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THE COMPETITIVE MARKET EQUILIBRIUM RISK LOAD 
FORMULA FOR INCREASED LIMITS RATEMAKING 

GLENN G. MEYERS 

Abstract 

Insurance Services Oftice, Inc. (ISO) has adopted a new 
risk load formula which is to become effective with 1991 
advisory increased limits filings. This paper describes the 
underlying rationale of the new risk load formula. This for- 
mula differs from previous IS0 formulas in that: (I) it is 
derived from competitive market assumptions; and (2) it rec- 
ognizes the risks faced by the insurer in estimating the price 
of its product: i.e., parameter uncertainty. Afier the derivation 
of the formula, the paper will discuss considerations to be 
made by the insurer when using the formula. These consid- 
erations include excess-of-loss reinsurance. 

1. INTRODUCTION 

It is a common observation that, as the policy limit increases, the 
premium for a casualty insurance policy rises faster than its expected 
cost. This observation fits well with the economic principles of supply 
and demand. Policies with higher limits are perceived as being more 
risky. Insurers are more reluctant to sell them and insureds are more 
anxious to buy them. In the language of increased limits ratemaking, the 
additional premium to cover this increased risk is called the risk load. 
A risk load which rises faster than the expected cost as the policy limit 
increases is necessary if higher policy limits are to be made available. 

In the late 1970s Insurance Services Office, Inc. (ISO) introduced 
increased limits factors which were calculated with an explicit formula 
for the risk load.’ In the years that followed, the formula has been refined 

’ See Report of the Increased Limirs Subcommittee: A Review of Increased Limifs Ratemaking. 
Insurance Services Office, Inc., 1980. The work done by IS0 was based on Miccolis [I 1. 
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or revised a number of times, often with considerable debate. A major 
part of the debate has centered around whether or not the risk load 
formula met the demands of a competitive marketplace. 

Effective with 1991 advisory increased limits filings, the IS0 risk 
load formula has undergone still another change. As is the case with all 
advisory filings, each insurer must make its own decision to accept or 
modify the contents. 

This paper describes the underlying rationale of the new risk load 
formula. This formula differs from previous IS0 formulae in that: (I) it 
is derived from economic assumptions about the competitive market; and 
(2) it recognizes the risks faced by the insurer in estimating the price of 
its product; i.e., parameter uncertainty. 

Table I illustrates the basic steps involved in the calculation of 
increased limits factors (ILFs). 

TABLE I 

Policy Average ILF without Risk ILF with Percent 
Limit Severity Risk Load Load Risk Load Risk Load 

$ 25,000 $ 8,202 1.00 $ 281 1.00 3.42% 
50,000 10,660 1.30 393 1.30 3.69 

100,000 13,124 1.60 542 1.61 4.13 
250,000 16,255 1.98 844 2.02 5.19 
300,000 16,854 2.05 929 2.10 5.51 
400,000 17,780 2.17 1,087 2.22 6.11 
500,000 18,484 2.25 1,235 2.32 6.68 
750,000 19,726 2.40 I .580 2.51 8.01 

1,~,~ 20,579 2.51 1,903 2.65 9.25 
~,ooo,ooo 22,543 2.75 3,094 3.02 13.72 

The policy limit refers to the maximum indemnity amount that will 
be paid for a single accident (or occurrence, in IS0 terminology). The 
average severity is the average occurrence severity when subject to the 
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given policy limit. The increased limits factor without risk load is the 
average severity at the increased limit divided by the average severity at 
the basic limit (usually $25,000). The risk load will be calculated on a 
per occurrence basis. The increased limits factor with risk load is the 
sum of the average severity and the risk load at the increased limit 
divided by the corresponding sum at the basic limit. Usually, loss ad- 
justment expenses are included in the increased limits factor calculation 
but they will be ignored in this paper since they are not at issue here. 

This paper will proceed by first developing the underlying economic 
rationale for the risk load formula. Next comes the description of the 
insurance risk. The risk load formula will then be derived, followed by 
considerations to be made by insurers when using the formula. These 
considerations include excess-of-loss reinsurance. 

2. THE INCOMPLETENESS OF UTILITY THEORY 

The original IS0 risk load formula was based on the variance of the 
insured’s losses. One possible economic basis for this formula comes 
from utility theory. 2 There are (at least) two questions addressed by 
utility theory that are relevant to insurance markets. The first question 
is: How much is a person willing to pay for insurance covering an 
uncertain loss? Utility theory provides an answer to this question by 
calculating a price so that the utility of insuring is equal to the expected 
utility of not insuring.3 This mathematical exercise is usually not relevant 
in practice since the competitive nature of the insurance market often 
makes insurance available for less than the insured is willing to pay. 

The second question is: How much premium must an insurer receive 
in order to be persuaded to take on the uncertain liability of an insurance 
policy? Utility theory provides an answer to this question by calculating 
a price so that the expected utility of not insuring the additional risk is 
equal to the expected utility of insuring.4 This can be less than the price 
actually charged. The premium charged will be set by competitive market 

z This is described by Bowers, Gerber, Hickman, Jones and Nesbitt [Z]. For an exponential utility 
function and normal loss distribution, the variance-based risk load can he derived from utility theory 
(page II). Exercise 1.10a shows that the variance based risk load can be used as an asymptotic 
approximation for any loss distribution or utility function. 
j Bowers, et al., op. cir., Equation I .3. I. 
J Bowers, er al., op. cir., Equation I .3.5. 
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forces or government regulation, If the chargeable premium is less than 
the insurer’s utility calculation indicates, the insurer will not sell the 
policy. 

Thus it can be seen that utility theory provides an upper and lower 
bound for the price of an insurance policy based on the risk preferences 
of the insurer and the insured. The actual price of the insurance policy 
depends upon market conditions; i.e., the supply and demand for insur- 
ance. The new risk load formula improves on the old by taking insurance 
market conditions into account. However, it should be noted that the 
supply and demand for insurance is influenced collectively by the atti- 
tudes toward risk of the insurers and the insureds. 

3. THE INSURANCE MARKET 

Insurance is a precondition for a great deal of economic activity. 
Financing for home and automobile ownership is usually contingent on 
obtaining insurance. Commercial enterprises can be liable for sums that 
could cripple the business operation. For example, employers are finan- 
cially responsible for injuries to employees on the work premises and, 
in most instances, are required to purchase workers compensation insur- 
ance. Because insurance is a practical necessity, the demand for insurance 
might be assumed to be relatively inelastic. However, there is anecdotal 
evidence of insureds reducing, or even dropping, their coverage during 
periods of rapid price increases. 

Property-casualty insurance companies in the United States number 
well over 1,000. These companies range from small specialty companies 
to large multiline companies. Entry to the insurance market is generally 
easy, and no single company has a dominant share of the market. 

Some limitation to the supply of insurance comes from state regu- 
lators. They are interested in the solvency of the insurance companies 
under their jurisdiction and thus require the insurance company to have 
funds (i.e.. surplus) available to pay for any excess of claim payments 
over collected premium. Surplus requirements usually are a function of 
the annual premium of the insurance company, although a more refined 
view holds that the required surplus should be a function of the variability 
of the total loss payments. James Stone [3], and R. Beard, T. Pentikai- 
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nen, and E. Pesonen [4] provide some discussion of this view. Recently, 
the National Association of Insurance Commissioners formed a working 
group to develop risk-based capital and surplus requirements for insurers 
[5]. The total surplus provided by investors to the insurance companies 
(and consequently the total supply of insurance) depends upon the relative 
profitability of insurance and other investments 

The market structure of insurance, ease of entry into the business, 
and dependence of supply upon profitability indicate that the supply of 
insurance should be very elastic. Evidence of this proposition abounds 
in the several jurisdictions where regulatory price restraints have led to 
shortages in the voluntary insurance market. 

The options available to an insurer in this environment are limited. 
The insurer has limited control over the prices of its products, because 
they are determined either by the competition or by government price 
regulation. The insurer CQIZ establish goals on how much insurance to 
write (within limits prescribed by state regulators). A multiline insurer 
can establish goals on how much insurance to write in each of several 
lines of insurance. 

We summarize the above discussion by making the following as- 
sumptions. Admittedly, these assumptions may be somewhat stronger 
than the above discussion justifies, but it is believed that they are rea- 
sonable in light of the goal of deriving a workable risk load formula.5 

1. 

2. 

3. 

4. 

The insurance market is competitive and efficient. The risk load 
cannot be influenced by the actions of a single insurer; i.e., 
insurers are price-takers, not price-makers. 
The demand for each line/limit combination is known and fixed. 
That is, in deciding how much insurance to purchase, people and 
firms do not consider the cost of insurance. 
Each insurer can decide how much insurance to write in each 
line of business and policy limit. 
Each insurer is an efficient manager of its insurance portfolio. 
For the purpose of this paper, this means that each insurer will 
write the line/limit combinations in such a way as to maximize 

5 This paper has not addressed a large segment of financial theory which has been applied to the 
pricing of insurance policies, and which may have some bearing on the validity of these assumptions. 
A discussion of these issues is beyond the scope of this paper, but some issues are addressed 
separately by the author [6]. 
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its total risk load subject to a constraint on the variance of its 
insurance portfolio. 

5. The result of all insurers competing for business, as described 
above, will be an equilibrium characterized by the supply of 
insurance equaling the demand for insurance for each line/limit 
combination. 

The fifth assumption requires additional discussion. This assumption 
should be viewed as an operational one. It was made to provide a useful 
tool to insurers. One can seriously question if insurance prices have ever 
been in equilibrium in recent history. If they do reach equilibrium, it is 
at best short-lived. The underwriting cycle is often presented as evidence 
of instability in insurance prices. 

4. THE VARIABILITY OF INSURER LOSSES 

We shall use the collective risk model with parameter uncertainty to 
describe the variability of insurer losses for a given line and policy limit. 
This model is described by the following algorithm. 

1. Select X at random from a distribution with mean I and variance 

2. Select the occurrence count, K, at random from a distribution 
with mean X . n and variance X * n * (1 + d). 

3. Select OL at random from a distribution with mean 1 and variance 
a. 

4. Select occurrences, ZI,ZZ, . . ,ZK, at random from a distribution 
with mean CY * k and variance (Y’ * u2. 

5. The total loss is given by: X = 2 Z, 
j=l 

Actuaries have long recognized that a major part of the risk to insurers 
is that of estimating the cost of the insurance product. The technical 
term for this estimate of risk is parameter uncertainty. The random 
variables X and cx are introduced to model parameter uncertainty for the 
occurrence count and the occurrence severity distribution, respectively. 
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The expected occurrence count, TZ, will be used to quantify exposure. 
It will be very important to specify how the variance of the insurer-loss 
depends on exposure. Consider the case of a single unit of exposure. If 
there is no parameter uncertainty, we set 

Var[Kj = 1 + d. (4.1) 

If we move to II independent units of exposure, we have 

Var[KJ = n * (1 + d), (4.2) 

and6 

Var[xj = n * (a2 + p* * (1 + d)). (4.3) 

It is important to note that the variance is a linear function of exposure 
when there is no parameter uncertainty. 

When parameter uncertainty is introduced, the variance of the total 
loss is given by7 

n * u + n* * v, (4.4) 

where 

u = (p2 * (1 + d) + a’) * (1 + a), (4.5) 

and 

v = p* . (a + c + a * c). (4.6) 

When there is parameter uncertainty, the variance is a quadratic 
function of exposure. In practice, the values of a and c are relatively 
small and thus u is noticeably larger than v. For a small exposure; i.e., 
small n, parameter uncertainty is barely noticeable. However, as the 
exposure increases, parameter uncertainty becomes increasingly impor- 
tant. 

b A special case of Equation 4.4 when a = c = 0 
’ Demonstrated in Appendix A. 
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In order to incorporate Assumption 4 of Section 3, one must calculate 
the variance of the entire insurance portfolio. Use subscripts ranging 
from 1 to m to identify the parameters (e.g., n;, c;) of the various line/ 
limit combinations. Different values of the subscript may denote com- 
pletely different lines of insurance, such as commercial auto or products 
liability, or different policy limits within the same line. The parameters 
associated with the occurrence count distribution or the parameter un- 
certainty will be the same for each policy limit within a line of insurance. 
The occurrence severity distribution will be adjusted for each policy 
limit. 

The variance for the entire portfolio of insurance is given by 

Var [ 1 5 Xi = 2 5 Cov[X,,X,]. ,=- I i=t j=l (4.7) 

There are three cases to consider in the evaluation of Cov[X;,Xj]. 

Case 1. i = j 

In this case, Cov[X;,Xj] = Var[X,] 

Case 2. i # j, but the increased limits table of i is the same as that 
ofj. 

In this case, Xi and Xj will have the same underlying occurrence 
severity distribution, and the uncertainty random variables X and 01 will 
be the same for X; and Xj. However, Xi and X, will be conditionally 
independent given X and cx. 

Case 3. i # j and the increased limits table for i is different from that 
ofj. 

In this case, assume that Xi and Xj are completely independent. Thus, 
COV[X;,Xj] = 0. 
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The expressions for the covariance become: 

COV[Xi,Xj] = ?I; * Ui + nf * Vii, 

for Case 1; and 
(4.8) 

COV[Xi,Xj] = ?Zi * nj * Vii, (4.9) 
for Cases 2 and 3 (vij = 0 for Case 3). 

The exact expressions for {ui} and {vij} are given in Appendix A. 
Suffice it to say in the main text that they are similar to u and v in 
Equations 4.5 and 4.6. 

At this point, it becomes more efficient to express our results in 
matrix notation. Set the column vector U = {ui} and the matrix V = 
{v,.>. Also set the column vector n = {ni}. We then have: 

VW[ z, $, Xij] = i, z COV[XiXjl = nT . U + nT - V * n 

Note that if there is no parameter uncertainty (i.e., a = c = 0), then 
V = 0 but U # 0. For this reason we say that U quantifies the process 
risk and V quantifies the parameter risk. 

5. THE COMPETITIVE MARKET EQUILIBRIUM RISK LOAD FORMULA 

Let the column vector R = {r;} be the risk load per expected occur- 
rence. As stated in the assumptions, the insurer attempts to maximize 
its total risk load, denoted by nT * R in matrix notation, subject to the 
constraint that the variance of its total insurance portfolio cannot exceed 
a preset amount, A*. The variance constraint is a function of the size (or 
surplus) of the insurer and of various other risks (such as investment 
risk) faced by the insurer. Since the market is competitive, the insurer 
cannot control R, but it can control n, the amount it insures in each line/ 
limit combination. Mathematically, the problem the insurer faces can be 
expressed as follows.* 

” The problem posed here is similar to that posed by R. E. Brubaker [7]. 
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Choose n to maximize 

subject to the constraint that9 

nT - U + nT * V - n = A2. 

It is shown in Appendix B that n satisfies the equation”’ 

where A= 
RT . V-1 . R 

J.A*+uT.v-*.u’ 

(5.1) 

(5.2) 

It would be useful to consider some simple examples at this point. 
Let’s consider an insurer who writes four independent lines of insurance 
with parameters d and (1 set equal to zero. The remaining parameters are 
given in the first three columns of Table 2 below. The vector u is 
calculated using Equation 4.5. The matrix V is a diagonal matrix with 
the diagonal elements calculated by Equation 4.6. The variance con- 
straint, A2, was set equal to lOI indicating that the insurer has sufficient 
surplus to cover a loss portfolio with a standard deviation of 
$lO,OOO,OOO. Using Equation 5.2” we obtain A = I .952 x IO-‘. 

Using the given risk loads for each line, in the column headed by T, 
one can then use Equation 5.1 to calculate the exposure, n, for each line 
to maximize the total risk load obtained by the insurer. 

v Philip E. Heckman in his paper “Some Unifying Remarks on Risk Load” (submitted for publi- 
cation) has derived an alternative formulation which produces the same result. His formulation has 
the insurer minimizing the variance, nT U + nT V n. is subject to the constraint that nT . R = 
P. 
lo Note that the matrix V may not have an inverse. If this is the case. Interpret x = V ’ y as one 
of the many solutions of y = V x. This ca\e is treated rigorously in Appendix 8. 
I’ For a diagonal matrix, V, 
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TABLE 2 

CL u C IA diag V r n ~ - - - 

10,000 30,000 0.010 1.000 x lo9 1.000 x lo6 250.00 5,904 
20,000 100,000 0.010 1.040 x lOL0 4.000 x lo6 500.00 1,902 
10,000 30,000 0.030 1.000 x lo9 3.000 x lo6 250.00 1,968 
20,000 100,000 0.030 1.040 x lOL0 1.200 x 10’ 500.00 634 

Suppose, for the sake of discussion, that all insurers are identical to 
the one described by this example. If the total exposure demanded by 
all insureds was proportional to the exposure provided by the insurer 
described by Table 2, the market would be in equilibrium. However, if 
the total exposure demanded by all insureds was the same for each line 
of insurance, the market would not be in equilibrium. There would be a 
surplus of the first line, and a shortage of the last line. 

Consider, instead, the case where our insurer is given the risk loads 
described by Table 3. All other conditions described above are the same. 
Using Equation 5.2, we obtain A = 2.017 X 10-a. Equation 5.1 then 
gives the exposures needed to maximize the total risk load. If all insurers 
are identical and the total exposure demanded by all insureds was equal 
for each line of insurance, the market would be in equilibrium. 

TABLE 3 

P u C u diag V r n ~ - ~ - 

10,000 30,000 0.010 1.000 x lo9 1.000 x 10” 90.28 1,738 
20,000 100,000 0.010 1.040 x 1o’O 4.000 x lo6 490.25 1,738 
10,000 30,000 0.030 1.000 x lo9 3.000 x 10” 230.50 1,738 
20,000 100,000 0.030 1.040 x 1o’O 1.200 x 10’ 1051.13 1,738 
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The above examples illustrate the question to be addressed: What 
risk load will result in market equilibrium? 

Assume that insurers 1, 2, . . . , x are seeking to maximize their 
total risk load by employing the strategy indicated by Equations 5.1 and 
5.2. Assume further that U and V are the same for all insurers, but the 
1”” insurer has its own vector n(j) and its own A,. Also make the normative 
assumptions that: (1) all insurers are participating in all lines; and (2) 
the risk loads are the same for all insurers. (We will relax these two 
assumptions later.) We want to find the vector R that exists when the 
market is in equilibrium. Under equilibrium, the total insurance de- 
manded must equal total insurance supplied which is given by: 

+V-1.R5d 
‘J 2 

. v-’ * u. 
j=l 

Define 

and 

We then have that 

(5.3) 

(5.4) 

(5.5) 
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Solving for R yields 

R = ii. (U + 2 - V - ii). (5.6) 

Some discussion about x is in order. i is the result, through Equations 
5.2 and 5.3, of the variance constraints of all the insurance companies. 
While the variance constraints may provide a general description of how 
insurance companies operate, they are not sufficiently explicit to use 
Equations 5.2 and 5.3. However, it is possible to express 1 in more 
concrete terms. Multiplying both sides of Equation 5.6 by iiT yields: 

x=- ii= *R = Average Total Risk Load 
nT - (U + 2 . V * ii) - iiT f (U + 2 - V * ii) . (5.7) 

The average total risk load can be derived from external considera- 
tions such as the overall profitability of the insurance industry. 

6. INDIVIDUAL INSURER PRICING DECISIONS 

Equation 5.6 was derived as a description of insurance market pric- 
ing. This section discusses its applicability as a tool for insurers to 
determine the price at which they will offer insurance. 

Recall that Equation 5.6 was derived by making certain normative 
economic assumptions, namely that: (1) all insurers are participating in 
all lines/limits; and (2) the risk loads are the same for all insurers. One 
can argue that these assumptions are appropriate in the long run when 
the less efficient companies have been weeded out. Large multiline 
insurers are generally regarded as more efficient users of capital. Also, 
it is the total price of the product that is subject to competitive pressures. 
The marketplace might allow an insurer with an expense advantage to 
charge a greater risk load. But, in the long run, the insurers with an 
expense advantage should dominate the market. 

As sensible as these normative assumptions may seem, they do not 
describe today’s insurance market. Small specialty insurers are common 
and often successful. Direct writers consistently have held an expense 
advantage over the agency companies. While direct writers are growing, 
agency companies are concentrating on niches where they can provide 
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superior service. To use this risk load formula as a pricing tool in today’s 
marketplace, one should investigate what happens when the normative 
assumptions are relaxed. 

First, relax the assumption that all insurers are .$articipating in all 
lines/limits. Let n(j) be the exposure vector for the j 
Ii be a diagonal matrix with the ith 

company and let 
diagonal element equal to 1 or 0 

depending on whether or not the j” company writes insurance in the ith 
line/limit. As in the derivation of Equation 5.6, the total insurance 
demanded must equal the total insurance supplied which is given by 

(6.1) 

The effect of the Ij is to eliminate the j’” company’s contribution to 
the line/limits it does not insure. Multiplying both sides of this equation 
by V and reordering some terms yields 

R . (j, 5) = U * ($, I,) + 2 * V . (2 n(j) . Ij) . (6.2) 

Let: 

l?(i) be the set of insurers who write line/limit i, 

g, = number of insurers who write line/limit i, 

iI n(j) . Ij 

s, = Jz’ 
I 

gi . 

Then the ith component of Equation 6.2 can be written in the form 

Ri = S;i . (U; + 2 * (V * iii)i) (6.3) 
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which resembles Equation 5.6, except that Xi and ii can be different for 
each line i. iii can be interpreted as the average exposure vector over all 
companies that write line/limit i. The risk load multiplier, Xi, can be 
interpreted as the average Aj over all companies who write line/limit i. 
In effect, this means that the risk load multiplier is strongly influenced 
by competitors. 

We now relax the assumption that the risk load for each insurer will 
be the same for each line/limit. Let R(j) be the risk load vector for the 
j’” company. Setting the total 
insurance supplied yields 

insurance demanded equal to the total 

(y - U) ’ Ij. (6.4) 

Multiplying both sides of this equation by V and reordering some 
terms yields 

E WA * 4 = u . 

Ai 

(5 Ij) + 2 * V . (i: n(j) * Ij) . (6.5) j=l j=l j=1 

Since one cannot move the risk load vector outside the summation 
sign, a risk load equation with the form of Equation 5.6 or 6.3 is not 
possible. It is possible, however, for the risk load equation to be appli- 
cable to a segment of the line/limit’s business. Consider, for example, 
the case when direct writers have an expense advantage and can com- 
mand a higher profit. They will write as much insurance as is appropriate 
(perhaps governed by their variance constraints and Equations 5.1 and 
5.2). Those insureds that remain will purchase their policies from agency 
companies. In effect, the line of insurance is segmented into two separate 
markets. One segment is serviced by the direct writers and the other 
segment is serviced by the agency companies. There may, or may not, 
be a qualitative difference between the two segments. 

To summarize, the normative risk load formula given by Equation 
5.6 may not be appropriate in all cases because of line specialization 
and/or segmentation. However, using Equation 5.6 with a risk load 
multiplier, x, that can vary by line of insurance may provide a usable 
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risk load formula. The choice of h will be influenced by competitive 
considerations. We will refer to Equation 5.6 as the Competitive Market 
Equilibrium (CME) risk load. 

To date (mid-1991), IS0 has filed the CME risk load for Commercial 
Auto, Premises/Operations General Liability, Products/Completed Op- 
erations, and Medical Malpractice. The same risk load multiplier is used 
for Commercial Auto Liability, Premises/Operations Liability, and Prod- 
ucts/Completed Operations Liability. A different risk load multiplier is 
used for Medical Malpractice. The rationale for this is that, largely, the 
same companies compete for business in the first three lines but a 
different set of companies compete for business in the last line. It is 
likely that many insurers will be selecting their own risk load multipliers 
for each line of insurance. 

7. AN ILLUSTRATIVE EXAMPLE 

The risk loads in Table 1 were calculated by the CME formula. This 
section describes the calculations. Additional mathematical details are 
given in Appendix C. Since this paper was written to illustrate the 
concepts in the simplest way possible, the example shown below will 
not be identical to what IS0 actually does in its advisory filings, but 
instead it will be a simpler analog.‘* 

IS0 publishes 19 separate increased limits tables for its standard 
commercial liability lines: three for Premises/Operations; three for Prod- 
ucts/Completed Operations; and 13 for Commercial Auto. If IS0 were 
to publish 10 increased limits factors for each table, there would be 190 
separate line/limit combinations. At first glance it would appear that one 
has to work with a 190 X 190 matrix, V. But, as shown below, that is 
unnecessary. 

IL There are two simplifications. The first is that this example uses a two-parameter Pareto rather 
than a five-parameter truncated Pareto. The second is that this example uses a simpler block structure 
in the matrix, V. than is used in IS0 filings. The more complicated block structure is necessary 
because IS0 estimates the occurrence severity distribution with countrywide data grouped by 
increased limits table within line, but does its basic limits ratemaking on statewide (countrywide 
for Products/Completed Operations) data grouped by line. 
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If the increased limits ratemaking is done independently by table, 
vii = 0 when i and j represent different tables. If the subscripts for each 
table are entered consecutively, the matrix V has a block diagonal struc- 
ture. This block diagonal structure of V makes possible a useful simpli- 
fication. This is best illustrated by way of example. Suppose there are 
two lines of insurance, each with two policy limits. Equation 5.6 would 
give: 

r-1 

r2 [I = 1. 
r3 

r4 

Ul VII i[l [ Id2 + 2 . u3 2’ u‘l 0 

VI2 

v22 

0 
0 

0 0 n, 
0 0 

v33 IN n2 . - 
v34 n3 . - 

v43 v‘u n4 

This equation produces the same results as: 

and 

This example demonstrates how, once x is determined, the risk load 
equation can be applied to a single line of insurance without a detailed 
consideration of the other lines. The example given below illustrates 
how the formula works for a single line of insurance, but should be 
viewed in the above multiline context. 

To construct an increased limits table with risk loads, one needs the 
following information: 
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1. The occurrence severity distribution, with uncertainty parameter 
a. (In our example, we use a Pareto distribution with cumulative 
distribution function: 

S(z) = 1 - (-&)‘, 

with b = 5,000 and 9 = 1. I. For the uncertainty parameter we 
use a = .OOl.) 

2. The parameters d and c of the occurrence count distribution. 
(Recall that c is used to quantify parameter uncertainty in the 
count distribution. As illustrative values, we use d = 0 and c = 
.02.) 

3. The exposure vector, ii. (In practice, this can be estimated by 
first dividing the expected number of annual occurrences for a 
line by the number of insurers writing this line and using an all- 
industry policy limits distribution to distribute the expected claim 
count count to policy limit. The ii used is in Table 4 below.) 

4. The risk load multiplier, h. (In this example, we used x = 2 X 
10e7. In practice, this will be selected by individual insurers.) 

The occurrence severity and count distributions are used to assemble 
the vector IT and the matrix V. The details of the calculations are provided 
in Appendix C. The risk load is then calculated using Equation 5.6 with 
the process risk vector defined as x 1 U, and the parameter risk vector 
defined as x * 2 . V * ii. The results are in Table 4. 
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TABLE 4 

Policy Average ILF without Process Parameter ILF with Percent 
Limit Severity Risk Load Risk Risk Risk Load Risk Load ii - 

$ 25,000 $ 8,202 1.00 $ 28 $253 1.00 3.42% 2 
50,000 10,660 1.30 64 330 1.30 3.69 2 

100,000 13,124 1.60 135 407 1.61 4.13 10 
250,000 16,255 1.98 339 505 2.02 5.19 2 
300,000 16,854 2.05 404 524 2.10 5.51 24 
400,000 17,780 2.17 533 553 2.22 6.11 2 
500,000 18,484 2.25 659 575 2.32 6.68 70 
750,000 19,726 2.40 965 615 2.51 8.01 8 

1 ,ooo,ooo 20,579 2.51 1,262 641 2.65 9.25 70 
2,000,000 22,543 2.75 2,391 703 3.02 13.72 10 

8. THE RISK LOAD FOR EXCESS-OF-LOSS REINSURANCE 

The conventional method of calculating increased limits factors for 
excess-of-loss reinsurance has been to subtract the ground-up increased 
limits factor for the retention point from the increased limits factor for 
the policy limit. For example, this method of calculating the increased 
limits factor for the layer between $500,000 and $1 ,OOO,OOO, using 
Table 4, yields the following: 

TABLE 5 

LAYERED INCREASED LIMIT FACTOR CALCULATION BY SUBTRACTION METHOD 

Policy Average ILF without Process Parameter ILF with Percent 
Limit Severity Risk Load Risk Risk Risk Load Risk Load 

$ 25,000 $ 8,202 1.00 $ 28 $253 1.00 3.42% 
500,000 18,484 2.25 659 575 2.32 6.68 

1,000,000 20,579 2.51 1,262 641 2.65 9.25 

Layer 
$500,000 to $ 2,096 
$1,000,000 

0.26 $ 603 $ 66 0.33 31.92% 
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This method of calculating increased limits factors has the property 
that the price of a policy where the loss is shared between primary 
insurer and excess-of-loss reinsurer is the same as the price of a policy 
where the entire loss is retained by the primary insurer. From an eco- 
nomic point of view, it seems unlikely that the insurance market would 
supply both these options at the same price. There are two countervailing 
influences on the price which must be balanced. The first is the additional 
expense involved in reinsurance, and the second is the sharing of risk. 
Excess-of-loss reinsurance contracts are common because there is a 
sizable market segment for which the economic value of risk sharing is 
greater than the additional expense of reinsurance. The subtraction 
method of calculating increased limits factors for excess layers does not 
change layer prices to reflect the economic value of risk sharing when 
risks are so shared.13 

The CME risk load applies for excess layers as well as for ground- 
up coverages. The formula presented in Appendix C has the lower and 
upper limits of the layer as input. Table 6 gives the result for the layer 
from $500.000 to $1 ,OOO,OOO. 

TABLE 6 

LAYERED INCREASED LIMIT FACTOR CAKULATION USING CME RISK LOAD 

Policy 
Limit 

Average ILF without Process Parameter ILF with Percent 
Severity Risk Load Risk Risk Risk Load Risk Load ii’ ii 

-- 

$ 25,000 $ 8,202 1.00 $ 28 $253 1.00 3.42% 2 2 
500,000 18,484 2.25 659 575 2.32 6.68 70 90 

1 ,OOO,OOO 20,579 2.51 1,262 641 2.65 9.25 70 50 

Layer 
$500,000 to $ 2,096 0.26 $ 183 $ 66 0.28 11.90% 0 20 
$1 ,ooo,ooo 

I’ The subtraction method is usually subject lo judgmental revision The author has found that most 
knowledgeable reinsurance actuaries will use the subtraction method on increased limits factors 
without the risk load (which is appropriate), and judgmentally add in their own risk load. 
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There are two observations that should be made about the CME risk 
load formula and layering. First, the total process risk load is reduced 
by layering, but the total parameter risk load remains the same. This is 
proved by Appendix D. I4 This reduction in the process risk load provides 
a quantification of the economic value of risk sharing. In the example 
above, the total process risk load is reduced .from $1,262 to $842 (= 
659 + 183). The final increased limits factor depends upon the total 
charge for reinsurance. Table 7 shows the increased limits factors after 
reinsurance for a variety of reinsurance expense charges for our example. 
If the reinsurance expense charge is less than $420 per expected occur- 
rence (our unit of exposure), the increased limits factor with reinsurance 
is less than the increased limits factor without reinsurance, and thus it 
is more economical to reinsure. 

TABLE 7 

INCREASED LIMITS FACTORS WITH EXCESS REINSURANCE 
PRIMARY LIMIT--$5~,0C@ 

Policy 
Limit 

Average Process Parameter Reinsurance ILF with 
Severity Risk Risk Expense Charge Reinsurance ~ - 

$ 25,000 $ 8,202 $ 28 $253 $0 1.00 

1 ,ooo,ooo 20,579 842 641 0 2.60 
1 ,o@J,~ 20,579 842 641 140 2.62 
1 ,ooo,~ 20,579 842 641 280 2.63 
1,OW~ 20,579 842 641 420 2.65 
1,000,OOO 20,579 842 641 560 2.67 

This example makes the very important point that the actuary should 
be aware of his company’s reinsurance strategy when setting prices for 
increased limits. 

The second observation has to do with the estimation of ii. At first 
glance, it would seem necessary that the distribution of policy limits 
takes into account all excess-of-loss reinsurance arrangements. For ex- 

I* The result for process risk was originally demonstrated by Miccolis [ 11. 
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ample, in Table 6, the 70 units of exposure with a $1 ,OOO,OOO policy 
limit could really consist of 50 units with no reinsurance, and 20 units 
with a primary insurer retention of $500,000 and an excess reinsurance 
policy covering the layer from $500,000 to $l,OOO,OOO. It is demon- 
strated in Appendix D that the CME risk load will be the same if we: 
(1) ignore excess reinsurance of the primary insurer; and (2) assume 
there is no reinsurance exposure in the excess limits. This is illustrated 
in the final two columns of Table 6. 

There is one additional point to be discussed about layering: consis- 
tency. Consistency refers to the property that the price of a layer of 
constant width should not increase, as the initial attachment point in- 
creases. For example, the losses in the $250,000 excess of $750,000 
layer will be no higher than the losses in the $250,000 excess of $500,000 
layer. The consistency property states that the premium for the first layer 
should be no higher than the premium for the second layer. Since a loss 
in a higher layer is always less than or equal to a loss in a lower layer 
of equal width, it has been felt that increased limits factors should be 
consistent. 

“Consistency tests” have historically been applied to increased limits 
factors using the subtraction method of calculating increased limits fac- 
tors for layers. The justification for this practice only addresses losses. 
When consistency tests using the subtraction method have been applied 
to increased limits factors with risk loads, the consistency test would 
occasionally fail, and judgmental modifications to the increased limits 
factors were made. l s 

It is shown in Appendix E that the CME risk load will always produce 
consistent increased limits premiums. 

I’ A discussion of the use of consistency tests is given by Rosenberg [ 8 ] 
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APPENDIX A 

DERIVATION OF VARIANCE FORMULAS 

1. Unconditional variance of the occurrence count, K: 

VaWl = E,[Var[KIxll + Var,[EWixlI 
= E,[X . n . (I + d)] + Var.& * n] 

=n*(l+d)+nZ*c (A.11 

2. Unconditional variance of the total loss, X, with parameter un- 
certainty for the occurrence count but without parameter uncertainty for 
severity: 

Var[X] = E~[Var[X]fl] + VarK[E[X]K]] 

= EK[K * a*] + VarK[K * p] 

=n *a2+n.$(1 +d)+nZ.p2*c 
(from Eq. A.l) 64.2) 

3. Unconditional Variance for the total loss, X, with parameter un- 
certainty: 

Var[X] = E,[Var[X]a]] + Var,[E[Xla]] 

=E&~~*(n~a~+n~p,~.(l +d)+n’.p2*c)] 
+ Varu[n . p . a] (from Eq. A.2) 

=n * (p2 - (1 + d) + 02) . (1 + a) + 
$ . /&* . (a + c + a . c) 

= u * n + L’ * n* (A.3) 

For the remainder of this appendix, replace Step 4 of the description 
of the collective risk model, in Section 4, with the following statement: 

4’. Multiply the scale parameter of the occurrence severity distri- 
bution by (Y and select Z,, 22, . . , ZK at random from the 
distribution. 
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This technical modification is necessary to remove the effect of 
parameter uncertainty on the policy limit. Otherwise it is equivalent to 
the original Step 4. 

4. Cov[Xi,Xj] with parameter uncertainty: 

COV[XiJjl = Ea. ~[COV[X;J~~~,XII + 
COVu. x[E[X&,Xl~ E[Xjla,XlI 64.4) 

We now evaluate the first term of Equation A.4. 

For Cases 2 and 3 (i # 11, Cov[X;,Xj]CY,X] = 0, and so 
Ea,~[Cov[Xi,Xj(~. xl] = 0. 

For Case I (i = j): 

Ea. ~[Cov[Xi~Xj~~~Xll = Ec.. x[Vadxil~~Xll 

= E,, x[EKIVar[XilK,a,xl + Var~[EP~~K,~,xll 

= E,,,[EK[K * Var[Z@,Xll + E[ZiIal* * V~AKIXII 

= E,, .JX * ni - Var[Zila] + E[Z;la]* 9 X * TZ; . (1 + d)] 

= ni * (E,[Var[Z&x]] + E,[E[Zi/a]2] * (1 + d)) 

= r~; * (Ea[E[Z?lall + Eu[E[Zilal*l * 6) (A.3 

= Iii * Uj (A.6) 

We now evaluate the second term of Equation A.4. 

COVER, x[E[Xil~,Xl,E[X,Ia,Xll 

= Ea,,[E[Xi[a,Xl * E[XjIa,Xl - 
Etx, x[E[Xil~,XII * Ea. x [E[&Ia,Xll 

= E,,,[x * n; * E[Zila] * X * nj * E[Zj/all - 
E,,,[X . ni * E[ZIall * Ea,,[x * nj * E[zjIall 

= ni * n, . ((1 + c) * 
Ea[E[Zi]a] * E[Zjla]] - L[E[Zl~ll * E~[E[Zjlall) (A.7) 

E ni ’ n, * Vij w-3) 
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This derivation applies for Cases 1 and 2 (i.e., the increased limits 
table for i and j is the same). For Case 3, v;, = 0. 

Combining Equations A. 6 and A. 8: 

COV[Xi,Xj] = n; * U; + n? * \‘ii for Case 1; and 

COV[Xi,Xj] = n; . nj . v;j for Cases 2 and 3 (vij = 0 for Case 3). 

where Ui and vii are given in Equations A.5 and A.7. 
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APPENDIX B 

DERIVATION OF THE RISK LOAD FORMULA 

Our problem is to choose n which maximizes 

subject to the constraint that 

A2 = nT - U + nT ’ V - n. 

This can also be expressed as maximizing 

subject to the constraint that 

To solve this, use the method of Lagrange multipliers. Set 

By setting aLIdA = 0, we see that 

A2 = nT . U + nT - V * n. (B. 1) 

By setting dL/dni = 0 for each i, we see that the solution vector n = 
{n;} satisfies the equations 

m 

ri = A * Ui + 2 ’ C nj . Vij for each i. 
j=l 
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Expressing this in matrix notation we have that n is a solution to the 
equation 

R = A . (U + 2 - V * n). 

At this stage, the derivation will be easier to follow if one assumes 
that V is nonsingular. At the end of this appendix, it will be indicated 
how the equations must be adjusted for the case when V is singular. 

Solving the above equation for n yields 

n = ; . v~-’ (1; - g. 03.2) 

Substituting the expression for n in Equation B.2 into Equation B. 1 
and solving for A yields, after some algebra, 

A= RT.V-‘.R 
4.A2+UT.V-‘.U 03.3) 

V can be singular. Consider, for example, if the line and the limit 
for X, are the same as the line and limit for X,, then ni and nj could be 
any two numbers with the same sum. If V is singular, Equations B.2 
and B.3 must be interpreted and derived differently. We now indicate 
how to do this. 

First consider the case where the equation V . r = R has infinitely 
many solutions. Let r be any one of the solutions. Let K be a matrix 
whose columns span the linear space of vectors, x, such that V . x = 
0. Then every solution, y, of the equation V . y = R can be written in 
the form 

y = K * s + r, 

where s is a column vector with dimension equal to the number of rows 
of K. Similarly, every solution, z, of the equation V . z = U can be 
written in the form 

z = K * t + u. 
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Let the vectors r, u, s, and t be given. Define 

V-’ - R = K - s + r, 

and 

V-‘*U=K.t+u. 

Using the alternative definitions and carefully working through the 
steps in deriving Equations B.2 and B.3 for the nonsingular case will 
yield the same identical equations. 

Note that the n in Equation B.2 will depend on the choices of the 
vectors r, u, s, and t. However, the Lagrange multiplier, A, will be the 
same in all cases since, for all vectors s: 

RT-V-‘aR=RT-(K-s+r) 

= (V - r)T - (K * s) + RT * r 

=r T. (V * K) - s + RT . r 

= RT - r. 

Thus, RT * V-’ * R is independent of the particular solution, y, of 
V * y = R. A similar statement can be made about UT * V-’ * U. The 
uniqueness of A follows from Equation B.3. 

If V is singular, it is possible for there to be no solution to the 
equation V - y = R; i.e., the system of equations is inconsistent. 
Consider, for example, the case where the line and limit for Xi are the 
same as the line and limit for Xi, but ri # rj. In this case, it is clear 
what to do. If ri > rj, set nj = 0, since one gets more premium in line 
i than in line j, with the same amount of risk. In general, it will be 
possible to eliminate various line/limits without reducing n’ * R and 
obtain a consistent set of equations. 

Eliminating line/limits can also be appropriate even when V is non- 
singular. It is possible for a (generally small) company to solve Equation 
B .2 and have negative exposures indicated for certain line/limits. Since 
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an insurer sells insurance rather than buys insurance, this cannot happen. 
The solution is to eliminate line/limits when negative exposures are 
indicated. 

An actual procedure for eliminating line/limits will not be specified 
here. However, it is clear that optimal solutions satisfying IZ~ L 0 for all 
i, and A2 = nT - U + nT . V * n will always exist (a continuous function 
will always have a maximum on a closed set). The method of Lagrange 
multipliers determines the optimal solution on the subset of line/limits, 
i, for which n; > 0. 
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APPENDIX C 

FORMULAE UNDERLYING THE ILLUSTRATIVE EXAMPLE 

Let j(a) be the probability density function for 0~. From Equations A.6 
and A.8, it follows that: 

Ui = E,[E[Z?Ja]J + d * E~[E[ZJCY]*] 

= 
I 

E[Z?la]fla)da + d - 
I 

m [E[Zil~l*lfl~)d~; 
0 0 

VG = (1 + C) * E,[E[Zila] * E[ZjICY-]] - Ea[E[Zila]] * &[E[Z~lall 

= (1 + c) . [E,Z& * EIZjlalf(a)da - 

lmEIZila]fia)da * Lrn E[Zjlalf(a)da. 
0 

Let: 

1 (a- I)? -- f(a) = --qzg .e ~a . 

The Hermite-Gauss three-point quadrature formula gives the approx- 
imations: I6 

ui = ; . E[Z&] + ; - E[Z&] + ; * F$$t,l 

+d* (i * E[Zilal]* + 3 * E[Zila2]* + i . E[Zi/a3]2). 

lb The standard change of variables was used. See Ralston [91 
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vlJ = (1 + c) + (; * E[Z,(a,] . E[Z,/wl + 5 . ElZi~a~l * E[Z,lazl 

-(i * E[Zi[al] + i . E[Zi/az] + i * E[Zj/aj]j 

. (i * E[ZJlal] + 5 * E[Zjla2] + i . E[Zjlaj]), 
where: 

a, = 1 - 1.224745 . 6; 0~2 = I; (~3 = 1 + 1.224745 * 6. 

The occurrence severity distribution used in this paper is the Pareto 
distribution with c.d.f.: 

W) = 1 - (z +* ,” bjq 
Let LLi and ULi be the respective lower and upper policy limits 

corresponding to i. Then:” 

E[Zila] = I’;” (Z - LL;) * a(Zla) + (ULz - LLJ ’ (1 - S(ULilCX)) 
G 

I 
“4 = (1 - S(zla))da 

LL, 

1 1 
(LL; + ab)‘-’ - (UL, + ab)‘-’ ’ i 9 + 1, 

and 

I7 The proofs of lemmas E.l and E.2 in Appendix E may provide some help in evaluating these 
integrals. 
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E[Z?(ct] = Ly (Z - LLi)* * a(zla) + (ULi - LLi)* ’ (1 - S(ULi[cW)) 

1 1 
(LLi + ab)9-2 - (ULi + &)qp2 

ULi - LLi 
(UL, + &,)9-l ,*(1 # ly2. 

I 
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APPENDIX D 

DEMONSTRATION OF RISK REDUCTION BY LAYERING 

From Equation 5.6: 

Ti = X * (Ui + 2 . (V ’ ii)i). 

Without loss of generality, it can be assumed that Zi, Zz, and Z3 
represent the occurrence severities in the layers from L to H, L to M, 
and M to H, respectively. To demonstrate risk reduction by layering, it 
must be shown that rl > r2 + r3. This will be done by showing that 
UI > u2 + u3 and that (V * ii), = (V . ii);? + (V * iQ3. 

ui = E,[E[Z:lo] + E[Z,la]’ . 6] 

= E,[E[(Zz + Z3)*)a] + E[Zz + Z&x]’ + dj 

= E, 
( 
E[Z:(a] + 2 * E[Zz . Z3ja] + E[Z:lcx] 

+ (E[Z&x]* + 2 - E[Z$x] . E[Z3la] + E[Z,la]*) . d) 

> E,(E[Z:/cx] + E[Z:la] + (E[Z+l* + E[Z,lo]*) * dj 

= u* + u3. (D.1) 

vlj = (I + C) * Ea[E[Z,l~l * E[Zjlall 

- L[E[ZIJ~II . JL[E[Zj(all 

= (1 + C) . E,[E[Zz + Z3lo] * E[Zjlo]] 

- EaUW2 + Z3l41 - ~aI~L+ll 

= V2j + V3j. 

It then follows that: 

(V * ii), = (V * ii), + (V * n>3. 

CD.21 

CD.31 
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Equation D. 1 shows that the total process risk is reduced by layering, 
while Equation D.3 shows that the total parameter risk remains constant 
with layering. 

Equation D.2 makes possible a simplification in the tabulation of ii. 
Let p represent the average exposure for those.of whom the upper layer 
is covered by one company, and the lower layer is covered by another 
company. Define ii’ so that ii; = iii + p, iiS = ii2 - p and ii; = ii3 - 
p. Since VU = vii, it follows from Equation D.2 that V * ii = V * ii’. In 
effect, this means that one can ignore the effect of excess reinsurance 
when estimating ii, since the risk load will be the same as it would be 
if excess reinsurance were taken into account. 
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APPENDIX E 

DEMONSTRATION OF CONSISTENCY 

Let Z be a random variable with cumulative distribution function, 
S(z). Let the layer moment functions be given by: 

u+h 

Ml(U,h) = 

I 
(z - a) . dS(z) + h . (1 - S(a + h)); 

u 

I 
uth 

M&d) = (z - a)’ * d.!?(z) + h* . (1 - S(a + h)). 
(1 

Lemma E. 1. M,(a,h) is a decreasing function of a. 

Integration by parts yields: 

M,(u,h) = - (z - u) . (1 - S(z)$+” + 

o+h 

I (1 - S(z)) . dz + h . (1 - S(u + h)) 
a 

=- h*(l -S(u+h))t 

I 
a+h 

(1 - S(z)) . dz + h * (1 - S(u + h)) 
0 

I 
o+h 

= (1 - S(z)) . dz. 
u 

d”$‘h) = (1 - S(u + h)) - (1 - S(a)) 

= S(u) - S(u + h) < 0. 

Thus, Ml(u,h) is a decreasing function of a. 
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Lemma E.2. Mz(u,h) is a decreasing function of a. 

Integration by parts yields: 

&(u,h) = - (z - a)* . (1 - s(z)$+~ -t 

I 
u + h 

(1 - S(z)) - dz + h2 * (1 - S(u + h)) 
a 

=- h2 * (1 - S(u + h)) + 

I 
oth 

2. (z -a) - (1 - S(z)) . dz + h* * (1 - S(u + h)) 
(I 

I 
u+h 

= 2. (z - a) * (1 - S(z)) . dz 
a 

I 
oth 

= 2. z * (1 - S(z)) * dz - 2 * a * Ml(u,h) 
a 

M2@, h) 

da 
= 2 - (a + h) * (1 - S(u + h)) - 2 * a . (1 - S(u)) 

_ 2 . u . ~l(a,h) 
da 

- 2 - M,(u,h) 

I 
a+h 

= 2 - h . (1 - S(u + h)) - 2 . (1 - S(z)) * dz 
u 

I 
a+h 

= 2. (S(z) - S(u + h)) . dz 
a 

< 0 since S is an increasing function. 

Thus, Mz(u,h) is a decreasing function of a. 
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We now turn to establishing the consistency of: (1) the expected loss; 
(2) the process risk; and (3) the parameter risk. Without loss of generality, 
one can assume that Z1 is the occurrence severity for the layer from UI 
to aI + h and Z2 is the occurrence severity from the layer from u2 to 
a2 + h with aI < ~22. 

1. The consistency of the expected loss: 

E[Zr] = E,[M,(ur,h]a)l > EabWzz,h~~)l = EL&l. 
2. The consistency of process risk: 

UI = E,[Mz(u,,hla) + d . iWu,,h[d21 
> E,[M2(uz,h(a) + d * M(d+x)21 
= U? 

3. The consistency of parameter risk: 

vlj = (1 + C) * &x[MI(ul,hla) * E[zjlall 
- Ea[Ml(ul ,hla)l * JL[E[Zjl~ll 
> (1 + C) * Ea[Ml(u2,hla) . E[Zj(all 
- Ea[Ml(a2$[a)l * L[E[Zjl~ll 
= V2j. 

It then follows that: 

(V . ii), > (V . ii)*. 


