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THE EFFECT OF TREND ON EXCESS OF LOSS COVERAGES
CLIVE L. KEATINGE

Abstract

The subject of the effect of trend on excess of luss cover-
ages has been addressed quite frequently in the Proceedings
over the yvears. Several authors have made the point that with
a fixed retention and uniform trend by size of loss, expected
excess losses increase proportionally much more than indi-
cated by the general rate of inflation. This is certainly true
when considering uncapped excess losses, but it may not be
true when considering a specific laver of excess losses. This
is because just as the effect of inflation is leveraged at the
retention, it is dampened at the upper limit of the layer.

This paper uses graphs to examine how the leveraging
effect and dampening effect combine to affect lavers of excess
losses. This particular issue has historically received very
little attention in the Proceedings. The paper begins by ex-
amining the excess luver trend factors of a typical loss distri-
bution, and then proceeds to demonstrate how changing each
of the two parameters of this distribution affects the trend
factors. The paper then looks at the effect of changing the
tvpe of distribution. Finally, the paper examines the effect of
introducing the concept of varving trend by size of loss.

1. INTRODUCTION

The subject of the effect of trend on excess of loss coverages has
been addressed quite frequently in the Proceedings over the years. Sev-
eral authors have made the point that with a fixed retention and uniform
trend by size of loss, expected excess losses increase proportionally
much more than indicated by the general rate of inflation ([3], (4], {7].
and [8]). This is certainly true when we consider uncapped excess losses,
but it may not be true when we consider a specific layer of excess losses.
This is because just as the effect of inflation is leveraged at the retention,
it is dampened at the upper limit of the layer. The dampening effect on
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layer losses at the upper limit is equivalent to the dampening effect on
basic limit losses at the retention.

This paper will examine how the leveraging effect and dampening
effect combine to affect layers of excess losses. From a reinsurer’s point
of view, it is much more meaningful to look at a layer of excess losses
rather than at uncapped excess losses, since a reinsurer virtually never
provides unlimited coverage excess of a retention. We will begin by
examining the excess layer trend factors of a typical loss distribution,
and we will proceed to observe how changing each of the two parameters
of this distribution affects the trend factors. We will then look at the
effect of changing the type of distribution. Finally, we will see what
happens when we introduce the concept of varying trend by size of loss.
Graphs will be used to illustrate the results. The formulas used in
generating the graphs are shown in the Appendix. Also, it should be
noted that this paper presupposes some familiarity with common loss
distributions.

2. A TYPICAL DISTRIBUTION

We will first look at what might be considered a typical general
liability loss distribution, a Pareto with parameters B = 10,000 and
0 = 1.!' We will assume a general rate of inflation of 10%. The trended
distribution becomes a Pareto with B = 11,000 and Q = 1.2 Exhibit 1
shows the effect of this inflation rate on excess layers. Note that the
graph uses a double logarithmic scale with retention along the x-axis and
layer width along the y-axis. Each contour line represents various reten-
tion-layer width combinations with equivalent multiplicative trend fac-
tors.* As expected, the trend factors increase as the retention and/or layer
width increase. However, contrary to what one might expect, the trend

' The Pareto has been chosen because it is the distribution currently used by ISO to generate
increased limits factors.

* With uniform trend, the Pareto may be trended by simply trending the B parameter and leaving
the Q parameter unchanged. For more information on trending loss distributions under the assump-
tion of uniform trend, see Hogg and Klugman|5].

* The term “layer width™ is used in place of the term “limit” so as to avoid confusion with the
“limits™ shown along the top and right side of the graph. Also, the contour lines on the graph are
approximate. Although they do not appear completely smooth on the graph, in reality they are
completely smooth.



128 TREND ON EXCESS COVERAGES

factors never increase beyond 1.10, which represents the general rate of
inflation. This can be seen by examining the limits shown at the top and
right side of the graph. The limits along the top are the limits for various
retentions as the layer width approaches infinity. The limits along the
right side are the limits for various layer widths as the retention ap-
proaches infinity. The limit at the upper right corner is the limit as both

retention and layer width approach infinity.*

3. CHANGING THE SCALE PARAMETER

Exhibits 2 and 3 show what happens when we change the scale
parameter B. Exhibit 2 shows how the trend factors behave when
B = 1,000 and Q = 1; Exhibit 3 shows trend factor behavior when B =
100,000 and Q = 1. Note that the only significant difference between
these graphs and Exhibit 1 is that the graphs are displaced slightly.
Decreasing the scale parameter B moves the contour lines closer to the
origin; increasing the scale parameter B moves the contour lines further
away from the origin. This type of behavior can also be observed with
other distributions where one parameter can be used to change the scale.?

4. CHANGING THE SHAPE PARAMETER

Exhibits 4 and 5 show what happens when we change the shape
parameter (0. Exhibit 4 shows how the trend factors behave when
B = 10,000 and Q = 0.5; Exhibit 5 shows trend factor behavior when
B = 10,000 and Q@ = 1.5. Note that the trend factors are smaller with
the thicker-tailed distribution of Exhibit 4 and larger with the thinner-
tailed distribution of Exhibit 5. Similarly, the limits on the graphs exhibit
the same pattern.®

* 1t is important to note that although for a fixed retention, the limit as the layer width approaches
infinity exists. the multiplicative trend factor which would apply 10 uncapped losses excess of a
fixed retention does not exist. This is because the mean does not exist for this distribution (and
does not exist for any Pareto distribution with Q = 1).

¢ For example, p is the scale parameter of the lognormal and A is the scale parameter of the
Weibull.

* For the Pareto in general, we can say that if « is the trend factor representing the general rate of
inflation. the limits on the top will all be a¥ if ¢ = | and will progress from a to a® if @ > 1.
The limits on the right side will always be €, as will the limit a the upper right corer. As noted
by Philbrick[11], for the Single Parameter Pareto. the trend factor is «¢ regardless of layer. Thus,
for this distribution, the trend factors over the entire graph would be a®.



TREND ON EXCESS COVERAGES 129

The fact that the trend factors are smaller with a thicker-tailed dis-
tribution and larger with a thinner-tailed distribution is intuitively rea-
sonable. Since a thicker-tailed distribution falls off more slowly, there
are more dollars which are subject to the dampening effect at the upper
limit of the layer relative to the dollars which are subject to the leveraging
effect at the retention than is the case with a thinner-tailed distribution.
This type of behavior can also be observed with other distributions where
one parameter can be used to change the shape.’

5. CHANGING THE TYPE OF DISTRIBUTION

Exhibit 6 shows the trend factors for a lognormal distribution such
that E[X: $1,000,000] and E[X?: $1,000,000] are the same as those for
the Pareto distribution in Exhibit 1.* $1,000,000 was chosen as the
censorship point since this might very well be the point beyond which
actual loss data is very sparse. Thus, it is conceivable that distributions
similar to those in Exhibit 1 and Exhibit 6 could be fitted from the same
set of data. The graph shows that the trend factors in lower layers are
not too different from the corresponding trend factors in Exhibit 1.
However, in higher layers, the trend factors of the lognormal are sub-
stantially greater than the trend factors of the Pareto. Note that the top
limits of the lognormal progress from 1.10 to infinity, and the right side
limits as well as the upper right corner limit are infinity. This is in stark
contrast to the limits of the Pareto. This pattern occurs because the
lognormal inherently has a thinner tail than the Pareto. Just as the shape
parameter affects the thickness of the tail (and thus the magnitude of the
trend factors) for any given type of distribution, the type of distribution
itself also affects the thickness of the tail.

This example also provides an illustration of the hazards of extrap-
olating distributions. Although the behaviors of two different types of
distributions may look rather similar over the portion of the distributions
which contains the data used for fitting them, their behaviors in the tail
beyond this area may be very different.

7 For example, o is the shape parameter of the lognormal and 7 is the shape parameter of the
Weibull.

8 Moments cannot be matched over the complete uncensored distributions since for a Pareto with
@ = 1, moments for the complete uncensored distribution do not exist.
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Exhibit 7 shows the trend factors for a Weibull distribution such that
E[X: $1,000,000] and E[X?; $1,000.,000] are the same as those for the
Pareto distribution in Exhibit 1. The comments regarding the lognormal
also apply here, though with the Weibull, the increase in trend factors
at higher layers is much greater. This is because the Weibull inherently
has an even thinner tail than the lognormal.’

o
-

Back in 1981, Rosenberg and Halpert presented the hypothesis that
loss trend varies by claim size [12]. They asserted that trend is greater
at larger claim sizes.'® Rosenberg and Halpert concluded that the formula
ax” can be used to model trend, where x is the claim size, b is a constant
which indicates the magnitude of the varying trend and ¢ is a constant
which can be adjusted to yield a desired overall trend for the entire
distribution. A positive b indicates incrcasing trend by claim size, a
negative b indicates decreasing trend by claim size, and a & of zero
indicates uniform trend by claim size.

To examine the effect of varying trend on excess layer trend factors,
we will trend the distribution in Exhibit | using a b of .02 and a b of
—.02. We will choose a such that the overall trend of the distribution
from $0 to $1,000,000 is 10%.'"" A Pareto which has varying trend
applied to it becomes a Burr (or Transformed Pareto) distribution. For
this example, the trended distributions were calculated and then Pareto

v For more information on the relative thicknesses of the 1ails of various loss distributions, see
Beard, Pentikiiinen and Pesonen{1] and Hogg and Klugman(5].

@ Recently, this issue has been the subject of some debate. For example. see Feldblum(2].

" With b = .02, trend ranges trom —13.8% at $1 10 —5.5% at $100 to 3.6% at $10,000 to 13.6%
at $1,000,000 to 24.6% at $100,000,000. With b = —.02. trend ranges from 40.2% at $1 to 27.9%
at $100 10 16.6% at $10,000 to 6.4% at $1.000.000 to - 3.0% at $100.000.000. Since very small
or negative trend is probably unrealistic in most cases. Rosenberg and Halpert|12] presented an
enhancement to the varying trend model which assumes that trend is subject to some minimum
value. This enhanced model is essentially a hybrid between the uniform trend model and the pure
varying trend model. Thus, the graphs of trend factors which would be generated by this hybrid
model would have characteristics of both the gruphs generated by the uniform trend model and the
graphs generated by the pure varying trend model. The ISO varying trend procedure makes use of
this hybrid model. For a description of the ISO varying trend procedure. see Insurance Services
Office[6].
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distributions with E[X; trended value of $1,000,000] and E[Xz; trended
value of $1,000,000] matching the trended distributions were derived.!2
With increasing varying trend, the Q parameter becomes smaller (and
thus the tail thicker), while with decreasing varying trend, the Q param-
eter becomes larger (and thus the tail thinner).

Exhibit 8 shows the resulting trend factors with increasing varying
trend. Instead of approaching a limit, the trend factors continue to
increase. In fact, all the limits at the edge of the graph are now infinity.
Exhibit 9 shows the resulting trend factors with decreasing varying trend.
The trend factors increase for awhile, but eventually begin to decrease.
All the limits at the edge of the graph are now zero. Somewhat similar
effects can be expected when varying trend is applied to other types of
distributions.

Exhibit 10 provides a concise summary of the results which have
been presented in the first nine exhibits.

7. CAVEATS

At this point, a few words of caution are in order. The conclusions
that can be drawn from the graphs are only as valid as the size of loss
distributions and trend assumptions that underlie them. In addition, pol-
icy limits can exert a significant effect on observed loss data by censoring
losses below their true values. Also, changing policy limit distributions
can significantly affect the change in expected losses in excess layers
from year to year. Furthermore, given any general rate of inflation, the
impact of trend on any specific excess layer will change from year to
year as the distribution changes. These are just a few of the many
complicating factors which must be considered when analyzing the effect
of trend on excess of loss coverages.

8. CONCLUSION

In this paper, we have examined the effect of trend on layers of
excess losses, as opposed to uncapped excess losses. We have observed
that expected losses in excess layers do not necessarily trend at a rate
greater than that indicated by the general rate of inflation. We have seen

'2 The 1SO varying trend procedure uses a similar idea. See Insurance Services Office[6].
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that trend in excess layers is significantly affected by the values of the
parameters of the loss distribution under consideration, the type of loss
distribution employed, and the assumption that is made regarding the
relationship of trend to claim size. Of particular note is that we have
seen that excess layers of thinner-tailed distributions are more greatly
affected by trend than excess layers of thicker-tailed distributions. Fi-
nally, we have taken heed of a few caveats which must be considered
before drawing any conclusions from the results presented here. While
this paper certainly leaves many questions unanswered and thus open for
further investigation, hopefully it has given the reader a better under-
standing of the effect of trend on excess of loss coverages.
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EXHIBIT 2
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EXHIBIT 3
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EXHIBIT 4
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EXHIBIT S
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EXHIBIT 6
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EXHIBIT 7
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EXHIBIT 8
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EXHIBIT 9
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EXHIBIT 10

SUMMARY OF RESULTS

Change Made From
Exhibit 1

Scale parameter
decreased

Scale parameter
increased

Shape parameter
decreased

Shape parameter
increased

Lognormal used instead
of Pareto

Weibull used instead of
Pareto

Increasing varying
trend applied

Decreasing varying
trend applied

Impact on Graph

Contour lines displaced to-
ward origin

Contour lines displaced away
from origin

Trend factors decreased
throughout

Trend factors increased
throughout

Trend factors increased in
higher layers

Trend factors increased in
higher layers (more than
with lognormal)

Trend factors increase without
bound (instead of toward a
limit)

Trend factors initially in-
crease, but then decrease
toward zero
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APPENDIX

The formulas which are used in generating the graphs are shown
here.

Gx)y=1— F(x)
R = retention
L = limit (or layer width)
S=R+L
E{h(X; R, L)} = expected layer loss
E(X; ¢) = first moment of the distribution censored at ¢
E(’Xz; ¢) = second moment of the distribution censored at ¢

M) = [ vl e dy
0]
6 -1 e*_\' d\'
. — i 1«
o b _L———'_l_'(a) (where k is a constant)

The trend factor for any retention-layer width combination is computed
by simply dividing the expected layer loss under the trended distribution
by the expected layer loss under the original distribution.

I. PARETO

. e]
f Gx) dx = f r+B> dx

= Q[(S+B)'Q (R+ B 9ifQ # 1

Il

E{n(X; R, L)}
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2B*
@-1Q -2

B \°[(c+B’ 2Bc+B B
-0 (3 [Q—2 01 +Q]

EX? ¢) =

2]
+c2( B ) if Q # 1,2

=2B[c—Bln<C;B)JifQ=l

See Patrik [10] for a derivation of the moments of the Pareto.

II. LOGNORMAL

s
E{h(X; R, L)} = f x dF(x) + § G(S) — R G(R)
R

= {J;Sx dF(x) + § G(S)} - {j:x dF(x) + R G(R)}

%ol v mS) [ (2521

g

~ {e’”g‘z@(—a s IR n Rc‘ ”) +R {1 - (——]"R - “)

(o3

e“+g_2®<—0 + Inc-p lL> +c [1 -~ q)(_____lnc — M)]
o o

B0 0 = 7 o 20 + REZB) 1 2y - o (b))

i

E(X; o)

See Miccolis [9] for a derivation of [§ x dF(x) and [§ x* dF(x) (where k
is a constant).

III. wEIBULL

) A) .
E{h(X; R, L)} =L G(x) dx = L e ™ dx
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T (1 N ) [T'(1/7; AST) = T'(1/7; ART)]

Al"‘f
+ e
E(X; ¢) = ( )m }\l.ff AD § e
2\ I'tl + 2/15 A 2 aer
E(X; ( ;) HLEITAD ) 4o

See the appendix of Hogg and Klugman [5] for an illustration of the
techniques used in these derivations.

IV. BURR

o - (2

. Q
EX:c) = Q BI/TJ’ (1 — y)w yQ—l/Twl dy + ¢ ( ,B 7')
BB+ B +c

1
. o B o
2, — 2T YT e uT— 2
EX%5c)=0B f (I ="y d)+c<B+cr)

B/(B+("}

See the appendix of Hogg and Klugman [5] for an illustration of the
techniques used in these derivations.



