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EFFECTS OF VARIATIONS FROM GAMMA-POISSON 
ASSUMPTIONS 

GARY G. VENTER 

Abstract 

Two types of variations from negative binomial frequency 
are considered: mixtures of Poisson other than Gamma, and 
Poisson parameters that change over time. Any severity dis- 
tribution can be used instead of the Gamma as a mixing 
distribution, and Bayesian estimators are easy to calculate 
from the mixed probabilities. In the case of changing fre- 
quencies over time, the Gerber-Jones model is illustrated for 
calculating credibilities. The Bailey-Simon method is found to 
be useful for testing model assumptions. 

1. INTRODUCTION 

A model often used for experience rating assumes that each individual 
risk has its own Poisson distribution for number of claims, with a Gamma 
distribution across the population for the Poisson mean. This model has 
been known since at least 1920 (M. Greenwood and G. Yule [7]), and 
has been applied to insurance experience rating since at least 1929 
(R. Keffer [lo]). However, there is meager theoretical support for the 
Gamma distribution as a mixing function, and the main empirical support 
given in many studies is that it provides a better fit to the aggregate 
claim frequency distribution than that given by the assumption that all 
individuals have the same Poisson distribution; e.g., see Lester B. Drop- 
kin [4], B. Nye and A. Hofflander [12], or R. Ellis, C. Gallup, and 
T. McGuire [5]. The Poisson assumption for each individual does have 
theoretical support, but not enough to be regarded as certain. For ex- 
ample, the Poisson parameter could vary over time in random ways, to 
be discussed further below. 

Several alternative models, which, in many cases, fit better than the 
Poisson, have been presented in the literature; e.g., Gordon Willmot 
[19, 201, M. Ruohonen [14], W. Htirlimann [8]. Many of these are 
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mixtures of the Poisson by other distributions, such as the inverse Gaus- 
sian, reciprocal inverse Gaussian, beta, uniform, noncentral chi-squared, 
and three-parameter origin shifted Gamma distributions. 

The purpose of this paper is to explore the adequacy of the Poisson 
and Gamma assumptions, the information needed to verify them, and 
the experience rating consequences of using these assumptions when 
they do not apply. As will be seen below, there’are substantial differences 
in the experience rating implications of models which have very similar 
predictions of the aggregate claim frequency distribution. Thus, a model 
which gives a good fit to this distribution does not necessarily give 
proper experience rating adjustments. In other words, a model that just 
fits better than the Poisson is not enough for experience rating use. More 
detailed records which track individuals over time are needed to deter- 
mine how much credibility should be given to individual claim experi- 
ence. 

2. PRELIMlNARY BACKGROUND 

Suppose each risk has its own claim frequency distribution, constant 
over time, and that the mean of the individual risk annual claim frequency 
variances is s2, and the variance of the risk means is t*. Among linear 
estimators, the expected squared error in subsequent observations is 
minimized by the credibility estimator zx + (1 - z)m, where m is the 
overall mean, x is the individual risk annual frequency observed, and 
for n years of observations, z = nl(n + K), with K = s2/t2. See, for 
example, A. Bailey [l], H. Btihlmann [3], W. Jewel1 [9]. If the restric- 
tion to linear estimators is removed, then the Bayesian predictive mean 
minimizes the expected squared error. Thus, when the Bayes estimator 
is linear in the observations, it must be the same as the credibility 
estimator. 

This is the case with the Gamma-Poisson model. In fact, if the 
Gamma has parameters (Y and p, with mean a/p and variance a/P*, the 
Bayesian predictive mean is 

a+n”x a P n .- -=p p+n+X’P+n’ 
p+n 
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which is the credibility estimator, as m = s2 = a/p and t2 = a/p. The 
linearity of the Bayes estimate gives a degree of justification to this 
model. Besides being easy to calculate, it is also less likely than some 
nonlinear functions to take on exaggerated values in extreme cases. The 
fact that it is the best linear model implies that even if it is the wrong 
model, it is the best linear approximation to the Bayes estimator of the 
actual distribution. The mixed distribution is the negative binomial, with 
the probability of n claims given by 

(a + n - l)!fY 
Pn = (1 + f3)a+nn!(cx - I)! ’ 

or recursively by 

P [ 1 a+n 
po= 1+p ~ a, pd = pn 

(n + 1X1 + P> ’ 

3. VARIATIONS FROM GAMMA ASSUMPTION 

First, the Poisson assumption will be retained, so that each individual 
is assumed to have a fixed Poisson probability for number of accidents, 
and variation from the Gamma assumption will be explored. 

With the Poisson assumption, each risk has the same mean and 
variance, so that the average risk variance s2 is the same as the average 
risk mean, m. Since the aggregate variance v is s* + t2, t* is the difference 
between the aggregate variance and mean (assuming the variance exceeds 
the mean). Thus, the best linear estimator is the credibility estimator 
with K = ml(v - m). This is also the Bayes estimator for the Gamma 
prior distribution having variance t2. 

Other prior distributions may also have variance t2, but they have 
different Bayes estimators which are not linear functions of the obser- 
vations. Two distributions will be shown below for which the aggregate 
probabilities are much the same as the Gamma provides, but the Bayes 
estimates are substantially different for some risks. Nonetheless, since 
the variances are the same, the predictive means from the Gamma prior 
will be the best linear approximation to the Bayes estimate for either 
distribution. 
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The first is the good-risk/bad-risk model. The population has two 
types of risks; 90% are good risks with a low probability of a claim, 
and the other 10% are bad risks with a high claim probability. As each 
risk is still assumed to be Poisson distributed, this model is the Poisson 
mixed by a two-point prior. If the two Poisson means are a and b, then, 
over all risks, the probability of n claims isp, = .9a”e-“lnf + .lb”e?l 
n!, the mean is m = .9a + . lb and the variance is t* = (.9)(.1)(6-a)*. 
Thus the method of moments estimators for a and b are: a = m - t/3 
and b = m + 3t. Given a risk with k claims in n years, the probability 
(conditional on k) that it is a bad risk is 

qk = 
1 

k’ 

by Bayes Theorem. The Bayesian predictive mean for that risk is thus 
a(1 - qk) + bqk. 

The second model is the inverse Gaussian distribution, discussed in 
Willmot [ 191. This can be parameterized with two parameters b and c 
with density 

mean = h, and variance = t’ = h’c. This is a somewhat more skewed 
distribution than the Gamma. In fact. the skewness is 3~’ ‘, and the 
Gamma with the same first two moments has skewness 2,’ !. The Poisson 
mixture has mean = h, variance = h + h’c, and the probabilities, p,, of i 
claims given by: 

po = t? 
1/r[1-(1+2br)~J. 

9 

pl = p&( 1 + 2bc)- ‘; 

pn = 
2bc(n - l)(n - 1.5)p,-l + b’p,-z 

(1 + 2bc)n(n - 1) 
,n> 1. 

The inverse Gaussian is not obviously related to the Normal distri- 
bution. It gets its name from the fact that there is a different, but 
equivalent, way of parameterizing the distribution that looks like a Nor- 
mal distribution if you switch the variable and one of the parameters. 
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The cumulative probabilities can be calculated using the standard Normal 
cdf N(X) by 

F(x) =+$) +P[1 -I+&!)] 
As with any Poisson mixture, given a risk with n claims in a period, 

the Bayesian predictive mean for the number of claims to be observed 
in a future period is (n + l)~~+~ + pn. This can be readily verified as 
follows: let j(X) denote the density for the Poisson parameter A. Then 
pn = l/n! Jflh)e-“h”dA. The Bayes predictive mean given n claims is 
E(N]n) = &A/n) = J AflA]n)dA = llp,n! J AflA)e- A”dA, by Bayes 
theorem, and the result follows. This implies that any severity distribu- 
tion can be used as the mixing distribution for a Poisson. The advantage 
of the inverse Gaussian is that pn is given by the above recursive formula, 
while many other distributions would require numerical integration for 
this. 

For the sake of comparison, the Gamma, two-point, and inverse 
Gaussian prior distributions will be fit to a sample of medical malpractice 
claims by the method of moments, so that the variances will be the same 
and thus the Gamma-Bayesian estimators will be the best linear approx- 
imation to the other two. The sample used is four years of closed claims 
data from 7,744 internists as reported in Ellis, Gallup, and McGuire [5]. 
This is for illustration only, as the use of closed claims for pricing 
insurance has been questioned on various grounds [ 111. The number of 
doctors having various claim counts is shown below: 

Number of claims 0 1 2 3456 
Number of doctors 7,299 386 52 5 1 1 0 

This sample has mean .0664 and variance .0834. For the four-year 
period, by the Poisson assumption, m = S* = .0664, and thus t = 
variance - s2 = .0170. Matching the moments m and t2 will give priors 
for a four-year Poisson parameter. These prior distributions get the 
following parameters: 

Gamma: (Y = .260 
Inverse Gaussian: b = .0664 
Two-Point: a = .0229 

p = 3.91 
c = 3.86 
b = .458 
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Using the formulae above, these parameters result in the following 
Bayesian predictive means (i.e., the expected number of claims in four 
years) for risks having the number of claims shown. The percentage 
errors from using the Gamma when one of the other prior distributions 
is correct are also given. 

BAYESIAN ESHMATES 

Number of Claims: 0 I 2 3 4 5 6 

Gamma .0530 ,251 ,460 664 X6X I.070 I.270 
Inverse Gaussian .OSJO ,223 521 X52 1 IW 1.530 I.860 
Two-Point .0.521 2x0 443 457 45x .45x .45x 

Error from usmp Gamma If true dtbtributmn IS’ 

Inverse Gaussian -2% 15% -12% -22Ch -27% -30% -32% 
Two-Point 1% - 8%’ 4% 45% Yo% 134% 177% 

The overall distribution of number of claims predicted by each dis- 
tribution is given below. These sample and fitted aggregate claim fre- 
quencies and the Bayesian means above are shown in Figures 1 and 2. 

OVERALL CLAIM PRORAHILI-111:s 

Number of Clams. 0 I 2 3 4 5 6 
- --~~~ 

Sample ,943 .049x .00672 W6 ml I29 ooOl290 .OOOWOO 
Gamma ,943 .04Y9 .wx40 000983 .OOOl63 OOoO283 .CNOOOSl 
Inverse Gaussian ,942 .0509 .0056X Ow987 .0002lO .m500 .OCC0127 
Two-Point ,943 .04Yl .006X6 001010 tkW1 I6 0000106 .OOOW38 
Single Poisson ,936 .0621 .00106 000046 7 SXE-7 I.OIE-8 l.llE-IO 

If the Bayesian estimates are used as experience rating charges, the 
above two tables together show that small differences in the aggregate 
probabilities lead to fairly large differences in charges. On a percentage 
basis, the mixed distribution probabilities differ from each other mostly 
in the right tails, where the claim data is least reliable. This is also the 
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FIGURE 1 
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FJGURE 2 
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area in which the Bayesian estimates diverge the most. It is not clear 
that goodness-of-fit measures could be of much help in selecting among 
these distributions either, because without theoretical reason to support 
one prior distribution or another, a good fit in the left tails has question- 
able relevance to the right tails. 

Nonetheless, as great as the differences are, they are small compared 
to those from using the overall mean of .0664 for each risk; i.e., not 
experience rating at all. If the population were known to consist of some 
mixture of risks, each with fixed Poisson distributed claims exposure, 
the two-point model might be the most justifiable in this case because 
the penalty for the right tail risks, whose exposures are not clearly 
understood, would be less. On the other hand, if it were known from 
other investigations that the high-frequency doctors were actually quite 
bad, a more heavily-tailed model might be justified. 

4. VARIATIONS FROM POISSON ASSUMPTION 

Two types of variation from the Poisson assumption are considered 
below. First, each risk may have some distribution of claim counts other 
than Poisson, with that distribution invariant over time. Second, each 
risk may have a fixed distribution for each time period, but the mean 
changes each period, with the degree of change coming from a distri- 
bution that is invariant over time. 

The first case could arise if the risk has a Poisson distribution for 
each period, but the Poisson parameter is drawn at random each period 
from a prior distribution. The variance for a year would be the sum of 
the expected Poisson variance and the variance of the Poisson means 
from the prior. This is different from the second case because the Poisson 
parameters are drawn from a fixed distribution each year, while in the 
second case the incremental change in the parameter is so drawn. Both 
cases allow variation among risks in addition to the greater variation 
each risk can display due to the relaxation of the Poisson assumption. 
For instance, the good-risk/bad-risk model could end up being a mixture 
of two Negative Binomials instead of two Poissons. Since there are many 
possibilities for distributional assumptions, the analysis of these cases 
will be carried out only for the linear approximations to the Bayesian 
estimates, that is for the credibility estimators. 
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In the first case, the credibility estimator is the same as discussed 
above, zx + (1 - z)m, with z = nl(n + s’/t*), again where S* is the 
expected individual risk variance and tZ is the variance of the risk means. 

This result did not depend on any Poisson assumption. However, without 
the Poisson assumption, it is not as easy to determine what S* and t* 
should be. They still add to the total variance V, but v - m might not 
be a good estimator of t’, 
extreme case, s* = 

as s* may be greater than m. In fact, in the 
v and t* = 0, when all risks have the same (non- 

Poisson) distribution of claims. In this case, z = 0 and the best estimator 
for any risk is the overall mean m. 

As Nye and Hofflander [ 131 point out, this is not an appealing model, 
because most people believe there is some inherent difference among 
risks. However, it is also plausible that risks would have some degree 
of instability over time as well, and the question becomes how much of 
the difference v - m can be attributed to each effect. Data such as the 
distribution of claims in period 2 for the risks with no claims in period 
1 would be useful for making such determinations. If the no-claim risks 
from period 1 had the same distribution in period 2 as did all the other 
risks, for example, it would lend support to the conclusion that all risks 
are fundamentally the same. On the other hand, if they had better-than- 
average experience, the credibility that should be attributed to those risks 
could then be estimated. 

One model of the latter case is provided by H. Gerber and D. Jones 
[6]. The individual risk mean changes each year by a random amount 
taken from a distribution with mean 0 and variance d’. For year 1, the 
risk means are distributed around an overall mean m with variance t*. 
(Thus, for year 2, assuming independence, the mean is still m, but the 
variance is t* + d*, etc.) The distribution of actual results around a risk’s 
mean for a given year has variance s*. Then, given a risk with losses Xi 
in year i, the linear least square estimator C; + , for the next year’s losses 
is given iteratively by: 

Cl+ 1 = ZiX; + ( 1 - 'ijcl 
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where 

L zi + J -. 
z’=L+l’ zi+1 = zi + J + 1 ; 

L = t*/s*; J = d*/s*. 

This follows from [22: p. 4281 by taking v = s* and w = t*. 

Gerber and Jones had a somewhat more general framework, in that 
m and t* were any prior mean and variance for the (conditional) mean 
of Xi, not necessarily arising from a distribution of risks around a grand 
mean. Working through the iterative definition gives 

Ci+l = m Ii (1 - Zj) + jZjl XjZj J++, (1 - Zh)7 
j=l 

which shows how the credibility for an observation decreases in esti- 
mating ever later future observations. When al1 the past observations are 
0, the estimate reduces to the first term above. 

One study that provided data that could be used to evaluate the above 
cases was that of Robert Bailey and LeRoy Simon [2]. They estimated 
the credibility of one, two, and three years of driver experience as 1 
minus the relative claim frequency of drivers with one or more, two or 
more, and three or more years without a claim prior to the experience 
period. The results for five driver classifications are shown below. 

CREDJBJLJTY FOR CLAJM FREE EXPERIENCE 

Class 1 year 2 years 3 years 

1 .046 .068 .080 
2 .045 .060 .068 
3 .051 .068 .080 
4 .07 1 .085 .099 
5 .038 .050 .059 
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Bailey and Simon note that the additional credibility for years past 
the first is less than would be anticipated. Fitting nl(n + K) to this data 
by row by least squares for K gives the percentage errors: 

PERCENTAGE ERRORS IN CREDJBJLITY WITH nl(n + K) 

Class 1 year 2 years 3 years K 

1 -30 -8 +14 30.4 
2 -38 -10 +16 35.1 
3 -37 -8 +14 30.0 
4 -41 -6 +17 23.2 
5 -39 -9 +13 41.6 

The large errors and systematic signs on the errors are indicative that 
the standard credibility model is inappropriate. Any other method of 
fitting the K’s would have the same result. Also, the credibility from 
this model being too high in the third year and too low in the first 
indicates that the relevance of a year’s data declines as it ages, which 
suggests that the changing mean model may apply. Fitting this by using 
least squares to find J and zl gives the following percentage errors: 

PERCENTAGE CREDJHJLJTY ERRORS USING GERBER-JONES MODEL 

Class 1 year 2 years 3 years 21 J - 

I -4 $3 -1 .0098 .018 
2 -9 $7 -1 .0035 .020 
3 -8 $7 -3 .0065 .022 
4 -13 +11 -3 .0024 .033 
5 -11 +8 -2 .0044 .016 
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This fits much better, but it does use more parameters and still has 
systematic sign changes. The extra parameter helps because it does the 
right thing-it decreases the relative credibility for the older years, 
reflecting changing risk conditions over time. Nonetheless, there still 
seem to be aspects of the data that are not captured by the model. 

The Bailey-Simon results support the use of changing parameter 
models over fixed parameter mixed models, Poisson or not. They also 
support the use of experience rating over not experience rating, and their 
work points to the kind of data that is needed to compute experience 
credits and debits. 

Other studies using similarly detailed data have also rejected the 
stable Poisson assumption for automobile insurance. These include Ve- 
nezian [ 161, who found that a two-point Poisson model with shifting 
driver probabilities between the two parameters fit well to California 
data from 1961-1963, and Richard Woll [21], who found problems with 
both the Gamma and the stable Poisson hypotheses using four years of 
North Carolina data published in 1970. These findings do not challenge 
the value of experience rating, but they do tend to reduce the credibilities 
that would apply. 

The situation is not necessarily the same for medical malpractice, in 
that greater training is required prior to licensing, so learning by doing 
should have a smaller effect. However, there is anecdotal evidence to 
the contrary. In one study that followed individuals across time periods, 
Venezian, Nye, and Hofflander [ 181 were not able to reject the stable 
Poisson hypothesis using a chi-square test. However, the results of 
Venezian [ 171 suggest that there is not enough data in their sample to 
detect moderate deviations from Poisson by this test. Other tests, such 
as computing the Bailey-Simon credits and debits deserved by class, 
would be possible from their data. Another caveat is that since the sample 
contains only large claims, it may be better approximated by the Poisson 
than would data using all claims, due to the effect of the severity 
probability of a loss being large (see Joseph Schumi [15]). 
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In conclusion, aggregate frequencies are not adequate to verify either 
the Poisson or the Gamma hypothesis. Variations from the fixed Poisson 
assumption are likely, and would tend to lower the credibility which 
should be given to risk experience; variations from the Gamma assump- 
tion could lower or raise it. The Bailey-Simon method provides a good 
way to test proper credibilities, and the Gerber-Jones model gives a 
method to model changing frequencies over time. 
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