
126 

THE EFFECT OF TREND ON EXCESS OF LOSS COVERAGES 

CLIVE L. KEATINGE 

Ahstruct 

The subject (fl the eflect qf trcrd or1 EXC’~SS of‘ loss cover- 
ages has been &dressed quite -frequently in the Proceedings 
ol’er the years. Set,erul uuthors have made the point that Mdth 
u jixed retention und un@m trend by size oj’ loss, expected 
exces.s losses increase proportionally much more thun indi- 
cated by the general rute of injation. This is certainly true 
,chen considering uncapped excess losws. but it may not he 
true brvhen considering a specijic Iuyer of e.vcess losses. This 
is because just us the eflect oj’ inflation is leivraged ut the 
retention, it is dampened ut the upper limit of the luger. 

This paper uses gruphs to e.raminr horr) the le\leraging 
eflect und dumpening e$tect c.ombine to a&ct lugers of’ excess 
losses. This particular issue bus hi,storically received very 
little attention in the Proceedings. The puper begins by e.r- 
umining the e.we.s.s luger trenci.fact0r.s of u typiiul loss distri- 
bution, und then proceeds to demon.strute howl chunging each 
qf’ the titv parameters qf’ this distribution aflect.s the trend 
,filc.tor.s. The puper then looks ut the eff2c.t of changing the 
t!pe of distriblrtion. Finully, the puper erumines the t@ct oj 
introduc,ing the concept of \wrying trend 1~~ size of loss. 

The subject of the effect of trend on excess of loss coverages has 
been addressed quite frequently in the Proceedings over the years. Sev- 
eral authors have made the point that with a fixed retention and uniform 
trend by size of loss. expected excess losses increase proportionally 
much more than indicated by the general rate of inflation ([31. (41, (71, 
and [8]). This is certainly true when we consider uncapped excess losses, 
but it may not be true when we consider a specific layer of excess losses. 
This is because just as the effect of inflation is leveraged at the retention, 
it is dampened at the upper limit of the layer. The dampening effect on 
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layer losses at the upper limit is equivalent to the dampening effect on 
basic limit losses at the retention. 

This paper will examine how the leveraging effect and dampening 
effect combine to affect layers of excess losses. From a reinsurer’s point 
of view, it is much more meaningful to look at a layer of excess losses 
rather than at uncapped excess losses, since a reinsurer virtually never 
provides unlimited coverage excess of a retention. We will begin by 
examining the excess layer trend factors of a typical loss distribution, 
and we will proceed to observe how changing each of the two parameters 
of this distribution affects the trend factors. We will then look at the 
effect of changing the type of distribution. Finally, we will see what 
happens when we introduce the concept of varying trend by size of loss. 
Graphs will be used to illustrate the results. The formulas used in 
generating the graphs are shown in the Appendix. Also, it should be 
noted that this paper presupposes some familiarity with common loss 
distributions. 

2. A TYPICAL DISTRIBUTION 

We will first look at what might be considered a typical general 
liability loss distribution, a Pareto with parameters B = 10,000 and 
Q = I .I We will assume a general rate of inflation of 10%. The trended 
distribution becomes a Pareto with B = 11,000 and Q = 1 .Z Exhibit 1 
shows the effect of this inflation rate on excess layers. Note that the 
graph uses a double logarithmic scale with retention along the x-axis and 
layer width along the y-axis. Each contour line represents various reten- 
tion-layer width combinations with equivalent multiplicative trend fac- 
tors.’ As expected, the trend factors increase as the retention and/or layer 
width increase. However, contrary to what one might expect, the trend 

I The Pareto has been chosen because it is the distribution currently used by IS0 to generate 
increased limits factors. 

2 With uniform trend, the Pareto may be trended by simply trending the R parameter and leaving 
the Q parameter unchanged. For more information on trending loss distributions under the assump- 
tion of uniform trend, see Hogg and Klugman[Sj. 

i The term “layer width” is used in place of the term “limit” so as to avoid confusion with the 

“limits” shown along the top and right side of the graph. Also, the contour lines on the graph are 
approximate. Although they do not appear completely smooth on the graph, in reality they are 
completely smooth. 
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factors never increase beyond 1.10, which represents the general rate of 
inflation. This can be seen by examining the limits shown at the top and 
right side of the graph. The limits along the top are the limits for various 
retentions as the layer width approaches infinity. The limits along the 
right side are the limits for various layer widths as the retention ap- 
proaches infinity. The limit at the upper right corner is the limit as both 
retention and layer width approach infinity.J 

3. CHANGING THE SCALF. PARAMETER 

Exhibits 2 and 3 show what happens when we change the scale 
parameter B. Exhibit 2 shows how the trend factors behave when 
B = 1,000 and Q = 1; Exhibit 3 shows trend factor behavior when B = 
100,000 and Q = 1. Note that the only significant difference between 
these graphs and Exhibit 1 is that the graphs are displaced slightly. 
Decreasing the scale parameter B moves the contour lines closer to the 
origin; increasing the scale parameter B moves the contour lines further 
away from the origin. This type of behavior can also be observed with 
other distributions where one parameter can be used to change the scale.5 

4. CHANGING THE SHAPE PARAMETER 

Exhibits 4 and 5 show what happens when we change the shape 
parameter Q. Exhibit 4 shows how the trend factors behave when 
B = 10,000 and Q = 0.5; Exhibit 5 shows trend factor behavior when 
B = 10,000 and Q = 1.5. Note that the trend factors are smaller with 
the thicker-tailed distribution of Exhibit 4 and larger with the thinner- 
tailed distribution of Exhibit 5. Similarly, the limits on the graphs exhibit 
the same pattern.6 

4 11 is important to note that although for a lixed retention, the limit a\ the layer width approaches 

intinity exists, the multiplicative trend factor which would apply to uncapped lose\ excess of a 
fixed retention doe\ not exist. This is because the mean doe\ not exl\t for this distribution (and 

does not exist for any Pareto distribution with Q 5 I ) 

’ For example. p IS the scale parameter of the lognormal and A I\ the \cuI~’ parameter of the 

Weibull. 

(’ For the Pareto in general. we can say that if (I i\ the trend lactor repre\entmg the general rate of 
Inflation. the limits on the top will all be (1” if Q -= I and wdl progress from (I to # if Q > I. 

The limit5 on the right side u’ill always be (I “, as will the limit at the upper right corner. As noted 

by Philbrick[ I I], for the Single Parameter Pareto. the trend factor i\ # regardless of layer. Thus. 

for this distribution, the trend fxtors over the entire graph would be (1 
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The fact that the trend factors are smaller with a thicker-tailed dis- 
tribution and larger with a thinner-tailed distribution is intuitively rea- 
sonable. Since a thicker-tailed distribution falls off more slowly, there 
are more dollars which are subject to the dampening effect at the upper 
limit of the layer relative to the dollars which are subject to the leveraging 
effect at the retention than is the case with a thinner-tailed distribution. 
This type of behavior can also be observed with other distributions where 
one parameter can be used to change the shape.’ 

5. CHANGING THE TYPE OF DISTRIBUTION 

Exhibit 6 shows the trend factors for a lognormal distribution such 
that E[X; $1 ,OOO,OOO] and E[X2; $1 ,OOO,OOO] are the same as those for 
the Pareto distribution in Exhibit 1 .8 $1 ,OOO,OOO was chosen as the 
censorship point since this might very well be the point beyond which 
actual loss data is very sparse. Thus, it is conceivable that distributions 
similar to those in Exhibit 1 and Exhibit 6 could be fitted from the same 
set of data. The graph shows that the trend factors in lower layers are 
not too different from the corresponding trend factors in Exhibit 1. 
However, in higher layers, the trend factors of the lognormal are sub- 
stantially greater than the trend factors of the Pareto. Note that the top 
limits of the lognormal progress from 1.10 to infinity, and the right side 
limits as well as the upper right comer limit are infinity. This is in stark 
contrast to the limits of the Pareto. This pattern occurs because the 
lognormal inherently has a thinner tail than the Pareto. Just as the shape 
parameter affects the thickness of the tail (and thus the magnitude of the 
trend factors) for any given type of distribution, the type of distribution 
itself also affects the thickness of the tail. 

This example also provides an illustration of the hazards of extrap- 
olating distributions. Although the behaviors of two different types of 
distributions may look rather similar over the portion of the distributions 
which contains the data used for fitting them, their behaviors in the tail 
beyond this area may be very different. 

’ For example, cr is the shape parameter of the lognormal and T is the shape parameter of the 

Weibull. 

8 Moments cannot be matched over the complete uncensored distributions since for a Pareto with 

Q 5 I, moments for the complete uncensored distribution do not exist. 
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Exhibit 7 shows the trend factors for a Weibull distribution such that 
E[X; $1 ,OOO,OOO] and E[X’; $ I ,OOO.OOO] are the same as those for the 
Pareto distribution in Exhibit 1. The comments regarding the lognormal 
also apply here, though with the Weibull. the increase in trend factors 
at higher layers is much greater. This is because the Weibull inherently 
has an even thinner tail than the lognormal.“ 

6. VARYING TREND 

Back in 198 I, Rosenberg and Halpert presented the hypothesis that 
loss trend varies by claim size [ 121. They asserted that trend is greater 
at larger claim sizes. I0 Rosenberg and Halpert concluded that the formula 
U.Y” can be used to model trend, where .II- is the claim size, h is a constant 
which indicates the magnitude of the varying trend and (1 is a constant 
which can be adjusted to yield a desired overall trend for the entire 
distribution. A positive b indicates increasing trend by claim size, a 
negative b indicates decreasing trend by claim size, and a h of zero 
indicates uniform trend by claim size. 

To examine the effect of varying trend on excess layer trend factors, 
we will trend the distribution in Exhibit I using a 6 of .02 and a b of 
-.02. We will choose u such that the overall trend of the distribution 
from $0 to $1 ,OOO,OOO is lO%.” A Pareto which has varying trend 
applied to it becomes a Burr (or Transformed Pareto) distribution. For 
this example, the trended distributions were calculated and then Pareto 

’ For more information on the relattve thtchnesses of the tail\ of yartou~ loss dtstributiom. see 

Beard. Pcntikhmen and Pesonenl I) and Hogg and Klugman(S]. 

‘(’ Recently, this issue has been the subject of \ome debate. For example. \ee Feldblum(Z]. 
I’ With h = .O2, trend ranges from -13.X% at $1 IO -5.5% at Slot) to 3.6% at SlO.OOfl to 13.6% 

at S1.000,000 to 24.6% at S100.000.000. Wtth h = ~ 02. trend range, from 40.2% at 51 to 27.0% 
at $100 to 16.6’L at SlO.000 to 6.4% at $ I .OOO.OtH) to X0’% at S100.000.000. Since very small 
or negative trend is probably unrealistic in most cases. Rosenberg and Halpertl 121 presented an 
enhancement to the varying trend model which assumes that trend is subject to some minimum 
value. This enhanced model is essentially a hybrid between the uniform trend model and the pure 
varying trend model. Thus. the graphs of trend factors which would be generated hy this hybrid 

model would have characteristics of both the graphs generated by the uniform trend model and the 
graphs generated by the pure varying trend model. The IS0 varying trend procedure makes use of 

this hybrid model. For a description of the IS0 varymg trend procedure. see Insurance Services 

Office[6]. 
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distributions with E[X; trended value of $1 ,OOO,OOO] and E[X*; trended 
value of $1 ,OOO,OOO] matching the trended distributions were derived. I2 
With increasing varying trend, the Q parameter becomes smaller (and 
thus the tail thicker), while with decreasing varying trend, the Q param- 
eter becomes larger (and thus the tail thinner). 

Exhibit 8 shows the resulting trend factors with increasing varying 
trend. Instead of approaching a limit, the trend factors continue to 
increase. In fact, all the limits at the edge of the graph are now infinity. 
Exhibit 9 shows the resulting trend factors with decreasing varying trend. 
The trend factors increase for awhile, but eventually begin to decrease. 
All the limits at the edge of the graph are now zero. Somewhat similar 
effects can be expected when varying trend is applied to other types of 
distributions. 

Exhibit 10 provides a concise summary of the results which have 
been presented in the first nine exhibits. 

7. CAVEATS 

At this point, a few words of caution are in order. The conclusions 
that can be drawn from the graphs are only as valid as the size of loss 
distributions and trend assumptions that underlie them. In addition, pol- 
icy limits can exert a significant effect on observed loss data by censoring 
losses below their true values. Also, changing policy limit distributions 
can significantly affect the change in expected losses in excess layers 
from year to year. Furthermore, given any general rate of inflation, the 
impact of trend on any specific excess layer will change from year to 
year as the distribution changes. These are just a few of the many 
complicating factors which must be considered when analyzing the effect 
of trend on excess of loss coverages. 

8. CONCLUSION 

In this paper, we have examined the effect of trend on layers of 
excess losses, as opposed to uncapped excess losses. We have observed 
that expected losses in excess layers do not necessarily trend at a rate 
greater than that indicated by the general rate of inflation. We have seen 

‘I The IS0 varying trend procedure uses a similar idea. See Insurance Services Office[6]. 
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that trend in excess layers is signihcantly affected by the values of the 
parameters of the loss distribution under consideration, the type of loss 
distribution employed, and the assumption that is made regarding the 
relationship of trend to claim size. Of particular note is that we have 
seen that excess layers of thinner-tailed distributions are more greatly 
affected by trend than excess layers of thicker-tailed distributions. Fi- 
nally, we have taken heed of a few caveats which must be considered 
before drawing any conclusions from the results presented here. While 
this paper certainly leaves many questions unanswered and thus open for 
further investigation, hopefully it has given the reader a better under- 
standing of the effect of trend on excess of loss coverages. 
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PARETOB = lO.OOOQ = I 
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EXHIBIT 2 

PARETOE = 1,OOOQ = I 

EXCESS LAYER TREND FACTORS 
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EXHIBIT 4 

PARETO E = 10.000 Q = 0.5 
EXCESS LAYER TREND FACTORS 

LOG RETENTION (BASE IO) 
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TRENDED DISTRIBUTION: B = 10,000 x 1.10, Q = 0.5 
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~YH11111 5 
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EXHIBIT 6 

LOGNORMAL p. = 8.855 cr = 2.077 
EXCESS LAYER TREND FACTORS 

LIMIT I. 100 I.100 I.108 1.162 1.263 = 

0 2 4 6 8 

LOG RETENTION (BASE IO) 

10% UNIFORM TREND 
TRENDED DISTRIBUTION: & = 8.855 + In 1.10, D = 2.077 
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EXHIBIT 7 

WEIBULL A = .03818 7 = .3525 
EXCESS LAYER TREND FACTORS 
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LOG RETENTION (BASE 10) 
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TRENDED DISTRIBUTION: A = ,038 IX/( 1. IO) ““, 7 = .3525 
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EXHIBIT 8 

PARETO B = 10,000 Q = I 

EXCESS LAYER TREND FACTORS 

-< ‘\’ 
\ 

\ 

LOG RETENTION (BASE 10) 

INCREASING VARYING TREND: (I = .8621, b = .02 
TRENDED DISTRIBUTIONS: BURR B = lO,CKMJ X (.8621)“’ “*, Q = I, T = I/I.02 

matches first two moments of 
PARETO 13 = 10,095, Q = .9746 
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PARETO B = 10,000 0 = 1 
EXCESS LAYER TREND FACTORS 
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EXHIBIT 10 

SUMMARY OF RESULTS 

Change Made From 
Exhibit Exhibit 1 

2 Scale parameter 
decreased 

3 Scale parameter 
increased 

4 Shape parameter 
decreased 

5 Shape parameter 
increased 

6 Lognormal used instead 
of Pareto 

7 Weibull used instead of 
Pareto 

8 Increasing varying 
trend applied 

9 Decreasing varying 
trend applied 

Impact on Graph 

Contour lines displaced to- 
ward origin 

Contour lines displaced away 
from origin 

Trend factors decreased 
throughout 

Trend factors increased 
throughout 

Trend factors increased in 
higher layers 

Trend factors increased in 
higher layers (more than 
with lognormal) 

Trend factors increase without 
bound (instead of toward a 
limit) 

Trend factors initially in- 
crease, but then decrease 
toward zero 
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APPENDIX 

The formulas which are used in generating the graphs are shown 
here. 

G(x) = 1 - F(x) 
R = retention 
L = limit (or layer width) 
S=R+L 

E{h(X; R, L)} = expected layer loss 
E(X; c) = first moment of the distribution censored at c 

E(X’; C) = second moment of the distribution censored at c 

r(o; k) = ” Yai;i)’ ” (where k is a constant) 

The trend factor for any retention-layer width combination is computed 
by simply dividing the expected layer loss under the trended distribution 
by the expected layer loss under the original distribution. 

I. PARETO 

E{h(X; R, L)} = [ G(x) du = 1 [-$) dx 

= & [(S + B)‘-” - (R + B)‘-‘J if Q # 1 

= B In 
S+B 

i ! 
R+B IfQ==I 

B - - E(X; c) = Q _ 1 

ifQ# I 



TREND ON EXCESS COVERAGES 145 

E(X*; c) = 2B2 
K! - l>(Q - 2) 

- Q (A)" [ ",'":* _ =;-'1"' + $1 

if Q # 1,2 

=~B[c-BIn(F)]ifQ= 1 

See Patrik [lo] for a derivation of the moments of the Pareto. 

11. LOGNORMAL 

I 

s 
E{A(X; R, L)} = x dF(x) + S G(S) - R G(R) 

R 

R 
= x dF(x) + S G(S) - 

1 if 
x dF(x) + R G(R) 

0 

IJ- ) .,[l -@(y- “)I] 

- {e’i&+u + lnRu- “) + R [I - <o (lnR,- “)I 

E(X; c) = e @+$a -a+lnc-P 
( u 

) +c[l -@(y- “)] 

E(X’; c) = e2F+2u2 @ y- “) + c* [I - Q, (y- “)] 

See Miccolis [9] for a derivation of j$ n dF(x) and Ji x2 C@(X) (where k 
is a constant). 

111. WEtBULL 

E{h(X; R, L)} = 1’ G(x) dx = j-’ e-hrT & 
R R 
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= r 1 + 1 [r(l/T; h&s’) - r(l/T; AR’)] 
( 1 7 A I 17 

r( 1 + l/7; AC’) + ‘- r XC.’ 
A I/s 

See the appendix of Hogg and Klugman [S] for an illustration of the 
techniques used in these derivations. 

Iv. BURR 
Q 

E(X; c) = Q B “’ 
Q 

E(X2; c) = Q B2’T (1 - V)*‘3,Q-2’7‘-’ dv + c2 

See the appendix of Hogg and Klugman I.51 for an illustration of the 
techniques used in these derivations. 


