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DISCUSSION OF PAPER PUBLISHED IN VOLUME LXXV 

RECENT DEVELOPMENTS IN RESERVING FOR 
LOSSES IN THE LONDON REINSURANCE MARKET 

HAROLD E. CLARKE 

DISCUSSION BY JOHN C. NARVELL 

1. INTRODUCTION 

Mr. Clarke has written a fine paper [ 1] which should be read by all 
actuaries who practice loss reserving. He has introduced two concepts 
that will broaden the horizons of actuaries in the U.S. and should provoke 
them to sharpen their skills. 

The first concept is the introduction of a new curve for the fitting of 
loss development data. This “negative exponential” curve has the for- 
mula: 

L(t) = A X [ 1 - exp( -[t/B]‘)]. 

The second concept is the use of regression techniques to provide a 
weighting scheme between Bornhuetter-Ferguson (B-F) and loss devel- 
opment factor (LDF) projections. Although it is not emphasized in the 
paper, these two concepts may be used separately or with other more 
traditional loss development techniques. In the course of the paper the 
two concepts are commingled, but the astute reader should be able to 
separate the two. 

The first observation that the reader should make is that there are 
actuaries outside of North America who are developing skills in the 
property and casualty area. In many instances these actuaries are taking 
a fresh perspective to old problems and are producing novel solutions. 
This paper is an example of such innovation. The other item to note is 
that there are significant variations in terminology in the insurance in- 
dustry, especially outside of North America. For example, in this paper 
the author uses data that is categorized by “account year.” An account 
year is analogous to an underwriting year in reinsurance or a policy year 
for direct insurance. As stated in the paper, the techniques would be 
equally applicable to data categorized by underwriting year, policy year, 
accident year or even report year. 



194 REINSURANC’F RESERVING 

2. NEGATIVE EXPONENTIAL CURVE 

The negative exponential curve is different from curves that many 
American actuaries use in that it fits loss development data instead of 
loss development factors. This curve models the upward growth of the 
losses as they asymptotically approach the ultimate losses (A) from 
below. Most development curves in the North American literature (e.g., 
Sherman’s inverse power curve [2]) model loss development factors 
(LDFs) instead of losses. 

By using the negative exponential curve, an entire step in the analysis 
process is bypassed; i.e., LDFs do not have to be calculated. There are 
numerous other advantages to the use of loss data instead of age-to-age 
LDFs. 

The negative exponential curve ostensibly has three parameters, A, 
B and C. The A parameter of the curve is defined in the paper as the 
ultimate loss ratio. This could just as easily have been defined as the 
ultimate losses, since the ultimate loss ratio is a simple transform of the 
ultimate losses. The reason for the use of loss ratios is apparent in the 
latter part of the paper where loss ratios are used in the regression model. 

Another alternative would be to set A = I. This could be accom- 
plished by dividing the historical losses by year by the estimated ultimate 
losses for each year. This alternative perspective shows the true nature 
of this loss development model. By defining each historical observation 
as a percentage of ultimate losses, the model may be thought of as a 
variation of a multiplicative LDF projection. If one takes the reciprocal 
of the percent of ultimate, then cumulative LDFs are easily produced. 

In the original implementation of this curve, as introduced by David 
Craighead, a simple LDF implementation was advocated. On page 66 
of his paper [ 31, he says: 

“In practice. all that is necessary, gven values of fl and I. i\ to obtain values of 

exp -(/if3)‘] (I ~ exp[ -r/B)‘]) and then apply them IO ligures of claim\ paid plus claims 
outstanding in order to obtain figures of IBNR for each cell of busmess.” 

This is clearly a multiplicative LDF method. It is notable in the above 
equation that Craighead assumed a value of 2.0 for the C parameter. In 
fact Craighead’s research “resulted in a conclusion to fix the value of C 
at 2.0” (page 54). He continues: 
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“The value of C is, in fact, too sensitive and has little effect on the overall results. It can 

be influenced easily by the random positioning of a few points at an early stage, where 
they are least reliable. It also appears to have a counteracting effect on the value of 

B. Fixing C at 2.ooO shows that, in most cases, the lit is almost as good as 
when C is allowed to float and, indeed, in several cases is actually better.” 

Mr. Clarke implicitly admits this aspect of the negative exponential 
curve in his paper (page 9) where “in this particular example C was set 
equal to 1.5 and only A and B were fitted.” Thus it appears that some 
variation in the C parameter is allowed in practice but that C is usually 
fixed before the other parameters are fitted. 

The reason for the counteracting effect on the B parameter is easily 
understood if one reexamines the form of the negative exponential curve. 
The equation may be rewritten as: 

L(r) = A x [1 - Bfrc] where B’ = exp[- l/(Bc)]. 

As C gets bigger, B’ has to get smaller. This alternative formula is 
easier to understand; the C parameter is unchanged and the B’ parameter 
simplifies the form of the equation. B’ is allowed to vary in the range 
from 0 to 1. 

The difference between a simple LDF and the more sophisticated 
approach in this present paper is that the most current observation is not 
simply multiplied by the appropriate LDF to ultimate. Rather there is 
some consideration for a random error contained in the endpoint. This 
error is measured as the deviation of the endpoint away from a curve 
which is fit through the entire loss history for that year. 

The best way to understand this is to consider an extreme example. 
Consider losses that exhibit sawtooth variations about a generally rising 
curve. The true underlying loss development pattern is in the middle 
with random variations about it. The negative exponential curve can 
extract the shape of the development curve and project it to ultimate. 
Effectively each historical data point is given equal credibility in the 
estimation of ultimate losses. 

This is in contrast to traditional LDF projections where only the most 
recent observation is used; i.e., the endpoint is multiplied by a cumulative 
factor to ultimate to estimate the ultimate losses. Data observations prior 
to the endpoint do not affect the estimate. Further, as soon as a new 
endpoint is known, the previous end points are almost completely ig- 
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nored. In the sawtooth example, the ultimate projections would fluctuate 
up and down from period to period in LDF projections but would be 
more stable in the smoothed negative exponential implementation. 

This points out a major difference between the author’s approach 
and the traditional LDF or B-F methods. When projecting a year from 
age t to ultimate, the negative exponential considers only the develop- 
ment patterns for the particular year before age t. In contrast, for most 
traditional LDF or B-F methods. only development data after age t (for 
other years) is considered. 

Some LDF curve fitting techniques, such as the inverse power curve, 
can also look at all LDF data simultaneously to extract the true LDF 
patterns excluding randomness. In fact, the inverse power curve can be 
used in an analogous fashion to the negative exponential curve if suffi- 
cient credible data exists. LDFs for a single (accident) year can be used 
to estimate the remaining loss development tail for that year. However, 
one major limitation of the inverse power curve in its simplest imple- 
mentation is that it cannot handle downward LDFs without performing 
some data smoothing which would destroy the true patterns. Also the 
data for a single year may produce unstable results similar to the fluc- 
tuating parameters for the negative exponential curves in the paper. 

The theoretical advantages of the negative exponential curve form 
are numerous. First, the curve can handle many different data anomalies 
including downward development which, for example, the inverse power 
curve cannot. Also it is decomposable into as many time intervals as are 
available from the data. These time intervals do not need to be regularly 
spaced although the implementation in the paper imposes this limitation. 
Another major advantage is that the curve form naturally leads to graph- 
ical display and interpretation. Some of these advantages are not limited 
to the negative exponential curve but are true for curve fitting methods 
in general. 

There is one potential disadvantage of the negative exponential 
method. For the curve fitting to be effective, many data points are 
required. Craighead states (page 65), “This will require the use of . . . 
loss ratios at least at quarterly intervals, preferably even monthly, and 
for at least two years, to give any meaningful result.” 

On the other hand, an advantage of the proposed methodology is that 
it is less subject to distortion arising from unintentional bias in the 
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selection of loss development factors. This is especially true in those 
cases where a mixture of upward and downward development is evident. 
Frequently, loss reserve analysts will exclude downward (and very small 
upward) development factors from consideration in the selection of loss 
development factors. In the curve fitting algorithm, there is less subjec- 
tivity in the selection of loss development factors both for the stages 
where there is historical data and for the “tail” development beyond the 
range of historical data. While interpretation and curve parameter selec- 
tion will still be required of the loss reserve analyst, the use of such 
curve fitting techniques will introduce more science into the art of loss 
development projections. 

3. PROJECTIONS BY INDIVIDUAL YEAR 

An innovation in the model is the analysis of each year separately. 
The model does not require a large history of average loss development 
factors either for data within the range of the available loss development 
or for the calculation of a “tail” factor for development beyond the range 
of the available data. This is a very powerful advantage. However, as 
noted above, the method does require frequent observations (quarterly 
or monthly) for the curve to be well defined. 

4. REGRESSION MODEL 

In the worked example in the paper, the negative exponential curve 
was used for the older account years to project the loss development of 
the years individually. In contrast, the regression model (“line of best 
fit”) was used for the three most recent account years. As noted in the 
last paragraph of Section 5, the regression model does not require the 
use of the negative exponential projections for the older years. The only 
data required for the line of best fit are: a) the historical loss ratios by 
year of account, and b) the estimated ultimate loss ratios for those years. 
It is immaterial how those ultimate loss ratios are calculated. 

Regression analysis is not new to the members of the CAS. It has 
been used in many different contexts and is now on the Syllabus of 
Examinations (Part 3). Its use in this present paper should not be triv- 
ialized, however. The assumptions and procedures in this particular 
context merit review and consideration. 
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The regression model projects losses (loss ratios) from their current 
status to ultimate in one step. The incremental steps of individual loss 
development factors are bypassed. This is accomplished by comparing 
the historical loss ratios at each age with the ultimate loss ratios for the 
previous account years. 

For example, in order to project the 1982 year from 14 quarters to 
ultimate, a least squares regression of the 1971-81 years’ loss ratios at 
14 quarters with their corresponding estimated ultimate ratios is calcu- 
lated. The resulting formula is used to project the loss ratio from 14 
quarters to ultimate for the 1982 year. The 197 l-81 years’ loss ratios at 
10 quarters are then regressed with their corresponding ultimate ratios 
to project the 1983 year from 10 quarters to ultimate. The 1984 year at 
6 quarters is projected to ultimate in a similar fashion. In the worked 
example in the paper, some years are judgmentally excluded from the 
regression analysis. 

In theory the number of years in the regression could have been 
increased. This is because the earlier years of account were regressed 
first; e.g., the 1982 year of account could have been included in the 
regression for the projection of the 1983 year. This would have permitted 
the inclusion of more observations including the most recent data. 

A review of the regression formula shows that the ultimate loss ratio 
is equal to the immature loss ratio times some factor plus a constant. 
This may be contrasted with multiplicative loss development wherein 
the ultimate losses are simply a cumulative loss development factor (F) 
times the losses to date (L) with no additive constant. 

Alternatively, a B-F model may be considered as an additive model; 
i.e., ultimate losses equal losses to date (L) plus some estimate of the 
remaining loss development. In the traditional B-F model, the estimate 
of the remaining future loss development (Fur) is equal to the percent 
unreported (or unpaid) times an initial loss estimate (E). The future 
percent is equal to the complement of the reciprocal of the LDF to 
ultimate ( I- l/F). 

The possibility of lack of fit exists with every regression model. This 
lack of fit may be thought of as lack of correlation or predictive ability 
of the independent versus the dependent variables. This element of 
variation necessitates the inclusion of an additional component in the 
process. This component is the naive estimate; i.e., a flat loss ratio. In 
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statistical terms, the loss ratio would be the mean value of the indepen- 
dent observations; i.e., the average ultimate loss ratio for all of the years 
included in the regression. In the case where the linear regression of the 
independent and dependent variables does not produce a significant fit, 
the ultimate loss would equal the initial loss estimate with no consider- 
ation of actual loss reporting to date. Statistical tests can be used to 
determine if the regression equation explains the variation about the 
mean ultimate loss ratio. 

The regression model is a mixture of the multiplicative and additive 
models, subject to a least squares optimization. If one considers the 
regression to be a weighting formula between multiplicative (weight = 
Wi) and additive projections (weight = WZ) with consideration for the 
average ultimate loss ratio (weight = 1 - WI - W*), then the following 
formulas for the calculation of ultimate losses apply: 

Model: Multiplicative Additive (B-F) Naive 

Formula: LxF L + [E x (F-1)/F] 
Weight: WI w2 (I-w:-W2) 

Weighted: W,LF + W2L + W2E[(F-1)/F] + E - W,E - WPE 
= L x (W,F + W,) + E x [Wz(F-1)/F + I - W, - W,] 
= L x (W,F + W,) + E x [ 1 - W, - WdF] 

After rearranging the terms, the weighted formula may be interpreted 
as a restatement of the regression formula where (WIF + WZ) is the factor 
to be multiplied by the losses to date, and the additive constant equals 
the initial expected loss ratio times (1 -WI - W2lF). This interpretation 
agrees with the observed data in that the factor coefficient can be less 
than unity without necessarily implying downward loss development. 

With this restated formula, the assumptions in the regression analysis 
may be better analyzed. In the case where multiplicative loss develop- 
ment factors predict the ultimate losses exactly, then WI will be 1 .OO, 
Wr will be 0 and the weighted formula will reduce to Ult = L X F. 

In the case where the loss development is perfectly explained by an 
additive process, then WI will be 0, WZ will be 1.00 and the formula 
will reduce to U/f = L + E X I- l/F), which is exactly the B-F formula. 

When neither the multiplicative nor additive model explains the loss 
development process and the historical losses are randomly scattered 
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about the expected losses (E), then both WI and WZ will be 0 and the 
weighted formula will reduce to CJfr = E. 

In the regression equation, the initial expected losses (E) will be the 
average ultimate loss ratio of the historical data included in the regres- 
sion. The R’ of the regression model measures the proportion of the 
variation about this mean that is explained by the independent variables 
(the immature loss ratios). In the case where the historical data is ran- 
domly scattered about the average ultimate (E), the R’ is 0. 

Although this reviewer has not derived a method for determining the 
respective weights, they, nonetheless, provide an attractive intuitive in- 
terpretation of the regression model. While the derivation of such weights 
is not required for the proper working of the regression model, further 
research into their calculation might produce interesting results. 

For the regression the author proposes the inclusion of calculated 
observations from the fitted curves by year when the actual observations 
are either missing or are “very variable.” This appears to violate the 
assumptions of the regression whereby a least squares weighting of the 
LDF, B-F and naive projections is desired. 

The negative exponential curve tit produces an LDF projection with 
an additive offset for the random variance of the endpoint from the 
smooth curve. By removing the random variances of the endpoints of 
the historical data, more weight will be given in the regression to the 
LDF projections. The substitution of a smoothed negative exponential 
observation for an actual (or missing) observation will bias the regres- 
sion and produce a weight (W,) for the LDF that is artificially high. If 
the data are missing or “very variable,” then exclusion of that year 
from the regression would be preferable to the LDF bias that would be 
introduced. 

The only possible argument for the inclusion of such a smoothed 
observation is to try to include consideration of the curve parameters for 
that particular year. Since the negative exponential curve is fit for each 
year individually, the only time that all of the years are examined 
simultaneously is in the regression model. 

Benjamin and Eagles suggest another variation of this application. 
In paragraph 22.3.7 of their paper [4], they advocate the use of projected 
loss ratios from the curves for more recent years to facilitate regression 
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equations for the earlier years. For example if there are nine years of 
data in the triangle (e.g., 197 l-79), the curves for years 1974-77 would 
be projected to produce loss ratios at age 7. These values would be 
combined with the actual observations at age 7 for 1971 and 1972 to 
produce a regression equation to be used to project the 1973 year from 
age 7 to ultimate. The reason given for this sleight of hand is to enable 
the production of confidence intervals for the earlier years. One should 
question the meaning of confidence intervals calculated in such fashion. 

5. ALL YEARS AT ONCE 

Our British associates seem to prefer the examination of data one 
year at a time before subsequently looking at all years at once. This is 
in great contrast to the North American tradition of examining many 
years simultaneously. If one thinks of data in triangular form, this paper 
advocates a horizontal perspective instead of a vertical perspective. The 
growth patterns within a year are examined instead of average growth 
factors for previous years at the same age. 

One troubling item in the paper is the instability of the B parameter 
in the negative exponential curve fits. For a single line of business, one 
would expect greater consistency from year to year. Perhaps the modeling 
of each year individually cuts the data too finely. In contrast, the grouping 
of all of the years for the regression model assumes the comparability 
of the various years. Similar grouping of the data in the negative expo- 
nential model would give greater stability to the B parameters. 

The use of many years simultaneously in the regression appears to 
be in contradiction to the individual analysis of the account years for 
curve fitting; i.e., the combination of years assumes a degree of homo- 
geneity and comparability among the years. 

The question then naturally arises: Why are the curves not also 
determined on a multi-year basis ? In fact one might argue that this 
procedure should be reversed; i.e., that the curves should be determined 
on a combined basis. The curve fitting of the B and C parameters would 
be more stable if more years were included. In fact, for any particular 
line of business, the loss development characteristics should remain 
relatively consistent over time. 
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In contrast, rate levels (and loss ratios) are subject to cyclical market 
pressures. Therefore loss development patterns, which are relatively 
immune to distortion resulting from rate movements, should be deter- 
mined on a multi-year basis. In contrast, premium based loss ratio 
statistics may not be reliable over varying ups and downs of the market. 
One possible way to correct for this would be to introduce a rate adequacy 
adjustment vector to the premiums by year. While such an adjustment 
is open to arguments of subjectivity, it would nonetheless be more 
theoretically attractive. 

The author discusses this latter option in the context of a case wherein 
the slope of the regression equation is not significantly different from 
zero. In this circumstance the average ultimate loss ratio (ULR) from 
the data is the best estimate for the ULR of the year to be projected. He 
states that “it would obviously be desirable to adjust the ULR’s to allow 
for changes in premium rates that may have taken place.” Such modifi- 
cation should be considered in all cases in order to extract the maximum 
amount of unbiased information from the data. 

6. GRAPHS 

In order to expand upon the graphical foundations of this paper, the 
historical loss ratios for the individual account years have been repro- 
duced on a multi-year basis for this discussion. Years of account 1973- 
78 are shown together on Graph IA, and years 1979-84 are shown on 
Graph IB. When viewed simultaneously, the years 1973 through 1979 
appear to exhibit a variety of differing paths in contrast to the five most 
recent years (80-84), which are closely packed on top of one another. 

A better way to isolate the loss development patterns is to translate 
each curve onto a common vertical scale. It is recommended that the 
historical losses (loss ratios) be divided by the ultimates by year to 
produce curves that show percentages of ultimate losses. The various 
curves all approach a common horizontal asymptote of 100% of ultimate 
losses. Such calculations produced Graphs 2A, 2B and 2C. When viewed 
this way, there appears to be much greater stability and consistency in 
the loss development patterns. 

However, two years, 1978 and 1979, still distinguish themselves as 
unusual. This is evidence that these two years ought to be examined in 
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further detail for possible exclusion from the development projections 
for the other years. The author was able to identify 1978 but was not 
able to differentiate 1979. The graphical examination of all years simul- 
raneously allows for easier identification of data problems. 

The graphs of the percentages of ultimate losses provide a quick and 
valuable test of reasonableness of the ultimate projections. By examining 
the endpoints of curves by year, one can visually compare current indi- 
cated reserves with hindsight indicated reserves. For example, for the 
1978 year the endpoint is at 86.4%, indicating that 13.6% (100-86.4) 
of the ultimate losses need to be reserved. This percentage of ultimate 
is far outside the range of any historical observation for the preceding 7 
years. Similar observations are applicable for other years, most notably 
1977 and 1980. This indicates possible overreserving for these years. 

Graphs 1C and 2C are the same as Graphs 1B and 2B but with 
expanded scale to show detail. This maximizes the advantages of graph- 
ical analysis and interpretation. In a similar way the graph of the regres- 
sion from 7 to ultimate has been reproduced at larger scale and with 
the data points by year labelled (similar to the Benjamin and Eagles 
presentation). 

From this alternative graph one can gain further insight. For example, 
it appears that the 1973, 1974 and 1979 years fall into a different cluster 
than the other years. This clustering might indicate that different consid- 
eration should be given to high loss ratio years versus low loss ratio 
years. The clustering was not as apparent when the data points were 
displayed in a small cramped section of an overscaled graph. 

Another observation from the graph is that the range of validity of 
the line of best fit might be limited to the range of the minimum and 
maximum values used in the fit. Otherwise unexpected results may occur. 
For example in the line of best fit from 6 (22 quarters in the paper) to 
ultimate, for loss ratios above 84.1% the indicated reserve requirement 
is negative. While the prediction of downward development was appro- 
priate for the one extreme case in the data history where the loss ratio 
was above lOO%, the downward movement for that year appears more 
likely to have been caused by a calendar year miscoding of a reinsurance 
recovery to the 1978 year that was subsequently corrected into the 1979 
year. Indeed, the general pattern of development after this age to ultimate 
is upward, indicating the impropriety of a negative reserve. 
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Theoretically, a negative reserve can result if the factor coefficient 
is less than unity or if the additive constant is negative. 

7. COMPARISON WITH THE INVERSE POWER CURVE 

A comparison of the negative exponential curve with the inverse 
power curve for LDFs reveals numerous differences. As mentioned 
previously, the negative exponential curve is an upward rising curve 
which is fit to the cumulative loss amounts that approaches a horizontal 
asymptote which is defined as the ultimate losses. In contrast, the inverse 
power curve fits incremental growth factors and is a downward sloping 
curve that approaches the horizontal asymptote of I .OO as time goes to 
infinity. This aspect of the inverse power curve agrees with the empirical 
observation that loss development factors converge to unity as the losses 
eventually stop increasing. 

On the other hand, one of the similarities of the two curves is their 
inability to fit loss data at early development stages. Clarke handles this 
problem by ignoring the early loss development; Craighead advocates a 
weighting of the errors using a time vector in addition to ignoring the 
first data observation. 

A comparison of the curves produced by these two equations indicates 
that the inverse power curve is longer tailed than the negative exponen- 
tial. When an inverse power curve is fit to a perfect negative exponential 
curve, the inverse power curve will project a longer tail than that which 
is contained in the negative exponential. 

Attempts by this reviewer to fit the negative exponential curve to 
long-tailed casualty data from the United States have produced estimated 
ultimate losses that were unrealistically low. This indicates that the 
negative exponential curve may be too short tailed to fit truly long-tailed 
data. This may be due to differing underlying characteristics of the loss 
development data. In discussing the B curve parameter, Craighead notes 
(page 63): 

“R is a mezure of all the delay factor\ thal ;Iffect prem!um or clam rrportmg. whether 

those delay factors arise from the facl that it 1s reinsurance huwwss that is involved. or 
from the method of accounting. or from the length of the claims tail. Some of the values 

of R. for example. \tem more from the method of accounting than from the length of the 

tail :’ 



REINSLJRANCE RESERVING 205 

Considering the reporting delays in the fragmented London reinsur- 
ante market, the loss development tail for those losses may well be 
better explained by the negative exponential curve. There are initial 
delays in reporting, followed by a steady stream of losses that then trail 
off relatively rapidly. The negative exponential starts slower but finishes 
faster. The general nature of the loss development delays for London 
market reinsurance are different than those of casualty exposures in North 
America, which, in contrast, are largely driven by social inflation forces 
such as increased claims consciousness and litigiousness. 

8. REGULATORY OPTIONS FOR MINIMUM RESERVES 

The current Schedule P formula for the “Excess of statutory reserves 
over statement reserves” is a crude means of mandating minimum re- 
serves. These minimum loss ratios are even simpler than the current 
Lloyd’s audit reserve calculations. For example, minimum loss ratios do 
not consider the actual reported loss experience to date. At least the 
current Lloyd’s audit percentages produce varying minimum loss ratios 
for varying levels of reported paid losses. 

The proposed mixed (multiplicative and additive) formula in the 
paper is a much more responsive means of establishing formula reserves. 
However, there are many issues that need to be addressed in the area of 
statutory minimum reserves. For example, should industry average fac- 
tors be applicable to all companies? Or should it be the average minus 
one standard deviation in order to achieve the goal of merely producing 
a lower bound that will prevent ridiculously low reserves? 

One option would be to use loss ratios for each individual company 
from Schedule P data. With the availability of ten years of data on 
Schedule P, it would be possible to include seven (or more) years of 
company data in a regression to produce minimum reserves for the three 
most recent accident years for the company. Actual investigation into 
this possibility should be easily performed by those who have computer 
access to a large volume of companies’ Schedule P data. 

9. RESERVE SETTING 

One option not proposed in the paper is in the area of prospective 
reserve setting as opposed to retrospective reserve testing. With the 
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availability of historical losses by quarter (or month), it would be possible 
to perform regressions with quarterly (or monthly) data to produce re- 
sponsive formulas that could then be applied to the actual paid and/or 
incurred losses at the end of each period to produce periodic IBNR 
reserves. In fact, in the paper the reserves are calculated at midyear, 
although the regressions are ambiguously labelled as being at the end of 
the year. 

10. SUMMARY 

This paper has presented a fresh perspective to the challenge of loss 
reserving whereby loss development is not measured in stages but rather 
is projected in one jump from the current status to ultimate. This process 
has advantages in those cases where erratic up and down movements 
disguise the underlying development. The introduction of the negative 
exponential curve facilitates the author’s approach. 

However, this new alternative is not without problems. First of all, 
frequent data observations are required for the method to produce stable 
results. Even with frequent data points, the data may not produce stable 
curve parameters. In particular it may be necessary to fix the C parameter, 
thereby losing some of the predictive shape of the curve. And finally the 
shape of the negative exponential curve may be too short-tailed. Caution 
should be exercised by all actuaries who attempt to use this curve for 
casualty data from the United States. 
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Account Years 1979-84 
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2c - Losses as % of Ultimate by Year 
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3- Regression of Loss Ratios: 7 to Ult 
Years Fitted: 71-77.79 
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Loss ratio at Yeor 7 (26) 
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