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AN EXAMPLE OF CREDIBILITY AND SHIFTING RISK 
PARAMETERS 

HOWARD C. MAHLER 

Abstract 

In this paper. the won-lost record of baseball teams will 
be used to examine and illustrate credibility concepts. This 
illustrative example is analogous to the use of experience 
rating in insurance. It provides supplementary reading ma- 
terial for students who are studying credibility theory. 

This example illustrates a situation where the phenomenon 
of shifring parameters over time has a very significant impact. 
The effects of this phenomenon are examined. 

Three different criteria that can be used to select the 
#primal credibility are examined: least squares, limited jluc- 
tuation and MeyersJDorweiler. In applications, one or more 
of these three criteria should be useful. 

it is shown that the mean squared error can be written as 
a second order polynomial in the credibilities with the coef- 
jicients of this polynomial written in terms of the covariance 
structure of the data. It is then shown that linear equation(s) 
can be solved for the least squares credibiliries in terms of 
the covariance structure. 

The author wishes to thank Julie Jannuzzi and Gina Brewer for typing this paper 

1. INTRODUCTION 

In this paper, the won-lost record of baseball teams will be used to 
examine and illustrate credibility concepts. This illustrative example is 
analogous to the use of experience rating in insurance. The mathematical 
details are contained in the appendices. 
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One purpose of this paper is to provide supplementary reading ma- 
terial for students who are studying credibility theory. However, this 
paper also contains a number of points which should prove of interest 
to those who are already familiar with credibility theory. 

Of particular interest is the effect of shifting risk parameters over 
time on credibilities and experience rating. This example illustrates a 
situation where the phenomenon of shifting parameters over time has a 
very significant impact. 

The general structure of the paper is to go from the simplest case to 
the more general. The mathematical derivations are confined to the 
appendices. 

Section 2 briefly reviews the use of credibility in experience rating. 

Section 3 describes the data sets from baseball that are used in this 
paper in order to illustrate the concepts of the use of credibility in 
experience rating. 

Section 4 is an analysis of the general structure of the data. It is 
demonstrated that the different insureds (baseball teams) have signifi- 
cantly different underlying loss potentials. It is also shown that for this 
example a given insured’s relative loss potential does shift significantly 
over time. 

Section 5 states the problem whose solution will be illustrated. One 
wishes to estimate the future loss potential using a linear combination 
of different estimates. 

Section 6 discusses simple solutions to the problem presented in 
Section 5. 

Section 7 discusses three criteria that can be used to distinguish 
between solutions to the problem in Section 5. 

Section 8 applies the three criteria of Section 7 to the forms of 
solution presented in Section 6. The results of applying the three different 
criteria are compared. The reduction in squared error and the impact of 
the delay in receiving data are both discussed. 



CREDIBILITY AND SHIFTING PARAMETERS 227 

Section 9 discusses more general solutions to the problem than those 
presented in Section 6. 

Section 10 applies the three criteria of Section 7 to the forms of the 
solution presented in Section 9. 

Section I1 shows equations for Least Squares Credibility that result 
from the covariance structure assumed. 

Section 12 discusses miscellaneous subjects. 

Section 13 states the author’s conclusions. 

2. CREDIBILITY AND EXPERIENCE RATlNG 

Experience rating and merit rating modify an individual insured’s 
rate above or below average. From an actuarial standpoint, the experience 
rating plan is using the observed loss experience of an individual insured 
in order to help predict the future loss experience of that insured. Usually 
this can be written in the form: 

New Estimate = (Data) X (Credibility) 
+ (Prior Estimate) X (Complement of Credibility) 

For most experience rating plans, the prior estimate is the class 
average. However, in theory the prior estimate could be a previous 
estimate of the loss potential of this insured relative to the class average. 
This paper will treat both possibilities. 

2.1 Shifting Parameters Over Time 

There are many features of experience rating plans that are worthy 
of study by actuaries. Meyers [I], Venter [2], Gillam [3], and Mahler 
[4] present examples of recent work. The example in this paper will deal 
with only one aspect, that is, how to best combine the different years of 
past data. 

The author, in a previous paper [5], came to the following conclusion 
concerning this point: 
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“When there are shifting parameters over time, older year\ of datil should be 
given substantially less credibility than more recent year\ of data. There may be 
only a minimal gain in efficiency from using additional year\ of data.” 

3. THE DATA SET-S 

This paper will examine two very similar sets of data in order to 
illustrate certain features of credibility. Each set of data is the won-lost 
record for a league of baseball teams.’ One set is for the so-called 
National League while the other is for the American League? Each set 
of data covers the sixty years from 1901 to 1960. During this period of 
time each league had eight teams. 

For each year, called a season in baseball. for each team, we have 
the losing percentage, i.e., the percentage of its games that the individual 
team lost. 

3.1 Ad\untqes oj’ this Datu 

This example has a number of advantages not to be found using 
actual insurance data. First, over a very extended period of time there 
is a constant set of risks (teams). In insurance there are generally insureds 
who leave the data base and new ones that enter. 

Second, the loss data over this extended period of time are readily 
available, accurate and final. In insurance the loss data are sometimes 
hard to compile or obtain and are subject to possible reporting errors and 
loss development. 

Third, each of the teams in each year plays roughly the same number 
of games.J Thus the loss experience is generated by risks of roughly 
equal “size.” Thus, in this example. one need not consider the depen- 
dence of credibility on size of risk. 

’ Meyers ( I ( defines the efficiency of an espcriencc rafing plan as the reduction in expected squared 
error accomplished by the use of the plan. The higher the efhciency the vnaller the expected 
squared error. 
2 Appendix A gives some relevant features of the sport of baseball. 
’ These two leagues are referred to as the major league\ They generalI) contain the best player\ 
in North America. The data for the two leagues xc independent of each other. since no inter-league 
game\ are included in the data. 
’ Over the 60 years in question, teams usually played ahout I St1 games per year. 
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4. ANALYSIS OF THE GENERAL STRUCTURE OF DATA 

The loss experience” by risk (team) by year are given in Table 1 for 
the National League and Table 2 for the American League.” 

4.1 Is There an inherent Difference Between Teams? 

The first question to be answered is whether there is any real differ- 
ence between the experience of the different teams, or is the apparent 
difference just due to random fluctuations. This is the fundamental ques- 
tion when considering the application of experience rating. 

It requires only an elementary analysis in order to show that there is 
a non-random difference between the teams. The average experience for 
each team over the whole period of time differs significantly from that 
of the other teams. If the experience for each team were drawn from the 
same probability distribution, the results for each team would be much 
more similar. The standard deviation in losing percentage over a sample 
of about 9000 games’ would be .5%.x Thus if all the teams’ results were 
drawn from the same distribution, approximately 95% of the teams would 
have an average losing percentage between 49% and 5 l%.” 

The actual results are shown on Table 3. In fact, only 3 of 16 teams 
have losing percentages in that range. The largest deviation from the 
grand mean is 15 times the expected standard deviation if the teams all 
had the same underlying probability distribution. 

5 For each of 60 years. the percentage of games lost is given for each team. The data are from The 
Sports Encyclopediu [6]. 
h For the National League the teams are in order: Brooklyn, Boston, Chicago, Cincinnati, New 
York, Philadelphia, Pittsburgh and St. Louis. For the American League the teams are in order: 
Boston, Chicago, Cleveland, Detroit, New York, Philadelphia, St. Louis and Washington. In both 
cases, the city given is that in which the team spent the majority of the data period. 
’ About 150 games for a team each year times 60 years. 
8 A binomial distribution with a 50% chance of losing, for 9000 games, has a variance of 
9000(1/2)(1 - 112) = 2250. This is a standard deviation of 47 games lost, or 47 + 9OOQ = .5% 
in losing percentage. 
9 Using the standard normal approximation, 95% of the probability is within two standard deviatioins 
of the mean which in this case is 50%. 
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IYOI ,500 .419 .6lY .626 
1902 ,467 .457 ,504 SO0 
1903 ,580 ,485 .406 ,468 
1904 ,641 ,634 ,392 ,425 
1905 .669 ,684 ,399 .3x4 
1906 ,675 ,566 ,237 .S7h 
1907 ,608 ,561 ,296 ,569 
1908 ,591 ,656 ,357 ,526 
1909 ,706 ,641 .320 .4Y7 
1910 ,654 .584 ,325 ,513 
1911 ,709 ,573 .403 ,542 
1912 ,660 ,621 ,393 .SlU 
1913 ,543 ,564 ,425 .sx2 
1914 ,386 ,513 .4Y4 .6lO 
1915 ,354 ,474 ,523 ,539 
1916 ,414 ,390 ,562 ,608 
1917 ,529 ,536 ,510 ,494 
1918 ,573 .54X ,349 .469 
1919 ,590 ,507 ,464 ,313 
1920 ,592 ,396 ,513 .464 
1921 ,484 .493 ,582 .542 
1922 ,654 ,506 .481 ,442 
1923 ,649 ,506 .461 .3OY 
1924 ,654 ,403 .47 I .45x 
1925 ,542 ,556 ,558 .477 
1926 .566 ,536 ,468 .435 
1927 ,610 ,575 .444 ,510 
1928 .673 ,497 ,409 ,487 
I929 .636 .542 ,355 .57l 
I930 ,545 ,442 ,416 ,617 

NLI 

CREDIBILITY AND SHIFTING PARAMEIERS 

TABLE 1 

NATIONAL LEAGUE LOSING PERCENTAGES 

NL2 NL3 NL4 NLS NL6 NL7 NL8 

.620 ,407 ,353 .457 

.647 ,591 .25Y ,582 
,396 ,637 ,350 ,686 
,307 -658 ,431 ,513 
,314 ,454 ,373 ,623 
.36X ,536 .392 ,653 
.4hl .43s ,400 ,660 
,364 ,461 ,364 ,682 
.3YY .Sl6 ,276 ,645 
.4OY ,490 .438 .588 
,353 .4x0 ,448 ,497 
.3 I8 520 ,384 ,588 
.336 ,417 ,477 .660 
.455 ,519 .552 ,471 
,546 .40X ,526 ,529 
,434 .3os .57x ,608 
.3b4 .42x ,669 .461 
,427 ,553 ,480 ,605 
,379 .hS7 ,489 ,606 
,442 ,595 ,487 ,513 
,386 ,669 ,412 .43 I 
.3Y6 .627 .448 ,448 
,379 ,675 ,435 ,484 
.3’32 .636 ,412 ,578 
,434 .SSh .379 ,497 
,510 .hlh .45 1 ,422 
,303 ,669 ,390 ,399 
,396 ,717 ,441 ,383 
.444 ,536 ,425 .487 
,435 .662 .4x1 .403 
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1931 ,584 ,480 ,455 ,623 ,428 ,571 .513 ,344 
1932 ,500 .474 .416 ,610 ,532 ,494 .442 .532 
1933 ,461 ,575 ,442 ,618 ,401 ,605 ,435 .464 
1934 ,483 ,533 .430 ,656 ,392 ,624 ,507 .379 
1935 ,752 .542 .35l ,556 ,405 ,582 ,438 ,377 
1936 .539 .565 .435 .519 ,403 .649 ,455 ,435 
1937 ,480 ,595 ,396 ,636 ,375 ,601 ,442 ,474 
1938 ,493 ,537 ,414 ,453 ,447 ,700 ,427 ,530 
1939 ,583 .45 1 ,455 .370 ,490 ,702 ,556 ,399 
1940 ,572 ,425 ,513 ,346 ,526 ,673 .494 .45 1 
1941 ,597 ,351 ,545 ,429 ,516 ,721 ,474 ,366 
1942 .601 ,325 .558 ,500 .441 ,722 .551 ,312 
1943 ,556 ,471 ,516 ,435 ,641 ,584 ,481 .318 
1944 ,578 ,591 .513 ,422 ,565 ,601 ,412 ,318 
1945 ,559 ,435 ,364 ,604 ,487 ,701 ,468 ,383 
1946 ,385 ,471 ,464 ,565 ,604 ,552 .591 .372 
1947 ,390 .442 ,552 ,526 ,474 .597 ,597 ,422 
1948 ,455 ,405 ,584 ,582 ,494 ,571 ,461 ,448 
1949 ,370 ,513 ,604 .597 ,526 ,474 ,539 ,377 
1950 ,422 ,461 ,582 .569 ,442 .409 .627 ,490 
1951 .382 ,506 ,597 ,558 ,376 ,526 ,584 ,474 
1952 ,373 ,582 ,500 ,552 ,403 ,435 ,727 ,429 
1953 .318 ,403 .578 ,558 .545 .46 I ,675 ,461 
1954 .403 ,422 ,584 ,519 ,370 ,513 ,656 .532 
1955 ,359 ,448 ,529 .513 ,481 .500 ,610 .558 
1956 ,396 ,403 ,610 .409 ,565 .539 ,571 ,506 
1957 ,455 ,383 ,597 ,481 ,552 .500 .597 .435 
1958 ,539 ,403 ,532 .506 ,481 ,552 .455 ,532 
1959 ,436 ,449 ,519 ,519 ,461 ,584 ,494 ,539 
1960 .468 ,429 ,610 ,565 .487 ,617 ,383 ,442 

NLI NL2 NL3 

TABLE I 

(CONTINUED) 

NL4 NL5 NL6 NL7 NL8 
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1901 ,419 ,390 ,599 ,452 
1902 ,438 .44X .493 ,615 
1903 .34l .562 ,450 ,522 
1904 ,383 ,422 ,430 ,592 
1905 ,487 ,395 ,506 ,484 
1906 ,682 ,384 .41X ,523 
1907 .604 ,424 ,441 ,387 
1908 .513 ,421 ,416 ,412 
I909 .417 ,487 ,536 ,355 
1910 .47 I ,556 ,533 .442 
1911 ,490 ,490 ,477 .422 
1912 ,309 ,494 ,510 ,549 
1913 ,473 ,487 ,434 ,569 
1914 ,405 ,545 .667 ,477 
1915 ,331 ,396 ,625 .351 
1916 ,409 ,422 .500 .435 
1917 ,408 ,351 ,429 ,490 
1918 ,405 ,540 ,425 ,563 
1919 .51X ,371 ,396 .42Y 
1920 ,529 ,377 ,364 .604 
1921 .513 ,597 ,390 .536 
1922 ,604 ,500 ,494 ,487 
1923 .599 552 .464 ,461 
1924 ,565 .569 .562 ,442 
1925 ,691 .4X7 ,545 ,474 
1926 ,699 .47 I .429 .4X7 
1927 ,669 .542 ,569 .464 
1928 .627 .532 .597 ,558 
1929 ,623 ,612 ,467 ,545 
1930 ,662 ,597 ,474 ,513 

AL1 

TABLE 2 

AMERICAN LEAGUE LOSING PERCENTAGES 

AL2 AL3 AL4 AL5 AL6 AL7 AL8 

.4x9 ,456 .650 ,545 

.63X ,390 ,426 ,551 
,463 ,444 ,532 ,686 
,391 .464 ,572 .74X 
,523 .37X ,647 ,576 
,404 ,462 ,490 ,633 
,527 ,393 ,546 .675 
,669 .556 ,454 ,559 
.510 ,379 ,593 ,724 
.417 .320 ,695 ,563 
,500 ,331 ,704 ,584 
.67 I ,408 ,656 .401 
,623 .373 ,627 .416 
,545 ,349 ,536 .474 
,546 ,717 .59l ,444 
.4X 1 ,765 .4X7 ,503 
,536 ,641 ,630 .516 
,512 594 ,525 .437 
,424 ,743 ,518 ,600 
.3X3 .68X ,503 ,553 
,359 .654 ,474 ,477 
,390 ,578 ,396 ,552 
,355 ,546 ,513 .5lO 
,414 .533 ,513 .403 
.552 ,421 ,464 ,364 
,409 .447 ,597 .460 
,286 .4OY .614 .44X 
,344 .3.59 .46X ,513 
,429 ,307 ,480 ,533 
,442 .33X .5x4 ,390 
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1931 ,592 
1932 ,721 
1933 ,577 
1934 .500 
1935 ,490 
1936 .519 
1937 ,474 
1938 .409 
1939 .41 I 
1940 .46X 
1941 ,455 
1942 ,388 
1943 ,553 
1944 ,500 
1945 ,539 
1946 ,325 
1947 .46l 
1948 .3X1 
1949 ,377 
1950 ,390 
1951 .435 
1952 .506 
1953 .45 I 
1954 ,552 
1955 ,455 
1956 ,455 
1957 ,468 
1958 ,487 
1959 ,513 
1960 .57x 

ALI AL2 AL3 

,634 .494 
,675 .42X 
,553 .503 
,651 ,448 
,513 ,464 
,464 .4x1 
.442 .461 
,561 ,434 
.44x ,435 
.46X ,422 
,500 ,513 
,554 ,513 
.46X ,464 
.539 ,532 
,523 ,497 
,519 ,558 
,545 ,481 
.664 .374 
,591 .422 
,610 ,403 
,474 ,396 
,474 ,396 
,422 ,403 
,390 ,279 
,409 ,396 
.44X .429 
,416 .503 
,468 .497 
.390 ,422 
,435 ,506 

TABLE 2 

(CONTINUED) 

AL4 AL5 

,604 ,386 
,497 .305 
,513 .393 
,344 ,390 
.3x4 .403 
,461 ,333 
,422 ,338 
,455 ,349 
.474 .29X 
.416 ,429 
.513 ,344 
,526 ,331 
,494 ,364 
,429 ,461 
.425 ,467 
,403 ,435 
.44X ,370 
.494 ,390 
.435 ,370 
.3x3 .364 
.526 ,364 
,675 .3x3 
.6lO .344 
,558 ,331 
.4x7 ,377 
,468 ,370 
,494 .364 
,500 .403 
,506 .4x7 
,539 ,370 

AL6 AL7 AL8 

,296 ,591 .403 
,390 ,591 ,396 
.477 ,636 ,349 
,547 ,559 ,566 
.61 I ,572 ,562 
,654 ,625 ,464 
,642 ,701 .523 
,651 ,638 .503 
,638 ,721 ,572 
,649 ,565 .5x4 
,584 ,545 .545 
.643 .457 .5x9 
.6X2 ,526 .45 I 
.532 ,422 .5x4 
.653 ,464 ,435 
,682 ,571 ,506 
.494 .617 ,584 
,455 .614 .634 
,474 .656 ,675 
,662 .623 ,565 
,545 .662 ,597 
.4x7 .5x4 ,494 
,617 .649 ,500 
,669 ,649 ,571 
.59l .630 ,656 
,662 ,552 .617 
.614 .500 ,643 
,526 ,516 ,604 
,571 ,519 ,591 
.623 .422 ,526 
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TABLE 3 

AVERAGE LOSING PERCENTAGES (1901-1960) 

Risk (Team) NLI NL2 NL3 NL4 NLS NL6 NL7 NL8 

National League 53.4 49.9 47.3 51.x 44.7 56.5 47.8 48.8 

Risk (Team) ALI AL2 AL3 AL4 AL5 AL6 AL7 AL8 - ~ - __ ~ ~ ~ ~ 

American League 49.5 49.4 47.0 4X.5 42.6 52.9 56.4 53.5 

Thus there can be no doubt that the teams actually differ.“’ It is 
therefore a meaningful question to ask whether a given team is better or 
worse than average. 

A team that has been worse than average over one period of time is 
more likely to be worse than average over another period of time. If this 
were not true, we would not have found the statistically significant 
difference in the means of the teams. 

Thus if we wish to predict the f’uture experience of a team, there is 
useful information contained in the past experience of that team. In other 
words, there is an advantage to experience rating. 

4.2 Shifting Parumeters Over Time 

A similar, but somewhat different question of interest is whether for 
a given team the results for the different years arc from the same 
distribution (or nearly the same distribution). In other words, are the 
observed different results over time due to more than random fluctuation? 
The answer is yes. This is a situation where the underlying parameters 
of the risk process shift over time. 

I” The situation here is somewhat complicated by the fact that one team’s loss is another team’s 
win. Thus the won-loss records of seven teams determine that of the remaining team. However, 
the author contirmed with a stratghtforward simulation that in this case this phenomenon would not 
affect the conclusion. For 8 teams each with the 50% loss rate playing 9OM) games each, in 32 out 
of 600 cases (5%) a team had a winning percentage lower than 49% or more than 51%. In none of 
the 600 cases did a team have a winning percentage as low as 48% or as high as 52%. 
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As discussed in Section 2.1, the extent to which risk parameters shift 
over time has an important impact on the use of past insurance data to 
predict the future. 

Whether the risk parameters shift over time can be tested in many 
ways. Two methods will be demonstrated here. These methods can be 
applied to insurance data as well as the data presented here. 

The first method of testing whether parameters shift over time uses 
the standard chi-squared test. For each risk, one averages the results 
over separate 5 year periods. ” Then one compares the number of games 
lost during the various 5 year periods. One can then determine by 
applying the chi-squared test that the risk process could not have the 
same mean over this entire period of time. The results shown in Table 
4 are conclusive for every single risk. Even the most consistent risk had 
significant shifts over time. 

In the second method of testing whether parameters shift over time, 
one computes the correlation between the results for all of the risks for 
pairs of years. Then one computes the average correlation for those pairs 
of years with a given difference in time. Finally, one examines how the 
average correlation depends on this difference. The results in our case 
are displayed in Table 5. 

Observed values of the correlation different from zero are not nec- 
essarily statistically significant. For this example, a 95% confidence 
interval around zero for the correlation is approximately plus or minus 
.10. I? Thus, for this example, the correlation decreases as the difference 
in time increases until about ten years when there is no longer a signif- 
icant correlation between results.r3 

‘I The data were grouped in five year intervals for convenience. Other intervals could also have 
been used. 
I2 For larger distances between the years, we have fewer observations to average, so the confidence 
interval expands to approximately plus or minus .12. The confidence intervals were- determined via 
repeated simulation in which the actual data for each year were separately assigned to the individual 
risks at random; thus for the simulated data any observed correlation is illusory. 
I’ For a difference of between I5 and 20 years there is again a small but significant positive 
correlation. The author has no explanation for this long term cycle. 



236 CREDIBILlTY AND SHIFTING PARAMETERS 

TABLE 4 

KESULTS OF CHI-SQUARED TEST OF SHIFTING PARAMETERS OVER TIME 

For each risk (team) its experience over the 60 year period was 
averaged into 12 five-year segments. (The simplifying assumption was 
made of 150 games each year; this did not affect the results.) Then for 
each risk separately, the chi-square statistic was computed in order to 
test the hypothesis that each of the five year segments was drawn from 
a distribution with the same mean. The resulting chi-square values are: 

NLl NL2 NL3 NL4 NLS NL6 NL7 NL8 ___ - __ __ __ - 
107 45 98 35 39 73 114 119 

ALI AL2 AL3 AL4 AL5 AL6 AL7 AL8 .- - _I ___ ___ ~ 
114 69 34 30 97 162 53 65 

For example, for the risk (team) NL2 the data by tive-year segments 
are as follows: 

The sum of row (3) is 45, which is the chi-square value for this risk. 

For each risk there is less than a .2% chance that the different tive- 
year segments were drawn from distributions with the same mean.*** 
Thus we reject the hypothesis that the means are the same over time; 
we accept the hypothesis of shifting risk parameters over time. 

*Assuming 150 games per year. and the ohserved losing percentage for the five year 
segment. 
**Assuming 150 games per year, and the observed losing percentage for the whole 60 
years. 
***For I1 degrees of freedom. there is a .Ih% chance of having a ch-square value of 
30 or more. There is a .004% chance of having a chi-square value of 40 or more. 
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TABLE 5 

AVERAGE CORRELATIONSOF RISKS EXPERIENCE 

OVER TIME ( I901 - 1960) 

Difference Between 
Pairs of 

Years of Experience 

Correlation 

NL AL 

I .651 .633 
2 ,498 .513 
3 .448 .438 
4 .386 .360 
5 .312 .265 
6 .269 .228 
7 ,221 .157 
8 .I90 .124 
9 .135 .078 

10 .lOO .090 
11 .083 .058 
12 .I03 .063 
13 .154 ,101 
14 ,176 .I04 
15 .I80 .141 
16 .246 .178 
17 .278 .166 
18 .219 .198 
19 .176 .219 
20 .136 ,225 
21 .090 .159 
22 .065 .125 
23 .055 .093 
24 .004 ,048 
2.5 - ,024 ,006 

237 
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TABLE 5 

(CONTINUED) 

Difference Between 
Pairs of 

Years of Experience 

26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

Correlation 

NL AL - 

- ,028 ,010 
- ,095 ~ ,002 
-~.I28 -.Ol3 
-.I07 - ,032 
~ ,062 ,006 
-.06l -.019 
- ,028 ,027 
-.OlS .002 

,017 .088 
,038 .I43 

-.014 .I56 
~- ,024 .314 
-- 0 I 2 ,238 
-.017 .138 
~ ,095 ,093 
-.I74 ,055 
-- .?I6 ,028 
~~ ,332 - ,043 
-~ ,423 p.018 
-~ ,363 - ,035 
- ,332 ,066 
~- ,324 ,069 
- ,373 ,136 
-- ,423 ,075 
- ,475 ,145 
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The correlation between years that are close together is significantly 
greater than those further apart. This implies that the parameters of the 
risk process are shifting significantly over time. If the parameters were 
reasonably constant over time, the correlations would not depend on the 
length of time between the pair of years. 

On the other hand, there is a significant correlation between the 
results of years close in time. Thus recent years can be usefully employed 
to predict the future. 

5. STATEMENT OF THE PROBLEM 

Let X be the quantity we wish to estimate. In this case, X is the 
expected losing percentage for a risk. 

Let YI , Y2, Y3, etc., be various estimates for X. Then one might 
estimate X by taking a weighted average of the different estimates Y;. 

?I 

i= I 

where X = quantity to be estimated, 
Y, = one of the estimates of X, 
Z, = weight assigned to estimate Y; of X. 

Here only linear combinations of estimators are being considered. In 
addition, the estimators themselves will be restricted to a single year of 
past data for the given risk or to the grand mean (which is 50% in this 
case). I4 No subjective information or additional data beyond the past 
annual losing percentages will be used. I5 In other words, this is a 
situation analogous to (prospective) experience rating. This is not a 
situation analogous to schedule rating. 

I3 In other words. in this case, Y either equals the observed losing percentage for the risk in one 
year or equals the grand mean of 50%. Credibility methods can be applied to more general 
estimators. 
I5 The use of information on the retiremenl of players or acquisition of new players might enable 
a significant increase in the accuracy of the estimate. The breakdown of the data into smaller units 
than an entire year might enable a significant increase in the accuracy of the estimate. 
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The problem to be considered here is what weights 2, produce the 
“best” estimate of future losing percentage. In order to answer that 
question, criteria will have to be developed that allow one to compare 
the performance of the different methods to determine which is better. 
In the example being dealt with in this paper, it is easy to get unbiased 
estimators. Since all of the estimators being compared will be unbiased, 
the question of which method is better will focus on other features of 
the estimators. 

Usually the weights Z, are restricted to the closed interval between 0 
and 1. In the most common situation we have two estimates. i.e., i = 
2. In that case we usually write: 

X=Z.Y, +(I -Z).Yz 

where Z is called the credibility and (1 - Z) is called the complement 
of credibility. However, it is important to note that the usual terminology 
tempts us into making the mistake of thinking of the two weights and 
two estimates differently. The actual mathematical situation is symmet- 
ric. 

6. SIMPLE SOLUTIONS TO THE PROBLEM 

In this section, various relatively simple solutions to the problem will 
be presented. 

6. I Every Risk is Average 

The first method is to predict that the future losing percentage for 
each risk will be equal to the overall mean of 50%. This method ignores 
all the past data; i.e., the past data are given zero credibility. While this 
is not a serious candidate for an estimation method in the particular 
example examined in this paper, it is a useful base case in general. 

6.2 The Most Recent Year Repeats 

The second method is to predict that the most recent past year’s 
losing percentage for each risk will repeat. This is what is meant by 
giving the most recent year of data 100% credibility. 
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6.3 Credibility Weight the Most Recent Year and the Grand Mean 

In the third method, one gives the most recent year of data for each 
risk weight Z, and gives the grand mean, which in this case is 50%, 
weight I - Z. 

When Z = 0, one gets the first method; when Z = 1, one gets the 
second method. Since each of these is a special case of this more general 
method, by the proper choice of Z one can do better than or equal to 
either of the two previous methods. This is an important and completely 
general result. It does not depend on either the criterion that is used to 
compare methods or the means of deciding which value of Z to use. 

6.4 Determining the Credibility 

When employing the third method, the obvious question is how does 
one determine the value of credibility to use. Ideally one would desire 
a theory or method that would be generally applicable, rather than one 
that only worked for a single example. There have been many fine papers 
on this subject in the actuarial literature. 

Generally, the credibility considered “best” is determined by some 
objective criterion. This will be discussed later. 

Using either Biihlmann/Bayesian credibility methods or classical/ 
limited fluctuation credibility methods, one determines which credibility 
will be expected to optimize the selected criterion in the future. One can 
also empirically investigate which credibility would have optimized the 
selected criterion if it had been used in the past; i.e., one can perform 
retrospective tests. This will be discussed in more detail later. 

6.5 Equal Weight to the N Most Recent Years of Data 

In the fourth method, one gives equal weight to the N most recent 
years of data for each risk, and gives the grand mean, which in this case 
is 50%, weight 1 - Z. This method gives each of the N most recent 
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years weight of Z/N. I6 When N = 1 this reduces to the previous method. 
Thus this method will perform at least as well as the previous method. 
with the proper choices of N and Z. 

7. CRITERIA TO DECIDE BETWEEN SOLUTIONS 

In this section, we will discuss three criteria that can be used to 
distinguish between solutions. These criteria can be applied in general 
and not just to this example. 

7.1 Least Squared Error 

The first criterion involves calculating the mean squared error of the 
prediction produced by a given solution compared to the actual observed 
result. The smaller the mean squared error, the better the solution. 

The BiihlmannlBayesian credibility methods attempt to minimize the 
squared error; i.e., they are least squares methods. Minimizing the 
squared error is the same as minimizing the mean squared error. 

7.2 Small Chtrnce of‘ Large Errors 

The second criterion deals with the probability that the observed 
result will be more than a certain percent different than the predicted 
result. The less this probability. the better the solution. 

This is related to the basic concept behind “classical” credibility 
which has also been called “limited fluctuation” credibility [7]. In clas- 
sical credibility. the full credibility criterion is chosen so that there is a 
probability, P, of meeting the test that the maximum departure from 
expected is no more than k percent. 

The reason the criterion is stated in this way rather than the way it 
is in classical credibility is that, unlike the actual observations, one 
cannot observe directly the inherent loss potential.” However, the two 
concepts are closely related, as discussed in Appendix G. 

Ih In later methods. the weights glccn to the different vear\ ot data ~111 be allowed to differ from 
each other. 
I7 It has been shown that the loss potential vary for ;L rlsh O\CI lime. Thu\ it cannot be e\tlmated 
as the average of many uhservations over time. 
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7.3 Me~~erslDonveiler 

The third criterion has been taken from Glenn Meyers’ paper [ 11. 
Meyers in turn based his criterion upon the ideas of Paul Dorweiler [8]. 

This criterion involves calculating the correlation between two quan- 
tities. The first quantity is the ratio of actual losing percentage to the 
predicted losing percentage. The second quantity is the ratio of the 
predicted losing percentage to the overall average losing percentage. The 
smaller the correlation between these two quantities, i.e., the closer the 
correlation is to zero, the better the solution. 

To compute the correlation, the Kendall T statistic is used.lx This is 
explained in detail in Appendix B. The relation of this criterion as used 
here and as it is used by Meyers to examine experience rating is also 
discussed in that appendix. 

8. THE CRITERIA APPLIED TO THE SIMPLE SOLUTIONS 

In this section the three criteria in Section 7 will be applied to the 
simple solutions given in Section 6. More knowledgeable readers may 
wish to skip to Section 8.4 which compares the results of applying the 
three different criteria. Section 8.5 discusses the reduction in squared 
error. Section 8.6 examines the impact of a delay in receiving data. 

8. I The Two Buse Cases 

The two simplest solutions either always use as the estimate the 
overall mean (2 = 0), or always use as the estimate the most recent 
observation (Z = 1). While neither of these solutions is expected to be 
chosen, they serve as the base cases for testing the other solutions. 

lx Meyers in 1 I] used the Kendall 7 statistic. In the example here, any other reasonable measure of 
the correlation could be substituted. 
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The first criterion is the smallest mean squared error. For the two 
data sets the results are: 

Mean Squared Error 

NL AL 

z=o .OOY 1 00% 
z= 1 .005Y .006X 

The second criterion is to produce a small probability of being wrong 
by more than k percent. For the two data sets the results are as follows: 

Percent 
Percent Percent of time that 

of time that of time that the estimate 
the estimate the estimate is in error 
is in error is in error by more than 

by more than 5% by more than 10%~ 20% 

NL AL NL AL NL AL 

z=o 82.2% 80.3% 64.8% 63.8% 29.0% 31.4% 
z= 1 75.8% 72.9% 52.3% 55.7% 19.1% 22.0% 

The third criterion is to have a correlation as close to zero as possible 
between the ratio of the actual to estimated and the ratio of estimated to 
the overall mean. For the two data sets the results are as follows: 

Correlation (Kendall 7) 

NL AL .____. 

z = o* .4x .46 
z= 1 -.24 -.27 

* Limit as Z approaches Nero. 
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8.2 Applying Credibility to the Latest Year of Data 

The third prediction method, explained in Section 6.3, uses credi- 
bility to combine the latest year of data and the grand mean. The mean 
squared error depends on the credibility. As shown in Table 6, the mean 
squared error is a minimum for Z between 60% and 70%.i9 The proba- 
bility of having errors of 20% or more is displayed in Table 7. Based 
on this second criterion, the optimal Z is between 50% and 80%.20 This 
criterion does not distinguish very sharply between the different values 
of credibility. 

The correlations used in the third criterion are displayed in Table 8. 
Based on the third criterion the optimal Z is approximately 70%.21 

8.3 Applying Credibility to the Latest N Years of Data 

The fourth method, explained in Section 6.4, uses credibility to 
combine the grand mean with the latest N years of data (giving each 
year of data the same weight.) 

The results of applying the first criterion are shown in Table 6. Based 
on most actuarial uses of credibility, an actuary would expect the optimal 
credibilities to increase as more years of data are used. In this example 
they do not. In fact, using more than one or two years of data does an 
inferior job according to this criterion. 

This result is to be expected, since the parameters shift substantially 
over time. Thus the use of older data (with equal weight) eventually 
leads to a worse estimate.22 

I’) For the NL data set, the minimum occurs when Z = 68’S, For the AL data set, the minimum 
occurs when 2 = 66%. Also, it should be noted that the squared errors for Z = 0 vary somewhat 
with the number of years of data used, solely due to the differing periods of time over which the 
test can be performed. 
X’ For the NL data set, the optimal Z is 75%. For the AL data set. the optimal Z is 55%. It should 
be noted that, given the limited number of observations, two values of Z can produce identical 
results for this criterion. 
21 For the NL data set, the correlation is closest to zero for Z = 71%. For the AL data set, the 
correlation is closest to zero for Z = 66%. 
I2 The number of years of data to use to get the best estimate will depend on the particular example. 
This general subject was explored in Mahler 151. 
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The results of applying the second criterion are displayed in Table 
7. This criterion does not sharply distinguish between the different values 
of credibility. There is a broad range of credibilities all of which do 
reasonably we11.2J This is particularly true for larger values of N. Again 
the use of more years of data eventually leads to an inferior estimate. 

The results of applying the third criterion are displayed in Table 8. 
Again the optimal credibility does not increase as N increases. Unlike 
the other criteria, the third criterion cannot be used to distinguish between 
values of N. For each N, there is a Z, such that the correlation is zero. 
Thus each value of N performs as well as all the others. 

Meyers points out that the distribution of Kendall’s T can be used to 
obtain a confidence interval for the credibility. As explained in Appendix 
B, for this example a 95% confidence interval for 7 around zero has a 
radius of about .07. 

For example, using 10 years of data, the optimal credibility using 
the Meyers/Dorweiler criterion for the NL set of data is 63%. However, 
this point estimate for the credibility is actually an estimate of an interval 
of credibilities that correspond to ‘I between plus and minus .O’?. The 
optimal credibility is 63% 2 13%.2J 

8.4 Comparison of the Results of the Three Criteria 

In Table 9 the optimal credibilities are displayed as determined by 
the three criteria for various values of N. Note that the listed values of 
credibility are those that happened to work best over the period of time 
observed. Values close to these values would also work well over this 
period of time. 

One should think of the point estimates listed in Table 9 as the 
centers of interval estimates. This is illustrated when one compares the 
different estimates obtained by analyzing the NL and AL data sets. There 
is no inherent difference in the two data sets. Thus one would expect 
the credibilities from the two analyses to be the same. They are similar, 

*3 This is true to a lesser extent for the first criterion. This subject is explored in Mahler 191 
M ForZ = 63.3%. 7 = 0. ForZ = 50.1%, 7 = .07. For Z = 76.4%, ,r = -.07. 
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but far from identical. This indicates that the peculiarities of the specific 
observed values are sufficient to affect the answers somewhat. There is 
some lack of precision in the estimates in Table 9. 

TABLE 9 

OPTIMAL CKI-INHILJT Y 

Number of 
Years of 

Data Used 

2 
3 
4 
5 
7 

10 
IS 
20 
25 

NL AL, 

Criterion Criterion Criterion 
#I #2 #3 

68% 75% 
71 X0 
14 87 
76 57 
74 61 
71 64 
60 49 
63 43 
71 40 
64 30 

71% 65(/r sssi 66% 
72 70 56 70 
76 72 77 73 
77 72 69 72 
77 7(1 7u 71 
73 67 51 68 
63 62 70 64 
64 65 69 62 
73 XI x2 77 
64 97 61 94 

Criterion Criterion Criterion 
#I #2 #3 __- -- - 

Criterion #I : Least Squares (Section 7. I 1 
Criterion #?: Small Chance of Large Errors (SectIon 7.2) 
Criterion #i: Meyers:l>orweiler (Section 7.31 

This can be illustrated further by reversing the time arrow and ana- 
lyzing the data sets going backwards in time rather than forwards. For 
example, one could use data from years 1902 to 19 1 1 to “predict” 190 1. 
This analysis is equally valid for determining optimal credjbilities jn this 
example as was the original anlysis. 

For N = 10, one gets the following optimal credibilities for the 
different data sets, where NLR and ALR represent respectively the NL 
and AL data sets reversed in time. 
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Criterion # 1 
Criterion #2 
Criterion #3 

NLR 

72% 
58 
77 

Optimal Credibilities (N = 10) 

NL ALR AL - - 

60% 57% 62% 
49 42 70 
63 58 64 

Average 

63% 
55 
65 

The optimal credibilities differ between the four data sets. The 
amount of variation provides some idea of the imprecision of the different 
estimates. While the optimal credibilities differ between the three criteria, 
the differences do not appear to be sufficiently large to allow one to 
draw any definitive conclusions. 

In this case, the use of any value of credibility between 50% and 
70% would perform reasonably well according to all three criteria for 
all four data sets. As a practical matter, the difference in the predictions 
will not vary that much depending on which value of credibility is chosen 
in that range. 25 

In most applications of credibility, values for the credibility that 
differ somewhat from optimal perform reasonably well and the choice 
between these values has a relatively small practical impact. 

8.5 Putting the Reduction in Squared Error in Context 

The first criterion used to determine the optimal credibility is to 
minimize the squared error. Using the optimal credibility based on this 
criterion will reduce the squared error between the observed and predicted 
result. What should be considered a significant reduction in squared 
error? 

lJ The maximum difference in any prediction for N = 10 between using 50% and 70% credibility 
is 3.3% in the losing percentage. In most cases it is much smaller. On average it would make about 
a 1% difference. 



Let us examine an example. For the NL data, using one year of data, 
the optimal credibility is 68% as shown in Table 9. As shown in Table 
6 the mean squared errors are: 

Z - 

0 
68% 

100% 

Mean 
Squared Error 

OOY I 
.004Y 
.005Y 

In this case, by the use of credibility, the squared error has been 
reduced from .0059 if the data were relied upon totally, or .0091 if the 
data were totally ignored, to .0049. In this case, the squared error has 
been reduced to 83% (.0049/.0059) of its previous value.‘h 

As discussed in Appendix E, in the current case. the best that can 
be done using credibility to combine two estimates is to reduce the mean 
squared error between the estimated and observed values to 75% of the 
minimum of the squared errors from either relying solely on the data or 
ignoring the data. ?’ 

The reduction of the squared error to 837~ of its previous value 
appears significant in light of the maximum possible reduction to 75%.“x 

8.6 Effect of Deiay in Receiving Data 

It has been shown previously for the data set examined in this paper 
that the further apart in time two years are, the lower the correlation 
between them. Thus if there is a delay before the data are available for 
use in experience rating, the resulting estimate of the future will be less 
accurate. 

>o The “previous” value of the squared error is considered to be the minimum of the squared errors 
that result from either ignoring the data entirely or relying on the data entirely. 
s When using more than two or more years of data, the reduction in squared error depends on the 
impact of shifting parameters over time. However, in the absence of shifting parameters over time, 
for N years with the same weight applied 10 each year. the maximum possible reduction is 1 + 
(2(N + I)). 
2” The maximum reduction is possible when the squared error\ for 2 = 0 and Z = I are equal. 
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As is shown in Table 10, as the delay increases, the squared error 
increases significantly. The increase in squared error is particularly sig- 
nificant as one goes from a situation of having the data from the most 
recent year available to predict the coming year to a situation of having 

TABLE 10 

MINIMUM SQUARED ERROR(.OOOI) 

Time Between Latest 
Data Point and 

Future Prediction N= 1 N=2 N=3 N=4 N=5 

2 
3 
4 
5 
6 
7 
8 
9 

IO 

Time Between Latest 
Data Point and 

Future Prediction 

49 52 51 51 53 
66 62 60 60 60 
69 66 65 64 65 
73 71 69 69 70 
77 73 73 72 72 
76 75 75 73 74 
78 77 75 75 75 
79 77 77 76 75 
78 78 77 76 75 
78 78 76 75 75 

AL 

N=l N=2 N=3 Iv=4 Iv=5 

NL 

8 
9 

10 

56 56 59 61 66 
71 70 71 74 76 
78 77 80 81 83 
83 85 85 87 88 
89 89 90 91 91 
91 91 92 93 93 
93 93 94 93 94 
95 94 94 94 93 
95 94 94 93 93 
94 94 93 93 94 
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only the next most recent year available. Unfortunately. the latter situ- 
ation is more common in insurance than is the former. 

As is shown in Table 11, the optimal credibility (as determined using 
the least squares criterion) decreases as the delay increases. Less current 
information is less valuable for estimating the future 

TABLE I1 

OPTIMAL CREDIBILITY (CRITERION #I. LF.AS.I SUUAKES) 

Time Between Latest 
Data Point and 

Future Prediction 

8 
9 

IO 

Time Between Latest 
Data Point and 

Future Prediction 

N= I N=2 N=3 N :zr 4 
-- N=5 

68 71 74 76 74 
51 s9 64 64 63 
47 53 55 56 55 
40 45 47 47 45 
33 38 40 39 36 
30 33 34 32 30 
24 26 26 25 24 
19 20 31 2 1 20 
14 I6 I7 18 20 
II I3 I5 IX 21 

AL - 

N= 1 N=2 N=3 N=4 N=5 

8 
9 

IO 

65 70 72 72 70 
51 57 58 57 56 
42 47 46 46 45 
35 36 37 36 36 
25 2x 28 28 25 
21 22 22 19 18 
15 16 14 14 13 
II 9 IO IO 9 
6 7 8 7 9 
7 7 7 9 IO 

NL - 
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9. MORE GENERAL SOLUTIONS 

In Section 6, four relatively simple forms of a solution were given. 
In this section, more general forms of a solution will be given. 

9.1 Combine Previous Estimate and Most Recent Data 

In the fifth method, one gives the latest year of data weight 2, and 
gives the previous estimate weight 1 - Z. Of course, one has to choose 
an initial estimate.” In this case, for each risk the initial estimate will 
be taken as the grand mean of 50%.“’ Once this estimation method has 
been used for several years, the initial estimate has very little weight. 

For example, let us assume Z = 60%. Then the weights assigned to 
the given years of data used in estimating the result for the year 191 1 
would be as follows: 

Year of Data Weight in Estimate of 1911 

1910 
1909 
1908 
1907 
1906 
1905 
1904 and Prior 

Z = 60% 
Z(1 -z)=4O%x60%=24% 
Z (1 - Z)’ = 40% x 40% x 60% = 9.6% 
Z (I - Z)” = 9.6% x 40% = 3.84% 
Z (1 - Z)” = 3.84% x 40% = 1.54% 
Z (I - Z)’ = 1.54% x 40% = .61% 
(1 - Z)h = .41% 

The above assumes that the latest year of data is always given 60% 
weight, while the current estimate is given 40% weight. 

Thus in this case, one gets a geometrically decreasing weight. This 
procedure is called (single) exponential smoothing [lo]. It is an example 
of what mathematicians call a “filter.““’ Once the process of exponential 

x This is precisely analogous to choosing a “seed” value in exponential smoothing. 
w One could use subjective judgement to choose the initial estimate for each risk. Also one could 
use data from the period prior to that displayed in this paper; this has been avoided for the sake of 
simplicity. 
I’ Morrison [ 1 I] gives this as an example of a “fading-memory polynomial filter.” 
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smoothing gets “up to speed, ” it is equivalent to a weighted least squares 
regression, where the fitted line is horizontal,” and where the weights 
are geometrically decreasing as the data get less recent. 

9.2 More Genrral Varying Weights 

In Section 9. I, one gave geometrically decreasing weight to years of 
data further in the past. More generally one can make the estimate: 

F = CZiX, + (1 _ EZ,)M 

where the weights Zi depend on how far in the past are the data X,. For 
years for which data are not available (presumably because they are too 
far in the past) one uses the grand mean M instead of the data. This 
method is a generalization of the methods in Sections 6 and 9.1. 

Unfortunately, calculating or empirically determining the optimal 
values of the weights Z, becomes difticult as more years of data are used. 
241so, there are many vectors of Z, that are very close to optimal; i.e., 
the n-dimensional volume of values ZI, .Z,, that produce close to 
optimal results is relatively large. 

10. THE CRITERIA APPLIED TO THE MORE: GENEtRAI. SOLUTIONS 

In this section the three criteria in Section 7 will be applied to the 
more general solutions to the problem given in Section 9. For simplicity, 
the results will be shown for the situation where there is no delay in 
obtaining the data for use in making the next estimate. In Section 8.6, 
an example was given of the results of such a delay in receiving data. 
The same general pattern would apply here. 

10.1 Geometrically Decreasing Weights 

In Section 9. I, weight Z is applied to the latest available year of 
data, while weight I -- Z is applied to the previous estimate. 

l2 Double exponential \moothiny. SometImes called linear exponential bmoothmg. would be equiv- 
alent to a weighted linear least squares regressIon, with geometrically decreasing weights as the 
data got less recent. 
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Table 12 gives the mean squared errors for various values of Z. The 
optimal values of Z, using criterion #1 (least squares), are all close to 
55%.” This results in weights to the various years of data very similar 
to those in the example in Section 9.1. 

TABLE 12 

MEAN SQUARED ERRORS* (.OOOl) THAT RESULT FROM 

APPLYING Z TO LATEST YEAR OF DATA 

AND 1 - Z TO PREVIOUS ESTIMATE 

Z - 

0 
.I 
.2 
.3 
.4 
.5 
.6 
.7 
.8 
.9 

1.0 

NL NLR** AL ALR** 

79 97 95 96 
61 70 72 78 
56 63 65 71 
52 60 60 67 
50 57 57 64 
49 56 55 63 
50 56 55 63 
50 57 55 64 
52 58 56 66 
54 59 58 69 
57 62 61 73 

* First IO years are not included in the computation of the squared 

errors in order to eliminate the calibration period. 
** Data reversed in time. 

In this case there is no significant reduction in squared error beyond 
what was previously obtained by applying credibility to the latest avail- 
able year. 34 

Table 13 displays the results of applying criterion #2, limited fluc- 
tuation. Values of the credibility between 40% and 80% generally per- 
form well. 

” For the NL data set the optimal credibility is 53%. For the NLR data set, it is 58%. For the AL 
data set it is 60%. For the ALR data set it is 54%. 

14 Compare the results in Table 6 for N = 1 with those in Table 12. 
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Table 14 displays the results of applying criterion #3, Meyers/ 
Dorweiler.j5 Unlike the previous two cases, the optimal credibilities are 
close to zero; 5% to 10% credibility produces correlations close to zero. 
The use of such small credibilities is approximately the same as using 
10 to 20 years of data as the basis for the estimate. since the geometrically 
decreasing weights decline only slowly. 

TABLE 13 

PERCENT- OF TIME* THAT THE ESTIMATI. IS IN ERROR BY 

MORE THAN 20% 
APPLYING Z fo LATEST YEAR OF DATA 

AND 1 - Z I’O PREVIOUS ESTI~~AI-F. 

Z NL NLR** AL ALR”* 

0 
.I 
3 .- 
3 ._ 

.4 

.5 

.6 

.7 

.8 

.9 
1.0 

25 31 33 31 

23 2.1 2s 26 
21 22 24 25 
1X 21 21 23 
16 21 20 21 

16 20 I9 22 
16 20 I9 21 
17 I9 20 22 
IX I9 I9 22 
18 20 IX 23 
19 21 I9 26 

* First IO years are not included In the computation in order to 
eliminate the calibration period. 

** Data reversed in time. 

‘5 In this case, the results of the first 20 years were excluded from the computation. in order to 
eliminate the calibration period. Twenty years were used, rather than ten years as in the previous 
two tables, since in this case smaller credibilities are optimal and smaller credibilities require a 
longer calibration period. 
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TABLE 14 

Z 
- 

NL NLR** AL ALR** 

o*** .I1 

.l - .03 

.2 -.05 

.3 -.08 

.4 -.I0 

.5 -.I3 

.6 -.I5 

.7 -.I8 

.8 -.20 

.9 -.23 
I.0 -.26 

CORRELATIONS* (KENDALL TAU) THAT RESULT FROM 

APPLYINGZTO LATEST YEAR OF DATA 

AND I - ZTO PREVIOUS ESTIMATE 

.I6 .28 .I4 

.Ol .oo -.09 
-.05 -.04 -.I0 
-.09 -.07 -.I2 
-.I2 -.lO -.13 
-.I5 -.I2 -.15 
-.I8 -.I4 -.I7 
-.20 -.I6 -.20 
-.23 -.I8 -.22 
-.25 -.2l -.24 
-.27 -.23 -.28 

* First 20 years are not included in the computation of the correlations 
in order to eliminate the calibration period. 

** Data reversed in time. 
*** Limit as Z approaches zero. 

10.2 More General Varying Weights 

In Section 9.2, varying weights 2, are applied to the most recent N 
years, while the remaining weight is given to the grand mean. This 
method will only be examined using criterion #I, least squares. One 
can solve numerically for the set of weights which produce the least 
squared error, using a given number of years of data.36 The results are 
as follows: 

lb Unfortunately, as the number of years increases, the amount of computer time required also 
increases. 
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Using Most Recent Two Years of Data (N = 2. A = I) 

Credibility 

Second Most Most Recent Mean Squared 
Recent Year Year Error (.OOOl) 

NL 9.6% 61.1% 48 

AL 13.1% 56.9% 54 

Using Most Recent Three Years of Data (N = 3. A = I) 

Credibility 

NL 
AL 

Third Most Second Most 
Recent Year Recent Year 

16.4% I. 1%’ 

8.1% 9.1% 

Most 
Recent Year 

59.0% 

55.7% 

Mean Squared 
Error (.OOOl) 

45 

53 

Most of the credibility is assigned to the most recent year. The 
complement of credibility, which is assigned to the grand mean, is about 
25 to 35 percent, decreasing as N increases. 

Complement of Credibility 

N= l* N=3 N=3 __- 

NL 32% 29% 24%’ 

AL 35% 30% 274 

* One minus the optimal credibility from Table c). 

The mean squared error is reduced from that using only the latest 
year of data. j7 

j7 Since the use of fewer years of data ih just a special case, the least squarr:d error using more 
years of data must be less than or equal that uvng leper years of data. 



CREDIBILITY AND SHIFTING PARAMETERS 261 

Mean Squared Error (.OOOl) 

N= I” N=2 N=3 

NL 49 48 45 

AL 56 54 53 

* From Table 6. 

1 1. EQUATIONS FOR LEAST SQUARES CREDIBILITIES 

In Section 11.2 are equations to solve for the least squares credibility. 
These equations follow from the assumed covariance structure discussed 
in Section 11.1. In Section 1 I .3 the equations in Section 11.2 are 
modified to constrain them to place no weight on the grand mean. Section 
1 I .4 compares the mean squared errors that result from different credi- 
bilities. Section 11.5 briefly discusses the validity of the results derived 
in this paper. 

II. I The Covariunce Structure 

By analyzing the covariance structure, one can set up matrix equa- 
tions to solve for the credibilities that minimize the squared error. These 
matrix equations are discussed in the next section. 

As shown in Appendix D, the variance of the data can be broken 
down into two pieces. There is the variance between the risks.j8 There 
is also the variance within the risks.‘” These two variances add up to the 
total variance. 

NL 
AL 

Between Variance 

.001230 

.001619 

Within Variance 

.007892 

.007875 

Total VarianceJo 

.009121 

.009494 

lx This has been denoted as 7’. 
Iq This has been denoted as 6’ + 5’. 6’ is what is usually termed process variance, while 6’ is the 
variance due IO shifting parameters over time. 
J(i May differ slightly from the sum of the other two variances due to rounding. 
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Also of interest is the covariance between the years of data. It is 
assumed that this is a function of the number of years separating the 
data. The observed values are given in Table IS. As was seen in Table 
5, the covariance decreases as the years of data are further apart. After 
about 6 years the covariances are relatively close to zero. 

TABLE 15 

C~VAKIAN(.~ I .OoOl ) 

Years 

Separating 
Data NL AL 

0* 
I 
2 

4 

5 

6 

7 

8 

9 

IO 

11 

12 

13 

14 

15 

16 

17 

I8 

19 

20 

7x92 

4Yl9 

3416 

3128 

7551 

1x10 

I566 

MS 

3x7 

- 74 

- 394 

-558 

- 3x9 

59 

212 

603 

7X6 

302 

47 

-268 

7875 

4527 

3175 

241 I 

1766 

780 

3x3 

-YY 

--561 

- 1068 

-87X 

-980 

~ lOY2 

-737 

-814 

-453 

-39 

-139 

214 

279 

41s 

*Equal by definition to the within variance 
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It is possible to divide the within variance into two parts. The first 
part is the process variance excluding the effect of shifting parameters 
over time.4’ The second part is that portion of the within variance due 
to shifting parameters over time. 42 While this division may aid our 
understanding, it is not necessary for the calculation of the least squares 
credibilities. Not coincidentally, this division cannot be performed based 
solely on the reported data contained in Tables 1 and 2. This subject is 
discussed in more detail in Appendix D. 

I I .2 Matrix Equations for Least Squares Credibilities 

Using the estimation method described in Section 9.2: 

F= gZ,X;+(1 - $Z,)M (11.1) 
i=l i= I 

As derived in Appendix C, one gets the following expression for the 
expected squared error between the observation and prediction: 

V(Z) = 5 5 ZiZj (T2 + C(li - jl>> 

- 2 f$ Zi (T’ + C(iV + A - i)) 
i=l 

+ T2 + C(0) (11.2) 

In equation (11.2) we have used the following quantities defined in 
Appendix D. 

T2 = between variance 
C(k) = covariance for data for the same risk, k years apart 

= “within covariance” 
C(0) = within variance 
A = the length of time between the latest year of data used and 

the year being estimated 

J’ This has been denoted as a2. 
*> This has been denoted as [‘. 



Equation 11.2 shows that the squared error is a second order poly- 
nomial in the Z,.j3 This equation is the fundamental result for analyzing 
least squares credibility. 

One can differentiate equation I I .2 in order to get N linear equations 
in N unknowns, which can be solved for the optimal credibilities. 

5 zj(T’ + c(/i - jl)) = T2 + C(N + A - i) i = 1, 2, . N (11.3) 
J=I 

The set of equations 1 1.3 can be solved on a computer relatively 
easily using the usual methods from matrix theory. The results of doing 
so for A = 1, using the average of the variances and covariance deter- 
mined from the NL and AL data separately.” arc shown in Table 16. 

TABLE I6 

LEAST SQUARES CREDIBILITIES, SOLU I IONS 01: MAI RIX Ecju.4 IIONS I 1.3 (A = I) 

Number 
of Years ot 

Year\ Between Ihta and Estimate 

Data Used (N) I 2 1 -1 5 6 7 x Y 10 
- - - - - - - - - - 

I 
2 
3 
4 
5 
6 
7 
x 
9 

IO 

fj6,y3 - ~ ~ -~ ~~ 
51.1 12.6 - ~~ ~ -- ~ - - ~ 

56. I 4.8 13.5 ~ 
55.6 4.6 Il..5 3.5 - - - 
55.7 5.1 I I.7 6.0 -4.4 ~ ~ 
55.9 4.9 I I.3 5.x 6.6 3.9 ~ 
56.0 4.7 Ii.5 6.2 -6.S 5.9 -3,s - - - 
56.0 4.7 II.4 6.2 --6.3 5.9 -2.8 -1.2 - - 
Sh. I 3.9 I I.0 6.6 -6.7 5.3 -~?.I -5.3 5.6 - 
55.9 5.0 II.2 6.4 -6.4 5.1 3.4 4.5 3.6 3.5 

The complement of credibility i\ applied to the grand mean 

First column is the credibility applied to the mo\t recent yu~-. wcond column is, the credibility applied 
to the next most recent year. etc 

Vote: Based on the average of the variances and co\arinnc,e\ dctcrmined from the NL and AL data 
separately: houcver. awmles that for a wparation of clght )ear\ or m~vr. the covariance is Len). 

4’ When N = 1, the squared error is a parabola as a function of the credikhty. l‘his has been noted 
before, for example in Appendix B of Meyers [I?]. 
* It is assumed that for a separation of eight year!, or more, the covariancc i\ Lro. 
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The results conform reasonably well to those determined in Section 
10.2. 

The credibilities applied to the most recent year quickly converge to 
about 56%. The credibilities for the less recent years are much smaller. 
However, these credibilities do not monotonically decline as the years 
get less recent. There is a complicated pattern of weights determined by 
the covariance matrix. Some of the weights are even less than zero.4s 

The optimal credibilities are uniquely determined given the covari- 
ante structure. However, there are many other sets of credibilities which 
produce expected squared errors very close to minimal. The precise 
values of the credibilities are not particularly important, although the 
general range of credibilities that perform well might be instructive. 

One can apply equation (1 I .2) to the method discussed in Sections 
6.5 and 8.3 of applying equal weight Zi to the latest N years of data, 
where 

Z; = ZIN for i = 1, . . . , N 

As shown in Appendix C, the least squares credibility in this case is 
given by: 

NT* + 5 C(N + A - i) 
1=l 

Z=N 

N? + $ 5 C(li - jl) 

(11.4) 

i=l j=l 

The results of applying this equation for A = 1, using the average 
of the variances and covariances determined from the NL and AL data 
separately,46 are shown in Table 17. 

Table 17 can be compared to Table 11. 

The results in Table 11 conform reasonably well to those determined 
empirically for each data set (for A = 1). 

45 Giving negative weight to some years allows a larger weight IO be given to other years. The net 
effect is to reduce the expected squared error. 
+C It is assumed that for a separation of eight years or more, the covariance is zero. 
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TABLE 17 

LEAST SQUARES CREDIHIL.I.I \I’. SOI.UTION TO 
EQUA IION I I .3 (A = I) 

Number of Years 
of Data Used (N) Z Z+N 

I 66.0% 66.0%~ 
2 70.3 35.2 
3 72.9 24.3 
4 73.h 18.4 
5 72.2 14.4 
6 71.3 11.9 
7 69.9 10.0 
8 68.2 8.5 
9 67.3 7.5 

IO 66.9 6.7 

Equal weight Z/N 1s applied IO each of the N most recent years of data. 
The complement of credibility. I ~ Z. is applied to the grand mean. 

Note: Based on the average of the variances and covariances determined 
from the NL and AL data separately: however, assumes that for a 
separation of eight years or mom. the covariancc is zero. 

11.3 Placing No Weight on the Grad Mean 

Once the estimation method described in Sections 9.1 and 10. I gets 
“up to speed,” the initial estimate, which was taken as the grand mean, 
has very little weight. For all intents and purposes each risk is estimated 
based on its own past data, without relying on the data of other risks, 
in particular the grand mean.“’ 

47 The covariance structure is herein estimated using the data for all ri\ks. Thia in turn is used to 
estimate the optimal credibilities. However. the credihilities are applied to the dala fur the particular 
risk we are rstimating. 
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One can constrain the credibilities used in equation I 1.1, so that they 
add to unity, thus giving no weight to the grand mean. Equation 11.1 
then becomes 

F = 5 Z;X, (11.5) 
1=I 

with the constraint 

: z; = 1. (11.6) 
,= I 

The least squres credibilities for equations 11.5 and 11.6 are derived 
in Appendix C using the method of Lagrange Multipliers. The result is 
a set of N + 1 linear equations in N + 1 unknowns, the Z; for i = 
1 3 ..., N, and A, the Lagrange Multiplier. There is the single constraint 
equation 11.6, plus the N equations 11.7. 

2 Z, C((i - j() = C(N + A - i) + ; , i = 1, 2, . . . . N (11.7) 
J=i 

The set of equations 11.6 and 11.7 can be solved on a computer 
relatively easily using the usual methods from matrix theory. The results 
of doing so for A = 1, using the average of the variances and covariances 
determined from the NL and AL data separately,4x are shown in Table 
18. 

11.4 Mean Squared Et-t-cm 

The mean squared errors that result from using the credibilities in 
Tables 16, 17, and 18 are displayed in Table 19. 

When applying general weights to the latest N years of data, giving 
the most remote year of data no weight is equivalent to the case of using 
the latest N - 1 years of data. Since using the latest N - 1 years of 
data is a special case of using the latest N years of data, we expect the 
squared errors to decline, or remain constant. 

This is what we observe for the credibilities from Table 16. They 
decline until N = 6, where the point of diminishing returns is reached. 

‘” It is assumed that for a separation of eight years oc more. the covariance is zero. 



TABLE 18 

LEAST SQUARES CREIXBILITIES, SOI.UTIONS OF EQUATIONS 11.6 AND 11.7 (A = 1) 

Number 
of Years of 

Years Between Data and Estimate 

Data Used (A? I 2 3 4 5 6 I 8 9 IO 
;: 
z - - - - - - - - - - 
z 

1 1()o.oq - - - - - - - - - E 
2 12.6 27.3 :: - - - - _ - - - 

P 
3 66.1 10.3 23.6 - - - - ;5 
4 63.5 9.1 16.0 11.4 - - - - - - 

2 
5 63.1 X.7 15.8 9.5 2.9 - ; 

6 62.X 7.6 14.1 8.6) -3.9 10.8 - - _.“. ~ z 
7 62.5 7.7 13.8 8.2 -4. I 9.0 2.9 c: - - - 
8 h2.3 7.3 I-1.0 7.7 -4.x X.6 -0.2 5.1 2 -- - 

9 61.X 1.3 13.0 x.3 -5.7 7.0 -1.1 -’ I.9 I I .2 
F 

-..- K IO 60.X 7.5 13.1 1.7 -5.2 6.3 -2.2 -2.5 6.1 X.4 : 
2 
c 

The credibihtirs are conatrainod to sum to unit]. 

Flrsr column is the crediblhty applied to the most recent qear. second column is the crediknhty applied to the 
next most recent year. etc. 

Note: Based on the average of the variances and covarlances determined from the NL and AL data separately: 
however. assumes that for a separation of eight years or more, the covanance is zero. 
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Applying the same weight to each year is a special case of using the 
general weights. Thus the squared errors that result from using the 
credibilities from Table 17 should be greater than or equal to those that 
result from the credibilities from Table 16. This is the case, as shown 
in Table 19. Also, as was observed in Section 8.3, using more years of 
data leads in this case to larger squared errors. 

Applying no weight to the grand mean is a special case of using the 
general weights. Thus the squared errors that result from using the 
credibilities from Table 18 should be greater than or equal to those that 
result from the credibilities from Table 16. As is shown in Table 19, the 
squared errors are substantially greater, with the gap narrowing as the 
number of years increases. 

TABLE 19 

Number 
of Years of 

Data Used (N) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Mean Squared Errors (.OOOl)* 

Using the Using the Using the 
Credibilities Credibilities Credibilities 

From From From 
Table 16** Table 17*** Table 18**** 

52 52 63 
51 54 58 
49 55 54 
48 57 52 
48 60 52 
47 61 51 
47 64 51 
47 66 51 
47 68 51 
47 70 50 

* Mean squared error using the stated credibiiities to predict for the NL and AL data 
sets. 

** The complement of credibility is given to the grand mean. 
*** Equal weight to N years, with the complement of credibility given to the grand 

mean. 
**** The credibilities add up to one, and thus no weight is given to the grand mean. 
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1 I .S Vulidity of Results 

The credibilities determined in Sections 10 and prior are all deter- 
mined empirically by directly working with the data. In this section 
equations for the least squares credibilities have been introduced along 
with an assumed covariance structure. 

The credibilities resulting from the use of the equations in this section 
are comparable to those determined in the previous sections empirically. 
As is shown in Appendix F, the observed pattern of squared errors is 
comparable to that derived from the assumed covariance structure. 

Therefore, the results of this section are an appropriate means of 
estimating least squares credibilities for this example. How well these 
results would apply to another situation would depend on the covariance 
structure that underlies the particular data set. 

12. MISCELLANEOUS 

Section 12.1 contrasts the Meyers/Dorweiler Criterion vs. the other 
criteria. Section 12.2 discusses a somewhat artificial ratemaking exam- 
ple. It is intended to point the way towards applying these or similar 
methods to practical situations. Section 12.3 compares the baseball ex- 
ample to typical insurance applications. Section 12.4 shows that the 
estimates that result herein from the use of the credibilities are in balance. 
Section 12.5 discusses the question of what estimation method to select 
for predicting the future loss record of baseball teams. It is included in 
order to complete the illustrative example used throughout this paper. 

12. I Contrasting the Me~erslDorcveiler Criterion 1~s. the Other 
Criteria 

Section 10.1 provides a good example of how criterion #3, Meyers/ 
Dorweiler, differs on a basic conceptual level from the first two criteria. 
Both of the other criteria are concerned with eliminating large errors.4” 
Criterion # 1, least squares, does this since even a few large errors will 

1v Mahler 171 compares the credibilities that result from the application of the Biihlmannileast 
squares criterion and the credibilities that result from the application of the classical/limited fluc- 
tuation criterion. 
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greatly increase the sum of squared errors. Criterion #2, limited fluc- 
tuation, does this directly by minimizing the number of errors larger than 
the selected size. 

In contrast, criterion #3, Meyers/Dorweiler, is concerned with the 
pattern of the errors. Large errors are not a problem, as long as there is 
no pattern relating the errors to the experience rating modifications. For 
example, consider the following two situations. In each case, for sim- 
plicity, only four risks are assumed. 

Situation # 1 
Modification Error 

1.20 +30% 
1.20 -30% 
.80 +40% 
.80 -40% 

Situation #2 
Modification Error 

1.30 +2% 
1.10 +I% 
.90 -1% 
.70 -2% 

Situation #2 with its small errors is preferable under the first two 
criteria. Situation #I with its lack of a pattern of errors is preferable 
under the MeyersiDorweiler criterion. Most actuaries would prefer Sit- 
uation #2. 

This example is not meant to discourage use of the Meyers/Dorweiler 
criterion. Rather it is meant to point out the potential hazards of relying 
solely on any single criterion, as well as the importance of understanding 
exactly what is being tested by any criterion that is being used. 



272 CREDIBILITY AND S11113lNG PARAMIl I ERS 

12.2 A Ratemaking Example 

Assume for a given line of insurance that the five most recent annual 
loss ratios are being combined to calculate a rate level indication.50 
Assume that it is three years from the latest year of data to the average 
date of loss under the proposed new rates.s’ A weighted average of the 
annual loss ratios will be used to estimate the future loss ratio. 

If we assume a given covariance structure, equations 11.6 and 11.7 
can be used to calculate the optimal least squares set of weights, Z;, such 
that 

Assume the covariance of the loss ratios separated by a given number 
of years is as follows:s2 

Separation in Years Covariance in Loss Ratios (.OOOOl) 

0 130 
1 60 
2 55 
3 50 
4 45 
5 40 
6 35 
7 30 

Then the optimal weights are: 11.6%, 13.4%, 17.3%, 23.8%, 33.9%, 
with the more recent data receiving more weight. It is interesting to note 
that these weights can be reasonably approximated by the weights used 
in Walters [ 131, i.e., 1 O%, IS%, 20%. 25%. and 30%. 

This example is for illustrative purposes only. It should not be taken 
as a derivation of the correct weights to use in any real world application. 
Unfortunately, in order to apply this idea to real world applications one 

* The loss ratios for the separate years are preuned to have been adjusted for trend. development. 
and any other factors such as law changes. 
‘I This period will vary, but A = 3 is not uncommon 
‘! This would be produced by 6’ = .0004, c2 = .(xX)9, ((I) = .667. t(2) = ,611. P(3) = ,556. 
C(4) = ,500. ((5) = ,494. C(6) = ,389. t(7) = 333. where the quantities are defined as in 
Appendix D. 
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has to estimate the covariance matrix. This will be affected by shifting 
parameters over time. It will also be affected by the varying quantity of 
data available in each year.“” It will be affected by the uncertainty in the 
trend estimates and loss development estimates applied to each year. 
These complications are beyond the scope of this paper. 

12.3 Baseball Example 1’s. TJ@cal Insurance Applications 

In many typical insurance applications, credibility is used in the 
process of determining relativities. For example, credibility is used to 
determine the rate for a class or territory relative to the overall rate level. 
Credibility is also used in experience rating, where the rate for an 
individual risk is adjusted relative to an average. 

In these situations, where a class, territory, or individual risk is 
compared relative to an average, the result depends on the other classes, 
territories, or risks which make up the average. An automobile territory 
with a low relativity in Massachusetts could have a higher loss potential 
than a automobile territory with a high relativity in Vermont. A workers 
compensation insured could have a credit experience modification simply 
because of the bad loss experience of several other employers in the 
same business in the same state. An insured with a .9 experience mod- 
ification could have a higher loss potential than another risk with 1.1 
modification in a different business or in a different state. The baseball 
example has this same feature. A team is being compared relative to the 
average in the league. The losing percentage only has relevance to rank 
teams in a single league relative to the average for that league. The 
difference in this example is that the average is a known constant. The 
grand mean is always .500. 

In baseball if somebody loses, then somebody else wins. Thus the 
win-loss records of seven teams determine that of the remaining team in 
an eight team league.‘” 

51 In this paper, each year of baseball data represented a comparable number of games, so this 
aspect was not important. 
54 The win-loss record of teams in the same league should be negatively correlated by an amount 
proportional to the number of games the two teams have played. 
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This could have had a major impact on the analysis of this example. 
However, each team played each other team in the league approximately 
the same number of times each year and each team played approximately 
the same number of games in total.55 Thus no team had its results 
distorted by playing a weaker or stronger schedule 

12.4 Estimates in Balance 

The estimation methods used herein are always 

The most general estimation method considered 
equation 9.1, where the subscript j has been added 

in balance. 

herein was given by 
to identify teamj: 

Then the average of the estimates F, for all the teams in the league 
is given by: 

=M 

Note that for a given year i, the credibility Z, assigned to each team’s 
experience Xi, for that year is the same for all teams. Also note the fact 
that the grand mean is the same for all years. 

That the estimates are in balance can be verified directly for the 
example given in Table 20. The predicted losing percentages for each 
year average to ,500, subject to rounding. 

12.5 Choice qf u Prrdiction Method 

The example in this paper is for illustrative purposes only; the purpose 
of this paper was not to predict baseball teams’ win-loss records. Never- 
theless, it may be of interest to choose a reasonable prediction method 

w The schedule was exactly balanced. but a few scheduled games we sometimes not played 



1904 ,541 ,479 ,461 ,495 ,469 ,575 ,379 ,606 
1905 ,582 ,568 ,432 .456 ,398 ,610 ,423 .534 
1906 ,615 ,613 ,424 ,480 ,368 ,504 ,408 ,588 
1907 ,627 ,568 ,334 .533 ,389 ,531 .421 ,598 
1908 ,594 ,559 ,351 ,544 ,448 ,463 ,426 ,616 
1909 ,578 .598 ,375 .529 ,408 ,476 .405 ,631 
1910 ,633 ,599 ,366 ,508 .427 ,498 ,354 .614 
1911 ,614 ,576 ,371 .509 ,426 ,492 ,430 .581 
1912 ,651 ,563 ,411 ,524 .400 .490 ,443 .522 
1913 ,624 ,582 ,414 ,511 ,376 ,508 ,425 ,557 
1914 ,561 .555 .438 ,550 ,377 ,454 ,471 ,596 
1915 ,458 ,526 ,478 ,570 ,441 .504 .515 ,509 
1916 ,468 ,493 ,505 ,541 ,504 ,443 ,517 ,529 
1917 ,437 ,438 ,536 ,574 ,464 ,440 ,551 ,559 
1918 ,503 .506 ,519 ,511 .423 ,442 .603 ,492 
1919 .534 ,519 ,425 ,493 ,440 ,512 ,514 ,565 
1920 ,560 ,512 .467 ,394 ,413 ,584 ,509 ,565 
1921 ,567 ,448 ,488 ,458 ,449 ,573 .490 .528 
1922 ,509 ,486 ,543 .501 ,419 ,618 ,449 .474 
1923 ,592 .492 .499 .469 ,426 ,596 ,461 ,466 
1924 ,596 ,503 ,485 ,448 ,412 ,626 ,450 .479 
1925 ,615 ,448 ,478 .462 .418 ,605 .440 ,536 
1926 ,553 ,522 ,525 ,474 ,441 ,562 ,418 ,505 
1927 ,556 ,516 ,485 ,458 ,488 ,583 .452 ,465 
1928 ,571 ,550 ,472 .497 ,441 ,610 ,422 ,436 
1929 ,613 ,509 .441 ,487 .434 ,648 ,452 ,418 
1930 .603 ,530 .406 ,539 ,449 ,558 ,442 .47 1 
1931 ,556 .472 .430 .570 ,448 ,614 .476 ,434 
1932 ,564 ,487 ,452 ,586 .448 ,559 .498 ,403 
1933 ,513 .418 ,441 ,584 ,504 ,520 ,467 ,492 
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TABLE 20 

NATIONAL LEAGUE,PREDICTIONS OF LOSING PERCENTAGES 

NLI NL2 NL3 NL4 NL5 NL6 NL7 NL8 
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1934 ,487 .537 ,455 .sxx ,442 ,564 ,460 ,468 
1935 .487 ,523 ,447 .6OY ,334 ,578 ,492 ,433 
1936 .b33 ,534 ,405 ,558 ,427 .56X .460 .417 
1937 ,545 ,543 ,442 .532 ,426 ,603 ,470 ,440 
1938 ,518 .563 ,421 ,582 ,412 .579 ,457 ,467 
1939 ,498 ,536 .436 .4YO ,449 ,635 ,450 ,507 
1940 ,543 ,486 ,456 ,437 ,477 ,641 .518 .445 
1941 ,541 ,458 ,494 .39x ,508 ,635 ,495 ,466 
1942 ,569 .406 ,522 ,433 ,510 ,659 ,491 ,411 
1943 ,572 ,381 ,538 .417 ,412 .661 ,525 .378 
1944 .551 ,452 ,519 ,457 ,573 .590 .492 ,368 
1945 ,559 ,530 ,515 ,451 .544 ,586 ,455 ,363 
1946 ,546 ,470 ,428 ,543 .s13 ,629 ,472 ,399 
1947 ,450 ,487 .468 ,538 .5b2 ,559 .538 .4OO 
1948 .434 ,459 .511 ,531 ,495 ,579 ,559 .433 
1949 ,453 ,439 ,548 .553 so4 .554 ,497 ,451 
1950 ,413 ,492 ,571 ,564 .Sll ,502 .527 .41Y 
1951 ,440 ,470 ,564 .55b .47O .454 ,570 .477 
1952 ,414 .501 ,572 .54x .42Y ,503 ,563 .472 
1953 .411 ,542 ,518 .SJl ,428 .45x .646 ,457 
1954 ,315 .455 ,553 ,543 ,503 ,475 ,627 ,469 
195s ,416 ,456 .554 ,521 .423 .497 ,626 ,507 
1956 .395 ,454 .532 .SlS .48 1 ,497 ,594 .531 
1957 ,419 ,434 ,572 .453 ,521 .523 ,566 ,512 
1958 .45 1 ,421 ,567 ,482 ,533 ,504 ,571 ,471 
1959 ,507 ,425 .538 ,492 ,501 s32 ,492 ,512 
1960 ,464 .45 1 ,523 SOY ,382 .55 1 ,502 ,518 

NLI NL2 NL3 

TABLE 20 

(CONTINUED) 

NL4 NL5 NL6 NL7 NL8 

Note: Using late\t three years of data, with weight\ of 10%. 10%. 55% (55% weight to the most 
recent year; 2SRm weight to grand mean). 
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for this particular problem. Assume that A = 1, i.e., 1910 data are 
available to predict 19 1 1, etc. 

Based on Table 19, the credibilities in Table 16 work well. 

The author would recommend avoiding using many years of data 
unless it substantially improved the accuracy. It is better to keep things 
simple. For this particular problem, based on Table 19, there seems little 
advantage to using more than 3 years of data. For example, giving 55% 
weight to the most recent year, 10% weight to the next most recent year, 
10% weight to the third most recent year, and the remaining 25% weight 
to the grand mean works reasonably well.5h 

The predictions that result from this method of estimation applied to 
the National League data are shown in Table 20.s7 The errors are shown 
in Table 21. 

The mean squared error is .0046.sx There is a 14% chance of an 
error of more than 20%. The correlation used in the Meyers/Dorweiler 
criterion is .02, not significantly different from zero. Thus according to 
all three criteria this prediction method works well. 

13. CONCLUSIONS 

The data from baseball used in this paper provide a useful way to 
examine and illustrate credibility concepts. 

The methods and concepts illustrated here can be applied to problems 
actuaries deal with in insurance. However, this paper is only a first step; 
there is further work required to apply these general concepts to any 
specific practical situation. 

x Many other choices would also work reasonably well. This illustrates the typical situation where 
once the general form of the weights is determined, there is a range of weights that work well. 
Usually, the specific choice of weights within that range has relatively little impact on the final 
result. 
v For example, the 1904 entry under NL2: ,479 = (.10)(.419) + (.10)(.457) + (X)(.485) + 
(.25)(.500), where the first three values are from Table I, and .500 is the grand mean. 
?” The mean squared error is .0049 when the method is applied to both the AL and NL data sets. 
This is a standard deviation of 10% losses out of a season of 150 games; the process standard 
deviation is about 6 losses out of a season of 150 games 
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TABLE 21 

NATIONAL LEAGUE, ERRORS OF PRWICTIONS IN TABLE, 20 

NLl 

1904 -.I00 
1905 -.087 
1906 - ,060 
1907 ,019 
1908 ,003 
1909 -.I28 
1910 -.021 
1911 - .095 
1912 -.cQ9 
1913 ,081 
1914 ,175 
1915 .OiM 
1916 ,054 
1917 ~ ,092 
1918 - .070 
1919 - .056 
1920 - ,032 
1921 ,083 
1922 -.I45 
1923 - ,057 
1924 - ,058 
1925 ,073 
1926 -.013 
1927 - .054 
1928 -.I02 
I929 - ,023 
1930 ,058 
1931 - ,028 
1932 ,064 
1933 ,052 

NL2 

-.I55 
-.I16 

,047 
,007 

- ,097 
- ,043 

,015 
,003 

-.058 
.018 
.042 
,052 
,103 

- .098 
- ,042 

.Ol2 
,116 

- ,045 
- ,020 
-.014 

,100 
-.I08 
-.014 
~- ,059 

,053 
-.033 

.088 
- ,008 

.Ol3 
- ,097 

NL3 NL4 

,069 
,033 
,187 
,038 

-.006 
,055 
,041 

- ,032 
.018 

-.Oll 
- ,056 
- ,045 
- ,057 

,017 
,170 

- ,039 
- ,046 
- ,094 

,062 
.038 
,014 

-.0X0 
,057 
,041 
,063 
.086 

-.OlO 
- ,025 

,036 
- ,001 

.070 
-.02x 
- ,096 
- ,036 

.01X 

.032 
- ,005 
~ ,033 

,014 
- ,071 
- ,060 

.O3 I 
- ,067 

.0x0 
,043 
.17Y 

- ,070 
~ ,084 

.OSY 
,060 

-.OlO 
-.OlS 

,039 
~ .052 

.OlO 
- .0x4 
~ ,078 
- ,053 
- ,024 
~ ,033 

NL5 NL6 
__ - 

.I62 - ,083 
,084 .I.56 
.ooo - ,032 

- ,075 ,096 
,084 ,002 
,009 - .040 
.018 .008 
,073 ,012 
,082 - ,030 
,040 .091 

-.078 ~ ,065 
-.I05 ,096 

,070 .03x 
,100 .Ol? 

- .004 -.I11 
,061 p.14.5 

.~ ,029 - ,011 
,063 - .096 
,023 -- ,009 
.041 - ,079 
,020 - .OlO 

-.016 ,049 
.06Y - .054 
.0x.5 ~ .08h 
,045 -.I07 

~ .OlO .I I2 
,014 --.I04 
,020 ,043 

~ ,084 .06S 
I03 ~ .0x5 

NL7 NL8 

-- ,052 ,093 
,050 - ,089 
,016 - ,065 
,012 - .062 
,062 - ,066 
.I29 -.014 

-- ,084 ,026 
--,018 .084 

,059 - ,066 
~~ ,052 -.I03 
mm.081 .I25 
m.O1l - ,020 

-- ,061 - .07Y 
m.118 ,098 

,123 -.I13 
.025 -.04l 
,022 ,052 
.078 ,097 
,001 .026 
,026 -.018 
,038 - ,099 
.06l ,039 

- ,033 ,083 
,062 ,066 

-.Ol9 .053 
,027 - .06Y 

- ,039 .06X 
- ,037 .090 

.056 -.I29 

.032 .028 
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TABLE 2 I 

(CONTINUED) 

NLI 

1934 .004 
1935 -.265 
1936 ,094 
1937 ,065 
1938 ,025 
1939 - ,085 
1940 -.029 
1941 - ,050 
1942 - ,032 
1943 ,016 
1944 - ,027 
I945 ,000 
1946 ,161 
1947 ,060 
1948 -.02l 
1949 ,083 
1950 -.009 
1951 ,058 
1952 ,041 
I953 ,093 
1954 - ,028 
1955 ,057 
1956 -.OOl 
1957 - ,036 
1958 -.088 
1959 ,071 
1960 - ,004 

NL2 NL3 NL4 NL5 - - - - 

,004 ,025 
-.019 ,096 
-.031 - ,030 
- ,052 .046 

,026 ,007 
,085 -.019 
,061 - ,057 
.I07 -.051 
,081 - ,036 

- ,090 ,022 
-.I39 ,006 

,095 ,151 
-.OOl - ,036 

,045 - .084 
.054 -.073 

-.074 -.056 
,031 -.Oll 

- ,036 - ,033 
-.08f ,072 

,139 - ,060 
,033 -.031 
.008 .025 
.05 I - ,078 
,051 - ,025 
,018 ,035 

- ,024 ,019 
,022 - ,087 

- ,068 ,050 
,053 ,029 
,039 ,024 

-.104 ,051 
.I29 - ,035 
,120 -.041 
,091 -.049 

-.031 - .008 
- ,067 ,069 

,042 -.I69 
.035 .008 

-.I53 ,057 
- ,022 -.091 

,012 ,088 
-.05l .OOl 
- ,043 - ,022 
- ,005 ,069 
-.002 .094 
-.004 .026 
-.017 -.117 

,024 ,133 
,008 -.058 
.I06 - ,084 

- ,028 -.03l 
- ,024 ,052 
- ,027 ,040 
- ,056 - ,005 

NL6 

- ,060 
-.004 
-.081 

,002 
-.I21 
- .067 
- ,032 
- ,086 
- ,063 

,077 
-.Ol I 
-.I15 

,077 
-.038 

,008 
,080 
.093 

- ,072 
,068 

- .OO3 
- ,038 
- ,003 
- ,042 

,023 
- ,048 
- ,052 
- .066 

NL7 NL8 

- ,047 .089 
,054 .056 
,005 -.018 
,028 - ,034 
,030 -.063 

-.I06 ,108 
,024 - ,006 
,021 ,100 

-.060 ,099 
,044 .060 
.080 ,050 

-.013 -.020 
-.I19 ,027 
- ,059 - .022 

,098 -.015 
-.042 ,074 
-.I00 -.07l 
- ,014 ,003 
-.I64 ,043 
-.029 -.004 
-.029 - .063 

,016 -.05l 
.023 ,025 

-.03l ,077 
.I16 -.061 

- ,002 - ,027 
,119 ,076 

Note: Predicted Losing Percentage minus Actual Losing Percentage 
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When shifting parameters over time is an important phenomenon, 
older years of data should be given substantially less credibility than 
more recent years of data. The more significant this phenomenon, the 
more important it is to minimize the delay in receiving the data that is 
to be used to make the prediction. 

In this paper three different criteria were examined that can be used 
to select the optimal credibility: least squares. limited fluctuation, and 
Meyers/Dorweiler. In applications, one or more of these three criteria 
should be useful. While the first two criteria arc closely related, the third 
criterion can give substantially different results than the others. 

Generally the mean squared error can be written as a second order 
polynomial in the credibilities. The coefficients of this polynomial can 
be written in terms of the covariance structure of the data. This in turn 
allows one to obtain linear equation(s) which can be solved for the least 
squares credibilities in terms of the covariance structure. 
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APPENDIX A 

SOME RELEVANT FEATURES OF BASEBALL 

Baseball is a competitive sport involving a combination of luck and 
skill. Two teams play against each other in a game; the team that scores 
the most “runs” wins the game, the other team loses.’ 

Each team has nine players in the game at a time.2 Players may be 
substituted for, but once they leave the game they cannot return. Over 
this period of time each team had 20 to 25 players on its roster.” The 
individual skills of the players, as well as how their skills complement 
each other, has a direct impact on the quality of the team. 

In addition to the players, a team has coaches and a field manager. 
By supervising the players’ training and conditioning, providing advice, 
deciding who plays, and by various decisions throughout the game, these 
people have some effect on the percentage of games lost or won by the 
team. 

Each team has an owner(s) and other office personnel.4 By developing 
new players, trading for players with other teams, etc., management has 
some effect on the percentage of games lost or won by the team. 

All of these elements that affect the quality of the team shift over 
time. A team’s roster of players typically changes a little during the 
course of a single year; over the course of several years the changes are 
substantial. It is unusual for a player to be with a single team for more 
than 10 years, although on very rare occasions a player has played for 
a single team for 20 years. 

Even if the identity of the players were to stay the same, the skill 
level of individual players changes over time. The most important effect 
is aging; as a player gets older he generally improves until he reaches a 

I While it is possible for a baseball game to end in a tie, such games are ignored in major league 
standings. 
z Currently the American League has added a tenth player, the designated hitter. 
’ Of the players on the roster, about half get most of the playing time, while the remainder see 
much less playing time. 
J During the latter half of this period a team had a general manager. 
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peak and then declines. Injuries can have a profound impact on a player’s 
skill; sometimes that impact is temporary while sometimes it is perma- 
nent. 

The field managers and coaching staff also change over time.s In 
addition, the owner(s) and upper management change, but much less 
frequently. 

Finally, a team occasionally relocates to another city. 

It might be useful to think of the following analogy to a workers 
compensation risk. The baseball players correspond to the workers in 
the factory. The field manager corresponds to the plant manager. The 
baseball upper management corresponds to the corporation’s upper man- 
agement 

’ Quite often the departure of the field manager will be rrlatcd TV rhr potjr record of the team 
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APPENDIX B 

MEYERS/DORWEILER CRITERION AND KENDALL’S TAU 

If an experience rating plan works properly, then after the application 
of experience rating, an insurer should be equally willing to write debit 
and credit risks. In other words, the modified loss ratio of expected 
losses to modified premiums should be the same for debit and credit 
risks. 

Mathematically, we desire that the correlation between the experience 
modification and the modified loss ratio be zero. r 

In the example in this paper, the experience modification corresponds 
to the ratio of predicted losing percentage to the grand mean losing 
percentage.z For example, a predicted losing percentage of 60% is equiv- 
alent to an experience modification of 60% + 50% = 1.2. The modified 
loss ratio corresponds to the ratio of the actual losing percentage and the 
predicted losing percentage.3 The third criterion used in this paper is that 
the correlation between these two ratios be zero. This corresponds to the 
criterion used by Meyers. 

Meyers [I] uses the Kendall T to measure correlation. 

Let X and Y be two vectors of length IT.~ Kendall’s T can be calculated 
as follows [ 141. Suppose Y is arranged in its natural order. Assume that 
the corresponding ranks of X are XI, XZ, . . . X,,, a permutation of 1, 2, 
. . . n. Let Q be the number of inversions in Xi, X2, . . . X,.5 Then let 

7= l- 4Q 
n(n - 1) 

’ If the correlation is positive, then insurers would prefer to write credit risks. The credits and 
debits given are on average too small, i.e., the credibility assigned to the experience is too small. 
The situation is reversed for a negative correlation. 
2 The predicted losses are equal to the experience modification times the expected losses for an 
average risk in the class. In a more general situation one would have classifications of risks; in this 
example we have only one such classification and thus use the grand mean rather than the class 
mean. 
/ In general the modified loss ratio is equal to the expected loss ratio times the actual losses over 
the predicted losses. In this example, the expected loss ratio can be thought of as unity. 
J In our case, X would be the experience modifications and Y would be the corresponding modified 
loss ratios. 
’ For example, in the X-ranking 3214 for 11 = 4. there are 3 inversions of order. 
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T is symmetrically distributed on the range [ - I, + 11. As is usual 
for measures of correlation, + 1 signifies complete agreement and - 1 
signifies complete disagreement. 

As shown in Kendall and Stuart [ 141, 

Var T = *ml + 5) 
9n(n - 1) 

As II approaches infinity the distribution of r approaches the normal 
distribution. 

In the examples in this paper, the variance of r varies from .0009 to 
.0016.h The standard deviation of T goes from .031 to .040. Thus an 
approximate 955X confidence interval around zero for T has a radius of 
approximately .07. about two standard deviations. 
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APPENDIX C 

MATRIX EQUATIONS FOR LEAST SQUARES CREDIBILITY 

In this appendix, equations 11.2, 11.3, 11.4, and 11.7 in the main 
text are derived. The squared error is written as a second order polyno- 
mial in the credibilities, with the coefficients depending on the covariance 
structure discussed in Appendix D. This squared error is minimized by 
setting the partial derivative(s) with respect to the credibilities equal to 
zero. 

Assume an estimate for year N + A, using N years of data, is given 
by: 

F= $Z;X;+(I -xZ;)M 
i= I 

where Xi is the data for year i, and A4 is the grand mean.’ Let Z. = 1 - 
EZ;. Write Z for the vector Zo, Zr, . . ., Z,V. 

Then the mean squared error between the prediction and the obser- 
vation is given by the expected value of the squared difference between 
F and XN+a. 

V(z) = E[(F - X,v+& 

= E[ ( ;i, Z (Xi - X,_,) + zo ( M - xv+a 

= 5 ZfE[(Xi - X,V+,)*] 
,= I 

+ 5 c Z;Z, E[(X; - &+a)(X, - Xv+.dl 
i=l Jfl 

+ 2 2 Z&Z; E[(X, - xN+A)(M - x,+A)l 
i= I 

+ Z:, E[(M - &‘+A>‘] 

’ It is assumed that the grand mean is known. This is the case in this paper. It is the case whenever 
one is only concerned with relativities compared to the overall average. 
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From Appendix D we have,? 

E[(X, - XN+.$] = 26* + 25*(1 - rf(N + A - 8) 

E[(X, - XN+A)(xj - XN+A)] = 8’ + c’(1 + c’((i - jl) 

- t(N + A -- i) - t(N + A - j,, 

E[(X, - X,+~)(M -- X,v + s,] = 6’ + 1;? 1 - Y(N + A - i)) 

E[(M - X,,..)‘] = 6’ + c’ + T’ 

Therefore 

v(z) = 5 Z;(26’ + 25’( 1 - ((N + A - i))) 
I- I 

+ 5 c zz, 
,= I /iI [ 

6’ + c2( I + I+ - ,jl, ~ C(N t A - i) 

- t'(N + A -- j) 
I 

+ 2.5, 2 .z;@ + t’(1 - 1(N + A -- i)) 
1-l 

+ z,‘,@ + T2 + c’, 

V(z> = 6’ + z; T1 

+ 5’ 
L 

5 2 Z,Z, + 2 i Z,Zj(t( /i - ,;I) - t (a%’ + A - i) 
i-0 ,--(I r-l ,=I 

- t(N + A - j)) - 2Zo $ %t(N + A ~ i) 
I-. I I 

but 

i zi = Z() + i: z; = (I - i Z,) + 5 z, = I 
r=o i-1 ,= I ,-I 

? In Appendix D, X(O,r) = the observation for risk H at time I. Smce in thls appendix none of the 
calculations are performed for individual risks. the H has been wppresed in order to simplify the 
notation. 
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Therefore 

289 

V(z) = s2 + Z(‘,T2 + 5’ + 6” 5 z,’ 
,= I 

+ 5’ 2 2 ZZj(t(li - jl) - @I + A - i) - t!(N + A - j)) ;=I j=l 

- 5’zo2 5 Z&V + A - i) 
;= I 

V(z) = 6’ + 5’ + T2 + T2 2 - 2T2 2 Zi 
i=l 

+ S*g Zf + 5’ 2 2 - - + A - 
i= 1 

Z,Z,(e(li jl) @‘v 
i=l j=i i) 

- e(N + A - j>) - 25* 5 z;e(/v + A - i) 
i= I 

+ 25’ 5 5 Z;Zje(N + A - i) 
i=l ,=I 

V(z) = s2 + 4’ + T2 + T2 5 g z;zj - 272 -$ z, 
i=l ,=I i=l 

+ S* 2 zi’ + 5’ : $ z;z,(e(Ji - jl) - t(N + A - j)) 
i= I /=I ,j=i 

- 25* 2 Z,@‘v + A - i) 
i= I 

v(z) = 5 5 ZiZj(S2Si, + 2 + (‘l!T((i - jJ)) 
i=I ,=I 

- 2 5 Z;(T~ + <‘e(N + A - i)) + 6’ + 5’ + T* 
i= I 



‘90 CREDIBILITY AND Stiit~I‘ING PARAM~z’I~RS 

This is equation 11.2 in the main text, with S%l, + <‘tJ(li - j() = 
C(li - jl) the covariance between data for a given risk /i - jl years apart. 
It is left as an exercise to the reader to verify that the formula for the 
mean squared error compared to the underlying mean rather than the 
observed value would be exactly 6’ less. 

In order to minimize this squared error, one sets the partial derivatives 
with respect to Z; equal to zero. This yields the following set of N 
equations. 

2z;(6’ + T2 + (‘) + I: 2z,(T2 + [-?(li - jl), 
,#i 

- 2(T’ + &N + A - i,) 

=O, ;=I , ."> N 

5 z,(S'Si, + T2 + (‘e((i - jl)) = 7’ + (?(N + A - i), 
,‘I 

i= 1 , . . . . N 

This is equation Il.3 in the main text, again with 

S’S,, + c2t(li - jl) = Ctli - jl). 

It is worth noting that equation I I .3 is very similar to the usual 
general matrix equation for optimal least squares credibilities: 

2 = CW~,Yl 
COV[k,Z] 

where .% is the vector of observations, and Y is the quantity to be 
estimated.j Here in equation 11.3, there is an additional term of T', the 
between variance, added to the covariances. This is due to the application 
of the complement of credibility to the grand mean. 

In the absence of shifting parameters over time (5’ = 01, the squared 
error is given by: 

v(z) = 6’ (1 + ,g, z:> + T2 ( 1 - (+, z,)’ 

’ See, for example. Theorem 3.3 in Chapter 111 of De Vylder ] IS]. 
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The optimal credibilities are given by the solution to the equations: 

5 Zj(S2Si, + T2) = T2, i= 1, . . ..N 
j=l 

The solution has all the credibilities equal: 

z,= T2 NT2 + s2 , i = 1, . . . . N 

;g, z, = NT2 
N 

NT~ + 6’ = N + S’/T* 

This is the familiar expression for the least squares credibility in the 
absence of shifting parameters over time. 

If we set Zi = Z/N for i = 1, . . . , N then equation 11.2 becomes: 

V(z) = $ {NS’ + N2~2 + 5’ 5 5 ((Ii - ji)) 
i=l j=] 

- 2 $ NT* + t2 2 e(N + A - i) + s2 + 5’ + T* 
,= I 

Setting the derivative of V(z) equal to zero gives the least squares 
credibility: 

NT~ + 5” 5 t(N + A - i) 
i= I 

Z=N 
N2~2 + NS2 + 5’ 5 5 [(Ii - jl) i=t j=l 

This is equation 
5*e(li - jJ>. 

Il.4 in the main text, with C((i - jl> = 6%ii, + 

We can minimize V(Z) in equation 11.2, given the constraint 
x?= iZi = 1, by using Lagrange Multipliers. 

We set the partial derivatives with respect to Z; of 

V(Z) - A (i, Zi - 1) equal to zero. 
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This produces the following N equations: 

$ Zj(S2S,,j + (*e(ji - jj)) = &‘P(N + A - 1) + 1 i = I, . . . . N 
j= 1 

This is equation I I .7 in the main text. It is worth noting the absence 
from the above equation of TV, the between variance. This follows 
logically from the fact that the grand mean is given no weight and each 
risk is estimated solely from its own data. 
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APPENDIX D 

COVARIANCE STRUCTURE 

In this appendix, the covariance structure for the data sets in Tables 
1 and 2 will be analyzed. As discussed in Section 1 1, 1, the variance is 
the sum of three pieces, the between variance, the variance due to shifting 
parameters over time, and the process variance excluding the effect of 
shifting parameters over time. The analysis herein will define these three 
pieces. 

Let X(@,r) be the observation for risk 0 at time ?. 

Let ~(0,r) be the expected value for risk 6 at time t. 

p(O,f) = W@,f)l. 

Let ~(6) = E,[X(@,t)]. 

Let M be the grand mean. 

M = EM~AI = EtMWl. 

In our case, 0 and rare both discrete rather than continuous variables. 
We can observe X. M is known since we are dealing with relativities 
compared to the overall average. On the other hand b(f3,t) is unknown 
and can never be observed directly. 

We can observe the squared error that results from using different 
estimations. This squared error can be usefully expressed in another 
form. To do so, we split the variance of X into various pieces. Define 

S2 = ME,U%WBJ) - ~.(%~>~~)0,~111 

5’ = WS[M~J) - ~.(~))~~fNl 

(*W = En[E,[COVtX(B,r),X(B,r + .Ql/811 

= E,[E,[COvt~,(e,t),~.(8,r + ~>l~Wl 

T2 = VARdE,[p.(B,Oll = VAQJ-(~)~ 
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Then 6’ is the process variance excluding any impact of’ shifting risk 
parameters over time. t2 is the variance due to shifting parameters over 
time. U(S) is a correlation measuring how much the risk parameters shift 
over time. 4?(O) = 1. t(s) I I for s > 0. I 7’ is the parameter variance, 
the variance between the different risks. 

For later convenience of notation define 

6’(8,t) = E[(X(B.r) - /~(8.r))~j0.t] 

6’(O) = E,[6%I,r)] 

&I, = E,[(P(~J) - p(0))‘/01 

t(s,O) = E,[COV[k(B,f), p(0.r +m s,]] tm 1;?6) 

then 

s2 = E@(O)] = Eo,,(6?0,t)] 

5’ = Ed5’@)1 

1(& = E&(s,tI,l;‘(8,] 

It is useful to rearrange the definitions of the variances in the usual 
manner so as to express the expected value of a quantity squared as the 
sum of a squared mean and a variance. 

E(X’(r,t))(r.B] = &t,@) + 6’(W) 

E,[/.&,B)j = $(B) + <?H) 

E&.&I)] = M’ + T? 

A similar expression can be derived from the definition of the co- 
variance. 

For the formula for the expected value of the squared error of the 
estimate from the observation. one needs to express various expected 
values in terms of the variances and correlations defined above. 

I One should note that it is an assumption that this correlation depends only upon the separation of 
the two years in question. Whether or not this k a reasonable approximation to reality is an empirical 
question which depends un the particular applicatmn. 
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E,. ,[X’(t,@l = Ee[E,[E[X2(~,~)(~,~111 
= Et~lE~l~%,~) + I’ll 
= E&2(8) + &O, + 6’(O)] 

= M2 + T2 + 5’ + s* 

E,, ~[X(f,0Mt + s,@l = Ee[E,[E[X(f,fWCt + .U3)~f~~lll 

= EtJEtl~(f,Wp(t + s,Qll 

= Edp2W + Qd3,i2(Q)l 
= M2 + T2 + e(.s)(2 

E,.u[MX(f,B)] = ME[X(r,O)] = M’ 

Then it follows that: 

E,. o[(X(r,O) - X(r + s,8))‘] = E,,c,[X*(r,~)] + E,, dX2(t + s,fVl 
- 2E,.dX(t,t9X(r + s,Wl 

= M2 + T2 + 5’ + s* + &I* + 72 

+ 5’ + s2 - 2(M’ + T2 + e(s)(2) 
= 2s2 + 25*(l - t?(s)) 

E,.d(X(r,B) - X(t + s,O))(X(r + u,@ - Xft + s,@>l 
= E,.~[X(t,@x(r + u,t-Ol + Et. dX20 + s,@l 

- E,.@[X(t + s,@X(r + u,(j)] - E,. ,[X(r,O)X(f + s,@] 

= M2 + T2 + e(u)gZ + M2 + 7* + 5’ + s2 - (M2 + 72 

+ e(s - u)C2) - (M2 + T2 + e(s)(2) 

= s2 + <‘(I + e(u) - C(s - u) - e(s)) 

E,,H[(X(I,@ - X(t + s,O))(M - X(1 + s,@)l 
= M’ - M2 + (M2 + T2 + 5’ + S2) 

- (M2 + T2 + e(.s)<2) 
= s2 + (‘( 1 - e(s)) 



E,,A[(M - X(r,O))‘] = M’ - 2M’ + (M’ + 7’ + 1;’ + 6’) 

= 6’ + 5’ + $ 

These results are used in Appendix C. 

It is of interest to note that variance of X = E,, e[(M - X(t,O))‘] = 
6’ + 5’ + TV. Th’ IS is the split of the variance ot’X into three pieces that 
was discussed above. 

Let C(s) = Covariance for data for the same risk, ,I years apart. 
Then for s > 0 

C(s) = E[(X(r,B) - p(O))(Xct + s.8) - p-(0,)1 

C(s) = E[X(r,B)X(r + s,B)] - E[X(~,B)~(B)] - E[X(r - s)r~,(@] 

+ Eb2(W1 
= M’ + 2 + e(s)<’ - (M’ + 2) ~ (M’ + C) -t M2 + 2 

= t?(s)<’ 

C(0) = E[(X(r,B) -- p(O))‘] = E(X’(?.O)] - 2E[X(t,8&~(8)] 

+ El&N1 

It is worth noting that the covariance structure assumed herein differs 
from that in Gerber and Jones [ 161. The covariance structure which in 
Gerber and Jones is shown to give credibility formulas of the updating 
variety? can be written as: 

cowx,,xj1 = 
i I 

; + “- j 2 1; 
I 

That covariance structure would assume for example that the covar- 
iance of the 1Y40 data with the data for each of the years earlier than 

2 Credibilities of the updating varlcty are \uch that nt‘~\ t’\tlmatc = (pr~rr e&mate x complement 
of credibility) + (new data X credlbilit)). Thl\ i\ the form 01 the e\tlmate dlscursed in Section 
9. I. 
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1940 is the same. In fact we observe that the distance between the years 
has an extremely significant impact on the covariance between the years. 

The covariance structure assumed here can be written as: 

[ 

t(j - i)c’ i < j 
COV[Xi,Xjl = (2 + 6* i=j 

Thus the optimal least squares credibilities that result from the matrix 
equations that are given in Appendix C will generally not be of the 
updating variety.’ 

We can directly estimate only the following quantities from the data: 
T’, C(O), C(l), C(2), etc. Not coincidentally, these are the quantities 
that enter into the formula in Appendix C for the squared error. Thus, 
these are also the quantities that enter into the calculation of the optimal 
credibilities. 

Thus, it is not necessary to estimate 6* by itself. However, if one 
does so, the values for 5’ and e(i) follow. We will estimate 6* here 
solely in order to aid our understanding; it does not affect any of the 
calculated values of the credibilities.4 

For a binomial process, with a success rate of .4 or .6, the variance 
is .24n.5 This is approximately the variance for the average risk in this 
example, with n = 150.” The resulting variance of games lost is 
(I-50)( .24). The variance in losing percentage is (150)( .24)/( 150)* = 
.0016. 

Thus a reasonable approximate value for 6* is .0016. The values for 
the variances and correlations are shown in Table Dl . It should be noted 
that as the difference in years increases, the correlations get close to 
zero. 

For example, the observed value for the NL data for 6’ + 5’ = 
.007892. Thus since we assume 6* = .001600, we estimate 5’ = 
.006292. The observed value of <*-!‘(I) = .004919. Thus we estimate 
e(l) = .004919/.006292 = ,782. For this example, the observed value 
of 72 = .001230. 

i They will be of the updating variety when l(s) = I for all s. 
4 In general if something cannot be observed in the squared errors, then it is not needed to calculate 
the optimal least squares credibilities. 
5 The variance is p( I - p)n. 
h Teams played about 150 games per year over this period of time. 
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It is important to note that the total variance of the observations is 
equal to 6’ + 5’ + 72 = .009122. Thus, what has been done here is 
just an analysis of variance, breaking the variance into its various 
sources. For this example, about 13.5% of the variance of the observation 
is due to the differences between the risks, about 17.5%~ is due to the 
process variance, and about 69.0% is due to shifting parameters over 
time. 

One can verify that the observed pattern in the covariance structure 
in Table Dl is not due solely to random chance. One can rearrange the 
data in random fashion, and observe the covariances. 

TABLE DI 

COVARIANCE STRUCTURE 

NL AL 
- 

T2 .001230 .001619 

6% .001600 .001600 

<'** .006292 .006275 

e(o)*** 1 ,000 1.000 

e(l) ,782 ,721 

W) ,543 ,506 

1'(3) ,497 ,384 

f(4) ,404 ,283 

t(5) .288 .I24 

t(6) ,249 ,061 

e(7) .I58 -.016 

((8) ,062 -.089 

k(9) -.012 -.170 

F(10) -.063 -.140 

* 8’ estimated as .001600 based on an assumed binomial process. 
** 5’ is based on the assumed value of 6’ and the ohAerved value III’ 5’ + s2. 

*** e(O) is unity by definition. 
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First one can rearrange the entries in each row of Table 1; for each 
row separately, assign each entry in that row to a randomly selected 
column. Similarly one can rearrange the entries in each column of Table 
1; for each column separately, assign each entry in that column to a 
randomly selected row. The resulting covariances that are computed for 
these two “scrambled” data sets are shown in Table D2. All of the 
covariances e(i), i > 0 are close to zero. Therefore, one can conclude 
that there is a significant pattern being displayed in Table Dl. 

TABLE D2 

COVARIANCE STRUCTURE, SCRAMBLED DATA 

NL NL 
Entries in Entries in Each 

Each Row Rearranged Column Rearranged 

T2 
s2* 
5 2** 

e(o)*** 
e(l) 
W) 
e(3) 

e(4) 

e(5) 

e(6) 

em 

e(8) 

e(9) 

@lo) 

.000191 

.001600 

.007330 

I .ooo 

,010 
-.009 

.008 

- .084 

- .025 

- .020 

- ,030 

- .058 

.049 

.042 

.001230 

.001600 

.006292 

1.000 

-.I17 

.021 

- .070 

- .035 

- .039 

- .006 

- .053 

.082 

.091 

-.019 

* S2 estimated at .001600 based on an assumed binomial process. 
** 5’ is based on the assumed value of s2 and the observed value of 5’ + 6’. 

*** e(O) is unity by definition. 
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APPENDIX E 

PUTTING THE REDUCTION IN SQUARED ERROR IN CONTEXT 

The first criterion used to determine the optimal credibility is to 
minimize the squared error. Using the optimal credibility based on this 
criterion will reduce the squared error between the observed and predicted 
result. What should be considered a significant reduction in squared 
error? 

Let us examine an example. For the NL data set, using one year of 
data. the optimal credibility is 68% as shown in Table 9. As shown in 
Table 6 the mean squared errors are: 

Mean 
z Squared Error - 
0 ,009 I 

68% .0049 
100% .0059 

In this case, by the use of credibility, the squared error has been 
reduced from .0059 if the data were relied upon totally, or .0091 if the 
data were totally ignored, to .0049. In this case. the squared error has 
been reduced to 83% (.0049/.0059) of its previous value.’ 

All of these squared errors include the variation of the observed 
results around the expected value.? The use of credibility does not affect 
this source of variation. Thus credibility methods cannot reduce the 
squared error between the observed value and the estimated/predicted 
value to as great an extent as they reduce the squared error between the 
true mean and the estimated/predicted mean.’ 

It is shown in Mahler [9] that the best that can be done using 
credibility to combine two estimates is to halve the mean squared error 
between the estimated and theoretical true underlying mean. However, 

1 The “previous” value of the squared error is considered to be the minimum oi the squared error\ 
that vault from either ignoring the data entirely or relying on the data entirel) 
2 This random variation is usually referred to as process risk. 
’ It should be noted that the former squared error IS concrete and easily ohserved. whde the latter 
squared error ib theoretical and difficult if not impo\\ihle to ohserve. 
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in this paper the squared error being examined is between the estimated/ 
predicted and the observed result, rather than the true underlying mean. 
This squared error is inherently larger due to the random variation in the 
observed result. Also the result derived in Mahler [9] was derived in the 
absence of shifting parameters over time. 

It turns out that, in the current case, the best that can be done using 
credibility to combine two estimates is to reduce the mean squared error 
between the estimated and observed values to 75% of the minimum of 
the squared errors from either relying solely on the data or ignoring the 
data.j One can think of half5 of the squared error as being due to two 
sources: the inherent process variance associated with comparing to 
observed results, and the presence of shifting parameters over time. This 
portion of the squared error is independent of the value chosen for the 
credibility. The remainder of the squared error can be thought of as that 
which is affected by the choice of the value of credibility; as stated 
above this can be at most cut in half by the use of credibility methods. 
If half of the squared error is cut in half, this reduces the total squared 
error to 75% of what it was. 

Assume one is estimating the future by credibility weighting together 
a single year of data and the grand mean.h Let V(0) be the squared error 
between the predicted and observed results for Z = 0. Let V(1) be the 
squared error between the predicted and observed results for Z = 1. 
Then as is shown in Appendix F: 

Squared Error Between 
Z Predicted and Observed 

0 V(O) 
Optimal V(1) l-v0 

i 4V(O) ) 

100% V(1) 

with the optimal credibility given by: Z optimal = 1 - V(l)/2V(O). 

4 When using more than two or more years of data, the reduction in squared error depends on the 
impact of shifting parameters over time. However, in the absence of shifting parameters over time, 
for N years with the same weight applied to each year, the maximum possible reduction is 
1/(2(N + I)). 
5 This is only a half for the case when the squared erron for Z = 0 and Z = I are equal. However, 
this is the case when one gets the maximum reduction in squared error. 
h The formula given below does not hold when using several years of data. 
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In the example above, we had V(0) = .0091, V( 1) = .0059. Using 
these values in the above formula gives Z optimal = 68%, equal to the 
empirically determined 68%. The formula for the minimum squared error 
gives a value of .0049, which is equal to the empirical minimum squared 
error. The reduction of the squared error to 83% of its previous value 
appears significant in light of the maximum possible reduction to 75%.’ 

7 The maximum reduction is possible when the squared rrnm for Z = 0 and Z = I are equal 
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APPENDIX F 

SQUARED ERRORS 

In Appendix C, the fundamental formula for the squared error was 
derived: 

V(Z) = 5 5 ZiZj(6*6ij + 7’ + lT*e(li - j()) 
i=l j=I 

- 2 5 Zi(T2 + (‘e(N + A - i)) + 6* + 5’ + r*. 
i=l 

One can actually check this result against the observed squared 
errors. ’ For example, let N = 2 and A = 3. Then 

V(Z, ,Z*) = z:(s* + 7* + 5’) + 2Z,Z2(T2 + <‘e( 1)) 

+ zgs* + T2 + 5’) - 2Z*(T2 + [*e(4)) 

- 2Z*(T2 + 5*e(3)) + Is* + 5’ + T2 

Using the average of the NL and AL values in Table Dl for the 
covariance structure: 

72 = .001425 6* + 5’ = .007884 

<‘e( 1) = .004723 <*e(3) = .002770 5*[(4) = .002158 

V(Z,, Z2) = Z:( .009309) + Z,Z,(.Ol2296) + Z;(.009309) 

- Z,(.OO7166) - Z2(.008390) + .009309 

Table Fl contains the results of the test for various values of ZI and 
ZZ. (Z, is the credibility applied to the less recent year of the two.) The 
mean squared errors are a close match to those given by the equation.* 

’ The covariances were estimated from the same data as is being used to test the equation for the 
squared error. Thus, the magnitude of the covariances is not being tested. However, the validity of 
the assumed form of the covariance structure as well as the validity of the derivation of the equation 
for V(Z) are being tested. 
L The differences are largely due to the fact that at the two ends of the data period there are either 
no predictions or no actual observation to enter into the computation of an error. 



304 

When N = I, one gets the following parabola for V(Z): 

v(Z) = z2(6’ + $ + cz, - ~Z(T’ + c?(A)) + 6” + 5’ + 7’ 

V(0) = 6’ + 7’ + 5’ = squared error ignoring the data 

V(l) = 26’ + 25’( 1 - C(A)) = squared error relying solely on the 
data 

Z optimal = 
T? + <‘e(A) V(0) - V( I )/2 

2 + 6’ + 5’ = 
= ’ C’( 1) 

V(O) 21/(O) 

(7’ + <‘k’(A$ 
V(Z optimal) = - z 7 + 6? + (’ 

+ 6’ + 5’ + T7 

=- (V(O) - V(‘)2)’ + v(o) 
V(O) 

=-v(o)+v(l,-g + V(O) 

V( ’ > = 
v(‘) (I - 4V(O) i 

This is the result referred to in Appendix E. The reduction in mean 
squared error is greatest when V(l) = V(0); then the squared error is 
reduced to 7.5% of the minimum of the squared errors that result from 
relying solely on the data or ignoring the data. 

In the absence of shifting parameters over time.’ the estimate im- 
proves as one uses more and more years of data. For large N, relying 
solely on the data produces a very good estimate; this is reflected in the 
fact that the optima1 credibility approaches I as N gets large. Thus for 
large N, one cannot reduce the squared error significantly by using 
credibility. 

’ In the presence of shifting parameters over time the Gtuation i, much more complxated. 
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TABLE Fl 

MEAN SQUARED ERRORS (.OOOl) 

21 - 22 - Observed 

Estimated 
by 2nd Order 
Polynomial 

0 0 9,182 9,309 
0 .25 7,592 7,793 

.25 0 7,963 8,099 
0 .5 7,202 7,441 

.I5 .35 7,087 7,293 

.25 .25 7,172 7,352 
.5 0 7,949 8,053 
0 .7.5 8,011 8,253 

.25 .5 7,581 7,769 
.5 .25 7,957 8,057 

.75 0 9,140 9,171 
0 I 10,020 10,228 

.25 .75 9,189 9,349 
.5 .5 9,165 9,260 
.75 .25 9,947 9,961 
1 0 11,536 11,452 

.75 .75 15,162 15,031 
1 1 25,162 24,667 

Note: Mean Squared Errors in estimating NL and AL data. N = 2, A = 3. Estimate 
uses data from the fourth and third years prior to the estimation period with weights 
ZI and Z2, respectively, and the complement of credibility applied to the grand 
mean. ZI = 15% and Zr = 35% is the solution to equation 11.3 for the least 
squares credibility. 
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The exact behavior can be derived using the results of Appendix C. 
In the absence of shifting parameters over time (1’ = O), and applying 
equal weight ZIN to each of N years, based on the result in Appendix 
C, the squared error is given by: 

V(z) = z2 i; ! + T2 - 2z? + 6’ + 2 

V(0) = 6’ + T2 

2 

Z optimal = ,r/: 62 = 
(N + l)V(O) - NV(l) 

(N + I )V(O) - (N - l)V( 1) 
1 

V(Z optimal) = 6’ + 7’ - NTz p 62 

V’) = 
‘(I) (’ - (N + l)‘!‘(O) - (N2 - I)V(I) 

The maximum reduction in squared error compared to the minimum 
of V(0) and V(l) occurs when V(0) = V(1). For this case 

Z optimal = 112 

V(Z optimal) = V(l) 
1 

2(N +- I). 

As N gets large, there is no significant reduction in squared error due 
to using credibility (in the absence of shifting parameters over time). 
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APPENDIX G 

THE SECOND CRITERION AND LIMITED FLUCTUATION CREDIBILITY 

The second criterion in Section 7 deals with the probability that the 
observed result will be more than a certain percent different than the 
predicted result. The less this probability, the better the solution. 

This is related to the basic concept behind “classical” credibility 
which has also been called “limited fluctuation” credibility [7]. In clas- 
sical credibilty, the full credibility criterion is chosen so that there is a 
probability, P, of meeting the test, that the maximum departure from 
expected is no more than k percent. 

The reason the criterion is stated in this way rather than the way it 
is in classical credibility is that, unlike the actual observations, one 
cannot observe directly the inherent loss potential.’ 

However, the two concepts are closely related. If there is a small 
chance of the estimate differing by a large amount from the true value 
of the inherent loss potential, then, since the observed values are dis- 
tributed about the true value, the chance of the estimate differing by a 
large amount from the observed value will be smaller than it would 
otherwise be. 

For example, assume the inherent loss potential is .550 and that the 
observed values are distributed approximately normally with a standard 
deviation of .050. Then there is approximately a 95% probability that 
the observed value will be between .452 and .648.’ 

Assume the estimated values are also approximately normally dis- 
tributed about the inherent loss potential.” Assume a standard deviation 
of .028. Then there is a 95% chance that the estimate will be between 
,495 and .605, i.e., within 10% of the true inherent loss potential. 

I It has been shown that the loss potential varies for a risk over time. Thus, it cannot be estimated 
as the average of many observations over time. 
2 The mean plus or minus 1.96 standard deviations. 
’ An unbiased estimator has the same expected value as the inherent loss potential. 
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The difference between the estimated value and the observed value 
will also be approximately normally distributed about zero.” The standard 
deviation is .057.” Thus, there would be a 95% chance that the absolute 
difference between the estimated and observed value will be less than 
.112. This corresponds to about a 95% chance that the estimated value 
will be within 220% of the observed value.h 

In a particular example, the result would depend on the relative size 
of the variances of the observations and the estimates. However, the 
smaller the variance in the estimates, the smaller the variance in the 
difference between the estimates and the observations. Thus the smaller 
the probability that the estimate and the true mean differ by a large 
amount, the smaller the probability that the estimate and the observation 
differ by a large amount. 

I The sum or difference of two normal distributions is also a normal distribution The new mean is 
The difference of the two means. 
’ The new variance is the sum of the two variances 
’ .I I2 + .550 = .204. 


