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Abstract 

In this paper many relations und equutions relating pure 
premium or expected value quantities are presented in terms 
of random variables. This is made possible by the use oj’ the 
indicator function so that awkr~w-d representations qf func- 
tions of loss are simplified. Rclutions and formulas on such 
topics as basic limits losses, excess of loss coverages and 
retrospective rating are presented in stronger, more primitive 
f arms. The related mathemutic~s is @ten simplijed and, in 
purticukar, an effective technique ,fin- handling trend is pre- 
sented. 

1. INTRODlJCTlON 

The loss distribution is an essential component in actuarial work but 
because of the various limitations of payment of loss in an insurance 
contract, the indemnity is not always identical to the loss. Hence the 
indemnity often has a rather complicated representation in terms of the 
original loss. Actuarial formulas and expressions become less tractable 
and more difficult to understand. For this reason the treatment of basic 
limits losses, excess of loss coverages and retrospective rating, for ex- 
ample, are replete with complicated mathematical relations, and the 
formulas and equations presented in the literature provide little insight 
into their meanings. This paper uses the indicator function to give the 
indemnity a single representation as a random variable. Many of the 
mathematical relations connecting expected value pure premiums are 
now turned into more primitive, stronger relations between random var- 
iables. The algebra in manipulating the mathematical relations is often 
reduced, and the relations themselves become more transparent when 
viewed this way. Mathematical notations are known to have revolution- 
ized mathematics and science in the long history of these disciplines; 
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witness the invention of zero, the use of Arabic numerals in place of the 
Roman numerals, and the introduction of vectors and matrices in modem 
mathematics. While it is not pretended that the use of the indicator 
function will have such portentous effects in actuarial science, it does 
simplify actuarial mathematics, add new insight in many areas, and lead 
more easily to some new results. 

2. DEFINITIONS 

It will clarify matters if we distinguish between the original loss 
incurred by the insured and the indemnity paid by the insurer. Let us 
represent the original loss by the random variable X, which foilows the 
loss distribution. We also assume that the indemnity depends solely on 
the loss so that, being a function of the random variable X, it is itself a 
random variable with distribution called the indemnity distribution. The 
indemnity relates to the loss X in many ways, depending on the nature 
of the insurance contract. Typically, the indemnity as a function of the 
loss assumes different functional forms over different ranges of the size 
of loss. This contributes to the unwieldiness in the mathematics of the 
indemnity distribution. For example, if the original loss is X and the 
indemnity is the basic limits loss with limit k, then the indemnity g(X;k) 
may be described as 

X O<XSk 

Note that g(X;k) is a random variable, but is represented above and 
elsewhere in the Proceedings by two separate expressions. This repre- 
sentation has obstructed the view of the users of this random variable, 
making it awkward to work with. It can be represented in a single 
expression using the indicator function: 

g(X;k) = Xh.nl (X) + kh, =-) (X), 

where IS(X) is an indicator function defined as follows: 

k(x) = 
1 ifxES 
0 otherwise 

with S representing a set of possible values of x. The inclusion of X = k 
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in the lower line segment instead of in the upper agrees with the con- 
vention in defining the distribution function F(x) = Prob (X I x). 
Although in the above definition of I(.) the argument is a numerical 
variable, the definition extends easily to the case of a random variable 
argument in the usual way. When expressed in this form many expres- 
sions involving the random variable g(X;k) can be manipulated more 
easily. The following simple properties of the indicator function contrib- 
ute much to its power: 

Is, (xl Is, (x) = ZS,flS, (x>. 

Is, (x> + Is2 (x) = Zs,u.sz (x) if SInS2 = 0. 
It can be easily deduced that 

IS, (xl - IS? (xl = ZS,“.T~ (4 if SCSI 

and 

Is, (x) Is2 (x) = 0 if S,n& = 0. 

The prescribed statistical text, Mood, Graybill and Boes [4], uses the 
indicator function quite freely. However, examples in casualty actuarial 
science where the indicator function is applicable are much more inter- 
esting and richer, and its use could also be more sophisticated. LaRose 
[2] presents the following notations for expected values of certain func- 
tions of the loss. In his notation 

Xl(k) = ; OktdF(t). 
I 

where cl= tdF(t) is the mean loss, 

and 

X3(k) = i l=(t - k)dF(t). 
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He shows that many actuarial functions expressed in a variety of forms 
can be represented in terms of these three quantities. It is clear that 
Xl(k), X2(k) and X3(k) are respectively the expected values of the fol- 
lowing functions of loss, measured in units of the mean loss: 

and 

(X - W(k. “) m. 

As functions of X, they are shown graphically in Figure 1. These 
quantities are more closely related to the loss and are more easily under- 
stood in their random variable forms. Most of the relations treated by 
LaRose [2] can be generalized to random variable versions; some of 
them are presented in the rest of this paper. A glance through Figures 
l-4 shows visually the underlying similarity of many quantities derived 
from the loss function. Some quantities known by different names are 
the same function of the loss, and some bear simple relationships to 
others. 

FIGURE 1 
SOMEFUNCTIONSOFTHE Loss 
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3. EXCESS OF LOSS COVERAGE 

An excess of loss coverage pays the amount of loss in excess of r 
for losses exceeding r but not greater than s, and the amount j = s - r 
for losses exceeding s: 

h(X;rj) = 1 
X-r ifr<XIs, 
j ifs < X. 

In terms of the indicator function 

4X7-j) = (X - ~)l~r,sl (X) + j!,,, 1, (xl 

Miccolis [3] shows that 

h(X;r,j) = g(X;s) -- g(X;r), 

where r + j = s. As an example of algebraic manipulation with the 
indicator function representation, we derive this result as follows: 

,@;s)-g(X;r) = X~,o, .x1 (X) + Jl(.I. q (x) - {X/(o,r] (X) + rzcr. x, (x>} 

= We”. .\)I WI - Ice, I-] co,) + sl,,, X) (X) 
- rl(,. .\I (Xl - rl,.,. xj (X) 

Hence 

= XIV, so (Xl - rl,,. .,I (X) + sl,,. =, (X) ~ rib x1 (X) 

= (X - r)lcr,,l (X) + (s - r)l,,. -,, (X). 

g(X;s> - g (X;r) = h (X;rj). 

(See equations 10-l 1 of Miccolis [3]). Miccolis derives a result on the 
expectation of h2(X;rj) (see his equation 13), which can also be con- 
veniently derived as follows: 

$(X;s) = {g(X;r) + h(X;rj)}’ 

= &X;r) + h’(X;r,j) + 2g(X;r)h(X;rj). 
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But 

gW;rMX;r,j) 

= {X~..I (W + rl(,, 9 <X,> RX - r)b-, 4 (x) + (s - f-k, El (ml 

= r{(X - rY(,, .d (X) + Cs - Ok m) (WI 

= rh(X;rj). 

(This result, in terms of random variables, is also given by Miccolis [3] 
in his equation 39.) We have the random variable version of his equation 
13: 

h*(X;rj) = g*(X;s) - g*(X;r) - 2rh(X;rj). 

In statistics the calculus of expectations is made easier by manipu- 
lating the random variables or their functions, rather than dealing with 
integrals directly. For example, 

Var WNI. 4 WI + kl~k, ==I (-91 

= Var [XZ~O. k~ (X)1 + Var LWk, =) GOI 

+ 2cov [XZW, &I (Xl, kkk, “1 WI 

= Var IXZCO, kj (X)1 + Var I&k. ffi) (x)1 

- 2~ {WUI. kl CO> E {k a) (x)1), 
since in the covariance the cross-product is zero. It is easier to perform 
manipulations such as this than to work with integrals. Figure 2 shows 
some relations between these quantities, which are treated as functions 
of the loss X. 

FIGURE 2 
BASIC LIMITS AND EXCESS OF Loss COVERAGES 
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.4n Exumple on Moments 

As an example using the expectation operator, consider first the hth 
moment of g(X;k). We have 

E {g?X;k)} = E {[Xh,~;] (X) + kick. x) WI”}. 

Expanding the power on the left hand side we see easily that all the 
cross terms are zero and so the hlh moment of g(X;k) is 

E {gh(X;k)} = E {X”r,t,. /;, (X)} + k”[ 1 - F(k)]. 

Now consider the hth central moment of g(X;k). We have the general 
result 

MdX;k)l = 131 (s, (- I)‘&;$ - (- l,“(h - I)$‘, 

where pi is the hth moment of g(X;k) and k = p’, is its mean. We ma 
then make use of our result for the moments of g(X;k) to obtain the x h’ 
central moment of g(X;k) 

CY, = E {[Xilco.k] (X)]}, pj = I?[ 1 - F(k)] and 

p = E G%. k, (JO) + k [l - F(k)]. 

4. TREND 

First we derive a result which will considerably simplify and clarify 
the treatment of trend effect. Let J be a monotone function of .r. To fix 
the idea, we assume the function to be increasing in .K 

y = a(x), 

so that the transformation is invertible: 

x = c-u?(y). 
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Then 

because the following statements are equivalent: 

k&b1 cy) = 1, 

Y E WI, 
a-’ (y) E (a-’ (a), C’(b)], 
x E (cc’(a), a-‘(b)], 
Zw’(a), a-‘(/&.4 = 1; 

and similarly whenever one of the indicator functions assumes the value 
0, the other does also. The result is also true for a decreasing function, 
in which case the terminal points of the intervals are reversed. 

Consider a loss X being subject to inflation. Suppose that at a future 
time point the loss becomes 

Y = a(X) 

with a(.) increasing. Then the basic limits loss becomes 

g(~w;k) = wa~~o,kl (eo> + uw,=, (4X)). 

Using (1) we have 

g(a(X>;k) = wxo, a-‘(k)1 (x) + &a-‘(k), -) 07 

This can be rewritten in the form of a resealed g function: 

(2) 

Zco. a-ml (x) + a-‘(k)Zww, a) 

= {k/u- ‘(k)} g {a- ‘(k)a(X)lk;a- l(k)}. 

In this representation we have a resealed g function of the form 
g(w(X);b) which takes the value w(X) = a-‘(k)a(X)lk over the interval 
(o,b] and the value b = a-‘(k) over the interval (b+), with w(b) = 6. 
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It is easily verified that when X takes the value 01 ‘(k), the first argument 
of the g function above also takes the value (Y ‘(k). The manipulation 
of random variables in this manner is a more general method of treating 
the trend effect and could be of practical use if the assumption of uniform 
inflation rate over the range of the size of loss is too serious a deviation 
from reality. Similarly, the effect of inflation on an excess of loss 
coverage can be represented as 

h(a(X);rj) = [(a(X) - rl I, b,,a-‘,.\)l(X) + (s - Y)Z(Cl ‘(5). x,(X); 

or alternatively described in the form of a resealed 11 function: 

h(a(X);rj) = c’h(X’;r’,j’) 
s-r 

i 

a-‘(s) - C’(r) = 
C’(s) - C’(r) [(a(X) - Nca-vrj,, bI(X) s - r 

+ [cC’(s)-u-l(r)lZ~a~ k, =j w ) 

= c’{(X’-r’)Ztrf..,. 1(X’) + (s’-r’)Zt.,‘.1#3), 

where 

(-’ zz s-r 

a-‘(,s-K’(r) ’ 

X’ = a(X)lc’ ( 

r ’ = rid, s’ = s/c’, 

j’ = s’ - r’ = (s - r)/c’ 

In the resealed form the function h(X’;r’,j’), where X’ is a function 
of X, takes the value X’ - r’ in the interval (X’ = r’. X’ = s’] and the 
value j’ in the interval (X’ = s’, %), with X’ - r’ = 0 when X’ = r’ 
and X’ - r’ = j’ when X’ = s’. When a(.) is the identity function, the 
original definition of h is recovered. The quantity of interest is the 
expectation of the h function. In general the functional form would not 
be easy to obtain, but the numerical computation should not be much 
more difficult than the computation of the untransformed h function. 



LOSS AND INDEMNITY DISTRIBUTIONS 213 

If the trend function a(.) is not monotone, then it can be broken up 
into pieces each of which forms a monotone function. The above analysis 
can then be carried out piecemeal. It is more usual to assume that the 
inflation rate is uniform over the loss size: 

a(X) = ax. 

Venter [S] gives an extensive treatment for this case. It can be shown 
by straightforward substitution in the resealed versions of the formulas 
above that 

g(uX;k) = ug(X;k/u), 

and 

h(uX;r,j) = uh(X;rlu,j/u). 

Formulas involving trend could cause difficulties because of the lack 
of suitable tools for handling the transformed loss payment resulting 
from inflation. Bickerstaff [l] describes a model for automobile physical 
damage loss in which there is a deductible D representable by the random 
variable 

and an upper limitation of loss payment L, such that the reduction in loss 
payment can be represented by the random variable 

(X - L)Z(L. &Q = XI& P,(X) - LZ(L. a,(X). 

The total reduction due to deductible and limitation in year 1 is then 

X~(O,Dl(X) + Dh. &,J + xzw. &Q - LZa. ~,W), 

with D < L. The loss payment limitation L is subject to a discount at 
an annual rate of 1 - d and the loss incurred is sub’ect to inflation at 
an annual rate of r, simultaneously, so that in the n ti 

X(1 + r)n-l 
year X becomes 

and L becomes LC’. Consequently the total reduction 
becomes 

(1 + r)n- ‘XZco, ol(( 1 + r)“- ‘X) + DZco, =,(( 1 + r)“-‘X) 

+ (1 + r)“-‘XZcOmf. =,((l + r)“-‘X) - Ld”-‘Zc~dn-~.,)((l + r)“-*IQ 
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which is obtained by simply applying the appropriate factors to X and 
D. Using equation (l), we can reduce this to 

(1 + r)n-‘XZ~t~,D( I++#) + DZCLA I+,-)’ n, -*04 

f (1 + r)n~‘XZCL~~-ICI +r)~ 0~ =)(X) - Lcfr’~‘Z,Lll”~~(,+,-)i~rl, .<,(X) 

Thus with the results developed earlier in this section the effect of trend 
can be handled in a fairly formal way. Taking expectations leads to the 
pure premium version of Bickerstaff’s [ 1 j formula. The original formula 
given by Bickerstaff is incorrect: Philbrick [5] corrects the error. 

A Numericd Esumple 

We now give an example in the calculation of trend when the inflation 
rate varies with the amount of loss. There does not seem to be any 
theory on the specific functional form for rates of inflation which vary 
over the range of the amount of loss. In any case such rates cannot be 
precisely determined in practice. One way is to break up the range of 
loss value into sub-intervals and for each of the sub-intervals to approx- 
imate the rate of inflation by a linear function. This would often lead to 
mathematically tractable solutions and is quite satisfactory for handling 
practical problems. 

We assume that the inflation rate i of the loss X increases with the 
value of X. Specifically, we assume that i starts at IO%, increases linearly 
until it reaches 20% at X = 20,000, and thereafter remains at 20%. Thus 
i = i (X) can be described by the formula 

i(X) = (0. 10 + 0. Iox/2oOOO)z~,,. L(“HK,,(X) + 0.20f,2,KKW,. z,(X). 

The loss after inflation is then described by the formula 

a(X) = [ 1 + i(X)]X 

= (1. 10x + 0. lox2/20000)/,~,. ~()OO~j, (X) 

+ 1 .20Xf~21utx,, Xl (Xl. (3) 
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The overall effect of inflation over the full range of loss can be described 
by the average rate of inflation E{ar(X)}/E{X} - 1, where 

E{a(X)} = E{( 1.10X + 0. 10X2/20000)I~o, z(xxxjr (X)} 

+ 1.2OE{Wm~x~, -) (X)}. (4) 

In this example we have for the purpose of illustration divided the 
range of loss into only two sub-intervals; there is actually no difficulty 
in dividing the range into any finite number of sub-intervals. In this 
approach the main task in the calculation of the effect of inflation is the 
evaluation of the incomplete first and second moments of the distribution 
of loss, as is clear from the preceding formula. In fact, formula (4) can 
be rewritten as follows: 

E{o(X)} = 1. lOE,,, {X} + (0. 10/s)EC,, {X2} + 1.2O[E{X} - EC,, {X)] 

where we have written s for 20,000 and where 

Ew{Xk) = ~+fW 

is the incomplete kth moment of X up to s. For most distributions 
commonly used to model loss data, explicit formulas for such moments 
are available. 

Suppose we are interested in the effect of inflation on the basic limits 
loss g(X;k) with k = 10,000. From (2) the indemnity after inflation 
would be 

g(WO;k) = ~W~o,cr-w GO + ~wv6.=, (X) 

= [ 1.10x + (0. 10/20,000)x2]z(o, C’(k)] (X) 

+ 1o,ooozW~(&,, “) 0. 

The value of a-‘(k) is determined by the quadratic equation 

1.10x + (0. 10/20,000)x2 = k = 10,000, 

and the solution is easily found to be x = C’(lO,OOO) = 8,743. 
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Thus the expected value of the basic limits indemnity would be 

E{g(a(X);k)} = E{ 1.10X + (0.10/20,000)X’]I,0. x,43, (X,} 

+ lO,OOO[l - F(8,743)]. (5) 

Suppose the limit is k = 25,000; the solution would be somewhat 
different. A close look at equation (3) reveals that the inverse .x = a-‘(k) 
is given by k/l .20 = 20,833. The expected value of the indemnity under 
this contract would then be 

E{g(a(X;k)} = E( I. 10X + (O.l0/2O,OOO)X’]Z,~,, l(KHHb, (X)} 

+ 1 ~E{XIWW~. ~ox.13 I (X)} 

+ 25,000[1 - F(20,833)], (6) 

remembering the change in functional form at X = 20,000. The actual 
calculation can then be carried through by evaluation of the distribution 
function and the appropriate incomplete moments. 

Now let us take the specific functional form for the loss distribution 
to be lognormal with parameters 

p = 7.6 and o = 1.8 

so that the mean loss is 

E(X) = 10,097 with CV = 4.953, 

where CV stands for the coefficient of variation (standard deviation / 
mean). For the lognormal the k’h moment is 

E{X”} = exp[kk + (1/2)k’o’] 

and the incomplete kth moment is 

E,,, {X”} = E{X”}@[(ln x - k)/rr - ka] 

where @(.) denotes the distribution function of the standard normal 
variable. Table 1 shows the incomplete moments with orders shown in 
column (1) up to the various values shown in the first row. Order zero 
means the value of the distribution function. 
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TABLE 1 

INCOMPLETE MOMENTS 

(1) (2) (3) (4) (5) (6) 
k 20,000 8743 10,000 20,833 25,000 - 

0 0.8997 0.7939 0.8145 0.9036 0.9198 
I 3,044 1,651 1,844 3,124 3,493 
2 26,455,454 7,075,407 8,880,632 28,093,176 36,534,773 

First we will calculate the overall inflation; formula (4) and the 
numbers in column (2) of Table 1 give 

1.10 X 3044 + .10 x 26,455,454 /20,000 

+ 1.20 x 20,000 x (10,097 - 3,044) = 11,945, 

corresponding to an overall rate of 11,945/10,097 - 1 = 18.3%. Next 
consider the basic limits indemnity with a limit at 10,000. Noting that 
c-w-‘(k) in formula (5) has the value 8743 and using the numbers in 
column (3), we have the expected basic limits indemnity 

1.10 x 1651 + .I0 x 7,075,407/20,000 

+ 10,000 x (1 - .7939) = 3,912. 

From column (4) we can easily obtain the limited indemnity without 
inflation: 

1,844 + lO,OOO(l - .8145) = 3,699 

so that the effective inflation rate is 3,912/3,699 - 1 = 5.76%. 

Similarly, we can calculate the inflation rate for the basic limits 
indemnity with a limit of 25,000. From formula (6) and the numbers in 
columns (2) and (5) we find this to be 

1 .lO X 3044 + .lO X 26,455,454/20,000 

+ 1.2 x (3,124 - 3,044) + 25,000 X (1 - .9036) = 5,987. 
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.4gain, we can calculate the expected indemnity without inflation for this 
case with the numbers in column (6): 

3,493 + 2,500 X (1 - .9198) = 5,498 

so that the effect of inflation is to increase the expected indemnity by 
5,9X7/5,498 - 1 = 8.89%. 

5. DEDUCTIBLES 

The common type of deductible, called straight deductible. has the 
simple representation 

A franchise deductible is represented as XI (o,~,I (X). These are depicted 
as functions of the loss X in Figure 3. A more complicated form of 
deductible is the vanishing deductible, which equals the loss up to the 
amount d, but thereafter reducing linearly to 0 when the loss becomes 
D > d (Snader 171); see Figure 3 for a pictorial description. 

FIGURE 3 
DEDUCTIBLES 
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Franchise deductible Straight deductible Vanishing deductible 
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It is easier to describe the indemnity after the deductible. The geometry 
in Figure 3 shows easily that the equation for the indemnity is 

over the range (d, D]. Thus the indemnity can be written as 

Y=D-d A- (X - dY(d, 01 (X) + ma “1 a>. 

The deductible itself can be found by taking the difference: 

x - Y = XZ(,. <fj (X) + $-q CD - JWw. DI GQ. 

The expectation of the deductible can then be obtained as 

E{X - Y} = E{XZWI(X)} + #--+ ND - XYw. DI GO) 

d 
I 

D 

= 

I 
(D - x)dF(x). 

0 d 

6. RETROSPECTIVE RATING 

In retrospective rating, the charge over rE, where E stands for the 
expected loss, can be represented as a random variable: 

@WE = (X - rE)Zm a) (x). 

Q(r) may be interpreted as the excess of the loss X over rE, measured 
in units of E, and 

E-i@(r)) = 444 

where E{ } means expectation and $(r) has the usual meaning of charge 
over rE as an average. Similarly, we represent the random variable 
savings as 

'WE = (rE - XYw,r~j (Xl 

with 
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The graphs of (P(r) and q(r) as functions of X/E are shown in Figures 
4a and 4b. The loss portion of the limited pure premium paid by the 
insured, L, is a random variable under the insurance contract: 

L = r&lw, r,.c~ (X) + Xz~r,E,r+l (X) + rZEz(qE,rt w. (7) 
The insured pays the minimum premium rlE if the actual loss incurred 
is not more than r,E, the actual loss if it is greater than r,E but not 
greater than r?E, and the maximum premium r2E if the actual loss 
exceeds r&, as far as the loss portion of the premium is concerned. The 
graph of L as a function of X is shown in Figure 4d. 

FIGURE 4 
RETROSPECTIVE RATING 
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By adding and subtracting XZ(O. r,E1 (X) and XZCrzE, p~ (X) in the formula 
(7) for L we have 

= (r& - x)Z(O, r,E) (Xl + X - W - r2E)Icrz~, 03) (JO 

Thus 

L = X - {@(r2)E - q(r,)E} 

=X-J 

where 

J = @(rz)E - W(rl)E 

is the random variable version of the net charge Z as defined, for example, 
in Skurnick [6] and, of course, E(J) = I. Note that .Z is equal to 
- (rlE - X) if the loss X is less than r,E, zero if the loss X is between 
r,E and rzE, and X - r2E if the loss X exceeds rzE. Its graph as a 
function of X is shown in Figure 4c. 

The following identity is interesting: 

W-)E - T(r)E = (X - rE)Zo, =) GO - (rE - X>Z(O, rE1 (Xl 

= X - rE, 

being the random variable version of the well-known identity 4(r) - 
$(r) = 1 - r. The graph of @(r)E - W(r)E as a function of X is simply 
a 45degree line through the point (rE,O). 

The following equality is easily derived from equation (7): 

L - r& = rlEZ(o, +FI (Xl + XZV,E, r2~~ (Xl + r2EZcr2E, -) (Xl - PIE 

= (X - nE)Z(r,E.rzE~ (-%I + (r& - rdW(r2E,m) (-9. (8) 
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This equality is illustrated in Figure 4e, and its relationship to I, is clearly 
visualized by comparison to Figure 4d. Whereas 

@(r,)E - @ (r*)E = (X - r,E)/,,-,/.. L, (X) - (X -.- r&)z(r?t.,x) (X) 

= (X - rIEY~r,f..,~l;l 09 + (X - rlE)I(,,k,~, (xl 

- (X - r&Vc,,t. 1) (X) 

= (X - rlEY(r,L, ,-?I-1 (X) 

+ (r& - riE)I,,-,A, xb (X). (9) 

See Figure 4f for an illustration. Equations (8) and (9) show that 

@(rl)E - c$(r2)E = L - r,E, (10) 

and both are the excess of loss function h(X;rtE.rdZ - r,E‘) as described 
in Section 2. Let BP be the basic premium of the retrospective plan. 
Adding and subtracting this on the right-hand side of (10) yields 

Q(r)) - @(r2) = [{BP + CL} - {BP + Cr,E}]ICE, (11) 

where C is the loss conversion factor to be applied to the loss to obtain 
the premium. Equation (11) is useful in determining the exact entry 
ratios as well as the minimum and maximum premiums in a retrospective 
rating plan. Noting that 

E{BP + CL} = P( 1 - D), 

which is the premium after adjustment for expense gradation D, and 

E{BP + r,CE} = H, 

where H is the minimum premium, we have by taking expectations on 
both sides of (1 1) the familiar identity (Skumick (61) 

c$(rl)E - $(rz)E = (P - PD - H)ICE. 
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7. CONCLUSION 

An alternative method of representing a function assuming different 
functional forms over the range of its argument is by the Heaviside or 
delta function, which is defined as 

H(x) = 
1 ifO5X 
0 otherwise. 

Thus the function 

g(X;k) = 
x O<XIK 
k X>k. 

can be represented in terms of the Heaviside function as 

g(X;k) = XH(X) - XH(X - k) + kH(X - k) 

= XH(X) - (X - k)H(X - k). (12) 

The Heaviside function obviates the explicit use of the set and so is 
more parsimonious in notation. Most people, however, would take a 
relatively long time to picture the shape of the function represented by 
(12). While the indicator function representation visually shows the sets 
of points where the g function assumes different forms, it is not so with 
the Heaviside function. Thus, although at times clumsy in form, the 
indicator function representation is preferred here. 

In mathematics and, more generally, scientific work, given relations 
are to be made as general as possible. Relations between random vari- 
ables are certainly more general than those derivable from these relations 
but pertaining to their expectations only. In actuarial work, the most 
important quantity related to a loss is the expected value. It is natural 
that much of the work on the topics described in this paper has focused 
on expected values. This paper has shown that it is often possible to 
express the relations in terms of the random variables, thus strengthening 
the existing mathematical results. The results are stronger in the sense 
that when a relation holds for random variables, it is true for each 
realization, whereas a relation for expected values holds only on the 
average. 
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Such an approach allows us to look at the results in another way. 
The stronger results give not only the expectation relationship, but also 
relationships pertaining to other characteristics of the indemnity distri- 
bution, such as higher order moments. Also, quite often the mathematics 
become simpler and easier to understand. In particular, the treatment of 
trend in this fashion is more effective than techniques hitherto available. 
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