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THE DISTRIBUTION OF AUTOMOBILE ACCIDENTS- 
ARE RELATIVITIES STABLE OVER TIME? 

EMIL10 C. VENEZIAN 

Abstract 

Data on the distribution of automobile accidents typically 
reject the hypothesis that accident rates are the same for all 
members of a group. Given these findings, policy analysis is 
usually based on models that assume that accident proneness 
differs among individuals of a group and that the differences 
are stable over time. The analysis presented in this paper is 
aimed at assessing the validity of these assumptions. 

A simple model that allows for variability in both prone- 
ness and exposure level is used to estimate the potential 
contribution of variability in exposure levels to total variabil- 
ity in accident rates. Data indicate that variability of expo- 
sures may have a substantial bearing on the variability of 
accident rates. 

Data from several groups of drivers from California and 
North Carolina are used for direct tests of the stability of 
relative accident rates. When the California data are used, 
the tests do not lead to a rejection of the hypothesis that 
relative accident rates are stable. When the North Carolina 
data, based on a larger number of observations, are used, 
the tests clearly reject the hypothesis. 

The implications of these findings for economic and policy 
analysis are discussed. 
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I. INTRODUCTION 

For most types of accidental events, the number of accidents over a 
period does not exhibit a Poisson distribution, even when data are re- 
stricted to a group of individuals who are presumed homogeneous. This 
finding has been reported in a variety of settings such as automobile 
accidents [I 1, 13, 161, health insurance claims (61, and professional 
liability incidents [9, 151. This empirical finding is often rationalized by 
appealing to the notion of differences in “accident proneness” among the 
individuals in the groups under analysis. The typical model assumes that 
each individual within the group has an inherent accident rate, and that, 
for each individual, the number of accidents in a given period has a 
Poisson distribution with the appropriate parameter. Each individual in 
the group under study is viewed as having an inherent accident rate, and 
this rate is assumed to differ among individuals according to some 
probability distribution. This model, often called the “compound Poisson 
model”’ has reportedly been successful in fitting the distribution of the 
number of accidents or claims observed in a given time interval. 

The apparent success of these attempts, especially those based on 
the assumption that accident proneness has a Gamma distribution, does 
not provide a sound basis for the formulation of public policy.? In the 
first place, the usual interpretations of the compound Poisson require 
that the accident rate of a given individual be stable over time, a char- 
acteristic for which tests have seldom been performed. Another short- 
coming of these methods is that the distribution inferred from this model 
is identical to the distributions inferred from other models [2, lo]. 
Moreover, models exist that provide results which are as good as, or 
better than, those obtained under the assumption that accident proneness 
differs among individuals; however, these models have very different 
implications for public policy [IO, 14, 171. It is therefore of interest to 
examine more closely the relationship between data and hypothesis on 
one hand and the relationship between hypothesis and policy on the 
other. This paper examines the issue in the context of automobile insur- 
ance. 

’ See, for example, Feller 121, page5 28X-193: Seal 1 IO], page 31. 
? Public policy generally refers to policies adopted by governmental or qua+govemmental entities. 
In the present context. it includes such diverse areas as licensing. limitation of privileges. and the 
Imposition of premium penalties for past events. 



THE DISTRIBUTION OF AUTOMOBILE ACCIDENTS 311 

The paper first discusses briefly, in Section 2, the data that will be 
used in exploring the theoretical issues. Section 3 discusses the com- 
pound Poisson model that is often used to justify both private and public 
initiatives in accident prevention. The paper then consists of three main 
sections. Section 4 discusses an alternate source of differences in the 
inferred proneness of individuals. This alternate model leads to a different 
valuation of the benefits of any policy that restricts driving by individuals 
who have had relatively large numbers of accidents in the past. There is 
relatively little that can be done with existing data to discriminate be- 
tween the models. Since the models lead to different conclusions, data 
to permit an assessment of the alternatives should be collected if at all 
possible. Section 5 considers a test of the hypothesis that claim pro- 
pensities (or more accurately, indices of claim propensity) are constant 
over time when taken over reasonably long durations. Such constancy 
is essential if we are to use historical data to implement a policy whose 
benefits can be asserted to exist only to the extent that past accidents 
predict future accident propensity for the individual. The available data 
on automobile accident involvement indicate that constancy is not a 
reasonable assumption. Section 6 provides a discussion of the findings 
in the context of economic and policy analysis of insurance issues. 

2. DATA FOR ANALYSIS 

In order to examine these issues, this article uses two sets of data 
from available literature. Both of these sets related to the accident records 
of groups of drivers whose records were followed over a long period of 
time. 

The first body of data relates to a sample of drivers in California. 
The data used in the present analysis were derived by the author from 
available tabulations [5]. The data relate to accidents experienced in the 
years 1969 to 1974 by a sample of California drivers who had licenses 
active for the period 196 1 to 1974. The original paper gives extensive 
tabulations by sex and by pattern of accidents. The basic data used in 
this paper were derived from the original data and are presented in three 
tables in Appendix A. The analysis will be performed separately on the 
three sets of data: (I) for female drivers, (2) for male drivers, and (3) 
female and male drivers combined. 
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The second set of data is available in the form used directly for 
computations [ 121. It relates to accidents experienced in the periods3 
1967-1968 and 1969-1970 by all North Carolina drivers who were at 
least 22 years old in November of 1970. and in the twelve-month periods 
1969 and 1970 for North Carolina drivers who were 2 1 years old in 
November of 1970. For drivers whose age at the end of the study was 
22 years or more, the data are available separately for ages 22-25, 26- 
39. 40-59, and 60 and over. In all cases. the drivers are classified by 
their age at the beginning of the study period. 

3. THE COMPOUND POISSON MODEI. AND ITS INTEKPKL(TATION 

The compound Poisson model pictures each individual as having an 
inherent propensity to be involved in an accident. Most models picture 
that propensity as a fixed number that does not vary over time. Strict 
constancy from day to day is not necessary as long as it holds over 
periods of time comparable with those for which data are available. 
Moreover, the mathematical and statistical analysis would not be affected 
substantially if that element which is constant were an index of proneness 
which modifies the average rate for the group as a whole. What is of 
major importance to the arguments surrounding the compound Poisson 
model is that this index is immutable for a given individual. 

The principal statistical implication of the compound Poisson hy- 
pothesis is that individuals with large numbers of accidents are relatively 
more common than would be predicted by the simple Poisson model. In 
statistical terms, the consequence of having a compound Poisson distri- 
bution is that the variance of the number of claims will be larger than 
the mean number of claims. In contrast, for the simple Poisson, the 
mean and the variance of the number of claims are identical. 

The usual interpretation of the compound Poisson hypothesis is that 
mdividuals with large accident propensities affect the group adversely, 
leading to a higher average number of claims. This affects the insurability 
of those members of the group who have low propensity indices. In 

’ The periods do not cover the calendar years. A\ explained in the origmal rei’erence, the nominal 
year 1970, for example. covers the twelve-month period hegmning m Drcember 1960 
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automobile insurance, two streams of rhetoric have arisen from this 
interpretation. Some argue that failure to reflect the differences among 
group members in insurance rates amounts to “guilt by association.” 
Others bemoan the fact that insurance premiums are made to depend on 
factors that are not controllable by the individual. In the context of 
medical professional liability, the model elicits the picture that a few 
“bad apples” are responsible for most of the problems and has resulted 
in calls to revoke the licenses of these “bad apples” and thus reduce the 
number of claims. 

If this picture is true, an economic analysis of restricting the privilege 
of driving, either through license restrictions or through the provision of 
insurance only at high rates, would be useful. The best level of restric- 
tions would be determined by balancing the costs and the benefits of 
such a decision. The costs arise primarily from curtailing the freedom 
of some individuals to drive automobiles; they have a monetary com- 
ponent related to the difference in price between driving one’s own car 
and relying on alternate modes of transportation, and a nonmonetary 
component related to loss of freedom. The benefits arise from the reduced 
number of accidents, and these also have monetary and nonmonetary 
elements. For society as a whole, monetary benefit? arise from avoiding 
costs to rectify the consequences of accidents, while the nonmonetary 
component stems from the reduction in pain and suffering associated 
with the avoided mishaps. The calculation of the benefits depends very 
strongly on the exact hypothesis which motivates the compound Poisson 
model. To explore the extent to which this might affect our thoughts 
about policy, it is worthwhile to contrast the usual assumption, that the 
differences in accident experience are due to differences in inherent 
ability, with a specific alternate hypothesis. 

The key parameter in the Poisson distribution is not an “accident 
propensity” that measures inherent ability, but a weighted measure that 
recognizes both the ability to perform a dangerous task and how often 
the task is performed. The expected number of automobile accidents 
which one individual might have in a year may not be a fixed quantity; 
it might, for example, depend on the number of miles that the individual 

4 Distributional costs and benefits will also result. Individuals with low accident rates will not have 
to subsidize individuals in the same group that have higher accident rates. 
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chooses to drive under various sets of conditions. Similarly, the expected 
number of claims against an engineer might depend on the number of 
plants she designs, and the number of claims that a physician might 
expect could depend on the number of patients that are treated by that 
physician. Thus variation in the Poisson parameter among drivers does 
not require that the rate of accidents differs among individuals when the 
level of activity is identical. It could be explained equally well, from a 
statisical point of view, if all drivers had exactly the same accident 
proneness under every given set of driving conditions but they differed 
in the miles they drove under various conditions. 

This alternate hypothesis as to sources of variability suggests a dif- 
ferent interpretation of the compound Poisson process. In this picture, 
all drivers in a group have exactly the same probability of having an 
accident in each mile they drive; but, they differ from each other inher- 
ently in the mileage driven. To keep an exact correspondence to the 
previous model, it is important that the distance and nature of driving in 
this version be as immutable as the inherent accident probability in the 
previous one; these measures of exposure may change only in ways that 
are strictly coupled with the average for the group as a whole. 

Neither of these simple models is likely to be strictly valid. In all 
likelihood, drivers differ with respect to the probability that they will be 
involved in an accident under a given set of conditions. In all likelihood, 
they also differ with respect to the exposure level they chose. Thus a 
model that recognizes differences in both propensity and activity levels 
is likely to provide a better explanation of actual experience.5 

4. INTERPRETATION OF THE EXCESS VARIANCF 

When the number of accidents observed for each of many members 
of the group is analyzed, we expect to see a variance that is approximately 
equal to the mean if all members have the same probability of having 

’ The combined effect of individual propensity and exposure is patticularly important in economic 
contexts in which the driver has control of the exposure level. at least within broad limits. 
Unfortunately, this dual determination has seldom been considered. The literature on moral hazard, 
for example. appeals to a “level of care” which might be selected by the driver, but does not take 
into account the possible direct choice over the level of exposure by restricting or expanding the 
mileage driven. 
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an accident in a unit of time, and a variance greater than the mean if 
individual members differ in this respect. A positive difference between 
the variance and the mean, or “excess variance,” results from differences 
in the Poisson parameters of the members of the group. 

If we are observing individuals over a period of time T, the Poisson 
parameter for individual i will be: 

Mi = kipiir, (1) 

where ki is the number of opportunities for individual i to have an 
accident and 

pc is the individual’s probability of an accident on any given 
opportunity. 

Usually there is a measure of T, but there are no measures of ki or 
pi; so this model does not have an operational meaning.6 The model 
adopted in arguing that probability of an accident varies across individ- 
uals in the group is equivalent to arguing that ki is the same for all 
individuals. The alternate model discussed earlier assumes that ki varies 
across individuals but pi does not. Equation 1 provides a more general 
formulation and can be made operational if there are measures of the 
level of activity; for example, the number of miles driven per year for 
automobile accidents, the number of takeoffs for small aircraft accidents, 
or the number of specific surgical procedures for medical professional 
liability. Even in the absence of such measures, formulation is worth 
considering because it may yield some insight into the process. 

If the Poisson parameter, Mi, varies across individuals, it can be 
proved that the average number of accidents for individuals in a group 
is given by: 

Ei(N) = Ei(Mi) = TEi(kipi), (2) 

and 

Vari(N) - E;(N) = T’Van(kipi). (3) 

b In some contexts it would be possible to obtain information about the level of exposure, even 
though imperfect. In relation to automobile accidents, the mileage driven per year might serve as 
a measure of k,. 
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In these equations, E;(Z) denotes the expected value of Z and Var,(Z) 
denotes the variance of Z, both measured over the population in the 
group. 

If we denote the excess variance, Var;(N) - Ei(N), as X,(N), the 
variance of this statistic under the null hypothesis that the Poisson pa- 
rameter is identical for all members of the population is given by: 

Var,(X&V)) = f E?(kip,) = t E’(N) 

where I is the total number of individuals observed [ 141. 

(4) 

It is worth noting that if k, is the same for all individuals, the excess 
variance is proportional to the variance of p,, whereas if p, is the same 
for all individuals, then the excess variance is proportional to the variance 
of k,. If both ki and p; vary, then the excess variance will depend on the 
joint distribution of pi and ki. 

Assuming for now that a stable compound Poisson is the proper 
model, it is of interest to determine whether the data indicate that there 
is significant heterogeneity in a given group and to interpret the excess 
variance, if it can indeed be said to be positive. The equations given 
above can be used for this purpose. A test requires simply computing 
the observed excess variance and the variance of that quantity under the 
null hypothesis; this statistic can be estimated by using Equation 4. The 
sample estimate of the excess variance is the sample estimate of the 
variance minus the sample estimate of the mean. If the number of 
observations is large, both these sample estimates are asymptotically 
normal [ 11; it follows that the difference is asymptotically normal, so 
the ratio of its sample value to the standard deviation should, under the 
null hypothesis, be distributed as a standard normal deviate. When 
interest is centered on determining whether there is significant hetero- 
geneity among members of the group, the null hypothesis is that there 
is no heterogeneity; under those conditions, the distribution of claims 
would follow a simple Poisson distribution. Table 1 summarizes the data 
used in assessing the significance of the excess variance. Table 2 presents 
the main results. It is clear that the excess variance is positive and highly 
significant for all the groups under consideration, since the ratio of the 
estimate to its standard deviation is always greater than 15. 



State and 
Group 

CA 
Females 
CA 
Males 
CA 
All 
NC 
22-25 
NC 
26-39 
NC 
40-59 
NC 
60+ 
NC 
21 

TABLE 1 

NUMBER OF DRIVERS BY GROUP AND NUMBER OF ACCIDENTS 

Number of Accidents 

0 1 2 3 4 5 6 7+ Total 
___~------~ 

19,634 3.573 558 83 19 4 1 0 23,872 

21,800 6,589 1,476 335 69 16 4 4 30,293 

41,434 10,162 2,034 418 88 20 5 4 54,165 

276,08 1 69,811 16,770 4,060 967 236 74 26 121,221 

709,649 143,601 29,401 6.658 1,725 447 124 51 891,656 

762,592 138,955 23,580 4,492 1,054 254 74 33 931,044 

254,255 47,095 8,159 1,511 344 97 28 24 311,513 

144,803 25,302 4.007 637 105 1.5 5 1 174,875 
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State and 
GlWlp 

.~ 

CA 
Females 
CA 
Males 
CA 
All 
NC 
22-2s 
NC 
26-39 
NC 
40-59 
NC 
60+ 
NC 
21 

TABLE 2 

ANALYSIS 01; Exc.tss V,WIANC.I. my GROUP 

Number of Accidents 

Mean” Varianceh 

0.2111 0.2483 

0.3617 0.4435 

0.2953 0.3631 

0.3294 0.4322 

0.2609 0.3439 

0.221 I 0.2152 

0.2252 0.1822 

0.2167 0.2353 

Sample Excess Variance 

Value’ Std.Dcv ” Value/Std.Dev. 
_- 

0.0372 0.0014 27.22 

O.C)XlX 0.0042 19.68 

0.0678 0.0025 26.72 

0. 1028 0.001 I 94.66 

0.0830 0.0006 155.63 

0.0541 0.000.5 Il8.05 

0.0570 0.000x 70.63 

0. IX67 0.0010 180.14 

a. Mean of thr numb of accidents 
b. Variance of the numbrr of accident\ 
c. Variance minus mean of the number of accidents 
cl. Calculated 3~ Ihe square rool of the vx~~nct! piien tq t:qualr~w 4 

The statistical significance of the excess variance is of importance in 
examining private policy issues such as merit rating and freedom to 
underwrite. From this perspective, it is important to know whether the 
data suggest that the Poisson parameter differs among individual mem- 
bers of the group. The existence of variability among individuals suggests 
that differential pricing based on experience may be useful in achieving 
an equitable allocation of future costs. From the point of view of public 
policy issues such as restricting the ability of individuals to drive, how- 
ever, this information is not sufficient because the variability may be due 
to differences in the level of activity of individuals rather than to differ- 
ences in claim propensity. 
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While this distinction is not important in dealing with private mech- 
anisms such as classification by individual companies in a market with 
open competition, it is important in dealing with public mechanisms such 
as classifications mandated by the state or licensing restrictions. As 
discussed earlier, if the difference in Poisson parameters arises predom- 
inantly from differences in the level of activity, restrictions placed on 
the privilege of driving by individuals with large numbers of accidents 
will either restrict their mobility or force them to use alternate drivers 
who have comparable or higher propensities to have accidents for cor- 
responding exposures. Thus social benefits might not be experienced, 
but substantial social costs would be incurred. 

It is not possible to draw firm conclusions about the relative impor- 
tance of level of exposure and accident propensity from the available 
data. The information is sufficient, however, to permit drawing tentative 
conclusions.’ The line of inference begins by noting that the excess 
variance measures the variance of Poisson parameters, as is shown by 
Equation 3. The ratio of this quantity to the square of the Poisson 
parameter represents the coefficient of variation of the parameter. 

TABLE 3 

VARIATION OF POISSON PARAMETER BY GROUP 

State and Poisson 
Group Parameter” 

Excess 
Varianceh 

Coefficient of 
Variation’ 

CA Females 0.21 I I 
CA Males 0.3617 
CA All 0.2953 
NC 22-25 0.3294 
NC 26-39 0.2609 
NC 40-59 0.221 I 
NC 60+ 0.2252 
NC 21 0.2167 

0.0372 0.83 
0.0818 0.63 
0.0678 0.78 

0.1028 0.95 
0.0830 1.22 

0.0541 1.11 
0.0570 I.12 
0. I867 3.98 

a. From Table 2, column 2 
b. From Table 2. column 4 
C. Coefficient of variation of the Poisson parameter 

’ Another possibility that deserves consideration is that the classification system is inadequate 
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Table 3 shows the results for the various groups. In most cases, the 
coefficient of variation of the Poisson parameter among members of a 
group is very close to one. In the case of North Carolina drivers of 21 
years of age, it is almost four. 

The interpretation of this number must, unfortunately, rely on the 
context of the problem because firm data arc not available.X At one 
extreme, if the level of exposure is the same for all individuals, the 
coefficient of variation of the Poisson parameter would approximately 
equal that of accident proneness. At the other extreme, if the accident 
proneness were the same for all individuals, this number would equal 
the coefficient of variation in the exposure level. Any measure of the 
coefficient of variation of the cxposurc level will therefore serve to help 
to place the results in context. in the present case, exposure might be 
measured by mileage driven in a unit of time [X] and might well exhibit 
a large coefficient of variation. Rough estimates are discussed in Appen- 
dix B; they range from 0.3 to 0.9. 

The observed coefficients of variation of the Poisson parameter are 
generally higher than the corresponding estimates for mileage driven. 
However, even with the lower estimates for the latter, variation in mile- 
age driven wouId account for about 25 percent of the variance of Poisson 
parameters. Thus exposure may play a substantial role in determining 
the accident rates of individuals. Data relating accident experience and 
mileage driven by individuals in different time periods could provide 
better measures of the relative contribution of exposure: even accurate 
data on the distribution of mileage driven would be useful in assessing 
the relative effects of exposure and propensity on the Poisson parameter 
of individuals. 

5. A TEST FOR GENERAL. COMPOUND POISSON MODELS 

The discussion presented above indicates that caution must be exer- 
cised in using results from a simple static analysis to guide policy. The 
usual analyses do not pinpoint the reason for variation in Poisson param- 

x Even II’ data were available, it should be remembered that the model used here assumes that 
indiwduals select their exposure level without regard IO their accident proneness. This may be 
appropriate when individuals are insured but may be a poor assumption in the absence of insurance. 
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eters and these reasons may have a bearing on policy issues. For example, 
even people who would accept the hypothesis that the accident propensity 
of an individual, pi, does not change over time might question the 
hypothesis that the exposure level of the individual, k,, does not change. 
Yet the predictability of the Poisson parameter plays a key role in the 
ideology of classification and merit rating [7]. The relevance of statistical 
analysis to policy requires analysis of models that are realistic and address 
the key issues. This is more likely to happen if the public policy issues 
are examined and statistical tools are developed to analyze the key issues. 

One of the important issues in automobile liability is the measurement 
of the benefits to be derived from restricting the mobility of drivers with 
several claims.’ The costs that would be incurred by such restrictions 
would depend primarily on the number of people on whom restrictions 
would be placed, not on the model assumed. The benefits, however, 
may be estimated only in relation to a model. In this context, statistical 
methods can provide assistance only if they are designed to provide 
relevant information and if they are valid. A common feature of the two 
models discussed earlier is the assumption that the likelihood that an 
individual driver will have an accident is an inherent characteristic of 
the individual. Statistics are useful in establishing whether this is a valid 
conclusion. 

For the most part, compound Poisson models have been tested by 
assuming a specific form for the distribution of accident propensities, 
inferring a theoretical distribution to the number of accidents and per- 
forming a goodness of fit test to establish that the fit is adequate in a 
statistical sense. If they result in a good fit, these statistical procedures 
can, at best, establish that it is plausible that during a given time period, 
individuals in a group differ with respect to accident propensity and that 
the propensities can be characterized as having a distribution similar to 
the one assumed. The procedures do not test the assumption that the 
claim propensity of an individual is the same in two different time 

V The statement is valid whether the restriction occurs by exercise of the power of the state to limit 
the privilege of driving, or by exercise of economic power IO increase the cost faced by certain 
individuals in order to drive. The discussion will be limited to the former, since analysis of the 
latter requires knowledge of tradeoffs whose value cannot be estimated readily. 
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intervals. lo That assumption is important in most arguments related to 
either pricing of insurance or to restrictive public policy, since these 
arguments assume that past experience is a good predictor of future 
performance for an individual. 

The analysis presented above still retains the untested assumption 
that the Poisson parameter corresponding to “h I individual. AZ,, is constant 
over time. Direct tests of this assumption are not feasible since we cannot 
observe the same individual repeatedly during the same time interval. 
The literature does provide a method for determining whether this key 
assumption is correct. The method uses data from a single population 
studied in successive time periods. It was tirst suggested by Lundberg 
161, who showed that, for a general compound Poisson with the Poisson 
parameter of each individual being equal to an individual parameter 
times the average rate for all individuals in any given subinterval of 
time, the probability that an individual will have m claims in the sub- 
interval fZ, and n claims in subinterval fl, given that he had m + II claims 
in the interval l1 + ta, is given by: 

P*(m,fzln,f*) = ‘“,+,‘:‘! O;l( 1 - 0 1)” 

where @r = rltl/(rlrl + rzfz), 

rj is the average accident rate in period j, and 
t, is the duration of period;. 

The operational time intervals, ry, contain the average accident rates, 
r,, which are not known, along with the calendar time. r,. In order to 
provide a valid test, it is necessary to develop measures of the ratios of 
operational time intervals. Lundberg argues that the ratios may be esti- 
mated by the ratio of the number of accidents or claims in each subperiod 
to the total number of accidents or claims. Once the parameters are 
known, the conditional distributions for all relevant values of m + n can 
be computed and compared to the observed data by using a chi-squared 
test. Lundberg recommends grouping cells so that the expected number 
of claims is five or more. The degrees of freedom for each value of m + 

‘” A notable exception is the analysis of Weber Il6]. who used methods attributed to Greenwood 
and Yule [3] and Kerrich (41 for the case in which the compounding distribution ia the Gamma 
distribution. The method of Greenwood and Yule actually turns out to bc valid for general com- 
pounding distributions and is equivalent to the method used here. 
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/z is one less than the number of cells used in the test; the additivity of 
chi-squared may be used to construct an overall test by adding the 
contributions to chi-squared and adding the degrees of freedom. Lund- 
berg used this test with data on health insurance claims in Sweden and 
found the results did not reject the hypothesis of a compound Poisson 
distribution with stable parameters. 

It is worth noting that the method recommended by Lundberg for the 
estimation of the parameters relies on ratios of the average accident rates. 
It follows that, if the average accident rates change and the individual 
accident rates change proportionately, the test will not be affected.” 
Thus the test will be valid if the accident relativities are constant, even 
though the actual accident rates change. From this perspective, the null 
hypothesis could be characterized as the assertion that rate relativities 
are constant over time. 

To illustrate the procedure, the data for all drivers in California, 
given in Table A3 of Appendix A, will be used. The data there were 
7,967 accidents for the period 1969-71 and 8,030 accidents for the 
period 1972-I 974. The total number of accidents was 15,997. The best 
estimate of the needed parameter is 0, = 7,967/15,997 = 0.4980. 

This parameter is used in Equation 5 to estimate the expected fraction 
of drivers with m accidents in the first period and n accidents in the 
second period given a total number of m + n accidents in the whole 
period. These probabilities are multiplied by the observed number of 
drivers with m + n accidents in the whole period to obtain the expected 
value of the number of drivers with m accidents in the first period and 
n accidents in the second period. The observed and predicted numbers 
of drivers with one, two, three, and four accidents in the period 1969- 
1974 are shown in Table 4. Tables 5 to 11 provide analogous information 
for the other groups. Note that in Lundgren’s scheme, the data for 
individuals that had no accidents in either the first or second interval 
contribute only to the estimation of the frequency of accidents in the two 
periods, but do not contribute to the value of the test statistic. Accord- 
ingly the tables do not show this group. 

II Lundgren’s original application to data on health insurance claims actually involved substantially 
different claim rates in the first and second period. 
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TABLE 3 

OBSERVED AND PREDICTED DISTRIBL’TION ok FEMAI.F. DRIV~:RS 

IN CALIFORNIA, HY NUMBER OF ACCIDENTS 

Number of 
Accident:, 

in 1969-74 

Obwrved 
Predicted 

Ohhewed 
Predicted 

ObSUVd 
Predicted 

Observed 
Predicted 

0 I 

1,816 I.757 
I .838.S I .734.x 

164 266 
147 7 27x x 

16 24 
I I.? 37 0 

5,’ 
6.4” 

2 

12x 
I31 5 

33 
30.7 

x 
7. I 

IO 
Y.S 

6” 
5 sh 

Total (8 degrees of freedom) 

TABLE 5 

OBSERVEI) AND PREDICTED DISTRIBUTION OF MALE DRIVERS 

1~ CALIFORNIA, BY NUMBER OF AC.~II)ENTS 

Number of 
Accidents 

m 1969-74 

Number of Accident\ in 146%1971 

Observed 
Predicted 

Observed 
Predicted 

Observed 
Predicted 

Observed 
Predicted 

0 I 
- -- 

3.226 3.363 
3.269 S 3.314.5 

403 692 
363.4 738.0 

44 126 
JO 4 174 I 

7 IS 
4.2 17.0 

Total (9 degrees of freedom) 

2 3 4 5 
__ ~ - - 

3x1 
374.6 

124 31 
126.6 42.x 

26 2 I” 
2S.Y 22.0” 

Chl- 

0.3 

2.5 

4.2 

2.0 

9.0 

Chi- 
Squared 

1.2 

1.3 

0.4 

2.2 

Il.1 
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TABLE 6 

OBSERVED AND PREDICTED DISTRIBUTION OF ALL DRIVERS 

IN CALIFORNIA, BY NUMBER OF ACCIDENTS 

Number of 
Accidents 

in 1969-74 

I Observed 
Predicted 

2 Observed 

PredIcted 

3 Observed 

Predicted 

4 ObV3Wd 
Predicted 

Number of Accidents in 1969-1971 
Chi- 

0 I 2 3 4 s Squared 
- - - - - - - 

5,042 5,120 

5,101.0 S.06l.O I .4 

567 958 509 

512 s 1,014.o so4.s 9.2 

60 IS0 I57 51 

52.9 157.4 156.1 51.6 I3 

9 IK 34 23 4 

5.6 22.2 33.0 21 8 5.4 3.3 

IS.3 

TABLE 7 

OBSERVED AND PREDICTED DISTRIBUTION OF DRW~RS 
OF AGF 22-25 IN NORTH CAROLINA. BY NUMBER OF CI.AIMS 

Numkr of Accident‘ in lYh7-196X 

0 I 
-- 

31.615 
33.847 3 

4.619 
3.442 I 

648 
Jh? 7 

73 
s3 4 

14 
h.3 

3h. IYh 
35.943 0 

7.1N 
8.377 3 

1.310 
I.475 0 

23’) 
227 I 

4, 
40 3 

Y” 
7 I” 

7 

4.967 
4.450 6 

I .35x 
I Shl 2 

313 
362 I, 

54 
71 3 

IX 
Ih 3 

3 4 
- - 

71s 
5%. 1 

237 105 
256 4 60 I 

h3 36 
75 8 40.3 

17 I8 
23 I I8 3 

31 

3sx 8 

lh07 

15 Y 

28 
8.6 M, 1 

IP 
Y P 3.2 

h22 0 
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TABLE 8 

OBSERVED AND PR~LW I tlu DIS I RIRUTION OF DRIVERS 

OF AGE 26-39 IN NoRw CAROI INA, BY NUMBER 01’ Cr AIMS 

Oh\cr\ed 

PrlXhWXl 

Obwncd 

Predicted 

Obrervcd 

PredIcted 

Obacrved 

PrcdlcteJ 

Ohacrved 

Predicted 

Ob\crvcd 

PtcdicttZd 

‘Total t 19 degrees of frecdnm) 

.i Driver\ Gth whcr zcm or one accidents m lY67-h8 

“. Dn\er\ wtth either tl\,e ,,r \IX accident\ 11, IYh7-hX 

Number of 

Accidents 

tn 1967-70 

s Squared 
~ - 

23 

92 3 

44.x 

b4Y 

30 
Ih I 40 I 

)-lb’ 

I 5 4“ 0.5 

244 Y 

TABLE Y 

OBSERVED AND PREDICTED DISTRIBU I ION ot DRIVERS 

OF AGE 40-59 IN NORTH CAROI INA. BY NL~MB~ZR OF CI AIMS 

Ohbcrvcd 

Prcdxted 

Observed 

Predicted 

Observed 

Prcdlcted 

Oh\en~ed 

Predicted 

Observed 

Predicted 

Observed 

Predicted 

Chl 

0 I 

66.875 72.0x0 

67.156.4 71.79X.6 

5.9% I I .04x 

5,507.7 I I .77h X 

62Y I.540 

507.1 I .h?h 4 

76 ?hi 

57 s 245 9 

IO 35 

70 37 2 

I (I” 

7.0” 

2 

h.hOJ 

6.295 s 

I .hW 

I .73x.x 

ih5 

194.4 

x5 

79 h 

20 

Ih.? 

1 

h7Y 

hlY.7 

?hl 

281 I 

no 

x5 I 

IY 

23.0 

4 5 Squared 

27 

Y2.3 

44.x 

x7 

7s I 12.9 

43 II 

4s 5 97 2.4 

I.1 12” 

1x.s 9.3” 5.3 

Iho. 
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TABLE 10 

OBSERVED AND PREDICTED DISTRIBUTION OF DRIVERS 

OF AGE 60 OR MORE IN NORTH CAROLINA, BY NUMBER OF CLAIMS 

Number of 
Accidents Number of Accidents in 1967-1968 

in 1967-70 0 1 2 3 4 5 
- - - 

I Observed 23,367 23,728 
Predicted 23,2.52.8 23.842.2 

2 Observed 2.083 3,878 2,198 
Predicted 1.9X9.0 4.078.9 2.091.1 

3 Observed 205 529 549 228 
Predicted 181.9 559.4 573.6 196.1 

4 Observed 23 70 11.5 90 46 
Predicted 20.4 83.8 129.0 88.2 22.6 

5 Observed 14” 30 29 24h 
Predicted 17.4* 29.9 30.7 18.6h 

Total (13 degrees of freedom) 

a Drivers with tither zwo or one acc&vna in 1967-68 
b. Dnverb with either four or five accidents in 1967-68 

TABLE 11 

OBSERVED AND PREDICTED DISTRIBUTION OF DRIVERS 

OF AGE 21 IN NORTH CAROLINA, BY NUMBER OF CLAIMS 

Number of 
Accidents Number of Accidents in 1967-1968 

in 1967-70 0 

1 Observed 13.118 12,184 
Predicted 13,lBS.O 12.167.0 

2 Observed 
Predicted 

1,204 
1,079.‘) 

3 Observed 
Predicted 

113 
89. I 

4 Observed 13 
Predicted 7.6 

1,767 1,036 
2.000.6 926.6 

21s 232 77 
247.6 229.4 70.8 

23 33 26 IO 
28.3 39.3 24.2 5.6 

I 2 3 4 5 
-~-- 

Chi- 
Squared 

1.1 

17.6 

10.9 

17.6 

2.4 

49.6 

Chi- 
Squared 

0.1 

54.5 

II.3 

9.3 

Total (10 degrees of freedom) 75.2 
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The results indicate that the data from California do not reject the 
hypothesis that Poisson parameters for each individual bear the same 
relationship to the aggregate average level in the two periods under 
consideration. When the two sexes are combined, the k,alue of chi- 
squared is 15.3 with 10 degrees of freedom. a value that would occur 
by chance about ten percent of the time if the null hypothesis were valid. 
This finding is consistent with that of Weber [ 161, based on California 
data for a different and shorter period. These data do not provide strong 
evidence against the hypothesis that relativities are stable. 

The results from the North Carolina data, on the other hand, lead to 
the clear rejection of the null hypothesis. Given the degrees of freedom, 
the observed values of chi-squared in any one group would correspond 
to probabilities much lower than one in one thousand if the null hypoth- 
esis were true. It is worth noting that large contributions to chi-squared 
arise from relatively small values of I)? + 11. This indicates that the data 
leading to the rejection of the null hypothesis are not concentrated in the 
cells corresponding to individuals with a high aggregate accident pro- 
pensity or to cells with relatively small numbers of observations. 

In view of the results with the data from North Carolina, the fact 
that the California data do not reject the null hypothesis could be attrib- 
uted to the fact that different mechanisms arc operating in the two 
environments. However, the number of observations in California is 
much smaller than that in North Carolina. The total number of drivers 
observed in California is just over 54,000, compared to over 2.5 million 
in North Carolina. Thus, an altcrnatc explanation of the results is that 
the power of the test to reject the null hypothesis is so low that the 
California data cannot attain the conventional levels of confidence. Un- 
fortunately, there are no other formal tests of the hypothesk of interest. I2 

2 Thyrion [ 131, among others, has pointed out that there is an Interesting recuwve relation for the 
compound Poisson of arbitrary compounding di,trlhution Starlkal tests based on that relation 
have not been developed. 
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6. DISCUSSION 

The data analysis suggests that driver accident frequencies may be 
determined jointly by the driver’s ability to drive and the exposure that 
the driver experiences. This finding is important for both economic 
analysis and policy formulation. 

Economic analysis usually assumes that economic agents act ration- 
ally, in the sense that they select the options that provide them the 
greatest level of satisfaction. Analyses of insurance purchasing and the 
related issue of moral hazard have not, however, considered seriously 
the possibility that individuals may, in the absence of insurance, select 
the level of exposure with due regard to the individual’s accident pro- 
pensity and risk aversion. Given the possibility of such effects, the 
analysis of the insurance purchasing decision may be misleading unless 
one explicitly recognizes that the utility function depends on both con- 
sumption of goods and ability to travel. It may even be important to take 
into account the relationship between ability to travel and ability to 
generate income. 

This possibility also creates some interesting problems in the analysis 
of insurance classifications. Given that the individual selects exposure 
by considering both accident propensity and risk aversion, the net ex- 
perience of that individual, measured in terms of the expected number 
of accidents, will reflect a complex interaction of accident propensity 
and risk aversion. Moreover, this expected number of accidents is not 
likely to provide much information regarding what its corresponding 
value after insurance is likely to be, since the existence of insurance 
coverage may have large effects on the individual’s choice of exposure. 
Also, the experience of an individual under one classification scheme 
will serve to predict the experience of the same individual under a 
different classification scheme only to the extent that the new classifi- 
cation scheme will affect neither the individual’s propensity to have an 
accident, nor his selection of a level of exposure, nor his inclination to 
purchase coverage. In this respect, particular care should be exercised 
in drawing inferences about plans based on merit rating or bonus-malus 
systems from corresponding information gathered under classification 
plans that do not include experience rating. 
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From the perspective of public policy, the possible effect of varia- 
bility of exposure suggests that the Poisson parameter of individuals will 
not be constant from period to period, even if the accident proneness 
remains fixed. The possibility that individuals will change their exposure 
level implies that past experience may not be the best predictor of the 
future experience for an individual. While prediction of average group 
performance based on the past may be appropriate and necessary for 
proper functioning of insurance markets, public policy should reflect 
concern about distributional equity if the past is not a good predictor of 
the future for an individual. Variation of the Poisson parameter over time 
implies that the public policy arguments favoring merit rating may not 
be properly based on fact. If the individual’s accident propensity varies 
from period to period, a rate based on past exposure is not necessarily 
a good predictor of future experience for the individual. In fact, if 
propensity varies over time, the issue of whether merit rating is a better 
predictor of future performance than classification rating must be ex- 
amined empirically rather than assumed. 

Given the likely effect of exposure levels, it is perhaps not surprising 
that the data do not support the hypothesis that Poisson parameters are 
constant over time or bear a constant relationship to the group average. 
.4t present, the conclusion that the data reject the hypothesis is based 
largely on the data from North Carolina. The other body of data that is 
currently available, that of California, does not reject the hypothesis. 
The California data for both sexes combined is barely consistent with 
the hypothesis at the ten percent level. I’ It may well be that the hypothesis 
would be rejected by a larger sample of drivers from this state and 
period. Additional data with which to probe this question would be 
valuable, especially if the data base included estimates of the exposure 
level. 

” It may be worth noting that if we were to focus our attention on the group with two accidents in 
the total observation period, the California d&a would reject the hypothesis. The more comprehen- 
sive data do not reject the hypothesis. since the other group\ contribute more to the degrees of 
freedom than they contribute to the chi-square value 
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APPENDIX A 

SUMMARY OF THE CALIFORNIA DATA 

This appendix records the data from California relevant to this study. 
The data were derived from Table N, Appendix I, of a report prepared 
by the Department of Motor Vehicles of the State of California [5]. That 
table gives the distribution of licensed drivers in the California data base 
by number of accidents in each of the calendar years 1961-63 and 1969- 
74. The number of accidents in the period 1961-63 was ignored in the 
present analysis since interest was focused on the accidents in two 
subintervals of a common length, and because instability of accident 
rates over the intervening period 1963-1969 could be due to the long 
gap in information. The tabulations presented below were obtained by 
grouping all combinations of accident numbers that gave the same total 
for the years 1969-7 1, and those that gave the same totals for the years 
1972-74. 

TABLE Al 

NUMBER OF DRIVERS WITH M CLAIMS IN PERIOD 1969-71 
AND N CLAIMS IN THE PERIOD 1972-74 

CALIFORNIA. FEMALE DRIVERS 

1972-74 
Claims 

1969-7 I Claims 

m=O 

n=Q 19,634 
n= 1 1,816 
n=2 164 
n=3 16 
n=4 2 
n=5 I 

Total 21.633 

m= I m=2 m=3 m=4 m=5 
- - - - - 

1.757 128 IO I 0 
266 33 5 I 0 

24 8 I 0 0 
3 0 1 0 0 
0 0 0 0 0 
1 0 0 0 0 

2.051 170 16 2 0 

Total 

21,530 
2,121 

197 
20 

2 
2 

23,872 
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I Yl2-74 
ClailllS 

n = 0 
n= I 
n=I! 
n=3 
n=4 
n=S 

Total 

1972-74 
Claims 

n=O 
n= I 
n=2 
n=3 
n=4 
n=5 

TABLEA 

NUMBER OF DRIVERS WITH M CI.AIMS IN PERIOD 1969-71 
AND N CLAIMS IN I‘HE PERIOD 1972-74 

CALIFORNIA, MALE DRIVERS 

1Y6Y-7 1 Claims 

m = 0 

21.800 
3,226 

403 
44 

7 
0 

25.480 

Ill = I 

3,363 
692 
126 

IS 
2 
0 

4. IYX 

111 = 7 Ill = 3 111 = 4 

381 41 3 
I34 IX 5 
26 5 0 

3 2 0 
2 0 0 
I I 0 

537 67 8 

m=S 
-~ 

Total 

I 25.589 
0 4,065 
I 561 
0 64 
I 12 
0 2 

3 30,293 

TABLEA 

NUMBER OF DRIVERS WITH M CL.AIMS IN PERKHI 1969-71 
AND N CLAIMS IN .f~t PERISH 1972-74 

CALIFORNIA. ALI. DRIVERS 

1069-7 I Claim\ 

m=O m= I m=2 111 = 3 Ill = 3 m = 5 
__ ___ - - - _~ 

41,434 5,120 509 51 4 1 
5.042 958 I57 23 6 0 

567 I SO 34 6 0 I 
60 I8 4 3 0 0 

9 2 2 0 0 I 
I I I I 0 0 

Total 47.1 I3 6,249 707 83 IO 3 54,165 

Total 

47,119 
6,186 

75x 
84 
I4 
4 
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APPENDIX B 

ESTIMATES OF THE COEFFICIENT OF VARIATION OF EXPOSURE LEVEL 

A number of studies have used data on mileage driven per unit of 
time by individual drivers. Unfortunately, none of these studies presents 
the essential summary statistics, the mean and variance of the mileage. 
These summary statistics would be sufficient to estimate the coefficient 
of variation and provide a standard for comparison. Since data are not 
available for direct estimation, indirect methods of estimation are needed. 

The approach taken in this appendix is to assume that the distribution 
of mileage driven by members of a population is lognormally distributed. 
Given this assumption, information on fractiles of the distribution would 
be sufficient to permit an estimate of the coefficient of variation. Even 
this, however, is not available directly. 

A plausible way of inferring fractiles of the distribution is to assume 
that published statistics will relate to groups that are of reasonable size. 
The California Driver Record Rook for 1976 gives accidents per driver 
and per mile for drivers using their vehicles for specified annual mileages. 
The lowest category listed is from zero to 2,250 miles; the highest one 
is over 100,000 miles. We assume that 2,250 and 100,000 are corre- 
sponding fractiles on the left and right tails of the distribution. This 
assumption leads to an estimate of 15,000 for the median annual mileage 
driver by California drivers, an estimate that appears acceptable. By 
postulating which fractile corresponds to these numbers, we obtain es- 
timates of the mean annual mileage and the coefficient of variation in 
this quantity. The estimates are shown in Table B 1. Note that the largest 
and smallest assumed fractiles are not likely to be correct. The highest, 
one percent, leads to a coefficient of variation for the exposure level 
which is comparable to that of the aggregate accident rate; this would 
imply virtually no variability in the accident propensity per mile driven 
among individuals. The lowest, one per million, would not allow enough 
drivers in the extreme groups to provide reliable statistics. Between these 
extremes, the inferred coefficient of variation is fairly stable. Thus, in 
spite of the lack of direct data, it is plausible that the coefficient of 
variation in mileage driven is between one quarter and one half. 
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TABLE B1 

ESTIMATES 01: ‘I’H~: M~:,\N >XNI) COWFIUENT OF 
VARIATION OF ANNU~~\I. MII.I:,YG~ DRI~FN 

Inferred Value 01 

Assumed 
Fractile ~- Mean 

Coefficient 
of‘ Variation 

l/l00 2O.YOO 0.94 
111.000 I 8,100 0.46 
1/10,000 17.lOO 0.30 
11100,000 I6.600 0.22 
I / I ,ooo,ooo 16.300 0. I7 



THE DlSTRlBUTlON OF AUTOMOBILE ACCIDENTS 335 

REFERENCES 

[l] Cramer, H., Muthematical Methods of Stutistics, Princeton Univer- 
sity Press, Princeton, NJ, 1974. 

[2] Feller, W., An Introduction to Probability Theory and Its Applicu- 
tions, Volume I, third edition, John Wiley & Sons, New York, NY, 
1968. 

[3] Greenwood, M., and G. U. Yule, “An Inquiry into the Nature of 
Frequency Distributions,” Journal of the Royal Stutisticul Sociegl, 
vol. A83, pp. 255-279, 1920. 

[4] Kerrich, J. E., “Accident Statistics and the Concept of Accident 
Proneness, Part II: The Mathematical Background,” Biometrics, 
vol. 7, pp. 391-432, 1951. 

[5] Kwong, K. W., J. Kuan, and R. C. Peck, Longitudinal Study of 
Culiforniu Driver Accident Frequencies 1: An Exploratory Multi- 
variate Analysis, Department of Motor Vehicles, State of California, 
Sacramento, CA, 1976. 

[6] Lundberg, O., On Random Processes and Their Application to 
Sickness and Accident Statistics, Almqvist and Wicksells, Uppsala, 
Sweden, 1940. 

[7] Nelson, D., “Comments on ‘Good Drivers and Bad Drivers-A 
Markov Model of Accident Proneness,“’ PCAS LXVIII, pp. 86- 
88, 1981. 

[8] Peck, R. C., R. S. McBride and R. S. Coppin, “The Distribution 
and Prediction of Driver Accident Frequencies ,” Accident Ana/y.sis 
und Prevention, vol. 2, pp. 243-299, 1971. 

[9] Rolph, J. E., “Some Statistical Evidence on Merit Rating in Medical 
Malpractice Insurance,” Journal of Risk and Insurance, vol. 48, 
pp. 247-260, 198 I. 

[IO] Seal, H. L., Stochastic Theory of a Risk Business, John Wiley and 
Sons, New York, NY, 1969. 



336 7 HE DISTRIBUTI’ON Ok AU I’OM0Bll.t AC‘(‘IDl:N IS 

[I l] Stanford Research Institute, The Rolr of Risk Clussijicu&xs in 
Property und Cusuul~ tnsurunc~c: A Study of fhe Risk Assessmenr 
Process, Stanford Research Institute, Menlo Park, CA, 1976. 

[12] Stewart, J. R., and Campbell. B. J.. The Srurisricul Assnciurion 
behr-een Past und Future Accident.\ trnd Violurions, Highway Safety 
Research Center, The University of North Carolina, Chapel Hill, 
NC, 1972. 

[ 131 Thyrion, P., “Contribution a 1’Etude du Bonus pour Non-Sinistre 
en Assurance Automobile,” ASTtN Brrllerin, vol. I, Part III, pp. 
142-162, 1960. 

[ 141 Venezian, E. C., “Good Drivers and Bad Drivers--A Markov 
Model of Accident Proneness.” PCAS LXVIII, pp. 65-85, 1981. 

[ 151 Venezian, E. C., B. F. Nye. and A. E. Hofflander, “The Distri- 
bution of Medical Malpractice Claims-Some Statistical and Public 
Policy Aspects,” Jocrrnul of‘ Risk und Insurunc~r, vol, 56, pp. 686- 
701. 1989. 

[ 161 Weber, D. C., “An Analysis of the California Driver Record Study 
in the Context of a Classical Accident Model.” Accidrnt Anulysis 
und Pretvntion, vol. 4, pp. 109-l 16, 1973. 

[17] Wall, R. G., “A Study of Risk Asscxsmcnt,” PCAS LXVI, pp. 
84-138, 1979. 


