Volume LXXVII, Part 1 No. 146

PROCEEDINGS
May 13, 14, 15, 16, 1990

EVALUATING THE EFFECT OF
REINSURANCE CONTRACT TERMS

JAMES N. STANARD
RUSSELL T. JOHN

Abstract

In many reinsurance pricing situations it is not possible
to determine a “correct” absolute price without making a
large number of tenuous assumptions. Even so, in order to
maximize a company’s profitability, it is important for the
reinsurance actuary and underwriter to be able to choose the
best contract terms among the achievable alternatives. Fur-
thermore, being able to offer different but equivalent terms
that better serve the needs of the cedant may help close an
important deal.

This paper measures the efficiency of contract terms by
estimating the distribution of the present value of cash flows.
To do this, the paper examines paid and incurred aggregate
distributions as a function of time over the life of a contract.
Sensitivity of the results to changes in the parameters of the
underlying loss model is investigated.

The authors wish to thank Todd J. Hess for his patience in reading many drafts
of this paper and suggesting numerous improvements. He also programmed the
analytical model, verified the many cash flow formulas, and produced the accom-
panying exhibits and graphs.
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l. INTRODUCTION

In many reinsurance pricing situations it is not possible to determine
a “correct” absolute price without making a large number of tenuous
assumptions. However, it is often advantageous to make some general
statements about relative price adequacy. By relative price adequacy we
mean statements (about a particular layer of subject business), such as:

1. Deal #1 is better than deal #2.

2. Deal #1 is equivalent to deal #2.

3. A deal is better than it was last year.

4. The reinsurer’s side of a deal is better than the company’s side.

Even if the underwriter cannot accurately estimatc an adequate ab-
solute price, consistently choosing the best contract terms among achiev-
able alternatives is important to a company’s profitability. Also, being
able to offer different but equivalent terms that may better serve the
needs of the cedant can help close a deal.

This paper will explore a method to compare relative prices for many
types of reinsurance contracts, and look at how sensitive the results are
to the parameters of the underlying model of losses.

Commonly used methods that utilize ultimate aggregate loss distri-
butions can give some view of the relative price. However, this alone
can sometimes lead to incorrect conclusions with regard to maximizing
profitability. Additional insight into the relative prices can be seen by
examining the distribution of cash flows and the accompanying invest-
ment income. To do this, the paper examines paid and incurred aggregate
distributions as a function of time over the life of a contract.

Few papers in the casualty actuarial literature have dealt with the
cash flow of a contract. For example, Meyers [6] includes investment
income to determine the parameters of a primary retrospective rating
plan which yields a desired operating profit. Lee [4] uses graphical
techniques to lend insight into excess of loss coverages and retrospective
rating. Biihlman and Jewell [1], Gerber [2], and Lemaire and Quairiere
[5] consider optimal reinsurance and risk exchanges. However, these
papers do not consider investment income and only deal with simplified
reinsurance contract types (e.g., quota share contracts).
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The procedure described herein uses a stochastic model to estimate
the distribution of the present value of cash flows. The paper’s emphasis
will be to derive results that are applicable to real-life pricing decisions.
The approach will be to summarize key information rather than to find
the single “optimal” solution.

2. AN EXAMPLE

Imagine that it is December 28 and you are a Lloyds underwriter
with a long queue of brokers waiting at your box. You are discussing a
treaty reinsurance proposal for losses $250,000 excess of $250,000 per
loss on a portfolio of long haul trucking liability business that generates
a total premium of $5,000,000 (net of commissions). You are very
familiar with this account; you have estimated the expected losses to the
reinsurance layer as being $1,500,000 (30% of the total subject pre-
mium). You are the lead underwriter, so it is up to you to quote terms.
After several days of back and forth discussions among you, the broker,
and the company, the broker has summarized three types of proposals
that he thinks will be acceptable to the company. He wants to know on
which one(s) you will give a firm quotation. The alternatives are':

1. Reinsurance premium = 10% of subject premium (sp).
Aggregate deductible = 20% of sp.
Aggregate limit = 400% of reinsurance premium.

2. Retrospectively rated contract.
Provisional premium = 8% of sp.
Maximum premium = 30% of sp.
Premium adjusted monthly to 110% of paid losses plus 8% of sp.
Aggregate limit = 200% of reinsurance premium.

3. Reinsurance premium = 27% of sp.
Profit sharing after four years of 60% of reinsurer’s profit after
10% deduction of reinsurance premium (i.e., 2.7% of sp), on a
paid loss basis.
Aggregate limit = 150% of reinsurance premium.

! The alternative contracts will be explained more fully in section 5. Further discussion of reinsurance
contracts and terminology may be found in Lee [4], Patrik and John [7], and Reinarz [10].
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3. NOTATION

The following notation will be used with respect to the reinsurance
layer?:

1. N, random number of excess losses,
2.
3. K., random variable denoting aggregate known loss reserves at

P, random variable denoting aggregate paid losses at time r,

time ¢. Note that P, and K, can be viewed as the sum of a random
number of individual paid or known reserved losses.

. R, random variable denoting reinsurance premium at time ¢. This

may be a function of paid or incurred losses.

. Ci, random variable denoting the cumulative cash flow (positive

and negative) for the reinsurance contract at time 7. This is a
function of the contract terms, R,, P,, and K,.

. 'V, random variable denoting the present value of the net cash flow

to the reinsurer defined as:

]
1+

V=I[C —-C WV "v=

In addition, it is assumed that losses occur mid-year; premium and
loss transactions are made at mid-year; and, production and overhead
expenses are ignored.

With this information, one can investigate properties of V in order
to judge what set of contract terms is most efficient over a broad range
of reasonable assumptions.

4. CRITERIA FOR JUDGING THE EFFECT OF CONTRACT TERMS

There are three ways that a reinsurance contract affects a reinsurer:

Economic Impact: Present value of cash flows, V, from the transac-
tion (pre-tax). The interest rate is assumed to be non-random and known
in advance.

letters.

> Random variables are denoted by capital letters and non-random quantitics are denoted with small
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Accounting Impact: An income statement and balance sheet are de-
termined by the contract terms and R,, P,, and K,. Two different rein-
surance contracts can produce the same C,’s and therefore have the same
economic value, but have very different accounting effects.3

Tax Impact: The tax impact is determined from the accounting impact
and affects the after-tax economic impact.

This paper considers only the economic impact.

5. DESCRIPTION OF COMMON CONTRACT TYPES

For the purposes of measuring their economic impact, many different
types of reinsurance contracts (such as sliding scale commissions, ret-
rospective rating plans, funded programs, aggregate caps, etc.) reduce
to a few basic features.

The simplest types of contracts are those where C, is a function of
only P,, and the function does not vary over different ranges of ¢. For
these, a useful first step in analyzing the economic effect is to graph C
as a function of P.

In other words, we are graphing the cumulative cash flow (prior to
interest) to the reinsurer (through 1) as a function of the underlying paid
losses to the contract. The reinsurer prefers larger C’s and prefers C’s
which are less than zero at P’s that have a low probability. We would
normally expect C to be a declining function of P (as losses increase,
the reinsurer’s result deteriorates), but this is not always the case.

The following graphs illustrate the functioning of various contract
terms; first for simple, then for more complicated types.

* As an example, assume that you are choosing among the following three plans described in section
5, to cover the same underlying risks: 1.b. paid loss retro, no minimum; 1.c. funded plan, with
interest credit; and 1.d. aggregate deductible. Parameters can easily be chosen such that C, is the
identical function of P, for all three plans. For those parameters, all three plans have the same
economic impact. However, the definition of premium is different in each case. The profit or loss
effect of each plan is the same, but the accounting entries producing that result differ.
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1. Contracts of the form C, = min («P, + b, r — P))

a.

Flat rated: The premium charged by the recinsurer 1s known in
advance of the effective date and is fixed for the life of the
contract. The premium is usually expressed as a percentage of the
premiums charged by the ceding company on the business subject
to the treaty (called subject premium).

(V‘r = r - Pl«
where r = premium.

For example, let r = $1,500.000.

FLAT RATED
Cash Flow as a Function of Paid Loss
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b. Paid loss retro, no minimum (sometimes called cash flow plans):
The premium charged by the reinsurer is a function of the actual
aggregate paid loss experience. In this case, the developed pre-
mium can increase to a maximum of M.

C,:min(ap,'f’b,M—P,).

For example, let « = .333, b = 0 and M = $2,000,000.

-]

PAID LOSS RETRO, NO MINIMUM
Cash Flow as a Function of Paid Loss
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. Funded plan, with interest credit: The premium less the reinsurer’s

margin is placed in a fund which accumulates interest at the
credited amount and from which losses are paid. When the contract
is commuted, the fund balance, if any, is returned to the cedant.

rrally h t ot Fh 1
The fund would normally be set at an amount sufficiently higher

than expected losses to pay for actual losses in most years.
Co=min (r — fo, r — P),

where r = f, + margin,
fo = fund at time.

For example, let f, = $1,250,000 and margin = $250,000.

FUNDED PLAN, WITH INTEREST CREDIT
Cash Flow as a Function of Paid Loss
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Aggregate deductible: For an aggregate deductible, the reinsurer
pays no losses until the total losses to the excess layer exceed the
deductible. Typically, the aggregate deductible is set lower than
the total losses expected for the layer. The graph shows that the
economic effect of an aggregate deductible is the same as a funded
plan with interest (but the accounting effects are quite different).

C,=min(p—d,p— P,

where p = r + d,
d = deductible,
r = premium.

For example, let r = $500,000 and d = $1,000,000.

AGGREGATE DEDUCTIBLE
Cash Flow as a Function of Paid Loss
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Profit Commission: In this plan the reinsurer returns a share of his
profits to the cedant. Profit is defined to be premiums less losses
and reinsurer’s margin. Because actual profit will not be known
for many years, profit commission could increase or decrease
thereby requiring additional payments by the reinsurer or a return
of profit commission by the cedant. However, the profit commis-
sion is never less than zero.

C,=mn{(—(1-nNP +r(l —h({-¢e,r—P),

where h = profit sharing percent,
e = reinsurer’s percent margin,
r = premium.

For example, let h = .50, ¢ = .15 and r = $1,500,000.

PROFIT COMMISSION
Cash Flow as a Function of Paid Loss
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2. Contracts of the form C, = max (aP, + b, m — P,)

a.

800

Paid loss retro, no maximum: This is a pure cash flow plan which
allows the cedant to spread his incurred loss experience and
thereby smooth underwriting results. The cedant usually pays the
reinsurer a provisional premium greater than or equal to the min-
imum, with the final premium based on actual paid losses plus
loadings.

C, = max (aP, + b, m — P),

where @ = multiplicative loading,
b = additive loading,
m = minimum premium.

For example, let a = .10, b = $200,000 and m = $400,000.

PAID LOSS RETRO, NO MAXIMUM
Cash Flow as a Function of Paid Loss
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Loss ratio aggregate limit or “cap™: The reinsurer’s aggregate
liability for losses is capped at a specific dollar amount expressed
as a loss ratio or dollar limit. The loss ratio is usually against the
reinsurer’s net premiums.
Ci=max(r — P.r—1f),
where r = premium,
f = cap (in dollars).

For example, let r = $1,500,000 and f = $2,250,000.

LOSS RATIO CAP
Cash Flow as a Function of Paid Loss
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3. Plans with both minimums and maximums.
a. Paid loss retro: This plan is a combination of plans 1b and 2a.
C: = min (max (aP, + b, m — P), M — P),

where m = minimum premium,
a = multiplicative loading,
b = additive loading,
M = maximum premium.

For example, let a = .10, m = $500,000, b = $400,000, and
M = $2,050,000.

PAID LOSS RETRO
Cash Flow as a Function of Paid Loss
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b. Loss corridor: In most loss corridor plans, the reinsurer pays 100%
of the losses up to the beginning of the corridor, some share or
fraction of the losses in the corridor, and 100% of the losses above
the corridor. The corridor is usually expressed in terms of loss
ratio points.

Co=min (max (r = Py, r — P, + h(P, —w),r — P, + h(v—u),
where A = fraction of corridor retained by reinsured,
r = premium,
u = beginning of corridor,
v = end of corridor.

For example, let # = .50, r = $1.250,000, « = $2,000,000, and
v = $2.500.,000.

LOSS CORRIDOR
Cash Flow as a Function of Paid Loss
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4. C, depends on ¢.

a.

Funded plan with no interest credit to cedant: Under such plans,
the fund balance does not accumulate with interest; that is, the
reinsurer keeps all interest earned for his own account. At time
fo, the fund, less paid losses and reinsurer’s margin, is returned
to the cedant provided this balance is positive. The cumulative
cash flow at time fo is never greater than the margin, though the
reinsurer does receive the benefit of full cash flow until the fund
is returned.

{ r— P, t < fto,

min(r—f,r—P,) I = o,

!

where r = fund + margin,
f = fund,
to = date on which the fund is returned.

For example, let f = $2,500,000 and margin = $100,000.

FUNDED PLAN WITH NO INTEREST CREDIT
Cash Flow as a Function of Paid Loss
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5. C, 1s a function of K, in addition to P,.

a. Incurred loss retro: This is similar to a paid loss retro except that

the reinsurer’s premium, R,, is a function of known incurred losses
(P, + K,), multiplied by a loading. The additive load. b,, may
include an IBNR provision that is a function of 1.

C; = min (max (@P, + (¢ + WK, + b, m — P), M — P)),

where ¢ = multiplicative loading,
b = additive loading,
M = maximum premium,
m = minimum premium.

For example, let a = .10, b = $400,000, M = $2,250,000, and
m = $400,000. Note that this graph is three-dimensional because
C. is a function of two variables, P, and K,. In the prior examples
C; was dependent upon one variable, P..

Incurred [Loss Retro
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Actual contract terms are often a variation or mixture of the above
types, such as the alternatives or the example presented in Section 2.

6. COMPARING GRAPHS FOR THE EXAMPLE

A first step in evaluating relative price adequacy is to examine the
graphs of the various alternatives and to examine the graph of a hypo-
thetical contract constructed as the difference between two deals. For
the example in section 2, the graph below shows option #1, option #2,
and option #1 minus option #2 (the “difference deal” is represented by
the triangular region). The obvious conclusions are that the two options
are very similar, but that #1 is better than or equal to #2 at all points.
Therefore, reject option #2.

EXAMPLES 1 AND 2
Cash Flow as a Function of Paid Loss

1.8
Ve
1.2 ~

1

o.8 -1

08

0.4 <3
0.2
0

—0 2
-0 .4 -

-0 8 —
—-0.8 o
—-1
-1.2 ]
-1 4
.
-1.6 T T T L a— T T T
] Sp0.000 1,000.000 1,500,000 2000000 2500.000 3000,000 3 500,000 4000.000

Pt, Paid Loss through time t
0O Exl1 + Ex. 2

Comparing #1 and #3 is more complex because neither one domi-
nated the other in all cases, and #3 varies with r. The graph of #3 and
of #3 minus #1 (referred to as the “difference deal””) are shown on the
following pages.
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Ex. 1 ond 3 (t < 4 years)
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Ex. 3 (t < 4 years) minus 1

Cash Flow os o fuxton of Paoxt Loss
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7. DISTRIBUTION OF V

As a next step, it is helpful to compare the contracts over reasonable
ranges of parameters of an underlying loss generation model. This will
help to focus on the underlying conditions that must be true for one
option to be superior to the other. The value V of the difference deal is
a random variable. How does the distribution of that variable change as
the underlying loss model changes? One clear way to present this infor-
mation is to look at a matrix (or 3-D graph) of the expected value of V
as two important parameters are varied.*

To do this one needs to estimate the aggregate distribution of incurred
or paid losses. This can be accomplished using simulation or by calcu-
lating them directly from the frequency and severity distributions. Using
a transformation discussed below, aggregate distributions for excess con-
tracts that reflect the age of the contract can be determined. From this
series of distributions, one can calculate the distribution of cash flows
to the contract. The specific model of the loss process is based on
distributions that are commonly used in casualty actuarial literature.

Consider the aggregate distribution for cxcess claims:

G(x) = 2 Prob[N = n] F(x)*",
where F(x) is the individual loss amount distribution. This represents the
distribution of P, at ultimate. The Single Parameter Pareto (see Philbrick
[9]) is used to model severity for its ease in estimating excess losses.

The model assumes a negative binomial frequency distribution de-
fined as:

m+ o — 1

Prob[Mzm]=( iy

) [7(1 ( 1 . p)”l’
where M denotes the number of ground-up claims (i.e., claims from first
dollar of loss).

+ Although E[V] is probably the most important thing to look at, other information about the
distribution of V, such as the Variance {V] and Probability [V > 0], can be examined in this format.
Also, if you wish to postulate a utility function L' {on V). we can look at E{U{V)] as the parameters
are varied.
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It is interesting to see that if ground-up claims are negative binomial,
NB(a, p), then the number of excess claims, &, excess of any retention
r, is also negative binomial NB (a', p")

p .
| = F(r) + pF (r)

In addition, if one assumes that individual claim reporting (or pay-
ment) is independent of size3, then the number of reported (or paid)
claims is negative binomial NB (a;, p;)

where o' = aw and p’ =

’

' ! '
wh a =o', p = !
ere & ’ w(n + p' (I —w(@)

and w(¢) is the percent of claims reported (or paid) as of + months from
the average accident date. See Appendix D for a general proof of these
relationships. Similar relationships hold for other common frequency
distributions.

Some of the parameters in this model are “unimportant.” That is, the
conclusions drawn are insensitive to changes in these parameters. This
is because alternative deals covering the same occurrence layer are being
compared. (If one tried to compare a $500,000 excess $500,000 contract
with a $250,000 excess $250,000 contract, the result would be much
more sensitive to the choice of those “unimportant” parameters.)

The “important” parameters that significantly affect the distribution
of V are:

1. Average payment lag. The payment lag is the random delay be-
tween loss occurrence and loss payment.

2. Expected total losses to the occurrence layer.

5 The authors do not believe that the independence assumption of claim reporting (or payment)
from size is too restrictive because the claims being considered are already large on a ground up
basis and their individual size is bound by the layer limit.



5]
(S

REINSURANCE CONTRACT TERMS

Two different applications of the method, producing equivalent re-
sults, were used to calculate E[V]. Onc was a Monte Carlo simulation
described in Appendix B; the other was a calculation of the distribution
of cash flows at each r by Panjer’s method described in Appendix C.¢

The E[V] and difference matrices for each application are shown in
Exhibits 1 and 2. As can be seen, the results are quite similar and would
lead to the same conclusions. Displayed on Exhibits 3-7 are expected
cash flow and underlying distributions for the case where E[total loss]
equals $1,500,000 and E[lag] equals 36 months.

The E[V] of the difference deal is shown on the graph on the next
page for each pair of parameters E[total losses] and E[lag]. Examining
this graph shows that #1 is slightly superior if we are quite confident in
our estimate of expected losses at $1,500,000 and if the average payment
lag is short (less than 24 months). However, for a longer payout or for
a misestimate of expected losses (either over or under), #3 is superior.
The decision maker can use his subjective assessment of his own risk
preferences in choosing between the deals. (The authors prefer deal #3.)

8. CONCLUSION

The methods outlined have the advantage of summarizing the many
factors affecting the economic value of a reinsurance contract, first by
graphing the contract terms, then by graphing E{V], to allow consistent
choices among the alternatives. One can also construct contracts with
equivalent terms in the sense that their E[V]'s are approximately equal.
The model is general enough to handle most realistic contract types.
Applying subjective probabilities to the range of the V distributions
corresponding to various lags and expected total losses could further
summarize the results. Finally, the model can be made more general by
using a random interest rate and applying utility functions to the cash
flows. However, such extensions probably do not add much practical
value.

¢ The simulation has the advantage of producing the entire distribution of V: the Panjer method
only gives E[V] easily. However, when E[N/| is large. the Panjer method can be run much more
quickly than the simulation.



23

REINSURANCE CONTRACT TERMS

EXAMPLE 3 MINUS

EXAMPLE |

00

o
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Example

31
3-1

E[LOSS}

500

750
00
250
500
750
000
250
S00
750

1o 10 10 tg —m — — —

S0

750
(KK
280
LS00
750
0040
250
S00

750

bo o to by —

500

750
000
250
500
750
000
250
500
750

[ I T e

TaBLE oF E|V]. EXPECTED PRESENT VALUE OF THE CASH Frows

EXHIBIT 1

PaANIER'S METHOD

E|T.AG] in months

387
437
338
181
8
1218)
(433
1640}
(829)
1992)

S48
106
248
(94
(249
(378
(476
(5400
(593)

f]
13
18T
104
%61
(RN}
55
164
283
3949

367
4313
234
121
(43)
(194
(321
419
91
(540

(1

LR
A

150

67

(20}
57
156
266

18

489
346
356
224
52
(136)
(330
(521
(696}
(851)

5%2
456
35
L6
1
t1d6n
(270
(370h
4
(496}

24

490
450
366
23x
7Y
(10
(287)
470y
(640)
(791

5935
476
42
194
+1
[RISAN)
1226y
1325
(4
1455y

103
26
(24
[EXY)
13N
th
6l
145
240
RRY)

30

490
453
374
254
103
168)
1246)
(422)
(588
(735

6li6
493
366
224
62
1184y
1283)
1359)
4T

Lis
30
(4
(R
1261
6
63
140
228

319

36

491
456
382
269
125
(RE)]
(208)
(378)
(538
{683

615
SO8
386
251
Hio
125
(144
1243
1321
1380

124

52

3
AR}
t1y
12
64
135
218
303

42

492
459
RED)
282
146
(9
t173)
(337
93
1634

624
521
405
275
140
Y
0N
12061
1254
1345

4%

492
462
396
295
163
16
141
(299
450y
TARN)

[N
(RIS
(RGN

3

493
464
)2
06
182
40
(11
(264
(41

(545

192

268

109
VIR

C 250

151
.
44
20
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TasLe oF E[V], EXPECTED PRESENT VALUE OF THE CASH FLOWS

MONTE CARLO SIMULATION

E[LAG] in months

Example E[LOSS! 6 12 18 24 30 36 42 48 54 60
1 500 467 469 469 470 470 472 472 473 473 474
| 750 418 422 427 429 432 435 438 44 444 447
1 1.000 320 329 338 348 355 364 373 380 383 390
1 1.250 170 192 205 225 243 260 269 282 285 303
1 1.500 (17 17 47 77 95 115 134 155 173 186
1 1.750 (208) (162} (134) (93) (70 (32 (12) 11 36 57
i 2.000 {415 1355 (312 (272) (236) {197y 1167y 1133 (109) 81
! 2.250 (604) (349) (494) (+49) (404) (365) (320 (284) (249) (216)
1 2,500 (781 (720) (667) (608) (560) (509) (467) (419) (396) (358)
1 2,750 (937) (8681 (807 (753 (705 (650) (599) (360) 517 481)
3 500 529 546 560 574 383 593 601 607 614 621
3 750 392 419 44 458 474 487 501 513 524 S33
3 1.000 241 274 303 330 350 374 393 409 421 436
3 1.250 75 124 152 188 220 248 267 289 300 327
3 1.500 vh (30} 7 46 77 107 135 162 188 206
3 1.750 231 (175 (134 (88) 156) 14 13 41 69 94
3 2.000 (335) (296) 247y 207y (169 (129) (991 162y (35 {6)
3 2,250 (446) (393) (343) (302) 1263) (225) (189) (155 (125) 194)
3 2.500 (514) (461) (418) (375) (335) (299) (26-H (225) (205) (177)
3 2,750 (560) (509) 467) (428) (393 (357) (320) (292) (260) (232)
3-1 500 62 77 91 103 12 121 129 135 140 147
3-1 750 (26) 3) 14 29 43 52 63 71 80 86
3.1 1.000 (78) (55) (35) (18 (6) 10 20 29 38 46
31 1.250 (95} 712y (53 [RYA! (R} 12y 3] 7 15 24
3-1 1.500 (74) (57) [B10] [RID] (18) 9 1 7 15 20
3-1 1.750 (23) (13 10} s 13 18 24 30 23 37
31 2.000 60) 58 63 65 67 o8 69 70 73 75
3] 2.250 158 156 150 147 142 139 131 129 124 122
34 2,500 267 259 249 233 228 210 203 194 191 181
341 2,750 377 359 340 24 312 293 279 267 257 248

SWAHL LOVILNOD GONVINSNIFYE
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EXHIBIT 3

ExPECTED CasH FLOw EXHIBIT: PANJER'S METHOD
ExaMPLE NUMBER 1

THE 100% EXPECTED LAYER Losses = $1,500,000
THE AVERAGE PAYMENT LAG 1S 36 MONTHS

Expected Expected Exp. Earned Expected Incurred Expected Present

Yrs Incurred Paid Premium Profit Commission Loss Ratio Cash Flow Value of E{CF]
1 4.616 411 500,000 4] 0.9% 499 589 499,589
2 121,630 26,837 500,000 0 24.3% —26.426 —24.469
3 280,569 103,237 SO0 K 4} 56.1% —76,399 —65.500
4 391.523 196.185 300,000 0 78.3% 92 949 —73.786
5 457,712 280.569 500,000 ] 91.5% —84.383 -62.024
6 495311 348.673 500,000 0 99 1% —68.105 -46.351
7 516.272 400,790 500,000 0 103 3% -52.116 —32.842
8 527 874 439,578 SO0.000 0 108 6% 38.789 —22.633
9 534.263 468,035 500,000 } 106.9% —28.457 15.374
10 537.785 488717 500.000 0 107 6% —20.682 —10.346
11 539,709 S03,708 300,000 3} 17.9¢% - 14.991 ~6.944
12 540.780 514,507 300,000 0 108.2¢ 10.799 4.631
13 541.351 522.283 500.000 0 108.3¢% -7.776 —3.088
14 541.681 517874 500, KX 0 108, 3% - 5.591 —2.3056
15 541,840 S3] %8S SO0, 000 0 108 4% 4.011 —1.366
16 541,945 534,763 S00.000 0 108 .4 ~2.878 907
17 542,002 S3h K42 500.000 0 108 4% -2.079 — 67
18 542,030 538.301 500,000 0 108 4% ~1.460 —395
19 542,049 539,382 SU0.000 0 108.4% 1.081 =270
20 542,068 542.068 SO0.000 0 108.4¢% 2.685 —622
TOTALS —42.068 125,378

Swing program minimum, provisional. and maximum are: .100. .100, .100.
The aggregate deductible and loss ratio cap percentage of subject premium are: . 200, 400,

TL oo e cnta dadistibla and lace ratin can dallare ares §0 S0

9z
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18
19
20

TOTALS

Expected
Incurred

388.774

888.210
1.152,781
1,289,347
1,360,387
1.397.986
1.418.170
1.429.110
1,435,067
1,438,328
1.440,110
1.441,091
1.441.622
1.441.921
1.442,076
1,442,168
1,442,219
1.442.244
1,442,260
1.442.278

Expected
Paid

230,278

590.129

846.750
.027.316
152,781
,239.555
299,695
.341.569
370.895
391,533
1,406,136
1,416,491
1,423,858
1,429.110
1.432.855
1,435,533
1,437.453
1.438.815
1,439,803
1,442,278

EXHIBIT 4

ExPEcTED CasH FLow ExHiBIT: PANJER'S METHOD

EXAMPLE NUMBER 3

THE 100% EXPECTED LAYER Losses = $1,500,000
THE AVERAGE PAYMENT LAG 15 36 MONTHS

Exp. Earmned

Premium

1,350,000
.349.999
.350.000
.350.000
.350.000
350,001
,350,000
.350,001
.350.001
350,000
350.000
.350,000
.350.000
.350,000
.349.999
.350.000
.350.000
.350,000
1,350,001
1,350,000

Expected Incurred Expected Present
Profit Commission Loss Ratio Cash Flow Value of E[CF)

0 28.8% 1,119,723 1.119.723
0 65.8% —359.852 —333.196
0 85.4% -256.621 —~220,011
0 95.5% —180,566 —143.339
131,518 100.8% —256,983 —188.891
105,907 103.6% —61.162 —41.626
90,098 105.0% —44,332 -27.937
79.989 105.9% =31.764 -18,534
73,335 106.3% —22.671 —12,249
68.855 106.5% —16,159 —8,083
65,787 106.7% —11,535 -5.343
63.661 106.7% -8.229 -3.529
62,173 106.8% —5.879 —2.334
61,125 106.8% -4.205 —1.546
60,383 106.8% —3.004 -1,023
59.857 106.8% -2.151 —678
59.481 106.8% —1.543 —450
59.214 106.8% —1.095 ~296
59.023 106.8% -797 -199
58.542 106.8% -1,995 —462
—150.820 109,996

Swing program minimum, provisional, and maximum are: .270. .270, .270.

The aggregate deductible and loss ratio cap percentage of subject premium are: .000. .405.
The aggregate deductible and loss ratio cap dollars are:
The profit commission equals .600 after .100 reinsurer's margin, but none until year 5.

$0,

$0.

Number of intervals tested = 191; largest calculated aggregate loss = 4,517,796

SWYIL IDVILNOD FONVINSNITA
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EXHIBIT 5

DISTRIBUTION OF C, USING PANJER'S METHOD

Example #
! 3 3 t (years)
thefure PC) tafter PC)
P G Cr Cr l 2 3 4 S 6 8 10

4] 500,000 1.350.00¢) 621.000 0.056 7 02 0.001 0.000 0000 0000 O 000

108 808 S00.000 1.241.192 817477 0147 0030 [SR1.4.5 0.004 0.002 0001 aom (100t
217616 500.000 1132384 5334953 0.293 4076 0.026 0012 0.007 0.005 0003 0002
A4 500,000 1.023.5%76 490 430 0.447 0[50 006l 0031 0.01¥ 0.013 0008 0 006
435233 500,000 Y14.76% +16.907 (.602 0248 0.114 0062 0.03 0,028 ol 0015
54041 S00.000 805 959 403384 0.728 0 363 0187 [VREL] 0073 (}.054 0037 0030
651849 $00.000 697,151 359,860 0827 (1 4K3 0.277 175 0122 .M 0.6t 0055
761.657 500,000 S88.343 316.337 £.898 0.599 0.379 0255 0.187 0,147 0108 0092
870 465 5060.000 479,535 272814 0,940 0.701 (0.484 0 346 0.264 0.214 0.163 014
979,273 506,000 370,727 220291 1967 0.787 0.887 0343 0.33] 0.293 0 231 (203
1.OR8.081 411919 261919 [8S5.768 (1983 () 853 0.679 0.540 0443 0.379 0,308 (.278
1,196,889 303111 153011 142.244 0.991 0903 0.760) 0 63] 4 835 0.369 6,391 0).355
1.305.69% 194,302 44,302 41,302 0.996 0,938 (825 0712 0622 0.587 0.478 0.439
1414506 #5494 16445061 1645061 ) 99K 0962 0.877 17K 0702 0.630 {1562 0.523
1823314 1173314 330 099y [T 0.916 0).840 0770 a71s 0642 0,604
1632122 2) 120 I 098~ 0.943 0.¥8S 0 82X 0 780 0714 0.679
1.740 830 12400930 390,930 1390, 93(H 1 OO0 0 yyl 0961 0420 0 X74 [IRREE [0 0.736
183973 (339.738) 399,738 (4949 738y 1000 (RN 4.977 0.946 o410 (RN 0.%3] 0. 803
1 1158 5461 <OUR.SI6) (608,546 1O 0 9uN 0.9%6 0 Y6l 193N 0912 0873 0 8S1
2 COTS000) [CERRT LN 100 0 Y9y 0992 07T 195y 093y 0908 (0 %90
2 th76.163: BTSN (675 X 1000 0999 09U 0 URS GuT2 () 985 0,438 €920
2, 1 TREGT POTS KK OIS NN 1N 1O 099" 0991 [SRVL (UM Y5 0943
2. (893,779, OIS KD 4TS (NKh 1000 10 0998 [ELE) O 9¥% 0 98] [T 0961
N PSRN 0TS (00 1000 10KX) (I 0997 a 993 ) 98X 0979 0973
2.611.398 LT 39% ARLL BTS00 1000 1000 1000 .99x 4990 0 ug? L) 0.982
2.720.202 (1,220.203 S.00Mm (675 00 1.000) 1000 1000 0,999 a 99~ 0 995 0 99] 11,988
2.826.011 (1329001 SO0 TS 000 1.04K) 1000 1 (KN} {1999 0 99% ) vy 09Ul 0,992
2937 8 o437 R o (AT (NN [T 1oy 1O 1w ougu n ooy 0noau” 0 9gs
1 SOCLOCN LU 1678 0004 [WLLR | (XX 1.000 10000 (999 0 999 0 9y 01,997

11,500,000, S.00KH (6750003 0K 10 1000 1.t 1o 0 Y99 1999 0,998

15600007 5.0000 16750001 1000 1 oo 1 00 1000 1.000 1000 0 499 0.999

C1500,000) JANKH (OTS.000) 1000 L.O0G 1 000 100K 1000 1 000 1 (KM} 0.999

. (1500 000y L00M {675,000y 1.000 1000 1 000 (LY 1000 1000 1000 1.000
3.500) 668 11500 000y TS.00h (6750 .00 [K3E0 1 oo 1000 1.00x} 1000 1000 1.000

Expected Cash Flow

example 1 499 .58y 473,163 396,764 303.815 219432 i51.327 olr422 11.283
example 3 o723 759 871 503,250 322.684 65,701 4.539 (71,857 (110,387

AT 4. Twry 2 P it

8T
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EXHIBIT 6

DISTRIBUTION OF C; USING PANJER’S METHOD

Example #
! 3 3 1 (years)
tbetore PCt tafter PC)
P [ [ ¢ 12 14 16 18 20

0 500.000 1,350,000 621.000 0.000 0.000 0.000 0.000 0.000

108 808 500.000 1,241,192 577.477 0.000 0.000 0.000 0.00) 0.000
217.616 500,000 1132384 533,953 0.002 0.002 0.002 0002 0.002
326.424 500.000 1.023.576 490,430 0.005 0.005 0.008 0.005 0.008
435,233 500.000 914.768 446,907 0.013 0012 0.012 0.012 0.012
533,041 SO0.000 305,959 403384 0.027 0026 0.025 0.025 0.025
652.849 500040 697,151 359,860 0.050 0.048 0.047 0.046 0.0a6
761.657 500.000 588,343 316,337 0.085 0.081 0.079 0.078 0.077
870,465 S00.000 479535 272814 0.131 0120 0123 0.122 0121
979,273 500,000 370.727 229.29) 0.189 0.183 0.180 0178 0.176
1,088,081 411919 261,919 185.768 0.259 0.251 0.247 0.245 0.243
1.196.889 303011 153111 142,244 0336 0327 0313 0.320 0318
1.305.698 194,302 +.302 44,302 0.419 0.409 0404 0.402 0.399
1,414,506 85.494 {63.506) (64,506} 0.503 0.493 0.488 0.485 0.482
1.523.314 233149 (173314 (173,314 0.583 0574 0.560 0.566 0.564
1,632,922 (13212 (282.122) (282,120 0.660 0.651 0.646 0.643 0.641
1,730,930 240,930y (390.930) (390.930) 0.729 0.720 0.716 0.713 0711
1.849.738 (349.7138) (499,738 499,738 0.788 0.781 0777 0778 0.772
1.958 546 (458,540} (608 546) (608 546 0.839 Q832 0.82% .R827 0.828
2.067.354 (567,354) 1675.000) 1675.000h 0.879 (1874 0.871 0.869 0.868
2.176.163 (676.163) 1675.000) (675.000) 0912 0907 0.905 0.904 0.903
2.284.971 1784.971) 1675.000) (675.000) 0.937 0.932 0932 0.931 0.930
2393779 (893.779) 1675.000) (675.000) (1.956 9.953 0.952 0.951 0.950
2,502,587 (1.002.58T) (675,000} (675.000) 0.969 0.967 0.966 0.966 0.965
2,611,395 (1L 111.395) (675.000) (675.000} 0.979 0.978 0.977 0977 0976
2720203 11.220.203) (675,000, (675.000) 0.986 0.985 0.985 0.984 (.984
2.829.011 11.329.01h (675.000) (675.000) 0.991 0.990 0.990 0.990 0.990
2.937.820 (1,437 820) (675.000) 1675.0XK) 0.994 (.994 0.994 0.993 0.993
3.046.628 (1.500,000) (6750000 (675.000) 0.9% 0.996 0.99 0.9% 0.99
3,155,436 (1,500.000) (675,000} (675.000) 0.998 (1998 0.997 0.997 0.997
3.264.244 1.500.000) (6750001 (675,000} 0.99%9 0.999 0.998 0.998 0.998
1373052 11.500.000) 1675.000) (675.000) 0.999 ¢.999 (1.999 0.999 0.999
31,481 860 11.500.000) (6750007 (675,000 1.000 1.999 0.999 0.999 0.999
3.590.668 1.500.000) 1675.000) (675.000) 1.000 1.006) 1.000 1.000 1.000

Fxpected Cash Flow

example | 114,507y (27.874) (34,763 138.302) 42,068}
example 3 (130,151) (140.235) (145,390 (148,028) (150.820)

Note: PC denotes Profit Commission

SWHIL LOVILNOD FONVINSNITYE
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EXHIBIT 7

DISTRIBUTION OF AGGREGATE PaiD LOSSES TO TOTAL LAYER: PANJER'S METHOD

Limit: 250,000 The Mean of the Exponential Payment Lag: 36
Retention: 250,000 Var[N)/E[N] for the Excess Layer at Ultimate: 1.032
Layer Expected Losses: 1,500,000 Alpha = 320.083
Single Parameter Pareto ¢: 1.5 Layer Severity = 146.447
1 (years)
! 2 3 3 s 6 8 19 1 16 I8 20

.J
| =

i
I
'
|
1
|
|
|
|
|
|

Summary Statstics

P 0.991 0. 985 ) YR 0.4977 0978 0973 (1971 0970 097 0.969 (1964 969 (1964
E[# Pad] 2.90 4 98 647 T84 K31 X RO 9 53 9 R¥ 10,06 1015 1019 1022 16,24
E(S Pad] 425 730 94K 1103 1217 1297 1396 1446 1473 1486 1493 1496 1300}
v 0.05 050 0.44 0.41 0 34 13K 036 1,36 (138 035 .38 0 3% 033
SKW 072 () 38 049 0.46 044 42 0.4 0,40 (30 030 030 O i (IR
Pad
Dollars Cumulative Distribution Function Pilic= Pad Doilars)
0 4056 0007 0,002 0.001 G.000 (0.000 [AXELY] 0 1L HX) 000 0000 [IRE1 W 000
108808 (147 030 (.009 0.004 £0.002 0.001 0.001 G001 0 O 000 O 006 BRELY 000
217.616 0.293 0076 B2 0012 0007 0.(05 0.003 0002 von2 (.02 0002 [IRVIN 02
RRGIS XS 0347 0150 0.061 1.03] 0018 a.013 0.008 {006 0 008 0008 [IRYAN [ANLEN [TRVAN
435,222 0.602 0248 [SHUE (1062 0.019 (1028 018 LAUN 0.013 0012 0012 0al2 0012
34404 0728 (363 O 187 0110 0.073 054 0037 0030 0027 0.026 (.025 [ERYAN 028
632,849 {827 (0 3K3 0.277 0175 a.122 0.093 0.066 0.058 (1030 (1048 0.047 0 046 0 046

SKW = Coetticient of Skewness

0t
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EXHIBIT 7 (continued)

1 (years)
! 2 3 4 5 6 8 10 12 14 16 18 20
Paid

Dollars Cumulative Distribution Function P(L) = Paid Dollars)

761.6587 0.895 0.59% 0.379 0.255 0.187 0.147 0.108 0.092 0.085 0.081 0.07% 0.078 0.077

870,465 0.940 0.701 0.484 0.346 0.264 0214 0.163 0.141 0.131 0.126 0123 0.122 0.121

979,273 0.967 0.787 0.587 0.443 0.351 0.293 0.231 0.203 0.189 0.183 0.180 0.178 0.176
1.088.081 0.983 0.853 0.679 .540 0.443 0379 0.308 0.275 0.259 0.251 0.247 0.245 0.243
1.196.889 0.99] .903 1L.760) 3.631 0.535 0.469 0.391 0.355 0.336 0.327 0.323 0.320 0.318
1.305.69% 0.996 0.938 (.825 0.712 0.622 0.557 0.478 0.439 0.419 0.409 ().404 0.402 0.399
1.414,506 0.998 0962 0.877 0.782 0.702 0.640 0.562 0.523 4.503 0.493 0.48%8 0.485 0.482
1.523.314 0.999 0.977 0916 0.840 0.770 0.715 0.642 0.604 0.584 0.574 0.569 0.566 0.564
1,632,122 1.000 0.987 0.944 0.885 0.828 0.780 714 0.679 0.660 0.651 0.646 0,643 0.641
1.740.930 1.000 0.992 0.964 3.920 0.874 0.834 0.778 0.746 0.729 0.720 0.716 0.713 0.711
1.849.73% 1.000 0,996 0.977 0.946 0.910 0.878 .83} 0.803 0.78% 0.781 0777 0775 QI
1.958.546 1.000 0,998 0.986 0.964 0.938 0.912 0.874 0.851 0.839 0.832 0.828 0.827 (.825
2.067.354 1000 0.999 0.992 0.977 0.958 0.939 0.908 0.890 3.879 .874 0.871 0.86Y () 868
2,176,163 1.000 0.999 0.995 0.985 0.972 0.958 0.935 0.920 0.912 3.907 0 905 0.904 0.903
2284971 1000 1.000 0.997 0.991 0.982 0.972 0.954 0.943 0.937 0.933 0.932 0.931 0.930
2.393.779 1.000 1.000 0.998 0.994 0.988 0.981 0.969 0.961 0.956 0.953 0.952 0.951 0.950
2.502.587 [.000 1.000 .999 0.997 0.993 0.988 0.979 0.973 0.969 0.967 ().966 0.966 0.965
2.611.395 1.000 1.000 1.000 0.998 0.996 (.992 (.986 0.982 0.979 0.978 0977 0.977 0,976
2.720.203 1.000 1.000 1.000 0.999 0.997 0.995 0.991 0.988 ().986 0.985 0.985 0.984 0.984
2.829.011 1.000 1.000 1.000 0.999 0.998 0.997 0.994 0.992 0.99 0.990 0.990 .990 0.990
2.937.820 1.000 1.000 1.000 1.000 0.999 0,998 0.997 0.99% 0.994 (.994 0.994 0993 0.992
3.046.628 1.000 1.000 1.000 1.000 0.999 0.999 0.998 0.997 0.996 0.99¢6 0996 0.996 (1.996
3155436 1.000 1.000 1.000 1.000 1.000 0.999 0.999 0.998 0.998 0.998 0.997 0.997 0.997
3.264.244 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.999 0.999 0.999 (1.998 0.998 0.998
3.373.052 1.000 1.0 1.000 1.000 1.000 1.000 1.000 .999 0.999 0.999 0.999 0.999 0.999
3.4K81.860 1.000 1.000 16X} 1.000 1.000 1.000 1.000 1.000 1.000 (.999 0.999 0.999 0.999
3.590.668 1.000 1.000 1.000 1.0 1.000 1.000 1000 1.000 1.000 1.000 1.000 1.000 1.000
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APPENDIX A
PARAMETERIZING THE MODEL

The two applications of the model described in Section 7 and Ap-
pendices B and C (simulation and Panjer’s method) were parameterized
using the following steps:

1. Select expected losses, E[L], where L = P, at t equal to ultimate,
to the occurrence layer. Several estimates using experience and
exposure rating techniques should be applied. The consistency of
the results will affect how extensive a range of E[L] estimates
should be tested in the model.

2. Estimate the negative binomial (NB) parameter p’. The authors
used the fact that the variance/mean, Var/E = 1/p for NB. Starting
with an ISO ground up Var/E in the 2.0 to 3.0 range, and ISO
increased limits severity distributions, one can translate p (Y2 to
'4) into p’ using the transformation p’ = p/[1 — F(r) + pF(r)],
r = retention. The examples herein use p’ = .969 for excess of
$250,000 long haul trucking. As mentioned in Appendix D, E[V]
is not sensitive to changes in p’.

3. Estimate a severity distribution F(x). The authors used a Single
Parameter Pareto (SPP) with ¢ = 1.5. This was suggested by
Philbrick [9] as being appropriate for casualty lines. With an SPP
severity, changes in the g parameter do not cause significant
changes in E[V]. The average severity for the layer ($250,000
excess of $250,000) is then calculated.

4. Dividing E[L] by the average severity produces an estimated num-
ber of excess claims, E[N]. One can then back into the NB a
parameter as:

E[N]p’
1 —p'
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5. Select payment and/or report lag distributions. While this paper
utilizes exponential lags, the results are equally valid for other
distributions, although the parameter selection process would
change.” The cash flows are fundamentally dependent on the pay-
ment lag distribution, so care should be taken in the selection of
the distribution and its parameters. The extent of sensitivity testing
is a function of one’s confidence in the payment lag distribution.
For a detailed discussion on estimating lag distributions, see Weis-
sner [12]. John [3] discusses report lag distributions by reinsurance
line of business.

6. Choose an interest rate to discount the cash flows. The examples
used 8%.

7 For example, if one were testing the sensitivity of results using a two parameter payment lag
distribution, the coefficient of variation (CV) would be fixed, and scale parameter selected corre-
sponding to several expected payment lags. This process would then be repeated for several different
CV values.
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APPENDIX B
MONTE CARLO SIMULATION

The simulation was programmed as follows: Single Parameter Pareto
(SPP) g, expected layer losses, and exponential payment lag with lambda
equal to 1/mean lag are selected and used to calculate Negative Binomial

p’ and a parameters as shown in Appendix A. Then, for one iteration:

1. N is drawn from a negative binomial NB (a, p').

2. For each of the N claims, a paid loss amount is drawn from SPP
and a payment lag is drawn from the exponential. It was assumed
that claims occur mid-year and premium and loss transactions are
made at mid-year.

3. The P, values are calculated by summing total payments in the
appropriate time periods using the simulated lags.

4. The reinsurance contract terms were applied to the P.’s to obtain
the C/’s.

n

5. Vis calculated = X, (C, — C,—\) V' ', then V is stored.
=1

The above was repeated for 20,000 iterations, then E[V], Variance
{V] and Probability [V > 0] are calculated.

The program was written in HSFORTH and run on an IBM PS/2
with a 25 MH 80386 and 80387. For E[N] = 10, 20,000 iterations take
80 seconds, so a 10 X 10 matrix of parameters can be run in 2.3 hours.
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APPENDIX C
PANJER'S METHOD

Recall that the aggregate loss distribution is a compound process
formed by the infinite sum of n-fold convolutions of the frequency and
severity distributions. Panjer [8] showed that this distribution can be
estimated recursively provided that the frequency distribution satisfies
the recursive relationship

p(n) = p(n — 1)¥a + b/n) n=1273 ...,

where p(n) denotes the probability of cxactly n claims occurring in a
fixed time interval.

Sundt and Jewell [11] showed that the only distributions satisfying
this condition are: Poisson, Negative Binomial, Binomial, and Geomet-
ric. In the case of the Negative Binomial,

fa— |
pln) = (" o )p“(l — . n=012, .. .

and
a=1-p, b= - a)l —p).p0) =p"

Furthermore, if the severity distribution can be represented discretely
then the recursive formula for the aggregate distribution G(-) is quite
simple:

g = 2 (a+ bjli) figi—; P=1.23,. ..
j=1

go = P(O)-

Section 7 and Appendix D show that if the number of ground-up
claims is negative binomial NB (a, p), then the number of claims excess
of a retention r, reported or paid at any time 7. is also Negative Binomial
with the appropriate transformations of the ground-up parameters.

This means that we can estimate the aggregate distribution of losses
paid, P,, or reported incurred, L, = P, + K,, using Panjer’s recursive
formula.
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For the layer being considered, the Single Parameter Pareto (SPP)
severity distribution was discretized into equal intervals, with the number
of intervals determined by the following formula subject to a maximum
of 20:

4
# intervals = —— + 10.
E[N]
Increasing the number of intervals beyond these levels adds signifi-
cantly to the run time without appreciable improvement in the results.

The above procedure can easily be used to estimate the expected
value of V, the present value of net cash flows C,. The variance of V,
Var[V], on the other hand, is difficult to estimate. Obviously, the se-
quence of random variables {C,} is not independent. Not so obvious is
the fact that, for even simple contract forms, the C,’s do not have
independent increments; that is, the sequence {C, — C,—} is not inde-
pendent. This means that the Var[V] contains non-zero covariance terms.
This fact is demonstrated by the example in this appendix.

If the decision maker would like to consider other properties besides
E{V] (e.g., Var[V]), then a covariance matrix can be produced, though
simulation may be simpler. Aside from that, the Panjer analytical solution
is relatively easy to implement.

Example: C,'s Do Not Have Independent Increments

Consider the paid loss retro with no maximum,
C, = C(P,) = max(aP, + b, m — P,), where a = multiplicative loading,
b = additive loading and » = minimum premium.

For convenience write C(P,) as:

_ m—Pr, aP1+b<m
C(P')—{aP,+b, aP, + b > m.

Recall that the P/s are non-decreasing and consider the case
aP, + b <aP> + b < m < aP; + b.
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COV[C(P2) — C(Py), C(P3) — C(P2)]
= COV[-(P: - P;),aP; +b—(m— P:)]
= —q COV[P; — P,P3) + COV|P: — Py, m — P2

= —a (COV{P,,P:] — COV|P.P:i]} — (COV[P:,P:]
—COVIP,, P:])

(1 + a) (Var[P,] — Var[P.)).

Note: COV|[P, ., P} = COVI[P, \, (P, — P, 1) + Pio)]
COVIP, 1, P. — P, ] + Var[P, (]
= Var{P, |,

I

I

because P,’s have independent increments.
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APPENDIX D

The following proof derives the transformations shown in Section 7.

Theorem: If Y is negative binomial (a,p) and X|y is binomial
(y,w), then X is negative binomial (a’,p’) where o' = a,

p

S

Proof:

Pr[X = x] = 3 Pr[X = x|Y = y] Pr[Y = y]

30w 0L

— W-Ypll _ X _ y—x (y + o — I)' _ y—x
BT TR 2P R U iy v U8

Multiplying numerator and denominator by (x + a — 1)! gives:

X+ o yv+a-—1 y—x
( a_l)wm~m Z(+a_lﬁm—mu—wn

Substitutingz =y —xand I — h = (1 — p)X1 —w)=1—(w+p—wp)
<x+a~— 1) [w (1 —p)]“puz(z+x+a

a— 1 R x+ao-—
Notice that the summation over z equals 1.
U et )

a— 1 w+p(l—-w w+p(l—w
(o
= NB(a',p").

_1 1) hx+o¢ (1 _ h)z
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Comments:

(1) For claims excess of a retention, r, w = | — F(r), where F(x)
is the ground-up severity distribution.

(ii) For reported or paid claims w = w(¢), where w(¢) is the percent
of claims reported or paid as of + months from the average
accident date.
Var[X] _ 1
E[X] p'
_wH+p(—w _
P

Note that as w approaches zero (which is the case for excess
claims as the retention, r, gets large), the variance/mean ap-
proaches 1.0. In fact, the variance/mean approaches [.0 quite
quickly as the following table shows:

(ii1)

VARIANCE/MEAN FOR EXCEss CLAIMS

Ground-Up Excess Claim Probability
Var/E 25 10 .05 .01
2.0 1.25 t.10 1.05 1.01
3.0 1.50 1.20 1.10 1.02
4.0 1.75 1.30 1.15 1.03

This result is consistent with sensitivity tests of
p’ = (Var[XVE[X])~' which showed that E[V], the expected
present value cash flow, did not change significantly for large
changes in p’.

Also, as w approaches 1.0, p; approaches p’, as expected.
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(iv) The coefficient of variation, CV[X], is given as follows:
_
a(l —p")
2wtp(d—-—w
w

CVI[X]* =

= CVI[1]

While the variance/mean approaches 1.0 as w approaches zero,
the coefficient of variation gets increasingly large as the retention
increases.



