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Abstract 

In many reinsurance pricing situations it is not possible 
to determine a “correct” absolute price without making a 
large number of tenuous assumptions. Even so, in order to 
maximize a company’s profitability, it is important for the 
reinsurance actuary and underwriter to be able to choose the 
best contract terms among the achievable alternatives. Fur- 
thermore, being able to offer different but equivalent terms 
that better serve the needs of the cedant may help close an 
important de&. 

This paper measures the eficiency of contract terms by 
estimating the distribution of the present value of cash jaws. 
To do this, the paper examines paid and incurred aggregate 
distributions as a function of time over the life of a contract. 
Sensitivity of the results to changes in the parameters of the 
underlying loss model is investigated. 

The authors wish IO thank Todd J. Hess for his patience in reading many drafts 
of this paper and suggesting numerous improvements. He also programmed the 
analytical model. verified the many cash flow formulas. and produced the accom- 
panying exhibits and graphs. 
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1. INTRODUCTION 

In many reinsurance pricing situations it is not possible to determine 
a “correct” absolute price without making a large number of tenuous 
assumptions. However, it is often advantageous to make some general 
statements about relative price adequacy. By relative price adequacy we 
mean statements (about a particular layer of subject business), such as: 

1. Deal #I is better than deal #2. 
2. Deal # I is equivalent to deal #2. 
3. A deal is better than it was last year. 
4. The reinsurer’s side of a deal is better than the company’s side. 

Even if the underwriter cannot accurately estimate an adequate ab- 
solute price, consistently choosing the best contract terms among achiev- 
able alternatives is important to a company’s profitability. Also, being 
able to offer different but equivalent terms that may better serve the 
needs of the cedant can help close a deal. 

This paper will explore a method to compare wlatiw prices for many 
types of reinsurance contracts, and look at how sensitive the results are 
to the parameters of the underlying model of losses. 

Commonly used methods that utilize ultimate aggregate loss distri- 
butions can give some view of the relative price. However, this alone 
can sometimes lead to incorrect conclusions with regard to maximizing 
profitability. Additional insight into the relative prices can be seen by 
examining the distribution of cash flows and the accompanying invest- 
ment income. To do this, the paper examines paid and incurred aggregate 
distributions as a function of time over the life of a contract. 

Few papers in the casualty actuarial literature have dealt with the 
cash flow of a contract. For example, Meyers [6] includes investment 
income to determine the parameters of a primary retrospective rating 
plan which yields a desired operating profit. Lee [4] uses graphical 
techniques to lend insight into excess of loss coverages and retrospective 
rating. Biihlman and Jewel1 [I], Gerber [2], and Lemaire and Quairiere 
[S] consider optimal reinsurance and risk exchanges. However, these 
papers do not consider investment income and only deal with simplified 
reinsurance contract types (e.g.. quota share contracts). 
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The procedure described herein uses a stochastic model to estimate 
the distribution of the present value of cash flows. The paper’s emphasis 
will be to derive results that are applicable to real-life pricing decisions. 
The approach will be to summarize key information rather than to find 
the single “optimal” solution. 

2. AN EXAMPLE 

Imagine that it is December 28 and you are a Lloyds underwriter 
with a long queue of brokers waiting at your box. You are discussing a 
treaty reinsurance proposal for losses $250,000 excess of $250,000 per 
loss on a portfolio of long haul trucking liability business that generates 
a total premium of $5,000,000 (net of commissions). You are very 
familiar with this account; you have estimated the expected losses to the 
reinsurance layer as being $1,.500,000 (30% of the total subject pre- 
mium). You are the lead underwriter, so it is up to you to quote terms. 
After several days of back and forth discussions among you, the broker, 
and the company, the broker has summarized three types of proposals 
that he thinks will be acceptable to the company. He wants to know on 
which one(s) you will give a firm quotation. The alternatives are’: 

1. Reinsurance premium = 10% of subject premium (sp). 
Aggregate deductible = 20% of sp. 
Aggregate limit = 400% of reinsurance premium. 

2. Retrospectively rated contract. 
Provisional premium = 8% of sp. 
Maximum premium = 30% of sp. 
Premium adjusted monthly to 110% of paid losses plus 8% of sp. 
Aggregate limit = 200% of reinsurance premium. 

3. Reinsurance premium = 27% of sp. 
Profit sharing after four years of 60% of reinsurer’s profit after 
10% deduction of reinsurance premium (i.e., 2.7% of sp), on a 
paid loss basis. 
Aggregate limit = 150% of reinsurance premium. 

I The alternative contracts will be explained more fully in section 5. Further discussion of reinsurance 
contracts and terminology may be found in Lee [4], Patrik and John [7], and Reinarz [lo]. 
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3. NOTATION 

The following notation will be used with respect to the reinsurance 
layer’: 

1. N, random number of excess losses. 
2. P,, random variable denoting aggregate paid losses at time t, 
3. K,, random variable denoting aggregate known loss reserves at 

time t. Note that P, and K, can be viewed as the sum of a random 
number of individual paid or known reserved losses. 

4. R,, random variable denoting reinsurance premium at time t. This 
may be a function of paid or incurred losses. 

5. C,, random variable denoting the cumulative cash flow (positive 
and negative) for the reinsurance contract at time 1. This is a 
function of the contract terms, R,, P,, and K,. 

6. V, random variable denoting the present value of the net cash flow 
to the reinsurer defined as: 

1 
v = 2 [C, - c,- ,]P; L’ = __ 

, 1 +i 

In addition, it is assumed that losses occur mid-year: premium and 
loss transactions are made at mid-year; and, production and overhead 
expenses are ignored. 

With this information, one can investigate properties of V in order 
to judge what set of contract terms is most efficient over a broad range 
of reasonable assumptions. 

4. CRITERIA FOR JUDGING THE EFFECT OF CONTRACT TERMS 

There are three ways that a reinsurance contract affects a reinsurer: 

Economic Impact: Present value of cash flows, V, from the transac- 
tion (pre-tax). The interest rate is assumed to be non-random and known 
in advance. 

2 Random variables are denoted by capital letters and non-random quantlttcs are denoted with small 
letters. 
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Accounting Impact: An income statement and balance sheet are de- 
termined by the contract terms and R,, P,, and K,. Two different rein- 
surance contracts can produce the same C,‘s and therefore have the same 
economic value, but have very different accounting effects.3 

Tax Impact: The tax impact is determined from the accounting impact 
and affects the after-tax economic impact. 

This paper considers only the economic impact. 

5. DESCRIPTION OF COMMON CONTRACT TYPES 

For the purposes of measuring their economic impact, many different 
types of reinsurance contracts (such as sliding scale commissions, ret- 
rospective rating plans, funded programs, aggregate caps, etc.) reduce 
to a few basic features. 

The simplest types of contracts are those where C, is a function of 
only P,, and the function does not vary over different ranges of t. For 
these, a useful first step in analyzing the economic effect is to graph C 
as a function of P. 

In other words, we are graphing the cumulative cash flow (prior to 
interest) to the reinsurer (through t) as a function of the underlying paid 
losses to the contract. The reinsurer prefers larger C’s and prefers C’s 
which are less than zero at P’s that have a low probability. We would 
normally expect C to be a declining function of P (as losses increase, 
the reinsurer’s result deteriorates), but this is not always the case. 

The following graphs illustrate the functioning of various contract 
terms; first for simple, then for more complicated types. 

3 As an example, assume that you are choosing among the following three plans described in section 
5, to cover the same underlying risks: 1.h. paid loss retro, no minimum; l.c. funded plan, with 
interest credit; and I .d. aggregate deductible. Parameters can easily be chosen such that C, is the 
identical function of P, for all three plans. For those parameters, all three plans have the same 
economic impact. However. the definition of premium is different in each case. The profit or loss 
effect of each plan is the same, hut the accounting entries producing that result differ. 
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I. Contracts of the form C, = min (UP, + h. r - P,) 

a. Flat rated: The premium charged by the reinsurer IS known in 
advance of the effective date and is tixed for the life of the 
contract. The premium is usually expressed as a percentage of the 
premiums charged by the ceding company on the business subject 
to the treaty (called subject premium). 

C‘, = t‘ ~ P,, 

where r = premium. 

For example, let Y = $1,500.000 

FLAT RATED 
Cash Flow as a Function of Paid Loss 

-2 5 
0 500.000 1.ooo.om 1.5ca.ooo 1.000.oao 2.500.000 3.000.000 3.5oo.ax 4.000.0 

Pt, Paid Loss through time t 
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b. Paid loss retro, no minimum (sometimes called cash flow plans): 
The premium charged by the reinsurer is a function of the actual 
aggregate paid loss experience. In this case, the developed pre- 
mium can increase to a maximum of M. 

C, = min (UP, + 6, M - P,). 

For example, let a = .333, b = 0 and A4 = $2,000,000. 

PAID LOSS RETRO, NO MINIMUM 
Cash Flow as a Function of Paid Loss 
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c. Funded plan, with interest credit: The premium less the reinsurer’s 
margin is placed in a fund which accumulates interest at the 
credited amount and from which losses are paid. When the contract 
is commuted, the fund balance, if any, is returned to the cedant. 
The fund would normally be set at an amount sufficiently higher 
than expected losses to pay for actual losses in most years. 

C, = min (r - .fk r ~ P,), 

where r = Jf;, + margin, 
fo = fund at time. 

For example, let fo = $1,250,000 and margin = $250,000. 

FUNDED PLAN, WITH INTEREST CREDIT 
Cash Flow as a Function of Paid Loss 

T 
0 500.000 1.000.000 1.500.000 2.ooo.ooo 2.5m.ooo ,.ocQ.cmo J.5cm.ooo 4.000.001 

Pt, Paid Loss through time t 



REINSURANCE CONTRACT TERMS 9 

d. Aggregate deductible: For an aggregate deductible, the reinsurer 
pays no losses until the total losses to the excess layer exceed the 
deductible. Typically, the aggregate deductible is set lower than 
the total losses expected for the layer. The graph shows that the 
economic effect of an aggregate deductible is the same as a funded 
plan with interest (but the accounting effects are quite different). 

C, = min (p - d, p - P,), 

where p = r + d, 
d = deductible, 
r = premium. 

For example, let r = $500,000 and d = $1,000,000. 

AGGREGATE DEDUCTIBLE 
Cash Flow as a Function of Paid Loss 
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e. Profit Commission: In this plan the reinsurer returns a share of his 
profits to the cedant. Profit is defined to be premiums less losses 
and reinsurer’s margin. Because actual profit will not be known 
for many years, profit commission could increase or decrease 
thereby requiring additional payments by the reinsurer or a return 
of profit commission by the cedant. However, the profit commis- 
sion is never less than zero. 

C, = min (- (1 - h) P, + r ( 1 - h) (1 - e), r - P,), 

where h = profit sharing percent, 
e = reinsurer’s percent margin, 
r = premium. 

For example, let k = .50, e = .I5 and r = $1,500,000. 

PROFIT COMMISSION 
Cash Flow as a Function of Paid Loss 

1 
0 500.000 1.000.000 1.5w.000 2.ooo.ooo 2.sw.ooo 3.ow.oal 3.sw.ow 4.000.00~ 

Pt, Paid Loss through time t 
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a. Paid loss retro, no maximum: This is a pure cash flow plan which 
allows the cedant to spread his incurred loss experience and 
thereby smooth underwriting results. The cedant usually pays the 
reinsurer a provisional premium greater than or equal to the min- 
imum, with the final premium based on actual paid losses plus 
loadings. 

C, = max (UP, + b, m - P,), 

where a = multiplicative loading, 
b = additive loading, 
m = minimum premium. 

For example, let a = .lO, b = $200,000 and m = $400,000. 

PAID LOSS RETRO, NO MAXIMUM 
Cash Flow as a Function of Paid Loss 

i 
0 500,000 1.000.000 1.5w.ow 2.ow.ooo 2.5w.ooo 3.0wo.ooo J.SW.aa l .ow.wo 

Pt, Paid Loss through time t 
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b. Loss ratio aggregate limit or “cap”: The reinsurer’s aggregate 
liability for losses is capped at a specific dollar amount expressed 
as a loss ratio or dollar limit. The loss ratio is usually against the 
reinsurer’s net premiums. 

C, = max (Y - P,, r - f ), 

where I- = premium, 
f = cap (in dollars). 

For example, let r = $1,500,000 andf = $2,250,000. 

LOSS RATIO CAP 
Cash Flow as a Function of Paid Loss 
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3. Plans with both minimums and maximums 

a. Paid loss retro: This plan is a combination of plans lb and 2a. 

C, = min (max (UP, + b, m - P,), A4 - P,), 

where m = minimum premium, 
a = multiplicative loading, 
b = additive loading, 

M = maximum premium. 

For example, let a = .lO, m = $500,000, b = $400,000, and 
M = $2,050,000. 

PAID LOSS RETRO 
Cash Flow as a Function of Paid Loss 

00 

04 

02 

j O 

e” 

-0 2 

-0 + 

fp -0 -0 e a 

d 

z. 
-1 

-I 2 

d -8 .+ 

-,.a 

--I a 

-2 
0 500.000 ~.000.000 ~.~W.ooo 2.ooo.ooa 2.500.000 3.ow.ooo 3.soo.wo +.ow.ooo 

Pt, Paid Loss through time t 



14 RI.INSLJRAN(‘t. CON I R.AC.1’ ‘I ERMS 

b. Loss corridor: In most loss corridor plans, the reinsurer pays 100% 
of the losses up to the beginning of the corridor, some share or 
fraction of the losses in the corridor, and 100% of the losses above 
the corridor. The corridor is usually expressed in terms of loss 
ratio points. 

C, = min (max (r - P,, r - P, + h (P, ~ 1.411, r - P, - h (v - u)), 

where h = fraction of corridor retained by reinsured, 
r = premium, 
14 = beginning of corridor, 
1’ = end of corridor. 

For example, let h = .50, r = $ I ,250,OOO. II = $2,000,000, and 
v = $2,500,000. 

LOSS CORRIDOR 
Cash Flow as a Function of Paid Loss 

Pt, Paid through time t 



REINSURANCE CONTRACT TERMS 15 

d 

4. C, depends on t. 

a. Funded plan with no interest credit to cedant: Under such plans, 
the fund balance does not accumulate with interest; that is, the 
reinsurer keeps all interest earned for his own account. At time 
to, the fund, less paid losses and reinsurer’s margin, is returned 
to the cedant provided this balance is positive. The cumulative 
cash flow at time co is never greater than the margin, though the 
reinsurer does receive the benefit of full cash flow until the fund 
is returned. 

r - P, t -=c to, 
c, = 

i min (r - f, r - P,) t 2 t0, 

where Y = fund + margin, 
f = fund, 
to = date on which the fund is returned. 

For example, let f = $2,500,000 and margin = $100,000. 

FUNDED PLAN WITH NO INTEREST CREDIT 
Cash Flow as a. Function of Paid Loss 
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5. C, is a function of K, in addition to P, 

a. Incurred loss retro: This is similar to a paid loss retro except that 
the reinsurer’s premium, R,, is a function of known incurred losses 
(P, + K,), multiplied by a loading. The additive load. b,, may 
include an IBNR provision that is a function of t. 

C, = min (max (aP, + (u + 1) K, + b,, m -- P,). M - P,), 

where a = multiplicative loading. 
b = additive loading, 

M = maximum premium, 
m = minimum premium. 

For example, let a = . IO, b = $400,000, M = $2,250,000, and 
m = $400,000. Note that this graph is three-dimensional because 
C, is a function of two variables. P, and K,. In the prior examples 
C, was dependent upon one variable, P,. 

hcurred Loss Reiro 
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Actual contract terms are often a variation or mixture of the above 
types, such as the alternatives or the example presented in Section 2. 

6. COMPARING GRAPHS FOR THE EXAMPLE 

A first step in evaluating relative price adequacy is to examine the 
graphs of the various alternatives and to examine the graph of a hypo- 
thetical contract constructed as the difference between two deals. For 
the example in section 2, the graph below shows option # 1, option #2, 
and option #l minus option #2 (the “difference deal” is represented by 
the triangular region). The obvious conclusions are that the two options 
are very similar, but that #l is better than or equal to #2 at all points. 
Therefore, reject option #2. 

EXAMPLES 1 AND 2 
Cash Flow as a Function of Paid Loss 

” -0 d - 
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Pt, Paid Loss through time t 
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I 
.ooo 

Comparing #l and #3 is more complex because neither one domi- 
nated the other in all cases, and #3 varies with t. The graph of #3 and 
of #3 minus #l (referred to as the “difference deal”) are shown on the 
following pages. 
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Ex. 3 (t < 4 years) minus 1 
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7. DISTRIBUTION OF V 

As a next step, it is helpful to compare the contracts over reasonable 
ranges of parameters of an underlying loss generation model. This will 
help to focus on the underlying conditions that must be true for one 
option to be superior to the other. The value V of the difference deal is 
a random variable. How does the distribution of that variable change as 
the underlying loss model changes? One clear way to present this infor- 
mation is to look at a matrix (or 3-D graph) of the expected value of V 
as two important parameters are varied.” 

To do this one needs to estimate the aggregate distribution of incurred 
or paid losses. This can be accomplished using simulation or by calcu- 
lating them directly from the frequency and severity distributions. Using 
a transformation discussed below, aggregate distributions for excess con- 
tracts that reflect the age of the contract can be determined. From this 
series of distributions, one can calculate the distribution 01’ cash flows 
to the contract. The specific model of the loss process is based on 
distributions that are commonly used in casualty actuarial literature. 

Consider the aggregate distribution for excess claims: 

G(x) = 2 Prob[N = n] Fan. 
,I=,> 

where F(x) is the individual loss amount distribution, This represents the 
distribution of P, at ultimate. The Single Parameter Pareto (see Philbrick 
[9]) is used to model severity for its ease in estimating excess losses. 

The model assumes a negative binomial frequency distribution de- 
fined as: 

Prob[M = m] = 
m+cw-1 

a- 1 
p- ( 1 - p)“‘, 

where M denotes the number of ground-up claims (i.e.. claims from first 
dollar of loss). 

4 Although E[ V] is probably the most important thing to lwk 111. other mformation about the 
distribution of V, such as the Variance IV] and Prohabdity [\’ ‘. 01, can he examined in this format. 
Also. if you wish IO postulate a utility functmn C’ (on 1’1. WC c‘w lo~~k at E[ c’(V)] a\ the parameters 
are varied. 
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It is interesting to see that if ground-up claims are negative binomial, 
NB(o, p), then the number of excess claims, N, excess of any retention 
r, is also negative binomial NB (cx’, p’) 

where CX’ = (x and p’ = P 
1 - F (r) + pF (r) ’ 

In addition, if one assumes that individual claim reporting (or pay- 
ment) is independent of size 5, then the number of reported (or paid) 
claims is negative binomial NB (a,!, p:) 

where ar: = cx’, p: = P’ 
w (6 + P' (1 - w 0)) 

and w(t) is the percent of claims reported (or paid) as of t months from 
the average accident date. See Appendix D for a general proof of these 
relationships. Similar relationships hold for other common frequency 
distributions. 

Some of the parameters in this model are “unimportant.” That is, the 
conclusions drawn are insensitive to changes in these parameters. This 
is because alternative deals covering the same occurrence layer are being 
compared. (If one tried to compare a $500,000 excess $500,000 contract 
with a $250,000 excess $250,000 contract, the result would be much 
more sensitive to the choice of those “unimportant” parameters.) 

The “important” parameters that significantly affect the distribution 
of V are: 

1. Average payment lag. The payment lag is the random delay be- 
tween loss occurrence and loss payment. 

2. Expected total losses to the occurrence layer. 

5 The authors do not believe that the independence assumption of claim reporting (or payment) 
from size is too restrictive because the claims being considered are already large on a ground up 
basis and their individual size is h~rund bq the layer limit. 
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Two different applications of the method, producing equivalent re- 
sults, were used to calculate E[V]. One was a Monte Carlo simulation 
described in Appendix B: the other was a calculation of the distribution 
of cash flows at each r by Panjer’s method described in Appendix C.h 

The E[V] and difference matrices for each application are shown in 
Exhibits I and 2. As can be seen, the results are quite similar and would 
lead to the same conclusions. Displayed on Exhibits 3-7 are expected 
cash flow and underlying distributions for the case where E[total loss] 
equals $1 SOO,OOO and E[lag] equals 36 months. 

The E[V] of the difference deal is shown on the graph on the next 
page for each pair of parameters E[total losses] and E[lag]. Examining 
this graph shows that #1 is slightly superior if we are quite confident in 
our estimate of expected losses at $1 ,500,OOO and if the average payment 
lag is short (less than 24 months). However, for a longer payout or for 
a misestimate of expected losses (either over or under), #3 is superior. 
The decision maker can use his subjective assessment of his own risk 
preferences in choosing between the deals. (The authors prefer deal #3.) 

8. CONCLUSION 

The methods outlined have the advantage of summarizing the many 
factors affecting the economic value of a reinsurance contract, first by 
graphing the contract terms, then by graphing E[ V], to allow consistent 
choices among the alternatives. One can also construct contracts with 
equivalent terms in the sense that their E(V]‘s are approxirnately equal. 
The model is general enough to handle most realistic contract types. 
Applying subjective probabilities to the range of the V distributions 
corresponding to various lags and expected total losses could further 
summarize the results. Finally, the model can be made more general by 
using a random interest rate and applying utility functions to the cash 
flows. However. such extensions probably do not add much practical 
value. 

I, The simulation has the advantage of producing the entire distnhutmn ol I’; the PanJer method 
only gives E[V] easily. However, when E[N] I\ large. the I’:mjsr method can tre run much more 
quickly than the simulation. 
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EXAMPLE 3 MINUS 
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EXHIBIT 3 

EXPECTED CASH FLOW EXHIRI’I’: PANJER’S METHOD 

EXAMPII NUMBER I 

THF. 100% EXPECTED LAYER LOSSES = $1,500,000 

THE AVERAGE PAYMENT LAG IS 36 MONTHS 

lncumd f+emum 

4.616 41 I 5w.ooo 0 

I? I .h30 26.X37 mo,oal 0 

X0.564 103.237 5W.OlKl 0 

79l.53 19b.IX.5 ~lMI.wn 0 

457.712 28O.ShY 500.(MxJ 0 

495.31 I iJX.673 SW.Wl 0 

Slh.27 4MJ.790 %x~,tMwI 0 

27.874 139.S78 TlWI.(WYJ 0 

534.w 168.0~5 i(x).oot) 0 
517.785 lXX.717 XMl.c4X~ 0 
539.7G4 V)3,7OX 4lH~.(HK) I) 
~40.7x0 ~l4.507 SlMl.(HXI 0 
541.351 i?J.lXj SW.OW 0 
S4l.hXI 527371 SOO.OW (I 
54 I.840 571 .rCXS FolI.nw n 
51 I ,Y4S Sll.7fl3 XW).(M)o 0 
F1?.00? 5Jh.XJ2 SW.MX) 0 
542.07n 53x.301 Son.ooa 0 
542,049 539.382 5(K,.utKl (I 

542.068 541.06X S(H).MWJ IJ 

Expected 

Cash Flow 

499,SXY 

-26.426 

-76.799 

92.949 

-x4.3x3 

-hX.lOS 

-52.1 I6 

38.7XY 

?X.457 

-X).682 

l4,YYl 

I Il.-w 

-7.776 

5.591 

1.01 I 

-2.x7x 

-2.079 

-I.-W 

1.081 

Z.hX5 

Swing program minimum. provisional. and maxlmum arc: IOU. l(K). 100. 
The aggregate deductible and lo\\ ra~m cap percentage of subject premium are. NO. 
TL. ..- --^ -^.^ A^.4 . . . *.!-I-. ..“.I I,.‘. r.,,;,, ,--n ,,nlllr< :ar,.. RI1 w 
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Expzcred 
Incurred 

I 388.774 
2 888.210 
3 1.152.781 
4 I,289347 
5 1.360.387 
6 I JY7.986 
7 1.418.170 
8 1.429.110 
Y I .435,067 

IO I .438,32X 
II 1.440.110 
I2 I.+lI.oYI 
13 1.441.622 
14 1.441.921 
IS I .442,076 
16 1.442. I68 
I7 1.442.219 
18 I .442,244 
19 I .442,260 
20 I .442.27x 

TOTALS 

Expwred 
Pald 

230,278 
s90. I 29 
846.750 

1.027.316 
1.152.781 
I ,239.555 
i .299.695 
I .34 1,569 
I .370X95 
1.391.533 
I .4O6. I36 
1.416.491 
I ,423,858 
I.429.110 
I .43?.8SS 
1.435.533 
1.437.453 
1.43X.815 
I .439.803 
I q442.278 

EXHIBIT 4 

EXPECTED CASH FLOW EXHIBIT: PANJER’S METHOD 

EXAMPLE NUMBER 3 

THE 100% EXPECTED LAYER LOSSES = $1,500,000 
THE AVERAGE PAYMENT LAG IS 36 MONTHS 

Exp. Earned 
Premium 

I .35o.OoU 
I .349.999 
I .35o.ooo 
I .35o.ouo 
I ,350.ooo 
I .350.001 
1.35o.wO 
1.350.001 
I .3so.O01 
I ,350,OOO 
I .35o.coO 
I .350,000 
I .35o.o00 
I ,350.ooo 
I J49.999 
I .350.000 
I .35o.o00 
I .35o.o00 
I ,350.001 
I ,350,OOO 

Exprcred 
Prohr Commlssmn 

0 
0 

131.518 
105.907 
90,098 
79.989 
73,335 
68.855 
6.5.787 
63.661 
62.173 
61,125 
60.383 
59,857 
59.481 
59.214 
SY.023 
58.542 

Swing program minimum, provisional. and maximum are: ,270. .270, ,270. 
The aggregate deductible and loss ratio cap percentage of subject premium are: ,000. .405. 
The aggregate deductible and loss ratio cap dollars are: $0. SO. 
The profit commlwon equals ,600 after I00 reinsurer’s margin, but none until year 5. 
Number of intervals tested = 191: largest calculated aggregate loss = 4517,796 

Expected 
Cash Flow 

Present 
Value of E[CF] 

28.8% l.l19.723 1.119.723 
65 8% -359.852 ~333.196 
85 4% -256.621 -220.01 I 
95.5% - 180.566 -143,339 

100.8% -256.983 - 18X.89 I 
103 6% -61,162 -41.626 
105 04 -44,332 -27.937 
105.94 -31.764 - IX.534 
106.3% -22,671 -12.249 
I06 5% -16,159 -8.083 
106.7% ~ I I.535 -5.343 
106.7% -8,229 -3.529 
106.8% -5,879 -2.334 
lo6 8% -4,205 I.546 
I06 8% -3.004 - I .O?? 
I06 8% -2.151 ~678 
I06 8% - I.543 -4.50 
1068% ~I.095 -296 
1068% - 797 -199 
106.8% - 1,995 -462 

- 150.820 109.996 

Y 



EXHIBIT 5 

DISTRIBUTION OF C, USING PANJER’S METHOD 
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EXHIBIT 6 

DISTRIBUTION OF C, USING PANJER’S METHOD 

0 716 
0 777 

Note: PC denotes Profit Commission 



EXHIBIT 7 

DISTRIHCIION OF AGGRWAI t. PAID LOSSES TO TOTAI. LAYER: PANJER‘S METHOD 

Limit: 250.000 The Mean of the Exponential Payment Lap: 36 
Retentlon: 250.000 Var[NIJEIN] for the Exces Layer at Ultimate: I.032 
Layer Expected Losses: 1 .SOO.OOO Alpha = 320.083 
Single Parameter Pareto q: I .S Layer Severity = 146.447 

I-1 
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APPENDIX A 
PARAMETERIZING THE MODEL 

The two applications of the model described in Section 7 and Ap- 
pendices B and C (simulation and Panjer’s method) were parameterized 
using the following steps: 

1. Select expected losses, E[L], where L = P, at t equal to ultimate, 
to the occurrence layer. Several estimates using experience and 
exposure rating techniques should be applied. The consistency of 
the results will affect how extensive a range of E[L] estimates 
should be tested in the model. 

2. Estimate the negative binomial (NB) parameter p’. The authors 
used the fact that the variance/mean, Var/E = l/p for NB. Starting 
with an IS0 ground up Var/E in the 2.0 to 3.0 range, and IS0 
increased limits severity distributions, one can translate p (Y2 to 
‘15) into p’ using the transformation p’ = pl[ 1 - F(r) + pF(r)], 
r = retention. The examples herein use p’ = .969 for excess of 
$250,000 long haul trucking. As mentioned in Appendix D, E[V] 
is not sensitive to changes in p’. 

3. Estimate a severity distribution F(x). The authors used a Single 
Parameter Pareto (SPP) with 9 = 1.5. This was suggested by 
Philbrick [9] as being appropriate for casualty lines. With an SPP 
severity, changes in the q parameter do not cause significant 
changes in E[V]. The average severity for the layer ($250,000 
excess of $250,000) is then calculated. 

4. Dividing E[L] by the average severity produces an estimated num- 
ber of excess claims, E[w. One can then back into the NB (Y 
parameter as: 
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5. Select payment and/or report lag distributions. While this paper 
utilizes exponential lags, the results are equally valid for other 
distributions, although the parameter selection process would 
change.’ The cash flows are fundamentally dependent on the pay- 
ment lag distribution, so care should be taken in the selection of 
the distribution and its parameters. The extent of sensitivity testing 
is a function of one’s confidence in the payment lag distribution. 
For a detailed discussion on estimating lag distributions, see Weis- 
sner [ 121. John [3] discusses report lag distributions by reinsurance 
line of business. 

6. Choose an interest rate to discount the cash flows. The examples 
used 8%. 

- 
’ For example, if one were testing the sensitivity of results using a two parameter payment lag 
d,stribution, the coefficient of variation (CC’) would be fixed. and scale parameter selected corre- 
sponding to several expected payment lags. This process would then be repeated for several different 
CV values. 
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APPENDIX B 

MONTE CARLO SIMULATION 

The simulation was programmed as follows: Single Parameter Pareto 
(SPP) q, expected layer losses, and exponential payment lag with lambda 
equal to l/mean lag are selected and used to calculate Negative Binomial 
p’ and 01 parameters as shown in Appendix A. Then, for one iteration: 

1. N is drawn from a negative binomial NB (CY, p’). 

2. For each of the N claims, a paid loss amount is drawn from SPP 
and a payment lag is drawn from the exponential. It was assumed 
that claims occur mid-year and premium and loss transactions are 
made at mid-year. 

3. The P, values are calculated by summing total payments in the 
appropriate time periods using the simulated lags. 

4. The reinsurance contract terms were applied to the P,‘s to obtain 
the C,‘s. 

5. V is calculated = 5 (C, - C,-,) v’-i, then V is stored. 
,= 1 

The above was repeated for 20,000 iterations, then E[V], Variance 
[V] and Probability [V > 0] are calculated. 

The program was written in HSFORTH and run on an IBM PS/2 
with a 25 MH 80386 and 80387. For E[Nj = 10, 20,000 iterations take 
80 seconds, so a 10 x 10 matrix of parameters can be run in 2.3 hours. 
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APPENDIX C 

PANJER’S METHOD 

Recall that the aggregate loss distribution is a compound process 
formed by the infinite sum of n-fold convolutions of the frequency and 
severity distributions. Panjer [g] showed that this distribution can be 
estimated recursively provided that the frequency distribution satisfies 
the recursive relationship 

p(n) = p(n - l)(LZ + b/n) n = 1,2,3, . 

where p(n) denotes the probability of exactly II claims occurring in a 
fixed time interval. 

Sundt and Jewel1 [I l] showed that the only distributions satisfying 
this condition arc: Poisson, Negative Binomial, Binomial, and Geomet- 
ric. In the case of the Negative Binomial, 

p(n) = i 
n + a - I 

a- 1 J p”(1 - p)“, II = 0,l ,2, . . : 

and 

cl = I - p, b = (I - a)( 1 - ,I?). p(0) = y”. 

Furthermore, if the severity distribution can be represented discretely 
then the recursive formula for the aggregate distribution G(o) is quite 
simple: 

g, = i (u + bjli)f,g;-, i = 1,2.3, ; 
J=l 

go = p(O). 

Section 7 and Appendix D show that if the number of ground-up 
claims is negative binomial NB (a, p), then the number of claims excess 
of a retention r, reported or paid at any time t. is also Negative Binomial 
with the appropriate transformations of the ground-up parameters. 

This means that we can estimate the aggregate distribution of losses 
paid, P,, or reported incurred, L, = P, + K,. using Panjer’s recursive 
formula. 
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For the layer being considered, the Single Parameter Pareto (SPP) 
severity distribution was discretized into equal intervals, with the number 
of intervals determined by the following formula subject to a maximum 
of 20: 

4 
# intervals = ~[~rl + 10. 

Increasing the number of intervals beyond these levels adds signifi- 
cantly to the run time without appreciable improvement in the results. 

The above procedure can easily be used to estimate the expected 
value of V, the present value of net cash flows C,. The variance of V, 
Var[V], on the other hand, is difficult to estimate. Obviously, the se- 
quence of random variables {C,} is not independent. Not so obvious is 
the fact that, for even simple contract forms, the C,‘s do not have 
independent increments; that is, the sequence {C, - C,-r} is not inde- 
pendent. This means that the Var[V] contains non-zero covariance terms. 
This fact is demonstrated by the example in this appendix. 

If the decision maker would like to consider other properties besides 
E[V] (e.g., Var[V]), then a covariance matrix can be produced, though 
simulation may be simpler. Aside from that, the Panjer analytical solution 
is relatively easy to implement. 

Example: C,‘s Do Not Have Independent Increments 

Consider the paid loss retro with no maximum, 
C, = C(P,) = max(aP, + b, m - P,), where a = multiplicative loading, 
b = additive loading and m = minimum premium. 

For convenience write C(P,) as: 

C(P,) = 
1 
zp-+P; 

t 
$ ; “h ; “, 

I 

Recall that the P,‘s are non-decreasing and consider the case 
aP, + b < aPz + b < m < aP3 + b. 
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COV[C(Pd - C(P,), C(P,) - C(Pd] 

= COV[-(P2 - PI),uP3 + b - (m - Pz)] 

= -a COV[P2 - PI,P3] + COVIPz -- PI, fn -. P2) 

= -a (COV[P2,Pj] - COV[Pf,Pi]) - (COV[P2,P2] 
-COVIP,, P21) 

= (I + a) (Var[P1] - Var[P2]). 

Note: COV[P,-, , PI] = COV[P, , , (P, -- P, 1) + P, -,I 

= COV(P, r,P,-P, tl+Var[P, II 

= Var[P, I], 

because P,‘s have independent increments 
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APPENDIX D 

The following proof derives the transformations shown in Section 7. 

Theorem: If Y is negative binomial (a,~) and Xly is binomial 
(y,w), then X is negative binomial (a’,~‘) where CY’ = 01, 

and p’ = P 
wSp(1 -w) 

Proof 

Pr[X = x] = E Pr[X = xJY = y] Pr[Y = y] 
\ 

= 
zo 

Y w.c (l _ w)“-” 
( 

y+a-1 
7 x a- 1 1 

pa (1 -p)’ 

= x! (Ey * )! (I - p)” x (I - W)V-r o, ; “_ ;)!I)! (1 - P).“-” > 
Multiplying numerator and denominator by (x + (x - I)! gives: 

( x+a-I 
a- 1 ) [WC 1 - P)l-‘P” c (; 1 z I ;) [(l - p) (1 - w)].?‘-” 

? 
Substituting z=y-xandl -h=(l -p)(l -w)= 1 -(~+p-~~): 

x+a-1 
> 

z+x+a-1 
a- I x+(x--l 

h x+a (1 - h).’ 

Notice that the summation over z equals 1. 

( x+cy--I 
a- 1 I( 

P a 
w +p(l - w) I( 

w(l-P) * 
w +p(l - w) 1 

= x+a-1 
( a-l i 

p’” (1 - p’)” 

= NB(cx’,p’). 
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Comments: 

(i) For claims excess of a retention, r, w = 1 - F(r), where F(x) 
is the ground-up severity distribution. 

(ii) For reported or paid claims w = w(t), where w(t) is the percent 
of claims reported or paid as of f months from the average 
accident date. 

Var[X] 1 
(iii) E[XI = 7 

=w+PU -M') 
P 

Note that as w approaches zero (which is the case for excess 
claims as the retention, r, gets large), the variance/mean ap- 
proaches 1 .O. In fact, the variance/mean approaches I .O quite 
quickly as the following table shows: 

VARIANCWMEAN FOR Exe-F.SS CLAIMS 

Ground-Up 
VariE .25 

Excess Claim Probability 

IO .05 -- .Ol 

2.0 1.25 1.10 1 .os 1 .a1 
3.0 1.50 1.20 1.10 1.02 
4.0 1.75 I .30 1.15 1.03 

This result is consistent with sensitivity tests of 
P' = (Var[X]/E[X])- ’ which showed that E]Vj, the expected 
present value cash flow, did not change significantly for large 
changes in pt. 

Also, as w approaches 1 .O, p: approaches p’, as expected. 
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(iv) The coefficient of variation, CV[Xj, is given as follows: 

CV[xj2 = l 41 - P’) 
= (3qyj2 w + P (1 - w) 

W 

While the variance/mean approaches I .O as w approaches zero, 
the coefficient of variation gets increasingly large as the retention 
increases. 
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