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APPLICATION OF COLLECTIVE RISK THEORY TO ESTIMATE 
VARIABILITY IN LOSS RESERVES 

ROGER M. HAYNE 

Abstract 

The intent of this paper is to present un introduction to 
Collective Risk Theory for the first time reader and consid- 
erations in applying that theory to estimate variability in loss 
reserves. It begins with u brief introduction to the basic con- 
cepts of Collective Risk Theory along with a survey of some 
of the techniques developed to date to estimate the aggregate 
distribution of losses. With this framework, descriptions of 
some applications to loss reserves are discussed, with atten- 
tion paid to the assumptions inherent in those methods and 
some problems that arise in applying this theory to reserves. 
Of note are questions that are not directly addressed b>l this 
model; in purticular, parumeter uncertainty. Included are ref- 
erences which, it is hoped, will lead the interested reader 
.further into the applications to date. 

1. INTRODUCTION 

The question of the amount of variability inherent in loss reserve 
estimates has gained more notice in recent years. In fact, Principles 3 
and 4 of the Statement of Principles Regarding Property and Casualty 
Loss and Loss Adjustment Expense Reserves [I] state, 

“3. The uncertainty inherent in the estimation of required provisions for unpaid 
losses or loss adjustment expenses implies that a range of reserves can be 
actuarially sound. The true value of the liability for losses or loss adjustment 
expenses at any accounting date can be known only when all attendant 
claims have been settled. 

4. The most appropriate reserve within a range of actuarially sound estimates 
depends on both the relative likelihood of estimates within the range and 
the financial reporting context in which the reserve will be presented.” 

Quantification of the variability in reserve estimates will thus be 
useful in the determination mentioned in Principle 4. In addition, knowl- 
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edge of the statistical distribution of reserves is also useful in discussing 
the impact of reserve discounting on insurer capacity and solidity. One 
author has already cited this as a favorable result of discounting in that 
discounting of reserves would “increase the statutory capacity of the 
insurance industry. Statutory surplus would increase as loss reserve lia- 
bilities were reduced [2].” However, simply discounting reserves will 
not necessarily increase financial strength or capacity. Rather, a better 
measure of that capacity is probably the ability of surplus to protect 
solvency. Without knowledge of the variability of the reserve estimates, 
the assessment of the strength of a company at a given level of surplus, 
and hence capacity, probably cannot be made accurately. 

There are several techniques which are available to assess the finan- 
cial solidity of a given amount of surplus. Methods that have been 
advanced for this purpose include “confidence limit” approaches, Ruin 
Theory, and Utility Theory, along with a rather comprehensive model of 
the operations of an insurer (see [3] and [4] for this latter application). 
In each case, however, their application requires an estimate of the 
statistical distribution of the reserves. 

The intent of this paper is to discuss the framework of Collective 
Risk Theory as one approach that can be used to estimate the statistical 
distribution of reserves. No prior exposure to Collective Risk Theory is 
assumed; however, it is hoped that the references will provide a good 
starting place for the reader who wants to pursue this subject further. 

2. THE COLLECTIVE RISK MODEL 

The basic collective risk model approaches the question of the dis- 
tribution of total reserves by modeling the claim process faced by an 
insurer. It considers the interaction between the distribution of the number 
of claims and the distribution(s) of the individual claims by calculating 
loss (or reserve) T as the sum 

T = X, + Xz + . . . + X,v, (2.1) 

where the number of claims N is randomly selected. and each of the 
claims XI, XZ, . . , X,%, is randomly selected from claim size distribu- 
tion(s). 

There is a significant amount of literature which addresses this model 
and its applications to casualty insurance. The primary source is probably 
the text by Beard, Pentikainen and Pesonen 151. Other complete texts 
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dealing with Collective Risk Theory and its applications are those by 
Borch [6], Biihlmann [7] and Seal [8]. The papers by Borch [9] and 
Pentikainen [lo] also consider this model from a fairly broad point of 
view. 

There are some useful properties of the distribution T under rather 
broad assumptions. In particular, if 

1. The number of claims N has moments 

v =E(N) 

vi = E[(N - v)‘] for i = 2, 3, and 4; 

2. All claims are drawn from the same population with moments 

x = E(X) 

xi = E[(X - x)~] for i = 2, 3, and 4; and 

3. All claims X and the number of claims N are all independent, then 
the first four moments of the random variable T exist and are 
given by 

E(T) = vx (2.2) 

E({T - E(r)}*] = x2v + x*v2 (2.3) 

E[{T - J3T)131 = x3v + 3X2XV2 + x3v,3 (2.4) 

E[{T - E(~3)41 = X4V + 3X2*(V2 - V + V*) + ‘tXX3vz + 

~X*XZ(V~ + VV~) + x4v4. (2.5) 

Comparable formulae for higher moments can also be derived if the 
corresponding moments of the claim count and size distributions exist. 
The paper by Mayerson, Jones and Bowers [ 1 l] gives a derivation of 
these formulae. 

These facts can and should be used to test the reasonableness of any 
approximation to the distribution of T. In fact, one of the methods used 
to approximate that distribution relies on these relationships. 

3. APPROXIMATIONS OF THE DISTRIBUTION OF T 

There have been many approaches used in estimating the distribution 
of T, given distributions for the number of claims N and the size of those 
claims. These methods can be broadly grouped into 3 classes: 
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1. Monte Carlo Simulation. 
2. Approximate Distributions, and 
3. Analytic Approximation. 

Monte Curio Simulation 

Probably the most flexible of these approaches is that of Monte Carlo 
Simulation. The idea is simple and directly follows the basic Collective 
Risk Model above. Simply stated. the Monte Carlo Simulation algorithm 
is composed of five steps: 

1. Randomly select the number of claims N from the claim count 
distribution. 

2. Randomly select N claims, XI, X2. . X,V, from the claim size 
distribution. 

3. Calculate one observation from the distribution of T by the sum 
x, + x* + ... + Xh.. 

4. Repeat steps 1 through 3 “several” times. 
5. Estimate the distribution of T using the points generated in this 

manner. 

Conceptually, there is no limit on the form of the claim count or size 
distributions used in Monte Carlo Simulation. They can both be discrete 
or the claim size distribution can be continuous. Simulation with de- 
ductibles and/or per claim loss limitations can also be easily handled in 
this framework. In addition, the combination of several lines of insurance 
or accident years can also be accommodated without much difficulty. 

There are, however, prices to pay. First, the answer to how many is 
“several” in step 4 is not clear. Often a signifcant number of simulations 
must be run to obtain a clear enough picture of the distribution of T to 
be useful in applications. One technique. though admittedly “brute 
force ,” is to compare the results of two sets of simulations, say each of 
1,000 trials. If the resulting distributions are “close enough” for the task 
at hand, the combined distribution could be used as an approximation. 
If, however, they differ significantly, more trials may be indicated. The 
moments of the simulated distributions should bc compared to the the- 
oretically expected moments in (2.2) through (2.5) to see if the simulation 
is sufficiently close. 

Another practical consideration is how to simulate the random selec- 
tions from the claim count and claim size distributions. Care should be 
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taken as to the representations of the distributions. Finite distributions, 
such as those based solely on empirical data, implicitly have upper 
bounds. Thus, unless those upper bounds are to be explicitly considered 
in the model, some of the variability inherent in the underlying distri- 
bution may be lost. 

One solution to this difficulty could be to use analytic distributions, 
such as the lognormal or Pareto, to estimate the distributions in the 
“tail.” In this way the empirical data could be used, and yet some of the 
potentially unlimited nature of some risks can be captured. 

The process used to make the random selections from the claim size 
and count distributions may not be obvious. Most computer software 
packages do provide “random” number generators which correspond to 
a uniform distribution. In addition, there are algorithms which allow for 
selections from other distributions, either directly or from selections from 
the uniform distribution. The very useful text A Guide fo Simulation by 
Bratley, Fox and Schrage [ 121 includes some of these algorithms for a 
number of statistical distributions. That text also includes listings of 
computer programs to perform those calculations. 

One final consideration regarding Monte Carlo Simulation is the cost 
in computer time. Factors influencing this time include the complexity 
of the model used, the expected number of claims E(N), the degree of 
accuracy required, and the amount of dispersion in the claim size distri- 
bution. Simulations involving a great number of expected claims will of 
course take longer to run. Not immediately obvious, though, is the fact 
that if the claim size distribution is dispersed (a large standard deviation 
as compared to the mean), there will generally be a greater number of 
simulations necessary to achieve a desired level of accuracy than if the 
claim size distribution is less dispersed. 

Appro,uimate Distributions 

Another method used to estimate the distribution of T involves as- 
suming a statistical distribution and then using the “known” moments of 
T to select the parameters of that distribution. Probably falling into this 
category is the Normal-Power, or NP Approximation. This approach is 
described in Beard, Pentikainen and Pesonen [5] and used by Mayerson, 
Jones and Bowers [ 1 I] and by Patrik and John [ 131. Although relatively 
easy to apply, it does not seem to be sufficiently skewed for many 
casualty applications. However, caution should be taken in applying this 
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approach. It can easily yield misleading results, or even nonsense, if 
misapplied, especially if the variable to be approximated differs markedly 
from the normal distribution, 

This approach considers a transformation of the variable T which is 
hoped to be approximately normal. Although the transformation can be 
carried out to include several moments of the distribution of T, the 
application in [ I l] stops at the third moment with the formula: 

ro = ml + PI-:() + n& - I )ih + nrj(z;: - 3=,,)/‘24 - 
m:(2+5zo)/36, (3.1) 

where z() represents the 1OOe percentile of a standard normal distribution 
and f. represents the approximate 100~ percentile of the distribution of 
T. Here 

111 , = W-I 

m; = E[{T - E(7-)}‘] 

n.3 = E[{T - E(7-)}3]/m; 

UL, = E[{T - E(7-)}4]/rn: - 3 

Using formulae (2.2) through (2.5). the various moments of T can 
be found from those of the claim count and size distributions. The various 
percentiles of the aggregate distribution can then be approximated. 

A similar approach is followed by Venter in [ 141. In that paper, 
transformations of the Beta and Gamma distributions are suggested as 
forms for the distribution of aggregate losses. The Gamma distribution 
is also suggested by Beard, Pentikainen and Pesonen, [ 5, page 1211. 
Again, matching of moments is used to estimate the parameters of the 
distribution. Pentikainen [ 151, Lau [ 161 and Philbrick [ 171 also present 
approaches based on distribution fitting. 

The be&it of this approach is its relative simplicity and, once the 
moments are calculated, the ease with which the percentiles of the 
aggregate distribution can be approximated. It does require, however, 
that the form of the distribution be assumed and there are no readily 
available tests of how well the distribution used fits the actual distribution 
of T. 
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Analytic Appro.uimation 

A third category of approximations of the distribution of T attempts 
to analytically calculate that distribution. This approach generally looks 
at the distribution of T as the sum 

F(t) = 2 P(N = n) F,,(t), 
n=o 

(3.2) 

where P(N = n) is the probability of n claims and F,,(r) is the probability 
that the sum of n claims will be less than t. The functions F,,(r) can then 
be calculated in terms of the probability density function of the individual 
claim size distribution. In the discrete case, for example, if F(K) is given 
by 

F(100) = 0.60 
F(300) = 1.00, 

then F?(x) will be given by 

F2(200) = 0.36 
F2(400) = 0.84 
F2(6OO) = 1.00. 

Since there are only two outcomes of the original distribution, a loss 
of 100 with probability .6 and a loss of 300 with probability .4, the only 
possible outcomes for the sum are 200 (two losses at 100 each), 400 
(one loss at 100 and one at 300), and 600 (two losses at 300 each). The 
resulting distribution is called the convolution of the probability density 
function (p.d.f.) underlying F with itself. More generally, in the contin- 
uous case, if&) and R(J)) are p.d.f.‘s for independent random variables 
X and Y, then the sum Z = X + Y has the p.d.f. given by 

(f*g)(z) = lx f(x)&-ax, 
-r 

(3.3) 

which is called the convolution off and g. Similar to multiplication 
define f*” iteratively by 

f*n =f*f*(“-‘) for n = 1, 2, . . 
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Then F,,(s) can be written in terms off*‘* as 

I 

I 
F,,(x) = ox f‘*” (z)dz. (3.4) 

If now the p.d.f. of the claim size distribution isf(x), then, combining 
(3.2) and (3.4), the p.d.f. underlying the distribution of T can be written 
as 

h(r) = c P(N = n)f*” (1). (3.5) 
,I =o 

These formulae hold under rather broad conditions which guarantee 
that the sum converges and the various f*” (.w) exist. If one is willing to 
place some restrictions on the distribution of claim counts N, then (3.5) 
can be further simplified. 

A common approach is to considcr the characteristic function (or 
Fourier transform) of the probability density function of the claim size 
distribution 

C[.f‘](r) = E[exp(irX)j. (3.6) 

where i is the imaginary unit. Under rather broad regularity and integra- 
bility conditions onJ: this function exists and is “unique.” Thus, if the 
characteristic function is known then, theoretically at least, the under- 
lying distribution function can hc found. A useful property of the char- 
acteristic function is that 

clJ‘*glcf, = Cl,mKIgl(t) (3.7) 

iff‘and s arc independent p.d.f.‘s. Thus, under conditions sufficient for 
the sums to exist. 

Clhl(t) = c P(N = 11) C’[,f‘]($. (3.8) 
,1--o 

If N is further assumed to have a Poisson distribution with mean \‘, i.e., 

P(N = II) = e “r-“/n! , 

then C(h](r) can be written as 

C[h](r) = c TV “v”C[.f’](t)“/r~! 
,, -0 
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which reduces to 

C[hl(Q = exp~~~(WlO) - 1)). (3.9) 

Note that C[h](r) is the moment-generating function of the Poisson 
distribution evaluated at the natural logarithm of the characteristic func- 
tion of the claim size distribution. Under suitable regularity conditions, 
this result generalizes to other claim count distributions. That is, the 
characteristic function of the aggregate distribution is the moment-gen- 
erating function of the claim count distribution evaluated at the natural 
logarithm of the characteristic function of the claim size distribution. 

Heckman and Meyers [ 181 present an algorithm which “inverts” this 
characteristic function. They only require that the probability density 
function for the distribution of claims by size be a finite step function. 
Since any (reasonable) probability density function can be approximated 
as closely as desired by such step functions, conceptually the algorithm 
they developed should be applicable in any situation. 

In addition, they relax the above condition that the claim count 
distribution be Poisson, with variance and mean equal. Their algorithm 
also applies to the cases when that distribution is binomial (with variance 
less than the mean) and negative binomial (with variance greater than 
the mean). They include a provision for the uncertainty in parameter 
estimates in the choices of the distributions. 

Finally, computer code is provided for the algorithm. The algorithm 
is computationally rather efficient and can easily be run on a microcom- 
puter with a mathematical co-processor in a reasonable amount of time. 
In short, Heckman and Meyers provide a very valuable tool to estimate 
the distribution of T and, for a very wide range of cases, effectively 
solve that problem. 

Another approach to this problem was taken by Panjer [ 191 and by 
Sundt and Jewel1 [20]. In the simplest case, assuming the claim count 
distribution is Poisson and the p.d.f. of the claim size distribution is 
discrete and evaluated at equally spaced points, there is a recursive 
formula which leads to a direct calculation of the distribution of T. Work 
continues in this area (for example, Willmot [21]). 
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4. APPLICATIONS IN LOSS RESERVES 

It is interesting to note that the majority of the references listed so 
far either deal with Risk Theory on its own or in relationship to various 
aspects of ratemaking. There have been some recent papers dealing with 
risks and uncertainty in loss reserve estimates (see [3], 141, [22], [23], 
and [24]), but we have been unable to find any which deal directly with 
considerations which enter with the application of this model to the 
estimation of variability in loss reserves. 

The model of the insurance process provided by Collective Risk 
Theory seems a natural tool to apply in evaluating the degree of uncer- 
tainty in loss reserve estimates. If, for example, under the independence 
hypotheses listed in Section 2, the distribution of open and IBNR claims 
(N) is known and the distribution of the size of those claims (X) is also 
known, the methods outlined in Section 3 all provide ways to estimate 
the distribution of total reserves (T). 

One approach used at this point takes the actuary’s best estimate of 
ultimate claim counts and losses as an estimate of the expected number 
of claims E(N) and average claim size E(X). Statistical distributions are 
then selected for each of these quantities. 

If the Poisson is chosen as a model of the claim count distribution, 
then the only parameter to estimate is its mean. Other distributions, such 
as the binomial and negative binomial, allow for the variance of N to 
differ from its mean. These are “well behaved” and can be easily accom- 
modated in the algorithm described in [ 181. 

The claim size distribution is usually assumed to be more complex. 
Common choices include the lognormal, Pareto, and a transformed 
Gamma, among others. An ad iwc approach is to select the distribution 
to be used, assume that its mean corresponds with the average claim 
size derived by the actuary’s best estimate, and then select the other 
parameter(s) either judgmentally or based on characteristics of the line 
under evaluation. This may be all that can be done in situations where 
data for further analysis is lacking. If sufficient data is available, how- 
ever, the techniques described by Hogg and Klugman [25] provide pow- 
erful tools to select the “proper” distributions. 

To better model the distribution of reserves for an insurer or self- 
insured, accident (report, or policy) years are often considered separately, 
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with separate distributions of claim counts and claim sizes for each year. 
This has the benefit of preserving differences in relative maturity and 
maintaining greater homogeneity of claims within each year. The distri- 
bution of total reserves can be calculated using convolutions of the 
distributions for individual years if the various years are assumed to be 
stochastically independent. The algorithm in [ 181 allows for such con- 
volution. One “short-cut” sometimes taken is to approximate the 9.51h 
percentile, for example, of the distribution of total reserves by the sum 
of the 95’h percentiles of the distributions of reserves for various accident 
years. A bit of reflection leads to the conclusion that this assumes that 
the various distributions are perfectly correlated with each other. 

There are many possible approaches that can be used to estimate the 
distributions and resulting reserve variability estimates. What follows 
here is a discussion of only one possible approach. 

This refinement considers the distribution of reserves for an accident 
year as the combination of the distributions of reserves in three cate- 
gories: case reserves, development reserves, and IBNR reserves. In this 
discussion, we consider reserves for reopened claims in the IBNR cate- 
gory. This approach allows closer modeling of the various components 
of the reserves. These three components also have respectively increasing 
uncertainty, summarized in the following table: 

Case Reserves 
Development Reserves 
IBNR Reserves 

Counts Amounts 

Certain Certain 
Certain Uncertain 
Uncertain Uncertain 

Distributions for Reported Claim Sizes-One Approach 

If we group the first two categories, the case and development re- 
serves, then the statistical uncertainty lies only in the variation of claim 
sizes, since the number of the claims is known. Given an estimate of 
the claim size distribution, methods presented in Section 2 could be 
applied to estimate the distribution of these reserves. 

The current distribution of open and reported claims may provide 
some knowledge of this distribution. For more mature years, one could 
consider the relationship between the distribution of claims at this stage 
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of development with the “ultimate” distribution of those same claims 
and incorporate it. with the current distribution. to estimate the ultimate 
distribution of claims. 

As an example of one possible approach, Ict us assume that the 
lognormal is an appropriate model for the distribution of X, the claim 
size random variable. Then Z = In(X) has a normal distribution, and the 
lognormal can be completely parameterized by the mean m and variance 
.Y’ of Z. We select this parameterization for the distribution of X. 

It then follows (see, for example, p. 38 of [26J) that maximum 
likelihood estimators for m and ,s2 arc obtained from the sample mean 
and variance of the values ln(X,) where X, arc observed claims. As in 
the normal case, the sample variance. using the number of sample points 
as the denominator, is a biased estimate for .v2: therefore, a denominator 
of jr - I is used to estimate s’. 

Suppose, for example. that we arc trying to estimate the claim size 
distribution for open and reported claims for accident year 1981 as of 
December 3 1, 1988. That accident year is currently 84 months from the 
beginning of I98 I. 

We can calculate the estimators /?rxJ and sft of the VI and s2 parameters 
for reported claims for “mature” accident years at 84 months of devel- 
opment. We can also calculate the estimators I?~,,I, and s:l, for the distri- 
bution of ultimate values of those same claims. Using regression we can 
find constants which best fit 

muI1 = (I + fWFlxj NIld (4.1) 
7 .Suh = (’ + d&j (4.2) 

for the “mature” years. These parameters, along with the estimators ,niJ 
and SE: for the current distribution of claims for accident year 1981 as 
of December 31, 1988, yield the following estimates of the parameters 
for the ultimate distribution of currently reported and open claims for 
accident year I98 I : 

rnzl, = (1 + I%& and (4.3) 

s:; = (’ + ‘1s~:. (4.4) 

Exhibits 1 and 2 provide a numerical example of this approach using 
purely hypothetical data. In these exhibits. we assume losses for the first 
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seven accident years are sufficiently developed so that we “know” their 
ultimate distributions and wish to estimate the distribution for accident 
year 1981. 

The distributions of claims reported at 84 months are shown in 
Exhibit 1. Also shown in Exhibit I are the ultimate distributions for the 
claims reported at 84 months for the first seven accident years, as well 
as the corresponding parameters from the fitted lognormal distributions. 

Exhibit 2 shows the results of the regression and corresponding 
constants (u and c above) and coefficients (b and d above). Given the 
lack of significance of the coefficient in the fit for s2, we assume no 
relationship between s;: and s::. We thus use the sample mean and 
variance for the ultimate distributions for the first seven years as our 
parameter estimates. The bottom portion of Exhibit 2 then shows the 
resulting estimates for the parameters of the ultimate distribution for 
accident year 198 1. 

At this point, other analyses (e.g., usual reserve estimation tech- 
niques) could be used to modify these parameters to reflect the results 
of those projections. It is a property of the lognormal distribution that 
the coefficient of variation (ratio of the standard deviation to the mean) 
can be expressed only in terms of the parameter s2: 

c.v.z = exp(.?)- 1 . (4.5) 

Thus, adjustments made to the rn:rt parameter will affect the mean 
of the final distribution but not its relative variation, as measured by the 
coefficient of variation. This technique does, however, have the benefit 
of incorporating information regarding the current distribution of open 
and reported claims in deriving the estimate for the ultimate distribution 
of those claims. 

We note that there is no chance of zero claims in the lognormal 
distribution. If we were to use only that distribution as a model for 
reported claims, then, strictly speaking, the number of claims is not 
certain, for there may be open claims that will close without payment. 
This can also be overcome by estimating the portion of those claims 
which will close with payment separately, possibly also with the use of 
regression. 
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Distributions for IBNR Reserves-One Approuch 

For estimating the distribution of IBNR reserves, both the claim 
counts and severity are uncertain. The parameters for the claim size 
distribution could be considered in light of the ultimate value of claims 
for more “mature” years which were reported after 84 months. The trend 
in those costs could also be considered in selecting the distribution of 
claim sizes. 

One approach to estimating the distribution of claim counts would 
be to assume it is Poisson and estimate the expected number of IBNR 
claims using usual actuarial projection methods. Another approach, sim- 
ilar to that used by Weissner [27], considers the reporting emergence as 
a statistical distribution with known data truncated from above. Maxi- 
mum likelihood estimators are then used to estimate the parameters of 
that distribution. A beneft of this approach is that it can result in 
estimates of both the mean and variance of the claim count distribution. 

This approach begins by postulating a development curve in the form 
of a probability distribution and then uses maximum likelihood estimators 
along with known reported claims to estimate the ultimate number of 
reported claims as well as an approximate distribution of that ultimate. 
Though the application is in terms of reported claims, there is no inherent 
reason that the same approach cannot be used to estimate the distribution 
of ultimate losses directly. 

We first assume that the number of claims reported through time t 
can be expressed as 

iJF(t;@. (4.6) 

Here U is the (unknown) ultimate number of claims, and F(t$) is a 
cumulative distribution function with parameter(s) 0 representing the 
percent of ultimate claims reported through time t. 

In this application, we think of the number of claims reported in 
time period i as a grouped sample containing ,f; points in the interval 
(c. ,, c,) from the distribution. We can use methods described in [25] 
to iteratively approximate the maximum likelihood estimator of the pa- 
rameter(s) 8 given these k observations. To this end, detine 

P,.(6) = [F(cI-:&F(c.,-- ,;@]lF(cx;@. (4.7) 
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Here cr- I and c,. are the endpoints of the interval containing the fr 
observations. Let f* denote the total number of claims reported through 
k time periods, that is, 

Define A(6) to be the matrix composed of the elements 

and let the vector S(6) have the elements 

(4.9) 

With these functions, which involve only first derivatives of the 
cumulative probability function with respect to its parameters, iteratively 
calculate 

6, = iin-, + [A(e,,-,)]-‘s(e,,-,). (4.11) 

Now let h = F(ck;&) be the estimated percentage of claims reported 
by time ck. The actual number of claims reported by time ck can then 
be thought of as having a binomial distribution with (unknown) mean 
Uh and variance Uh( 1 - h). Assume at this point that the binomial can 
be approximated by a normal distribution. Thus, approximately, 

T - N(Uh, Uh(1 - h)). (4.12) 

Hence U = T/h is approximately normal: 

U - N(f*lh, f(l - h)lh*). (4.13) 

This results in an approximate distribution of IBNR claims I, where 
+u-f- N(f*lh -f*, f*(l - h)lh*). (4.14) 

Given these distribution estimates, an estimate of the distribution of 
IBNR reserves for accident year 198 1 as of December 3 1, 1988 can then 
be obtained. If it is assumed that this distribution and the distribution of 
reserves for reported claims are stochastically independent, then an es- 
timate of the distribution of total reserves can be made by convoluting 
these two distributions. 
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The assumption of independence may not be too restrictive in this 
case. As of December 31, 1988. reported and IBNR claims form two 
distinct populations. It is unlikely that fluctuations in the loss amounts 
for a fixed number of known claims will lead to fluctuations in the 
amounts, or counts, of claims yet to be reported. This does not, however, 
address the question of parameter estimation for these populations and 
the potential interrelationships there. 

As an example of this approach, Exhibit 3 shows a hypothetical 
claim emergence pattern for the first 84 months of development. We 
selected a Weibull distribution to model this claims emergence. That 
distribution’s cumulative density function can be written as 

F(~;0~,8~) = 1 - exp{-exp[81 In(x/Oz)]}. (4.15) 

The methods from [25] were then used to derive the parameter 
estimates shown in Exhibit 3. These parameters result in an h-value of 
0.930, with the resulting estimate of the expected number of IBNR 
claims of 137 with a variance of 147.46. 

Cornbinution of Years 

The above calculations lead to an estimate of the distribution of total 
reserves for a single accident year, in this case 1981. Though not ex- 
plicitly stated, in practice they would probably be calculated for a single 
coverage or line of insurance. For a multiple line company, however, 
the distribution of total reserves, for all lines and for all years, is of 
concern. 

If one assumes that the distributions for the various lines of business 
and accident years are all stochastically independent, the distribution of 
total reserves could be estimated by convoluting the distributions for 
individual lines and accident years. In some situations, the assumption 
of independence may not be too restrictive. 

In other situations, however, the reserve distributions for various 
lines may not be independent; for example, in the bodily injury and 
property damage portions of automobile liability coverage, some corre- 
lations may sometimes be expected, especially in the distributions of the 
number of claims. 

There has been some activity in extending the Collective Risk Model 
to include such interrelated events. Cummins and Wiltbank in [28] and 
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[29] consider multivariate models for claim count and size distributions. 
These models can be thought of as considering the distribution of claims 
arising from potentially different, but not independent perils. The paper 
in [28] specifically addresses the automobile liability situation noted 
above. 

5. OTHER AREAS OF UNCERTAINTY 

The applications discussed thus far have only addressed one area of 
uncertainty, the statistical “noise” inherent in the insurance process, 
assuming that ull distributions are correct. Not yet addressed are other 
areas of uncertainty regarding the loss reserve estimates, such as: 

1. How close are the selected parameters to the “real” parameters? 
2. Are the distributions used in the model correct? 
3. Is the Collective Risk Model the right one to use? 

None of these questions has been answered yet, nor has the uncer- 
tainty they imply been incorporated in the estimated distribution of 
reserves. The first question, that regarding parameter uncertainty, is 
sufficiently significant as to be the topic of a paper by Meyers and 
Schenker [30]. In some situations, the variation due to parameter uncer- 
tainty can outweigh the variation from the pure Collective Risk Model 
itself. Needless to say, this should be recognized in any application of 
the Collective Risk Model. 

Also recognizing the importance of parameter uncertainty, Patrik and 
John in [ 131 reserve the term “Collective Risk Model” to a generalization 
of what we present here. That generalization recognizes parameter un- 
certainty by considering the parameters themselves as randomly drawn 
from some probability space. 

Often, parameter uncertainty is recognized by “expanding” the var- 
iability of the component claim count or size distributions. If data is 
lacking, such judgmental approaches may be all that is possible. 

The possible approaches included above ( “Distributions for Reported 
Claim Sizes,” . . . , “Distributions for IBNR Reserves”} lend themselves 
for inclusion of parameter uncertainty. In the claim size distribution 
estimates for reported claims, the parameter m:l, is estimated using linear 
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regression. Usual regression theory leads to the conclusion that the 
variance of rniII can be expressed as 

$ = (n - 2)Sf+(n - 41, (5.1) 

where n is the number of points used in estimating the tit. and SE, is the 
standard error of the forecast given the observed value for mk (“Distri- 
butions for Reported Cluim Sixs” ). 

We now assume that the claim size distribution is lognormal with 
parameters m* and s:t, where m* is now unknown, but having a normal 
distribution with mean rn:,, and variance SF. In this case, the final claim 
size distribution will again be lognormal with parameters m:l, and 
s:?~ + sf. Thus, the uncertainty regarding the scale parameter rnk is 
translated to a widening of the coefficient of variation of the original 
distribution. Other such “mixings” of distributions can be found in [31]. 

The bottom portion of Exhibit 2 continues with the example presented 
above ( “Distributions fiw Reportcdd Cluim Sizes” ). For example, for 
accident year 198 1, the standard deviation of the forecast of mk is 0.136 
while the fitted SEE is 1.921. This results in an adjusted parameter of 
1.939 for use with the lognormal distribution. 

The maximum likelihood estimator methods presented in [25], as 
outlined above (“Distributions,fcw lBNR Reserves” ), also provide means 
to estimate the distribution of those estimators. What follows uses the 
notation of Section 4 (“Distributions for IBNR Reseri,es”) and is an 
application of those methods based on an unpublished presentation made 
by Gary Venter. 

Under suitable restrictions on the cumulative distribution function F, 
the values of Cl,,, given in (4.J 1) converge-to the maximum likelihood 
estimators of the parameters 8, call them t&. Also under suitable con- 
ditions, the resulting parameters have a joint_ly normal distribution with 
mean &I and variance-covariancc matrix [A(&)] ‘. 

Now, h = F(cx;&) is a function of the maximum likelihood estimators 
6,) and, following [25, pages 117-l 181 has an approximate normal dis- 
tribution with mean 11,) = F(c~;$‘,). where 6,: denotes the estimate of the 
maximum likelihood estimator IL. Apprcximately, then. 

Tjh - N(Uho, c/Ml - ht,)). (5.2) 
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The variance of h can be approximated as 

Var(h) = ,Jg, a,(%) $ (6;) g (6;). 
I J 

(5.3) 

Her: U;j denotes the i, j element of the approximate covariance matrix 
[A(W)]- I. Thus, approximately, 

T - N(Uho, Uho( 1 - ho) + u’Var(h)). (5.4) 

Taking now 

Uo = f*/ho (5.5) 

as an estimate of the expected value of ultimate claims U, then, approx- 
imately, 

U = T/ho - N(Clo, [Uohdl - ho) + iJ: Var(h)llhz). (5.6) 

There are admittedly many approximations in this estimation process. 
It does, however, attempt to directly recognize the variability inherent 
in the estimate of ultimate claims. 

Using these approximations, the distribution of IBNR claims is then 
approximately 

I=U-f- N(fL - f*, [Cloho(l - ho) + Ug Var(h)llh$). (5.7) 

When compared with formula (4.14), this indicates that parameter un- 
certainty adds a factor of 

iJi Var( h)lhi (5.8) 

to the variance of the original unadjusted distribution. In the example in 
Exhibit 3, Var(h) = 0.000135 for the fitted values of 0, and OZ. Also 
shown in Exhibit 3 are the approximate parameter covariance matrix and 
the partial derivatives used in calculating Var(h). In this case, the addi- 
tional variance from (5.8) is 599.01, resulting in an indicated variance 
in the projection of IBNR claims of 746.47. 

In the examples presented here, we have used a single specific method 
to estimate the parameters of the claim size distribution and distribution 
of IBNR claims. Both of these methods are stochastic in nature and thus 
supply information, under certain assumptions, regarding the uncertainty 
inherent in their particular projections. 
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Usual actuarial projection methodology as described, for example, 
by Skurnick [32] or Berquist and Sherman ]33] does not begin with an 
underlying statistical model. Thus. the distribution of the projections 
does not have a readily apparent statistical form. This problem is com- 
pounded in practice where the actuary considers the results of several 
different projection methods, often yielding different results. and selects 
a best estimate of what the ultimate losses for a given coverage in a 
given accident year will be. 

As mentioned above, an approach used in these situations is to use 
the best estimates of ultimate claim counts and severities as estimates of 
E(N) and E(X) and then to select the claim count and size distributions 
to have these expected values. Other parameter(s) are then selected to 
represent the estimated variance in these two distributions and are derived 
either by considering appropriate distributions of claims or judgmentally. 
Paramctcr uncertainty may then be addressed by widening the resulting 
distributions. 

Thcsc methodologies do have the strength of addressing different 
influences which may be apparent in the data. They also allow for the 
introduction of seasoned judgment in interpreting the results of the pro- 
jections or influences in the underlying data. 

There arc also a variety of models which are statistically based. 
Taylor’s work 1.341 summarizes many different reserve estimation meth- 
ods, and Ashc [22] provides a discussion of some of the work which 
has been done to estimate variance in reserve projections using these 
methods. Of particular note are regression-based methods of Taylor [ 35) 
and Kalman Filter-based methods of DeJong and Zehnwirth 1361. Both 
techniques look only to the historical development of losses for their 
projections. It could be argued with this data that, put simply, “not all 
that can happen has happened.” If that is true. thcsc methods may end 
up understating the amount of variation in reserve projections. However, 
they could be useful to quantify parameter uncertainty in the estimates 
for the Collective Risk Model as presented here. 

The answer to the question of how much uncertainty is added because 
of the other two questions cited above is not nearly as clear as that for 
parameter uncertainty. Estimates of parameter variability may address 
some of the uncertainty inherent in the choice of a particular distribution 
for the model. This may be further mitigated by reviewing the hts of 
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various distributions to the data available to minimize the chance of 
picking the “wrong” one from a particular collection. However, it is 
unlikely that, in actual applications, the second or third questions posed 
above can be completely answered. 

6. CONCLUSION 

As can be seen from some of the questions raised, there appears to 
be more work necessary to completely answer the question “How good 
are our reserve estimates?” It has been the intent of this paper to present 
an introduction to Collective Risk Theory for the first time reader, along 
with a survey of some of the work that has been done which can be used 
to attempt an answer to this question. 

Without proper understanding, many tools can be misused. This is 
true with Collective Risk Theory. The basic framework only addresses 
certain portions of the potential variability in reserve estimates. Parameter 
uncertainty is one significant area not specifically addressed by the basic 
model; thus, it should be considered in any serious application to quan- 
tifying reserve variability. Though some of the techniques outlined here 
to address parameter uncertainty are necessarily complex and somewhat 
abbreviated due to the intended scope of this paper, it is hoped that the 
reader will appreciate the importance of this aspect of the Collective 
Risk Model. 
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EXHIBIT 1 
SHEET 1 

DISTRIBUTION OF LOSSES FOR CLAIMS REPORTED 
BY 84 MONTHS OF DEVELOPMENT 

Claim Size Range 

$0 - $1,000 
1,001 - 5,000 
5,001 - 10,000 

10.001 - 25,000 
25,001 - 50,000 
50,001 - 100,000 

100.001 - 250.000 
250,001 - 500,000 
500,001 - 1.000.000 

I ,000,001 - 

Total 

ACCIDENT YEAR I 

At 84 Months 

Number 
of Average 

Claims CO9 

199 $450 
163 2,730 
55 7,366 
48 17,074 
19 36,052 
IO 71,898 
5 158.696 
1 369,0 I 8 
0 - 
0 - 

500 

Ultimate 

Number 
of 

Claims 
Average 

cost 

170 $479 
150 2,738 
65 6,866 
63 16,606 
25 37,506 
I5 74,917 
9 162,010 
2 341,595 
I 71 1,158 
0 - 

500 

m 
s-syuur-ed 

Parameters of Fitted Lognormal Distributions 
7.396 
I .848 

7.740 
1.937 
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EXHIBIT I 
SHEET 2 

DK~RIBIJTION OF LOSSES FOR CLAIMS RWQRTED 
BY 84 MONTHS OF DEVELOPMENT 

Claim Size Range 

$0 - $1,000 
1,001 - 5,000 
5,001 - 10,000 

10,001 - 25 .OOO 
25,001 - 50,000 
50,001 - 100,000 

100.001 - 250,000 
250,001 - 500,000 
500,001 - 1,000,000 

1,000,001 - 

Total 

ACCIDENT YEAR 2 

At 84 Months 

Number 
01 

Claims 
Average 

cost 

16X $443 
168 2,477 
65 7,327 
59 15,55 I 
25 37,613 
14 72,826 
8 170,667 
2 351.781 
I 699,609 
0 - 

510 

Ultimate 

Number 
ol 

Claims 
Average 

cost 

150 $442 
172 2,585 
62 7,252 
64 17,055 
29 35,638 
I8 71,916 
II 160,023 
3 356,221 
I 702,665 
0 

5 I 0 

m 
s-squared 

Parameters of Fitted Lognormal Distributions 
7.736 
I.862 

7.918 
1.880 
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EXHIBIT 1 
SHEET 3 

DISTRIBUTION OF LOSSES FOR CLAIMS REPORTED 
BY 84 MONTHS OF DEVELOPMENT 

Claim Size Range 

$0 - $1,000 
1,001 - 5,000 
5,001 - 10,000 

10,001 - 25,000 
25,001 - 50,000 
50,001 - 100,000 

100,001 - 250,000 
250,001 - 500,000 
500,001 - I ,ooo,oOO 

I ,ooo,oo I - 

Total 

ACCIDENT YEAR 3 

At 84 Months 

Number 
of 

Claims 
Average 

cost 

172 $415 
167 2,502 
62 7, I72 
65 15,775 
27 38,563 
I5 74,796 
9 167,488 
2 363,088 
I 663,006 
0 

520 

Ultimate 

Number 
of 

Claims 
Average 

cost 

166 $445 
173 2.622 
61 7,522 
61 15,177 
31 37,408 
I5 65,545 
9 160,523 
3 365,688 
1 705,967 
0 

520 

Parameters of Fitted Lognormal Distributions 
7.754 
1.899 

7.797 
I .896 
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EXHIBIT 1 
SHt:kI 4 

DISTRIBUTION OF LWSES FOR CLAIMS REPORTED 
BY 84 MON.I-HS OF DEL’EI OPM~;N'T 

Claim Size Range 

$0 - $1,000 
I.001 - 5,000 
5,001 - 10,000 

10,001 - 25,000 
25,001 - 50,000 
50,001 - 100,000 

100.001 - 250,000 
250,001 - 500,000 
500,001 - 1,000.000 

1,000,001 - 

Total 

ACCIDEN r Y~.AR 4 

At X4 Months 

Number 
of 

Claims 
Average 

cost 

160 $480 
170 2,558 
74 6.886 
65 15,519 
32 36,991 
17 74.283 
Y 163.701 
3 370.993 
I 720.3 I6 
0 

531 

Ultimate 

Number 
of 

Claims 
Average 

cost 

I61 $44 I 
170 2,837 
70 7,456 
67 15,832 
30 35,140 
17 73,015 
II 158,295 
3 345,297 
I 702,860 
I 2, I 17,652 

531 

Parameters of Fitted Lognormal Distributions 
7.X96 
I .X62 

7.897 
I.917 
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EXHIBIT 1 
SHEET 5 

DISTRIBUTION OF LOSSES FOR CLAIMS REPORTED 
BY 84 MONTHS OF DEVELOPMENT 

105 

Claim Size Range 

$0 - $ I ,000 
1,001 - 5,000 
5,001 - 10,000 

10,001 - 25,000 
25,001 - 50,000 
50,001 - 100,000 

100,001 - 250,000 
250,001 - 500,000 
500,001 - I ,ooo,ooo 

1,000,001 - 

Total 

ACCIDENT YEAR 5 

At 84 Months Ultimate 

Number 
of 

Claims 
Average 

cost 

Number 
of 

Claims 
Average 

cost 

I51 $443 
I77 2,647 
73 7,809 
71 16,229 
34 35,331 
20 72,039 
II 153,797 
3 363,043 
I 703,801 
0 

541 

140 $478 
172 2,531 
74 7,858 
73 16,888 
39 32,982 
21 72,711 
I5 154,762 
4 335,047 
2 679,978 
I I ,924,372 

541 

m 

s-squared 

Parameters of Fitted Lognormal Distributions 
8.003 
1.849 

8.145 
I .919 
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EXHIBIT 1 
SHEET 6 

DISTRIBUTION OF LOSSES FOR CLAIMS REPORTED 
BY 84 MONI‘HS OF DEVELOP~IENT 

Claim Size Range 

$0 - $ I ,000 
I.001 - 5,000 
5,001 - 10,000 

10,001 - 25,000 
25,001 - 50,000 
50,001 - 100,000 

100,001 - 250,000 
250,001 - 500,000 
500,001 - 1,000,000 

I ,ooo.oo I - 

Total 

AKIDENI YEAR 6 

At 84 Months 

Number 
of 

Claims 
Average 

cost 

I53 $436 
181 3.50x 
71 7,373 
78 16,035 
35 37,119 
19 77.169 
II 157,721 
3 366,860 
I 716.312 
0 

552 

Ultimate 

Number 
Of 

Claims 
Average 

cost 

I51 $450 
I70 2,695 
70 7,270 
7x 16,929 
37 36,601 
23 68,545 
15 164,521 
5 337,331 
2 694,022 
I 2,312,174 

552 

m 

s-squared 

Parameters of Fitted Lognormal Distributions 
8.012 
I .x39 

8.103 
1.975 
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EXHIBIT 1 
SHEET 7 

DISTRIBUTION OF LOSSES FOR CLAIMS REPORTED 
BY 84 MONTHS OF DEVELOPMENT 

107 

Claim Size Range 

Number 
of 

Claims 
Average 

cost 

$0 - $1,000 140 $466 
1,001 - 5,000 187 2,697 
5,001 - 10,000 72 7,144 

10,001 - 25,000 74 15,859 
25,001 - 50,000 42 38,555 
50,001 - 100,000 26 73,586 

100,001 - 250,000 I4 158,619 
250,001 - 500,000 5 364,353 
500,001 - I ,ooo,ooo 2 721,218 

1,000,001 - I 2,128,700 

Total 563 

ACCIDENT YEAR 7 

At 84 Months Ultimate 

Number 
of 

Claims 
Average 

cost 

149 $468 
I83 2,587 
72 8,010 
77 16,430 
37 34,613 
23 72,933 
I5 156,530 
4 343,411 
2 736,468 
1 2,045,068 - 

563 

m 

s-squared 

Parameters of Fitted Lognormal Distributions 
8.180 
I .909 

8.105 
1.923 
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EXHIBIT I 
SHEl:I’ 8 

DISTKIBUTION OF LOSSES FOR CI AIMS REPORI’EI> 
BY 84 MON OHS 01: DEVF.I OPMI:W 

Accident Year I Y8 I 

Claim Size Range 

Number 
of 

Claims 

$0 - $ I,000 
1,001 - 5 ,ooo 
5,001 - 10,000 

10,001 - 25.000 
2S,ool - 50.000 
50,001 - 100,000 

100,001 - 250.000 
250,001 - 500.000 
500,001 - I .ooo.ooo 

1,000,001 - 

Total 

IIX 
IX3 
x4 
86 
51 
26 
I7 
6 
2 
1 

456 

Average 
Cost 

$45’) 
2,707 
7,Y4Y 

17.1 I4 
3.5.679 
72,272 

151.062 
366.2YY 
685,736 

2.126.918 

Parameters of Fitted Lognormal Dictributions 
111 8.41 I 
s-srpured I.835 
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EXHIBIT 3 

Months of Reported 
Development Claims 

EXAMPLE CALCULATION OF CI.AIM COUNT 
EXPECTED VALUE AND APPROXIMATE VARIANCE 

Oto 12 463 
12 to 24 382 
24 to 36 369 
36 to 48 236 
48 to 60 198 
60 to 72 100 
72 to 84 74 

Total Reported 1,822 

Fitted Parameters (Weibull) 

Theta( 1) = 1.195 
Theta(2) = 37.077 

Approximate Parameter 
Covariance Matrix 
(Inverse of A(Theta)) 

0.00145 -0.02309 
-0.02309 1.63535 

Partial Derivatives 
of h with respect to 

Theta( 1) 0.152 
Theta(2) -0.00601 

Var(h) - 0.000135 

Additional Variance from 
Parameter Uncertainty 

599.01 

h = 0.930 
E(U) = 1,959 

Var(U) - 147.46 (Unadjusted for parameter uncertainty) 
Var(U) - 746.47 (Adjusted for parameter uncertainty) 


