6.4/32). Letting S be the uniform distribution on [O,l], gives: 

s= (0.2,0.2,0.2,0.2,0.2, o,o, . ..) 0). 

The output is a vector of length 32, AGG, a complete listing of which 
is given in Table 4. Since the sum of five claims, each no greater than 1, 
cannot exceed 5, only the first 25 elements of the output are nonzero. It is 
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TABLE 4 

AGGREGATE DISTRIBUTION FOR EXAMPLE I 

‘umtllalixe Lh~tl-ibution 

0.000003 

o.ooooxs 

(1 OOOfr4X 

1~.1)017: I 

0.00x333 

0 070713 

0.044.3Y1 

o.ox1Ill 

0.143x I I 

O.~2SO(10 

0 33Xlfl 

0.4-lfI.~ I2 

Cl.SSY6XX 

(l6-~4lx-1 

0 7:(too 

o.xsflIxo 

().Y I xiw 

11.‘~5Sf,OX 

(l.o-o’;i 

0.w lOh7 

0 Y’l7’f,Y 

(l,‘NO3S’ 

O.YWY IS 

O.YY‘iYY7 

I .(H~0000 

I .fI00000 

I .0lKI000 

I .oooooo 

I .IHtoooo 

I .fMKMMMl 

I .0000O0 

I .ooofn,o 



straightforward to check that the result is the sum of five uniform distri- 
butions. (Recall that the A’ summarize the sums of unifoml distributions.) 
For example, the sum of the first five elements of the result is .008335, 
which (up to rounding error) is l/120, and this agrees with the theoretical 
sum. Similarly, the sums of the second through fifth sets of five elements 
are 26/120, 66/120, 26/120, and l/120. (Ambitious readers can check that 
the intermediate values are also correct. Feller ( I I, p. 271 gives the 
needed formulae.) 

The second example is more in line with distributions that arise in 
practice. In this example, k = 10, so II = 1,024. The claim count distribu- 
tion is negative binomial with mean 10 and variance 12. For input, M 
equals 0 and P is a vector of length 42, giving the probabilities of 0 
through 41 claims. Actually, for the probability of 4 1 claims the probabil- 
ity of 41 or more claims is used, so the total of the elements of P is 
exactly 1.0. The probability of there being 42 or more claims is less than 
IO-“‘, so including this in the probability of there being exactly 41 claims 
is not significant. The values of P are shown in Table 5. This distribution 
is shown in detail for the benefit of readers who want to reproduce this 
example. 

The severity distribution is a two-parameter Weibull distribution with 
mean $10,000 and coefficient of variation 8 (standard deviation divided 
by mean). The mean and coefficient of variation completely define the 
Weibull distribution. For the interested reader, note that the parameteriza- 
tion of the Weibull distribution used has distribution function 
Q) = , _ ,-WJ’ with h = 454.82609 and c = 0.2537 I. Any other severity 
distribution could be used in place of the Weibull, including lognormal, 
Pareto, or an empirical fit to data. Losses are capped at $250,000 per loss. 
An L of $ I ,000,OOO is chosen to be large enough to cover the highest 
values needed in the aggregate distribution. S is then a vector of length 
1,024 with each element covering a range of $1,000,000/1,024, or about 
$977. As losses are capped at $250,000, only the first 256 elements of S 
will be nonzero. 

To determine the values of S, a variant of a method of Venter [20, p. 
21) is used. S is to be a piecewise uniform approximation to the Weibull 
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TABLE 5 

CLAIM COUNT DISTRIBCII'ION FOK ExAhwx2 

6 

Proh;rhilttb ol(i~~cn 
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O.SXiXhSh 
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0.999YYYYJ 
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distribution. To achieve this, pairs of consecutive elements (szi, s,; + ,) of S 
are chosen subject to two constraints: 

l over each interval 2i . ,b 
[ 

, (2i + 2). f 1 the integral of S and the inte- 

gral of the Weibull density are the same, and 

l over the same intervals the integral of the first moment distribution of 
S and the first moment distribution of the Weibull are the same. 

If RR and SS are the integral of the density function and the integral of 
the first moment distribution of the Weibull (or whatever distribution is 
being approximated) over the above interval then 

S?i f 1 = RR - S2i 

No properties of the Weibull are used in the formulae above; they 
apply to any distribution, including empirical distributions. 

When this method is applied in this particular case, the second element 
of S becomes negative. Thus, some additional fiddling is done on the first 
12 elements of S so that the two constraints are satisfied for these 12 
elements taken together, but not pair-wise. Selected values for S (includ- 
ing the first 12 elements) are shown in Table 6. Note in particular that the 
value of .007072 is the probability of the severity being in the interval 
$249,023 to $250,000 plus the probability of the severity being over 
$250,000. This latter probability has been spread over the interval. 

Selected values of the resulting aggregate distribution are shown in 
Table 7. Column (3) is selected elements of the vector AGG output by the 
algorithm. Each element, ti, of AGG is the (exact) integral of the density 
function for the aggregate distribution over the interval 

[ 
i. k, (i + 1) . t 1 . For the purpose of interpolating values between inte- 

gral multiples of L + n it is assumed that the density at each point in an 
L 

interval is ti + - 
i 1 

. Column (4) is the distribution function, 
n 
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TABLE 6 

Index High End of Range’” 
0 .FY77 
I I ,YS3 
7 2,Y30 
3 3.YO6 
4 4.xX3 
5 S,XSY 
6 6.X36 
7 7.813 
x X,7XY 
Y Y.766 

IO 10,712 
II 11.7lY 
I2 11,695 
I3 13,672 
14 14.648 
IS IS.625 
74 73,343 
75 73,219 
76 75.195 
77 76. I72 
78 77.148 

101 YY.609 
IO2 lOO.SX6 
IO3 IO I .S63 
123 I2 I ,OY4 
124 I-73 070 --, 
11s 13-3.047 
135 230.36’) 
‘36 33 I.445 
237 132,423 
253 238,047 
254 24Y.023 
355 250.000 
256 250,977 

I.073 I .ooo,ooo 

Probahilit, Di\trihution of’:! Single Claim 
Sjil Distribution 

0.7 I6463 0.7 I6463 
0.1 142x1 0.x3074.5 
0.0 I5000 0.x45745 
0.0 IS000 0.X6074.5 
0.0 I0000 0.x7073.5 
0.005000 0.x7574.5 
0.005000 0.880745 
0.005000 o.xxs74s 
0.003000 o.xxx74s 
0.003000 O.XY 173.5 
0.003000 O.XY474S 
0.003000 O.XY7745 
0.004750 O.YO14Y4 
0.004 I40 O.YO6634 
0.003xx3 0.Y 1 OS 1 x 
0.00344 I 0.‘) I.1955) 
0.00033 I O.Y734X5 
0.00032 I O.Y73XOh 
0.0003 I6 0.974 I22 
0.000307 O.Y7442Y 
0.000.30? O.Y74737 
0.000 IO3 O.YXO24Y 
0.000 I Y2 O.YXO440 
0.000 1 x7 0.08062X 
0.000 I.17 O.YX3X I Y 
0.000 I36 O.YX3YSS 
0.000 133 O.YX4OXX 
0.000( I-1 I O.YY22 I3 
0.00004 I O.YY7154 
0.000040 O.YY13Y4 
0.000035 O.YY2XY3 
0.000035 O.YY2Y2X 
0.007072 I .oooooo 
0.000000 I .oooooo 
0.000000 1 000000 

*Each range has width of about 977. 
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TABLE 7 

DISTRIBUTION OF AGGREGATE Loss AND FIRST MOMENT 
DISTRIBUTION FOR EXAMPLE 2 

First Moment Distribution 

High End of 
Range* 

(2) 
$Y77 

I .Ys3 

2,030 

3.YO6 

4.w 

S,XSY 

6,X36 

7.x I3 

12.6’)s 

Ii.672 
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IS.625 
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74.2 10 

7S.lYS 
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77,14x 

I z I .OY3 

1’7.070 

123.047 
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14x.43x 

14Y.414 

I so.30 I 

IS I.367 
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23 I .us 
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24Y.0’3 

?x~,000 

2SO.Y77 
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279,2Y7 

410.156 

411,133 
YYY.013 

I ,000,00(1 

ACG]il 
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0.02 I673 

0.03 I2 I4 
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0.02Y3 I? 
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0.0 I I327 

O.OlOY36 
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0.00 I 13x 
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0.00 IO00 

0.000520 

0.000s I6 

0.0005 I2 

0.000453 
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0.0007Y2 
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o.ooooao 

Distribution 

14) 
0.002x I? 
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0.06617.5 

0. IO23YY 
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f,, + t, + . . . + t,, i.e., the cumulative sum of Column (3). Column(4) readily 
gives the dollar amounts (frequently called c~c@~errce /e,~ls in the con- 
text of aggregate loss distributions) associated with given probability lev- 
els, and vice versa. For instance, the probability that aggregate losses will 
be less than or equal to $250,000 is 9 1 .O%~. By simple interpolation, it is 
seen that $75,000 corresponds to the 69.7% confidence level. Again 
through interpolation, the 80% confidence level is $ I2 1,879. 

The expected dollars of loss above and below given aggregate limits 
can be quickly determined. Suppose. lbr example. an insurer has pur- 
chased reinsurance that covers all loss amounts beyond a total of 
$250,000. That is, the insurer pays the first $250,000 of losses (which 
could be one claim or a number of claims), and the reinsurer pays any 
losses after the first $250,000. The insurer’s cxpccted loss is: 

where.f’(.\-) is the density function of the aggregate distribution. As Col- 
umns (5) and (6) in Table 7 will help calculate this integral, these col- 
umns are described next. 

Each entry in Column (5) is I .~,f’(.\-) tl\- over its interval. For instance, 
under the above assumption that the density function is a constant 
0.036358 + 976.5625 across the fifth interval, I .v,~‘(.v) r1.v over the fifth 
interval is 

(5,859.375)’ - (4,882.X 125)’ x 0.036358 
2 976..5625 

or 195.282. (This is slightly different from 195.284 shown in Column (5) 
because the Column (3) entry of 0.036358 is used in the above calcula- 
tion, while more significant digits were used in the calculation of Table 
7.) Column (6) is the cumulative sum of Column (5). Thus, Column (6) 
gives 
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where i is the index of the interval. 

Returning to the original question, if losses are capped at an aggregate 
of $250,000, Columns (6) and (4) show that expected losses are 
45,405 + 250,000 x [I - 0.9095461, or $68,019. 

The reinsurer is taking both occurrence and aggregate excess of 
$250,000, and total expected losses are $100,000 (10 expected claims 
times $10,000 expected loss per claim), so the reinsurer’s expected losses 
are $3 I ,98 1 ( 100,000 - 68,019). 

Generally, to compute expected losses for an insurer that retains a 
given amount per occurrence and retains a given aggregate, use a severity 
distribution capped at the per occurrence limit, compute the aggregate 
distribution, and compute the expected retained losses up to the aggregate 
limit as was just done above. 

The third example is a variation on the second example. The main 
purpose is to show how easy it is to use an arbitrary frequency distribu- 
tion in the algorithm. For this example, the above frequency distribution 
is modified to assume that there is a 90% probability that claims will 
follow the distribution in example 2, and an additional 10% probability 
there will be exactly 20 claims. The same S as above is used. The modi- 
fied P is shown in Table 8, and some of the output is given in Table 9. 

Note that the severity distribution, S, used in examples 2 and 3 is only 
an approximation to the Weibull distribution. Essentially, having to find a 
piecewise uniform function to approximate the true severity distribution, 
with each interval being the same size, L + n, means that S is not going to 
be precisely the same as the original continuous function. Since S is an 
approximation to the true severity distribution, the output is an approxi- 
mation to the true aggregate distribution. Comparisons of aggregate loss 
distributions computed using this algorithm to aggregate loss distributions 
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TABLE 9 

DISTRIBUTION OF AGGREGATE LOSSES FOR EXAMPLE 3 

89 

Probabilitv Distribution of Aggregate Losses 
Index High End of Ra& Distribution 

0 $971 0.002530 
1 1,953 0.012049 
2 2,930 0.031555 
3 3,906 0.059647 
4 4,883 0.092 I59 

82 8 1,055 0.684594 
X3 X2,03 1 0.68745 I 
84 83,008 0.690266 
85 X3.984 0.693039 
X6 84,961 0.695772 
87 85,938 0.698466 
xx 86,914 0.701121 
x9 87,X9 I 0.703738 

138 135,742 0.797823 
I39 136,719 0.799228 
140 137,695 0.8006 I 7 
141 138,672 0.801992 
142 139,648 0.803352 
256 250,971 0.898052 
257 25 1,953 0.899470 
25X 252,930 0.901529 
259 253,906 0.904046 
260 254,883 0.906734 
297 29 I ,O I6 0.948843 
298 29 I.992 0.94952 I 
299 292,969 0.9SOl87 
300 293,945 0.95084 I 
301 294,92 I 0.95 1482 
451 441,406 0.989829 
452 442,383 0.9899 I9 
453 443,359 0.990009 
454 444,336 0.990097 
455 445,313 0.990 I85 

1,021 998,047 0.99999 I 
I.022 999,023 0.99999 1 
1,023 I ,ooo,ooo 0.99999 I 

* Each range has a width of about 977. This table gives selected values of the aggregate 
distribution. 

AdG[i] 
0.002530 
0.0095 I8 
0.019506 
0.028093 
0.0325 I2 
0.002900 
0.002857 
0.0028 I5 
0.002773 
0.002733 
0.002694 
0.002655 
0.0026 I 7 
0.00 I420 
0.00 1405 
0.001390 
0.001375 
0.001360 
0.000847 
0.001418 
0.002059 
0.002517 
0.002688 
0.00069 I 
0.000679 
0.000666 
0.000654 
0.000642 
0.00009 I 
0.000090 
0.000089 
0.000088 
0.000087 
0.000000 
0.000000 
0.000000 
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computed using other methods indicate that the algorithm presented here 
gives very accurate answers. 

Apart from the need to use a severity distribution that is an approxima- 
tion to the true distribution, the algorithm here is precise in the following 
sense. Each element of the aggregate loss vector is the exact difference of 
the distribution function for the exact aggregate loss distribution over the 
interval that corresponds to the element. In particular. this algorithm is not 
subject to the convergence difficulties sometimes encountered in certain 
characteristic function methods when the probability of a maximum loss 
is high. Of course, there is some potential for rounding error, but most 
computer languages have a provision for doing calculations to at least 17 
decimal place accuracy, and as each element of the result (for n = 1,024; 
20 expected claims) is affected by about 100,000 calculations. the result 
should be accurate to at least 12 places. 

Note also, once Column (3) of Table 7 has been calculated, how 
simple and fast it is to calculate Columns (4). (S), and (6). Once AGG has 
been computed, there is very little computation time needed to determine 
confidence levels, expected losses subject to an aggregate, or expected 
losses excess of an aggregate. Also. since the entire aggregate loss distri- 
bution (up to some limit) is computed, the computation of any quantity 
that is related to the aggregate distribution (e.g.. expected sliding scale 
commission for a reinsurance contract) is straightforward and fast. 

Comprrtutional Considerutinns 

The computational time for this algorithm seems to be roughly propor- 
tional to the number of elements in the vector P that gives the probabili- 
ties of the claim counts. The minimum number of claims for which there 
is a nonzero probability also has some effect on the computing time. But, 
due to the binary exponentiation tactic, the added computing time in- 
creases only as the logarithm to the base 2 of the minimum claim count. 

Using APL 9 on a 386SX computer with 2 megabytes of RAM, this 
algorithm will run with k as high as 10. This makes the maximum length 
of certain vectors 2”) or 2,048. Using APL 9, adding memory will not 
allow higher values of k because all arrays active at any given moment 
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must fit in the workspace available in the first 640K of memory (and this 
is about 400K because the APL system occupies about 200K). 

It is likely that, compared to the computer programs presented in the 
appendices, the computations can be made more efficient in terms of the 
amount of memory used. References discuss computing the fast Fourier 
transform “in-place,” which would use less memory than the programs 
given in the appendices. APL II, or other languages, might allow higher 
values of k due to better use of memory above the first 640K. 

Increasing k by 1 roughly doubles the amount of memory needed, 
because the longest vectors double in length. Computational time is domi- 
nated by the time to compute the fast Fourier transforms, and this time 
increases by a factor of a bit more than 2 when k is increased by 1. See 
any of the references given above on the fast Fourier transform for a more 
precise discussion of the relationship between k and the time of computa- 
tion 

To capture the distribution of the sum of i claims for any i with 
nonzero probability in the claim count distribution, just capture the PY for 
that i from Step 9 of the main algorithm, given above. When using the 
same severity distribution but differing claim count distributions to com- 
pute several aggregate distributions, the following method might save 
some time. Capture all the distributions of the sum of exactly i claims that 
will IX needed (the PYs above), and then just apply the probabilities 
given by the several claim count distributions and add. This can be much 
faster than recomputing each aggregate distribution from scratch. 

Parameter Uncertainty 

Patrik and John [ 171 distinguish process risk from parameter risk in 
estimating the distribution of final actual results relative to the estimated 
results. Essentially, if the frequency and severity distributions used are the 
best estimates of these distributions, then the calculated aggregate distri- 
bution reflects the inherent process risk or process uncertainty. 

The extent to which the correct frequency and severity distributions are 
not known is termed parameter risk or parameter uncertainty. Some au- 
thors add specification error to the list of sources of potential difference 
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between actual and expected results. Spec~ijkution ctww refers to the fact 
that the model being used might not be appropriate. For instance, if it is 
known that the claim count distribution is Poisson, but the parameter of 
the Poisson distribution is not known exactly, then estimates of the aggre- 
gate distribution are subject to parameter uncertainty. If it is not known 
whether the claim count distribution is Poisson or some other distribution, 
then estimates are subject to specification error. Heckman and Meyers [2] 
discuss incorporation of parameter uncertainty into estimates of aggregate 
loss distributions. 

Parameter Uncertainty for the Cluim Count Distribution 

To reflect parameter uncertainty in the claim count distribution, one 
could proceed as follows. First, identify all claim count distributions that 
might apply, and assign to each claim count distribution the probability 
that it is the correct distribution. Then, for each claim count distribution 
(and using some severity distribution), compute the aggregate distribu- 
tion. Finally. take the weighted average of all these aggregate distribu- 
tions, according to the probabilities of the claim count distributions. The 
resulting aggregate distribution reflects the various claim count distribu- 
tions and the probabilities of those distributions. 

For example, one might estimate there is a 20% probability that the 
claim count distribution is Poisson with mean IO; there is a 50% probabil- 
ity that the claim count distribution is Poisson with mean 20; and there is 
a 30% probability that the claim count distribution is negative binomial 
with mean 15 and variance 30. (This is not necessarily a realistic exam- 
ple.) Then, for instance, the probability of total losses being less than $X 
in the combined aggregate distribution would be 20% of the probability 
of losses being less than $X in the aggregate distribution generated by the 
Poisson claim count distribution with mean 10, plus 50% of the corre- 
sponding probability resulting from the Poisson distribution with mean 
20, plus 30% of the corresponding probability from the negative binomial 
distribution with mean 15 and variance 30. 

Fortunately, there is a shortcut that makes it possible to compute the 
aggregate distribution that reflects the uncertainty regarding the claim 
count distribution without computing a great number of aggregate distri- 
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butions. Simply compute the weighted average of the claim count distri- 
butions, and then use this distribution in the computation of the aggregate 
loss distribution. For instance, using the above example, in the claim 
count distribution used as input to the main algorithm, the probability of i 
claims would be 0.2xf(i) + 0.5~ g(i) + 0.3x h(i), wheref, 8, and II are the 
probability density functions for the Poisson distribution with mean 10, 
the Poisson distribution with mean 20, and the negative binomial distribu- 
tion with mean 15 and variance 30. This combined distribution would be 
used as the claim count distribution in the algorithm to compute the 
aggregate loss distribution. 

Generally, one will select a family of claim count distributions, and 
associated probabilities, so that the mean of the combined claim count 
distribution will be the expected number of claims. The variance of the 
combined claim count distribution usually will be greater than the vari- 
ance of the best estimate claim count distribution. The effect of the com- 
bined claim count distribution on the variance of the new aggregate 
distribution can be computed by using the formula for the variance of the 
aggregate distribution: 

Here p,v and 0; are the mean and variance of the claim count distribu- 
tion and p,s and G: are the mean and variance of the severity distribution 
(Mayerson, Jones, and Bowers [ 18, p. 1791). 

A particularly simple situation results if it assumed that the possible 
claim count distributions are Poisson and that the parameters of these 
Poisson distributions are distributed according to a gamma distribution 
with mean h and variance (3’. In this case, the resulting overall claim 
count distribution will be negative binomial with mean h and variance 
h + c?. This is discussed in Beard, Pentiktiinen, and Pesonen [ 16. p. 401 
and in Heckman and Meyers [2]. 

As a practical matter, one frequently has a binomial, Poisson, or nega- 
tive binomial distribution as the best estimate of the claim count distribu- 
tion. To reflect parameter uncertainty in the claim count distribution used 
as input to the aggregate loss distribution algorithm, one might, where 
appropriate, simply use a claim count distribution with the same mean 



and a larger variance than the best estimate distribution. For instance, if 
one’s best estimate of the claim count distribution is Poisson with param- 
eter h then, to reflect parameter uncertainty. one might use a negative 
binomial distribution with mean h and variance Iargcr than h. 

The three families of claim count distributions mentioned above are 
related. For the Poisson distribution, the vuriancc and the mean are the 
same. The negative binomial has variance grcatcr than the mean. The 
binomial has variance less than the mean. The Poisson is a limiting case 
of the negative binomial in that, as the variance of the negative binomial 
approaches the mean, the negative binomial approaches the Poisson. The 
Poisson is also a limiting case of the binomial. 

In conclusion, parameter uncertainty for the claim count distribution 
can often be reflected in the computed a ggregatc loss distribution by 
choosing an appropriate claim count distribution with the same mean and 
larger variance than the best estimate distribution. This allows one to 
reflect parameter uncertainty while computin, (3 onlv one aggregate loss _ 
distribution. 

To retlect parameter uncertainty for the severity distribution. one can 

proceed in the manner first discussed for the claim count distribution. 
That is. delineate all the severity distributions that might apply: assign to 
each a probability; compute the aggregate distribution using each severity 
distribution; and combine all of these aggregate distributions according to 
the probabilities of the severity distributions. 

IJnfortunately, when estimating the effect on aggregate distributions of 
parameter uncertainty in the severity distribution there is no shortcut quite 
as efficient as the one for claim count distributions. That is. to reflect pa- 
rameter uncertainty for the severity distribution, it is not sufficient to use 
a severity distribution that is the combination of the various severity dis- 
tributions in the same way that it is possible to use a claim count distribu- 
tion that is the combination of the several claim count distributions. Later, 
it will be shown why this last statement is true, but methods of reflecting 
parameter uncertainty for the severity distribution will be covered first. 
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Some simplification in the reflection of parameter uncertainty for the 
severity distribution results if all the possible severity distributions are (or 
are assumed to be) multiples of some base distribution. More precisely. 
this assumption is that if F,] is the distribution function of the base sever- 
ity distribution, B, and if F, is the distribution function of any other 
severity distribution in the family, Y, then there is a constant, C, such that 
F, (c-t-) = F, (s). Normally, this is written B = cY; it follows that 
E(Y) = (I/C) E(B), and Var (Y) = (l/c’) Var (B). Let the constants c be 
distributed according to a probability distribution with distribution func- 
tion H and density function h. 

Let F,., be the distribution function of the aggregate distribution com- 
puted using the base severity distribution B (corresponding to F,,). Then 
the aggregate distribution reflecting parameter uncertainty. T. is given by 

T(x) = j FJc:\-) h(c) dc. 

If h has a form such that It(r) and r/z(r) are easily integrated over 
arbitrary intervals, and if F,, is piecewise linear, then T, above, is easily 
computed. For t in the interval [I,, ui] let F,,(f) = (1; + hir. Then 

ca II, /I 

; 

II, i\ 
= c I Ui I?((‘) d(’ + hi-r c’h(c’) ~(’ I . 

i = 0 I, /.I 1, /I 1 
As a practical matter, the sums above are not taken to infinity, but 

rather to a high enough value that sufficient accuracy is achieved. If h has 
been chosen so that the integrals are easy to compute, T is also easy to 
compute. 

Next is the demonstration, promised above, that to reflect the effect of 
parameter uncertainty in the severity distribution, it is not sufficient to 
simply use a severity distribution with a larger variance. To see this, 
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consider one way a simulation model could be used to estimate the aggre- 
gate distribution. Choose a claim count, II. at random from the claim 
count distribution, N. Then II times draw a random claim severity, Si, from 
the severity distribution, S. Compute s, + .x2 + . . . + x,~. This sum gives one 
“draw” from the aggregate distribution; that is. it gives one observation 
selected at random from the aggregate distribution. Repeat this process, 
i.e., make draws from the aggregate distribution, until the statistics of 
interest for the aggregate distribution are known with sufficient accuracy. 

There are two methods one might use to reflect parameter uncertainty 
for the severity distribution when performing the above simulation. The 
first method is to choose a severity distribution at random each time a 
severity is needed. Within a given draw. .Y, + , would potentially be drawn 
from a different distribution than the preceding J,. A second method is to 
fix a severity distribution each time an II is chosen from N. This one 
severity distribution is used for all .Y, in the sum s, + .P? + . . . + s,, corre- 
sponding to one draw. Then another 11 is selected from N, and another 
severity distribution, possibly different from the severity distribution used 
in the previous draw, is used, and the process continues. 

It is the second method that best reflects parameter uncertainty for the 
severity distribution. Under this method, only one severity distribution is 
used for each draw from the aggregate distribution. In contrast. under the 
first method, in many of the draws from the aggregate distribution, some 
claim amounts wili come from severity distributions with larger-than-av- 
erage means and some claim amounts will come from severity distribu- 
tions with smaller-than-average means. The effects of severity 
distributions with larger-than-average means and severity distributions 
with smaller-than-average means will tend to cancel each other to some 
degree. Thus, the first method will tend lo produce an aggregate distribu- 
tion with a smaller variance than is correct. Under the second method, 
each draw is influenced by only one severity distribution. 

The first simulation method corresponds to using a severity distribu- 
tion that is the composite of the family of severity distributions being 
used to reflect parameter uncertainty. It is the second simulation method, 
where each draw is influenced by only one severity distribution, that 
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corresponds to the methods discussed above for reflecting parameter un- 
certainty for the severity distribution, 

The first and second methods differ fundamentally in the indepen- 
dence assumptions among samples from the severity distribution. A more 
mathematical discussion of the differences between the two methods, 
including a more precise discussion of the difference in independence 
assumptions, is given in Appendix I. 

If a capped severity distribution is being used, e.g., losses are capped 
at $250,000 per claim, and if parameter uncertainty for the severity distri- 
bution is reflected using the method that assumes that all distributions are 
multiples of each other, then the loss cap becomes variable. In some 
cases, e.g., where the aggregate distribution of a self-insurance program 
with a given retention is being computed, it may not be appropriate to 
allow the loss cap to vary. There does not seem to be a simple way to 
reflect parameter uncertainty for the severity distribution in such a case. 

One approach is to increase the degree of parameter uncertainty re- 
flected in the claim count distribution to a level above that which would 
otherwise be used, and to not reflect parameter uncertainty in the severity 
distribution. This approach is not theoretically correct, but, as a practical 
matter, might be sufficiently accurate. Another approach is to let the cap 
be essentially variable, and perform tests to determine whether this signif- 
icantly distorts the results. Finally, and with the greatest accuracy, one can 
compute a number of aggregate distributions, each using a different se- 
verity distribution with the correct cap, and take the weighted average. 

The results of this subsection apply to all methods used to calculate 
aggregate loss distributions, not to just the algorithm presented herein. 
The main results of this subsection appear to be well known, but have not 
previously appeared directly in actuarial literature. Schumi (21, 221 has 
presented material similar to this result. Bear and Nemlick (231 present 
the result in terms of the negative binomial distribution. 
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Suppose a claim count distribution, a severity distribution, and the 
corresponding aggregate distribution are specified, In regard to the sever- 
ity distribution. suppose further that the probability of any given claim 
being excess of a given attachment point 11 is (x. Suppose it is desired to 
compute the aggregate distribution l’or claims excess of ,4 (this A has 
nothing to do with the vector of spreads A used previously). For example, 
the aggregate distribution might be based on a Poisson claim count distri- 
bution with parameter 1.000 (i.e., the number of expected claims is 1,000) 
and a Weibull severity distribution with mean ri; 10.000 and coefficient of 
variation 8. If A is $100,000 then o! is 0.0 197. 

One way to compute the excess aggregate distribution (the aggregate 
distribution for the amount of claims excess of A per claim) is to keep the 
same claim count distribution (e.g., Poisson with parameter 1,000 in the 
example) and adjust the severity distribution so that claims less than A 
become 0 and claims. X, greater than or equal to A become .\- - it. This 
gives a severity distribution that generally assighs 21 Iargc probability, 
namely I - CI, to claims being exactly 0. 

Another way is to work directly with the excess claim count and 
severity distributions. The excess claim count distribution is the distribu- 
tion of the number of excess claims (the distribution of the number of 
claims exceeding A). The excess severity distribution is the claim severity 
distribution for the amount of individual claims excess of A. given that a 
claim is excess. 

The main purpose of this subsection is to note that, for certain claim 
count distributions. the excess claim count distribution is easily deter- 
mined. Assume the claim count distribution is binomial, Poisson. or nega- 
tive binomial. respectively, with mean h and variance CT’. Suppose the 
probability of a given claim being excess of the attachment point A is cx. 
Then the excess claim count distribution is binomial, Poisson. or negative 
binomial, respectively, with mean cxh and variance aL t- a’(o’ - h). 

The excess severity distribution is easy to determine if the total distri- 
bution and the attachment point are known. Suppose the severity distribu- 
tion has distribution function F. and the attachment point for excess 
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claims is A. Then the excess severity distribution has distribution func- 
tion, H, defined by: 

H(sr) = &I- + A) - F(A) __-~ , f0r.r 2 0. 
I - F(A) 

That is, the portion of the severity distribution function below A is elimi- 
nated, and the remaining distribution is resealed so that H(0) is 0 and H(X) 
has limit 1 as .Y tends to infinity. 

In the example, the excess claim count distribution is Poisson with 
parameter 19.7 (= 0.0197 x 1,000). The excess severity distribution is the 
above Weibull distribution restricted to claims exceeding $100,000. In 
particular, the probability of a claim being 0 is 0 (not 0.9803). 

It should be clear that the excess severity distribution is as claimed 
above. Appendix J has a proof that the excess claim count distribution is 
as claimed. An interesting open problem is to find other claim count 
distributions for which the excess claim count distribution is of the same 
form as the original claim count distribution, or the excess claim count 
distribution is otherwise easy to compute. 

For readers familiar with the notation in Heckman and Meyers, recall 
that they parameterize claim count distributions with 3c and C. In their 
method, the parameters for the excess claim count distribution are 
ah and C. 

The above formulae for the mean and variance of the excess claim 
count distribution hold only if the parameters of the severity distribution 
are known with certainty. Venter provided the following formulas for the 
mean and variance of the excess claim count distribution N when o! is 
uncertainly known: 

E(N) = hE(cx) , 

Var (N) = hE(cx) + (0’ - ~)E(cL)~ + ((T’ + h’ - h)Var (a) 

Proofs are as follows: 

E(N I cx) = ah, so E(N) = E(E(N I a)) = hE(a). 
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Var(NIcx) = ah + c?(cc - A) . so 

Var (N) = E(Var (N I CX)) + Vitr (E(N I a)) 

= hE(a) + (CT’ -- h)E(&) + h’Var ((x) 

= hE(a) + (& - h)]Var (a) + E(a)‘] + h%ar (a) 

= hE(a) + (CT’ - h)E(c~)~ t (a-‘ + A’ - k)Var (a) . 

These formulae are useful either if (y. varies from WC claim to the next 
(for example. if the excess distribution is for a set of reinsurance contracts 
with attachment points that vary by contract). or if it is desired to retlect 
parameter uncertainty with regard to CI. 
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APPENDIX A 

COMPLEXNUMBERS 

This is a brief summary of the properties of complex numbers used 
earlier. More extensive treatments are in Baase [3, p.2791, and Aho, Hop- 
craft, and Ullman [4, p. 252J. 

In this Appendix, i is 6. Given two complex numbers, n + hi and 
c + di, their sum, difference, product, and quotient are given as: 

(a + hi) + (c + di) = (a + c) + (b + d)i 

(a + hi) - (c + di) = (a - c) + (b - d)i 

(a + hi) x (c + di) = (UC - hd) + (ad + bc)i 

(a + hi) + (c + di) = [(ac + bd) - (ad -bc)i ] 

The complex conjugate of a + hi is a - hi, sometimes denoted 
(a + hi)*. 

A number o is a primitive nrlr root of uniry if w” = 1 and 0’ # 1 for any 
positivej less than 11. If w is a primitive nth root of unity, then: 

mj*=l+wi 

0 for j not a multiple of 12 
n for j a multiple of n 

Let F be the n x n matrix with entries Fjk = oik. This matrix F plays a 
key role in the discrete Fourier transform (DFT). F’ is: 

r n 0 0 . . . 0 0 
000 On 
000 n 0 

OOn 00 
-OnO...OO 
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Appendix B shows why this makes the inverse of the DFT so simple. 
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APPENDIX B 

CONVOLUTION EXAMPLE 

This Appendix provides an example of the use of the convolution 
theorem to compute the sum of two severity distributions. Two vectors 
are used to represent severity distributions, and the convolution of these 
vectors represents the sum of the two severity distributions. 

The first severity distribution. V, has probability ‘?/Is of a claim amount 
of $0, probability ‘/IO of a claim amount of $100, probability r/2() of a 
claim amount of $200, and probability V?o of a claim amount of $300. 
The second severity distribution, V, has probability %‘s of a claim amount 
of $0, probability ‘/Is of a claim amount of $100, probability ~/IO of a claim 
amount of $200, and probability ~/IO of a claim amount of $300. These 
are represented as vectors as follows: 

v = [%, 1/10, h, %o, 0, 0, 0, 01, 

v = [-!A, ‘45, ‘/lo, l/II), 0, 0, 0, 01 . 

These representations have been padded with zeroes to the right so 
that no-wrap convolutions can be computed. (They are not what is used in 
the body of the paper for the main algorithm. These representations are 
being used only to give an example of the use of the convolution theo- 
rem.) 

As V and V are vectors of length 8, o must be a primitive eighth root 
of unity. Let o be cos(n/4) + i sin (z/4). This o can also be written 
“‘+G. 
2 2 

I or, approximately, 0.70710678 10 + 0.70710678 IOi. (Here i is 

fi.) The matrix F, with entries ojn- forj, k from 0 to 7, is: 
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r 1 I 1 1 1 1 1 1 
1 o/cl i o/n2 -1 %3 -i %4 
1 i-1 -i 1 i-l -i 
1 %2 -i %l -1 o/c4 i %3 
1 -1 1 -1 1 -1 1 -1 
1 %3 i%4-I %#I -iCG2 
1 -i-l i 1 -i-l i 
1 %4 -i %13 -I %2 i % 1 

where c/r I is 
v2 +‘\12. v2 v2, 

%2 is - 
V2 

6 fi.2 
2’ ’ 2 

+ 2’ * ‘//3is- - 
2 

v2 i 
2 

, and 

%4 is 
2-2 

I . These are o, CJ?, w’. and o’, respectively. 

The convolution theorem states that 

V*V = INVDFT(DFf(V) x DFf( V) 1 

where DFT is the discrete Fourier transform. and INVDFT is the inverse 
DFT. 

The discrete Fourier transform of V is the matrix product F,V where 
V is treated as a column vector. Thus DFT(V), or F.V . is approximately: 

[ 1 .O, .835355339 1 + ,1560660 172i. .75OOOOUOOO + .OSOOOO~X~OOOi, 
.7646446610 + .0560660 172Oi, .7000000000. .76464466 10 - .0560660 172Oi, 
.7500000000 - .05000000000i, .835355339 1 - .1560660172iJ 

Similarly, DFT( V), or F.V , is approximately: 

[ 1 .O, .6707 10678 1 f .3 I2 1320343i. .SOOOOOOOOO + . 1 OOOOOOOOOi, 
~52928932 19 + . 1 12 13203431, .4000000000, .5292X932 19 -. 1 12 I320343i, 
.5000000000- .1OOOOOOOOOi, .6707106781 - .3121320343il. 
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DFT( V) x DFT( V) is 

[ 1 .O, .5 115685425 + .3654 163056i, .3700000000 + . I OOOOOOOOOi, 
.3984314575 + .1154163056i, .2800000000, .3984314575 -.1154163056i, 
.3700000000 - .1OOOOOOOOOi, .5 115685425 - .3654163056i]. 

For example, the second element of the vector just above is .5 115685425 
+ .3654 163056i, which is 

(A35355339 1 + .1560660172i) x (.6707 10678 1 + .3 12 1320343i). 

To compute the inverse DFT of DFf(V) x DFT(V), one first computes 
the DFT of DFT(V) x DFT(V); divides each term of the result by 8; and 
inverts the order of the last seven terms. The DFT of DFT(V) x DFT(V), 
or F. (DFT(V) x DFT(V) ) , is 

[3.840000000,0.0, .0400000000, .0800000000, .2000000000, 
1.040000000, 1.040000000, 1.760000000]. 

Dividing by 8 gives 

[0.480,0.0,0.005,0.010,0.025,0.130,0.130,0.220]. 

Reversing the order of the last 7 terms gives 

[0.480,0.220,0.130,0.130,0.025,0.010,0.005,0.0]. 

Thus, for the sum of the distributions V and V there is a probability of 
0.480 of a total claim amount of $0, a probability of 0.220 of a total claim 
amount of $100, a probability of 0.130 of a total claim amount of $200, 
etc. This can be readily verified by direct computation of these probabili- 
ties. 

This subsection will justify the method used above to compute the 
inverse DFT. Suppose we have computed DFT(W), which is F.W, for 
some vector W. Then DFI’(DFT(W)) is F. (F.W). Matrix multiplication is 



associative, so this is the same as (F. F) W or F’ W. But F’ (for the 
example above) is 

8 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 x 
0 0 0 0 0 0 8 0 
0 0 0 0 0 8 0 0 
0 0 0 0 x 0 0 0 
0 0 0 x 0 0 0 0 
0 0 8 0 0 0 0 0 

-0 8 0 0 0 0 0 0 

This is just 8 times the matrix R: 

1 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 I 
0 0 0 0 0 0 I 0 
0 0 0 0 0 I 0 0 
0 0 0 0 I 0 0 0 
0 0 0 I 0 0 0 0 
0 0 1 0 0 0 0 0 

-0 1 0 0 0 0 0 0 

This matrix reverses the order 01‘ the last seven clcmen~x ol‘ any vector 
to which it is applied. 

Thus F’ W is just 8 times W with the last \cven terms reversed. 
Dividing by 8 and reversing the last seven terms rcstorca W. 

Alternatively. F -’ is just (l/x) x R x F, where R is the matrix of’ 1 s and 
OS above. 
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APPENDIX C 

THE FAST FOURIER TRANSFORM AND INVERSE 

The fast Fourier transform is presented by Baase [3, p. 2731 as fol- 
lows’. Using a language similar to Modula-2 and Pascal: 
Input: The It-vector P = bo, p,, . . . . I?,, _ ,). where II = 2’ 

for some k > 0. 

Output: transfiwm, the discrete Fourier transform of P. 

We assume that omegu is an array containing the rlth 
roots of 1: w “, 03, . . . . Lo (” “)- ‘. z x is a permutation on 
,!(I, 1, . . . . II - 1’ (described below). 

procedure FFT (P: RealAwa)!; II: integer; 
var trunsfiwm: Complex Array); 

var 

begin 

1: integer; (the level number} 
~ZNI?I: inte,qcr;{ the number of values to be computed at 

each node at level 1 ) 
t: integer; (the index in trunsform for the first of 

these values for a particular node) 
,j: illteger; {counts off the pairs of values to be 

computed for that node ) 
m: integer; (used to pick out the correct entry from 

omcgga 1 

end 

for t : = 0 to n - 2 by 2 do 
transform [I] : = p[q(t)] + p[7Lk(t + l)]; 
transform [t + I] : = p[n,(t)] - p[7ck(t + l)] 

(fort ); 

( The main computation ) 
m := n/2; num := 2; 

( Begin triply-nested loop ) 
for/:=k-2toOby-1 do 

2 Reprinted with permission of the publisher. 
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m := m/2; nuns := 2*num: 
for t := 0 to (2’ - I)/wH by mnl do 
for ,j := 0 to (nunz/2)- I do 

.vPOdd := ornega[ rt?j]“t,.ccn.~~fi,,-Fni[ t+nun?/2+j]: 
tran.sform[t + nrrd2 +,j]:= trui7.~fiwn7(t +,j] - .vPOdd; 
tr.arujhn[ t + j] := trtrnsfiwn~[ t + ,j] + .\-POdd; 

end ( for j ) 
end ( for t ) 

(end of body of outer for loop } 
end ( for 1 ] 

end ( FFT } 

Now, what is xx? Let t be an integer between 0 and II - I, where 
II = 2&. Then t can be represented in binary by [h,, h,...h, _ ,I, where each hj 
is 0 or I. Let I‘~v~ (t) be the number represented by these bits in reverse 
order, i.e., by [h, - ,... h, h,,,. Then 7~: I (t) = t.e\sx (c). (As an example, 
IQ (3) = 6 because 01 I reversed is I IO.) 

The inverse fast Fourier transform is computed as follows. Apply the 
regular (forward) fast Fourier transform to the vector. Divide each ele- 
ment of the result by II. Reverse the order of the last II - 1 elements (i.e., 
the first element stays in place and the order of the other elements is 
reversed). 

Baase gives further discussion of the fast Fourier transform, including 
some analysis of the number of computations needed. 
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APPENDIX D 

APL PROGRAMS FOR FFI- AND INVFFT ALGORITHMS 

This Appendix contains the functions FFI and INVFFT’. Before run- 
ning these, INIT must be run to initialize certain global variables. FFI 
and INVFFI do not modify these global variables, so INIT needs to be 
run only when the global variables have to be changed. INIT calls 
INITOMEGA and INITPIK, also listed here. 

All the APL functions presented in this paper assume 17 IO has been 
set to zero. 

Complex vectors of length IZ are represented as two-by-n arrays; e.g., 
the vector ((I + hi, c + di, . ..) is represented by: 

FFT: 

101 R+FFT P;Z;INDX;INDXPl;Tl;T2;M;NUM;L; 
OMIND 

111 R REFERENCE SARA BAA%, COMPUTER 
ALGORITHMS, P 273 FF 

I21 c1 ASSUMES YOU HAVE RUN INIT 
[3] A INPUT IS P PER BAASE, N PER BAASE IS 

GLOBAL VARIABLE 
[4] FI OUTPUT IS TRANSFORM PER BAASE 
[5] R+INITR 
[6] R[;INDXE]+P[;PIK[INDXE]]+P[;PIK[INDXO]I 
[7] R[;INDXO]*P[;PIK[INDXE]]-P[;PIK[INDXO]] 
181 A NOW HAVE INITIALIZED R (= TRANSFORM) 
[9] M+LO.S+N+2 0 NUM+2 0 L+-K-2 

[lo] LLOOP:Mc10.5+M+2 0 NUM‘-10.5+2xNUM 
[ll] T~+,B(LNUM+~)~.+NUMXLN+NUM 
[12] Tl‘-T2+NUM+2 
[13] OMIND+(N+Z)pMxtN+ZxM 
(141 2+(2,N+2)p( ,-fOMEGA[;OMIND]xR[;Tl]), 

,+fOMEGA[;OMIND]xeR[;Tl] 
[15] R[;Tl]+R[;T2]-2 0 R[;T2]+R[;T2]+2 

+(LzO)pLLOOP 

INVFFT: 

[0] RtINVFFT X 
[l] RtFFT X 
[2] R[;INVINDX]+@R[;INVINDX] A REVERSE 

ORDER OF LAST N-l ELEMENTS 
[3] R+R+N 



I12 

INIT: 

LOI 
;:; 
[31 
[41 

# 
[71 
[81 
tg1 

(101 

INIT KK 
K+KK 
N+LO.!i+i?*K 
010+-o 
INITOMEGA K 
INITPIK K 
INITRt(2,N)pO 
INDXE*2xLN+2 
INDXO+-INDXE+l 
INVINDX+l+LN-1 
TAIL+(N+2)+tN+2 

INITOMEGA: 

01 INITOMEGA K 

:; 
N+L0.5+2*K 
OMEGA+-(2,N+2)pO(LN+2)X2+N 

31 OMEGA[O;]+2OOMEGA[o;] 
41 OMEGA[l;]+lOOMEGA[l;] 

:; 
OMEGA2+(2,N+l)p~(tN+l)~2+2~N 
OMEGA2[0;]'2OOMEGA2[0;] 

71 OMEGA2[l;]'lOOMEGA2[1;] 

INITPIK: 

[0] INITPIK K;N 
[l] N+lO.!i+2*K 
[21 PIK+2le((Kp2)~tN) 
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APPENDIX E 

PROOF THAT A’ * S’ IS THE DISTRIBUTION OF i CLAIMS 

This Appendix gives a proof sketch that A’ * S’ is the probability dis- 
tribution of the sum of exactly i claims. More precisely, it shows that if 
A’, S’, II. and L are defined as in the main body of this paper, and X is the 
probability distribution of exactly i claims, then the probability that X is 

between ,jn[:)and (j+ l)x[i]is(A’*S’)[j]. 

Consider first the case where L = II and S = (1, 0, 0, . . . . 0). This makes 
S a uniform distribution on the unit interval [0, Il. In this case the first H 
terms of A’ * S’ are: 

af,,al,, a;, . . . cr:,-, . 

Let F’ be the distribution function for the sum of i mutually indepen- 
dent random variables uniformly distributed over [0, I]. Let 
hj = F’ (j + 1) - F’ 0). It needs to shown that a.1 = hi . 

Combining equation 9.1 and Theorem 1 of Section I.9 of Feller [ 11, p. 
271, 

where 2+ is ? ifs 2 0 and .Y+ is zero ifs < 0. This yields: 

.i 

/7; = f, c (-1)” i + I 

( 1 

(; + 1 - ,‘)’ 
. 1’ = 0 \’ 

because if ,j < i + 1 then (j + 1 - v)+ is zero for terms with \I >.j , and if 

,j > i + 1 then is zero for 1’ > i + 1. 
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It is easy to see that ~1, = hi, = I/i! for i > I, and ‘1: = h: = 0 forj 2 1. 
To complete the proof that 0; = L$ it suffices to show that the h) satisfy the 
recursion relation used to define the l/i. 

To this end, for i > 1 andj > 0 consider: 

It needs to be shown that 3 equals /$ This is done by plugging into the 
above formula the expression for hi as a sum, and rearranging terms: 

i!z=(i-j)(i-l)!k$It+(j+l)(i-l)!hj-’ 

.i- 1 
=(i-j)C(-1)’ 0 i (,j-z)‘-‘+(j+ t)i(-l)\’ 0 r, ( ,j + 1 - \v)‘- ’ 

T = 0 1’ = 0 

=c;-j)~(~I,‘~-’ 
( i 
,‘i , 0’ + I - 1’)’ - ’ t 

,’ = 0 

(j+ 1) i(- i 
0 

(j+ I - I’)‘-- 
\’ ,‘=o 

=(j+ l)(l)(l)(j+ l)‘-‘+ 

i[(-l)(i-j)( ;,;,)+(,;+,)(~,)I(-l)~~(;+,-,,);-~ 
I’= I 

=(-l)(J i:, 1 fj+ 1 -of+ 
L 1 

CL ’ ~l)t~+(i_+ l)(i+ 1-v) (i+ 1) ! 
i+ 1 i+l I( 1’ ! (i + 1 - 1%) ! I 

(-1)“ o‘+ 1 - )?>‘- ’ 

\‘=I 
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=(-‘)” ii l ( 1 
(j+l-O)‘+~(j+h.) i+l 

( ! 
(-l)“(j+ 1 - v)j-’ 1’ \‘= I 

=$-I)~( y ’ )(i+ 1 -1’)j. 

Thus , z = /$ . This establishes the main result for this case. 

For the general case, consider the positive “quadrant” of [w’, i.e, the 
points (X0, St, . . . . Si _ ,) such that each ,~~j is greater than or equal to zero. 
Divide this space into cubes with edge length L + n in the obvious way. 
Assign a density to each cube as follows. If the cube’s 

vertex closest to the origin is 
.( 

L L L 
v(),~ l’[J2> ...7 \‘j- 1,2 

-1 
* assign a density of 

( S,,(, s,, S,‘, . . . s,., _ , ) f L ’ - 
t 1 n 

where the s,,* are elements of the vector rep- 

resenting the severity distribution if \lk I II - 1, and s,.~ = 0 if \jk 2 n , As 
i 

the volume of every cube is !C 
(1 

, the integral of this density over the 
n 

cube is s,.~~ s,., s,~ . . . s,,, ,. Now consider the integral of these densities 

between the parallel (i - I)-planes: 

x0+x, + . . . +I,_,=~~, and 

x0 + x, + , . . + sj-I=(k+ l)f;. 

This integral is the probability that the sum of i claims will have a 

value between k” and (k + 1) 4. 



This is also the ,41h tern1 of A’ * S’, as will now be shown. The nr”’ 
element of S’ is the sum of all .Y/,, x .v,, x . . x s,, , such that 

,jo +,j, + .._ +,j, , = HI . For instance. if i is 3, .si is: 

.s2”crso + .Y,rs~“o + <So.S,).S~ + s, s,.s,, + .s,.so\ / + .A(,.\ ,.\ ’ = is;.s, + 3s,,s;. 

Each of the cubes associated with the I~,“’ element of S’ (under the inverse 
of the above association of cubes with densities) has its vertex closest to 

the origin on the plane .I-~, + . . . + .\; , = 171 ,f . Each cube also has its vertex 

farthest from the origin on the plant (nr + i)t. The planes *‘/II.” “I?? + I ,” 

. . . . “W + i" divide each of these cubes into the proportions given by the A’. 
Getting back to the planes “h-” and “X+1”, considering all the cubes that 
have some portion between these two plants, the integral of the density 
between these two planes is (A’ 4: S’ ) [ICI The probability that the sum of 
the i distributions will be between X and X +I is given by the same inte- 
gral. This establishes the overall result. 
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APPENDIX F 

PACKING AND UNPACKING 

This Appendix provides the formulae for packing and unpacking 
transformed vectors. This treatment essentially follows that of Press, 
Flannery, Teukolsky, and Vetterling [6, p. 3981. APL programs to imple- 
ment these routines are in Appendix G. 

Unpacking a transformed vector is discussed first. Assume that one 
starts with a real (untransformed) vector, U, of length 211 and packs it into 
a complex vector. PU, of length n, as discussed in the main body of the 
paper. Then the FFf is applied to PU to obtain a vector PH that is the 
packed transformation of PU. The next step is to unpack PH to obtain the 
FFT of ZJ. 

The result of unpacking PH will be a complex vector of length II + 1. 
One might think the result would be a complex vector of length 2n since 
the goal is to obtain the FFT of U which is of length 217. If R is the (length 
217 for the moment) FFT of U, then: 

where * denotes complex conjugation. Thus, from the first II + 1 terms (0 
to 77) it is easy to derive the remaining terms of R. 

Append to the end of PH the first element of PH, making PH a 
complex vector of length II + I. Let PH2 be the complex conjugate of the 
“reverse” of PH; i.e., PH2ljj = PH[rl - j]* for 0 <j I II . Define PH3 by: 

PH3[j] = -i(PHlj] - PH2[j]) x co.‘, 

where i is fiand w is a 2nrh root of unity (such that o? is the ,rth root of 
unity used in the FFT’). Finally, R is half the sum of PH, PH2, and PH3. 
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The steps for packing a transformed vector R (of length n+l ). to ready 
it for application of the inverse F’FT, arc almost the same steps as for 
unpacking. Let R2 be the complex conjugate of the “reverse” of R. De- 
fine R3 by: 

R3Ljl = i(Rl.il - R2[jl) x 01 '. 

where i and o are as immediately above. The final result is the first n 
terms of half the sum of R, R2, and R3. 
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APPENDIX G 

APLROUTINESFORPACKINGANDUNPACKING 

UNPACK: 

RtUNPACK H;H2;H3 
R UNPACKS TRANSFORMED DATA. ASSUMES X 

IS THE RESULT OF 
FI APPLYING THE FFT TO A LENGTH 2N REAL 

VECTOR WHICH HAD BEEN 
R PACKED INTO A 2xN COMPLEX ARRAY. 
R RESULT IS A 2 X N+l ARRAY 

H2[1;]+-H2[1;] 
H3+H-H2 
I$L;5N+1)p(,-fH3xOMEGA2),,+fH3xeOMEGA2 

H3;1.]+-H3[1.] 
R+O.;xH+H2+H: 

R+PACK X;X2;X3 
R PACKS TRANSFORMED VARIABLE 
x2ex 
X2[1;]+-X2[1; 
X3+X-X2 
;;+~;~""'"L 

+ 
X3[0;]+-X3[0; 
;+Oi5xX+X2+X3 

e -1 1R 

1 
+fX3xOMEGA2),,- 

1 

fOMEGA2xeX3 
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OMEGA2 (the 2nth roots of unity) is generated by INIT and 
INITOMEGA in Appendix D. 
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APPENDIX H 

APL FUNCTIONS FOR THE ('OMI'I.t3‘k< Al.GORITHM 

This Appendix gives an APL function, AGGDISTR, that implements 
the full algorithm. AGGDISTR calls a number of subroutines. The sub- 
routines FFT and INVFFT are listed in Appendis D. and the subroutines 
PACK and UNPACK arc listed in Appendix G. The only other subroutine 
needed is MULT, listed below. Before running AGGDISTR it is necessary 
to run INIT, which sets certain global variables. INIT calls INITOMEGA 
and INITPIK; these three programs are given in Appendix D. 

AGGDISTR: 

[0] AGGDISTR;M;M2;P;S;PSl;PSI;PZERO;FSl; 
FSI;AI;I;BIN;FSIFLAG;X;J;Y;PY;FAI;FY 

t:; 
OIO+O 
R ---- 

131 'Input the smallest number of claims 
with non-zero probability,' 

t2 IMr' 

E M+" 
la1 :(;M~O)A(M=~O.~+M))~SKIP~ R M must be a 

non-negative integer. 
191 ‘M, ‘,(*Ml,’ 

integer. 
is not a non-negative 
Stopped.' 

K +O SKIPl:' ' 
1121 'Input densities of claim fre uency 

distribution. These shoul s 
iI31 'be the probabilities of M, M+l, M+2, 

1141 ' (**- 
claims.' 

0 
:;;(pP)#l)v(P[O]+O))pSKIP2 0 FI IF ONLY 

ONE NUMBER IS INPUT AND IT IS ZERO, 
THEN EXIT. 

1171 'Only one number was input, and it is ' 
,(mP),'. Stopped.' 

SKIP2:' ' 
'Input vector for severity distribu- 

tion. Must be of length ',(mN),'.' 
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(231 

r241 

251 
261 
271 
281 
291 
301 
311 

t::; 
[361 
[371 

+((pS)=N)pSKIP3 0 R IF S IS NOT OF 
LENGTH N, THEN EXIT. 

'Length of S is ',(apS),'. Should be ' 
,(mN),'. Stopped.' 

-10 
SKIP3:' ' 
F\ ---- 
AGGc(2,N)pO 
PSl+Q(N,2)pS,(NpO) 0 F1 'PACK' S. 
St0 0 R FREE UP SPACE 
PZEROc0 0 R INITIALIZE - WILL BE RESET 

IF M=O. 
n ---- 
FI T;I3;>;ASES ARE CONSIDERED, M=O, M=l, 

-+(M=O)pME&l 
+(M=l)pMEQl 
+(M>l)pMGTl 
MEQO:PZEROtP[O] 0 P+,llP 0 Mel 

R CONVERT TO CASE M=l 
MEQl:M2+pP 
AGG+P[O]xPSI 
+(M2=1)pENDIT 
FSltUNPACK FFT PSl 
PSI+INVFFT PACK FSl MULT FSl 
PSI[;TAIL]+O 
AI+ 0.5 0.5 0 I+2 0 PSl+0 
-MAINLOOP 
Q ---- 
R ---- 
MGTl: A START BINARY POWER TRICK. 

BIN*,ll((l+L2@M)p2)TM A EXPRESS M AS 
BINARY VECTOR. DROP FIRST TERM 

FSIcFSlWNPACK F!?T PSl 
BINLOOP:FSI+FSI MULT FSI 0 PSIcINVFFT 

PACK FSI 0 PSI[;TAIL]+O 
'BINLOOP ',(caBIN),' ',sOTS 
+((ltBIN)=O)pSKIP 
FSI+UNPACK FFT PSI 0 FSI+FSI MULT FSl 0 

PSI+INVFFT PACK FSI 0 PSI[;TAIL]+O 
SKIP:BINc,llBIN 0 +(O=pBIN)pEXIT 
FSIcUNPACK FFT PSI 
+BINLOOP 
EXIT: R THIS IS THE EXIT FROM THE 

BINARY POWER TRICK. 
&q D-v- 
AI+,1 0 1~1 A SET AI, INDEX 
ALO;;:;+I+l 0 AI~(l+I)x(@AI)+AI+(l+~I)x 

+(I<MjpALOOP 
M2+- l+M+(pP) 0 PSl+O 
A --mm 
fq ---- 
MAINLOOP:'MAINLOOP ',(*I),' ',TUTS 
FSIFLAG+O 
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+(I'lOO)pBETA 
R IF HERE, WANT TO CONVOLUTE AI WITH 

PSI WITHOUT FFT'S 
X+Nf,BPSI 
J+O 0 Y+O 
LOOPB:Y+Y+AI[J]xX 
JtJ+l 0 +((J>I-l)v(J>N-1))pENDLOOPB 
X+0, -11X A DROP LAST ELEMENT OF X, ADD 

A ZERO TO THE FRONT. 
+LOOPB 
ENDLOOPB:PY+B(N,Z)pY,NpO 0 X+Y+O 
*GAMMA 
R s--v 
BETA:FAI+UNPACK FFTQ(N,2)p(NfAI,NpO), 

NPO 
FSIFLAG+l 
FSI+UNPACK FFT PSI 
FYcFSI MULT FAI 
PYtINVFFT PACK FY 
PY(;TAIL]+O 0 FY*0 
R --we 
GAMMA:AGG+AGG+P[I-M]xPY 0 PY+O 
I+I+l 0 +(I>M2)pENDIT 
A -v-e 
+(FSIFLAG=l)pSKIP4 
FSItUNPACK FFT PSI 
SKIP4:FSIcFSI MULT FSl 
PSI+INVFFT PACK FSI 
PSI[;TAIL]+O 
R ---- 
AI+(~~I)x(@AI)+AI+(~+LI)~AI,O 
+MAINLOOP 
ENDIT:UTS 0 AGG+Nf,@AGG 
AGG[O]+AGG[O]+PZERO 
r , 
I*** REMEMBER, RESULT IS IN AGG. ***' 
, I 

[0] Z+X MULT Y 
(11 z+(pX)g(,-SXxY),,+fXxeY 
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APPENDIX I 

PARAMETER UNCERTAINTY FOR THE SEVERITY DISTRIBUTION 

We will show mathematically that it is fundamentally impossible to 
reflect parameter uncertainty for the severity distribution by computing 
the aggregate distribution using a severity distribution with a larger vari- 
ance than the best-estimate severity distribution. This discussion is based 
on suggestions by Venter. 

Parameter uncertainty for the severity distribution is reflected by 
choosing a distribution u with mean 1 and variance greater than 0, and 
computing the aggregate distribution: 

AGG = US, + US, + . . . + a&. 

Here AGG, S;, and T are the aggregate distribution, the severity distri- 
bution, and the claim count distribution, defined earlier. The above equa- 
tion is written to indicate that one sample from T is associated with one 
sample from u and multiple samples from S. The above equation could 
also be written 

AGG = a(Sl + S2 + . . . + S,) . 

A general fact about variance (for arbitrary/independent distributions 
X and Y) that will be used is: 

Var(XY) = Var(X) Var(Y) + (E(X))2 Var(Y) + (E(Y))* Var(X). (1.1) 

Also, recall that 

Var (S, + S, + . . . + ST) = l+Gs* + lts2& (1.2) 

Here pr and ps are the means of the claim count and severity distribu- 
tions, and 0: and 0: are the variances of the respective distributions. 

Set 

X=U, Y=S,+S,+...+S,, and XY=AGG 

and substitute in equation I. 1 above. This gives 
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Var (AGG) = Var (a) Var (S, + S, + . . . + S,-) + 
(E(a))’ Var(S, + S, + . . . S,) + (E(S, + Sz + . . . + S,))-) Var(u). 

Denote Var(u) by 0: , note that E(S, + S1 + . . . + S,) is p7+t5 , recall that 
E(U) is I, and substitute using equation I.2 to obtain 

Dividing by ( p7. p,, )’ gives a formula for the square of the coefficient 
of variation for the aggregate distribution: 

Var (AGG) 

( t-b Its 1’ 
= ( , + o; ) (1.3) 

Now consider what happens as the mean of the claim count distribu- 
tion, i.e., the expected number of claims. increases towards infinity. For 
the moment, assume there is no parameter uncertainty for the claim count 

2 
distribution. The term L0$ tends to zero as p7. increases. If the claim 

I \ 
count distribution is Poisson, or is negative binomial with a fixed “proba- 

bility of success” parameter, then the term 
0;. 

l-2 
also tends to zero. (If the 

negative binomial is parameterized so the density function is 

f(.r) = 
i 1 

?’ + ::‘- 1 p’ (1 -p>“ with J > 0 and 0 < p < I, then p is the proba- 

bility of success parameter.) 

Thus, for any fixed severity distribution, the limit of the square of the 
coefficient of variation of the aggregate distribution, as p, goes to infinity, 
is equal to 0:. In a practical sense, this means that. as the expected 
number of claims becomes large, the effect of the claim count distribution 
and the severity distribution on the coefficient of variation of the aggre- 
gate distribution becomes minimal. The coefficient of variation of the 
aggregate distribution is determined by the parameter uncertainty for the 
severity distribution. 
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In particular, this shows that there is a fundamental difference between 
the effect on the aggregate distribution of parameter uncertainty in the 
severity distribution and the effect of using a severity distribution with a 
greater variance. If a severity distribution, S’, with a larger variance is 
substituted for the best-estimate severity distribution, S, and 
AGG = S’, + S’, + . . . + S’,- is computed (this is the same as setting a to a 
constant I), then as p7. goes to infinity, the coefficient of variation of the 
aggregate distribution tends to zero, and not to some positive value as 
above. 

The two approaches differ in the independence assumptions regarding 
the samples from the severity distribution. If the severity distribution is 
diffused, then each draw from the severity distribution is a combination of 
an independent draw from the best-estimate severity distribution and an 
independent draw from the distribution used to reflect parameter uncer- 
tainty for the severity distribution. Under the correct method of reflecting 
parameter uncertainty, each draw is still an independent draw from the 
severity distribution, but there is only one draw from the distribution 
reflecting parameter uncertainty for each draw from the claim count dis- 
tribution. 

Equation I.3 shows that diffusing the severity distribution is not an 
adequate method for the recognition of parameter uncertainty for the 
severity distribution. Equation I.3 can also show the effect of parameter 
uncertainty for the claim count distribution, and the remainder of this 
appendix gives a brief discussion of that effect. 

Apart from one quick comment at the end, only one method of repre- 
senting parameter uncertainty for the claim count distribution will be 
considered here. It will be assumed that the best-estimate claim count 
distribution is Poisson with parameter h. That is, the best-estimate claim 
count distribution, N. has probability density function 

p (/y = ,y ) A) = 3L’ e-A 
.r ! . 

Parameter uncertainty is incorporated by assuming that h follows a 
gamma distribution, denoted A, with probability function 
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Above, I- is the gamma function and h and (’ arc parameters. The distribu- 
tion A has mean hc and variance /?c. The parameter h is the scale param- 
eter because changing h by some factor has the eff‘cct of’ multiplying the 
distribution uniformly by that same factor. The parameter (’ is the shape 
parameter. 

Straightforward computations show that the claim count distribution, 
T, that results from compounding the Poisson distribution with the 
gamma distribution is a negative binomial distribution with probability 
function: 

Here h and c are the parameters from the gamma distribution. This nega- 
tive binomial distribution has mean /x, and variance (hc)(h+I ). Thus 

One way to reflect a constant degree of parameter uncertainty in the 
claim count distribution while increasing the mean is to allow h to in- 
crease but to hold c constant. This maintains a constant percentage of 
uncertainty regarding the mean of the claim count distribution. In the 

0,; 
Equation 1.3, the term piu;, tends to zero as u, increases (as it did above). 

But now the term Of 
cl 

tends to a positive limit. namely I/C,. Thus, Equation 

I.3 shows that the coefficient of variation of the aggregate distribution has 
a component due to the parameter uncertainty in the claim count distribu- 
tion that does not drop below a certain minimum no matter how large the 
mean of the claim count distribution becomes. 
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A little more generally, as p7. goes to infinity, the limit of the square of 
the coefficient of variation of the aggregate distribution is 

The severity distribution and the best-estimate claim count distribution 
have no effect on this limit. This limit depends only on the amount of pa- 
rameter uncertainty reflected in each of these distributions. 
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APPENDIX J 

PROOFS OF FORMULAE FOR EXCESS ~‘LAIM COUNT 
DISTRIBLITIONS 

This appendix proves that if ;I claim count dislrihution is binomial, 
Poisson, or negative binomial, with mean h and vsriancc 0’. and the 
probability of a claim being excess of some attachment point is (x, then 
the excess claim count distribution is binomial, Poisson. or negative bino- 
mial, respectively, with mean ah and variance c13L + tx’(o’ - h). For each 
of the three types of claim count distributions. it is shown that the selec- 
tion of claim counts from the given distribution with mean h and variance 
&, followed by selection of excess claims with probability a (under a 
binomial process) gives a distribution of the same type with mean ah and 
variance ct3L + c1’((3’ - A). 

The Poisson case is considered first. Here h = CT’ . so & will not 
appear. The total distribution will he T and the exct’ss distribution will be 
X. For the total distribution: 

P(T= I) = ; c,-‘. 

Given I claims in the total distribution, the distribution of excess claims 
is: 

P(X=xIT=r)= 

P(X = .Y) is the sum over all I of P(T = f) x P(X = .\- I T = f) ; i.e., 

P(X =.\-) = 2 ;’ 8’ .; 
l I 

cr’(l -(x1’-‘. 
,=\ . 

Letting i = t - .I- so f = s + i this becomes: 

p(x = -\.) = 2 h’+,’ e-?’ .t-: i 
;=(, 0 + I)! i 1 

a’ ( I - of. 
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This is a “ground up” computation of the claim count distribution for 
aggregate claims. The starting point was the distribution of total claims, 
T, and then excess claims were selected according to a binomial process 
to get the distribution of excess claims. 

It is necessary to show that this sum is m~,y! WY ,-a% . 

But: 

e -ah ,-h +h -ah = ,-A ,h( I- a) = ,-h. h’ ( I - a)’ 
c---- i! 
i = 0 

j a-rht -ah m kv ki 

.r! e 

= 
c 

,-A (.s+i)! 
_y!Ta- 

r 

;=,)(.\.+iY . 
(1 -a)' 

as was to be shown. 

Now much the same is done for the negative binomial. According to 
Hastings and Peacock [24, p. 921, the negative binomial has density func- 
tion: 

p( y = \‘) = .Y + J - I 

4 1 

fq” 
)’ 

where x and p are parameters and q = 1 -p. This distribution has mean 
.q/p and variance q/p*. If parameters .Y and p result in a mean of h and a 
variance of CT’, then parameters of s and p/O, + a - q) result in mean ah 
and variance ah + CI”(& - IL). Let T be the total claim count distribution, 
and let Y be the excess claim count distribution. Then: 
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P(Y=yIT=t)= 

where i + J was substituted for I to get from the next-to-last equation to 
the last equation. 

It is necessary to show that the right-hand side of this ccluation is equal 
to: 

which is the density function for the negative binomial with the parame- 
ters for the excess distribution. 

Now note that the Maclaurin series for I/( I - 1)” is given by: 

Substitute (I = .y + .v and 3 = ( 1 - p)( I - a) = q( I - a) to get 
1 -z=p+a-ap and: 

Multiply the left-hand side of the above equation by: 
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K= pW$(s+?‘- I)! 
(I - l)! yi 

(i + y)! 
and multiply the right-hand side by K --- 

(I +y)! ’ 
rearrange, and obtain: 

(,y+;-l)[p&L+ )‘(,-:;yl& ] 

as was to be shown. 

Finally, consider the binomial. According to Hastings and Peacock 
[24, p. 361, the binomial has density function: 

P(X = x) = 
( 1 

: p-r y” - .‘, 

where n and p are parameters and q = 1 - p. This distribution has mean ?rp 
and variance qq. If parameters iz and p result in a mean of h and a vari- 
ance of o’, then parameters of II and crl, result in mean ah and variance 
ah + a’(& - h). As above, let T be the total claim count distribution, and 
let X be the excess claim count distribution. Then: 

P(X=.\-IT=r)= f a’(1 -@-’ . 
0 .\’ 
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Let t = .v + i, so: 

It is necessary to show that the right-hand side of the above equation is 
equal to: 

” ( 1 (txp).’ (1 - Cx/?)“- ’ . 
.x 

Begin with an equality due to the binomial thcorcm: 

( 1 - ap,“I:’ = ” -.I p’ ( 1 - a)’ ( , - ,T)” -.’ 
(17 -x)! c 

I=,, i! (17 -.v- i)! (I -p)' ' 

Multiply the left side by K = “! f!‘“’ and the right side by K. (.v + i)! 

rearrange to get: (.t- + i)! and 

I, - .\ 
j=(, (.\-+i)! (::!-.r-i)! /“/“(I -I’)“- ‘--I ‘:.~ir” c cl’ ( 1 - a)’ 

or: 
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which completes the proof. 


