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DISCUSSION BY SHOLOM FELDBLUM 

Actuaries have generally used the Poisson distribution to model accident 
frequencies for “repeatable” risks-that is, where more than one accident is 
possible in an exposure period. The reasons for this are both theoretical and 
practical. Theoretically, if the following conditions are true, then the Poisson 
distribution is indicated: 

1. The probability of exactly one accident in an infinitesimal unit of time 
dt is approximately equal to k dt, where k is a constant, during any 
interval of time in the exposure period. 

2. The probability of more than one accident in an infinitesimal unit of time 
is negligible compared to the probability of exactly one accident. 

3. The distribution is “memoryless”; that is, the numbers of accidents in 
distinct intervals of time are independent. 

Practically, the Poisson distribution is mathematically convenient in numer- 
ous ways: 

1. The mean and variance of the Poisson distribution are equal, so the 
variance may be estimated along with the mean from a simple averaging 
of raw results. 

2. Since the mean and variance are equal, their ratio is unity, a known 
constant. This makes “classical pure premium credibility” easier to cal- 
culate, as discussed by Mayerson, Jones, and Bowers [l]. 

3. The Poisson distribution is conjugate to the gamma, a distribution both 
convenient and realistic for modeling the mean accident frequency among 
individuals in a population. This makes Bayesian estimation of future 
mean accident frequency distributions particularly convenient. 

4. The Poisson claim frequency distribution can be combined with a claim 
size distribution to form a “compound Poisson” aggregate claim distri- 
bution. The compound Poisson distribution has advantages over other 
compound distributions. For instance, if the claim size distribution is 
discrete (or can be realistically modeled by a discrete distribution), the 
aggregate claim distribution can be determined by a recursive procedure, 
which facilitates the mathematics of determining this distribution [2]. 

Lester Dropkin’s paper complicates this simplified Poisson world [3]. He 
points out that if the accident frequency is Poisson distributed for each individual 
in a population, but the mean accident frequencies vary by individual, then the 
accident frequency for the population as a whole is no longer Poisson distributed. 
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In particular, if the mean accident frequencies among individuals are gamma 
distributed, and the accident frequency for each individual is Poisson distributed, 
then the accident frequency for the population as a whole has a negative binomial 
distribution. 

For the Poisson frequency, the mean and variance are equal. For the negative 
binomial, the variance is always greater than the mean. Using Dropkin’s nota- 
tion, the mean of the negative binomial is r/a, while the variance is r (a + 1)/a*. 
(In this notation, r is the scale parameter and a is the shape parameter of the 
underlying gamma distribution.) 

This analysis shows that the wider the dispersion of mean accident frequen- 
cies among individuals, the greater the variance of the total population accident 
frequency. For instance, suppose that the mean accident frequency for the 
population as a whole is 1; that is, r = a. For the underlying gamma distribution, 
the mean is air and the variance is air’; thus, the ratio of the variance to the 
square of the mean is l/u. That is, as a decreases, the values are more widely 
dispersed relative to the mean, and as a increases, the values are more closely 
situated to each other. By examining the variance of the negative binomial 
distribution, we note that as a decreases, the variance of the population accident 
frequency increases, and vice versa as a increases. 

Surprisingly, this result is not generally true. In life insurance, the accident 
frequency is generally modeled as a Bernoulli random variable, since at most 
one claim is possible per individual per exposure period. The mean death rate 
of the population, that is, the parameter of the Bernoulli random variable, may 
be determined from actual data by dividing the number who die at a given age 
by the number exposed in the population at that age. For example, if there are 
1,000 individuals at age 50 in the population, and 20 individuals die at age 50, 
then the mean death rate at age 50 is 2%.’ 

Using the actual data, we hypothesize that the mean death rate is 2%. 
Assuming also that the death rate is 2% for each individual, the variance of the 
death rate for each individual is (0.02) (0.98) = 0.0196. The variance of the 
estimate of the mean death rate is (0.02) (0.98)/1000 = 0.0000196. 

After reading Dropkin’s analysis, one may question this: since the individual 
death rates vary about 2%, and only average to 2% for the population as a 
whole, should not the population variance differ from 0.0196? Should it not be 

’ To be exact, we should assume that there is no migration; i.e., there are no new entrants or 
withdrawals at age 50. Thus, there were 1,000 individuals who attained age 50; 20 of these died 
during the course of the year; and 980 individuals attained age 5 I 
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similar to the Poisson case, where if the population mean accident rate is 2%, 
but the individual mean accident rates vary about 2%, the population variance 
is greater than 2%? 

The answer is no, as can be seen by a simple example, as well as by a more 
formal mathematical proof. Suppose there are two individuals, with a mean 
population death rate of 50%. Assume two cases: 

1. Each individual has a death rate of 50%. 
2. One individual has a death rate of 75%, and the other individual has a 

death rate of 25%. 

For each case we determine the first two moments for each individual, the 
moments of the “mixture” distribution, and the variance of the “mixture” dis- 
tribution. 

1. Each individual has a death rate of 50%. For each individual, both the 
first and second moments are 0.50, and so the first and second moments 
of the mixture distribution are also 0.50. Therefore the variance of the 
mixture distribution is 0.50 - (0.50) (0.50) = 0.25. 

2. One individual has a death rate of 75%, and the other individual has a 
death rate of 25%. For the first individual, the first and second moments 
are 0.75$ while for the second individual, they are 0.25. Therefore, the 
first and second moments of the mixture distribution are 0.50, and the 
variance is 0.25. 

The general proof follows the same reasoning. Suppose each individual has 
a mean death rate of pi, and over the population as a whole these average to 
m. Then the second moments for each individual are also pi, and over the 
population as a whole these also average to m. Therefore, the variance of the 
population mean death rate is m (1 - m). 

The Bernoulli distribution allows only one occurrence, while the Poisson 
distribution has no limit on the number of occurrences. What if the number of 
possible occurrences is finite but is greater than one, such as with the binomial 
distribution?* 

’ The following result for the binomial distribution was shown to me by Dr. Rodney Kreps, an 
actuary at Fireman’s Fund Insurance Companies. 
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Theorem: Suppose the accident frequency is modeled by a binomial distribution 
with parameters pi and n, i.e., 

“f(x) = (:) pr (1 - p;)‘i-X 

Further, suppose n is fixed for all individuals in the population, but pi varies 
according to a p.d.f. g(p), which has mean m and variance 3’. For each 
individual, the mean is n pi, and the variance is n pi (1 - pi). For the population 
as a whole, the mean is n m, and the variance is n m (1 - m) + s2 n (n - 1). 

Proof: For each individual, the mean is n pi, and the second moment is n pi - 
n pz2 + n2 pi*. 

Therefore, the mean for the population is 

i 

I 
(n P) g(p) dp = n m. 

0 

The second moment for the population is 

i 
o’ (n p - n p2 + n2 P’) g(p) dp 

= n m - n SM + n2 SM (where SA4 is the second moment of g(p)) 
= n m + n (n - 1) (Sk2 - m2) - n (n - 1) m2 

Subtracting the square of the mean, we get 
= n m (1 - m) + n (n - 1) s2, which is the desired result. 

Thus, the more that the number of possible occurrences for each individual 
(n) increases, the more the variance for the population as a whole depends upon 
the variance of g(p). 

A useful application of this result is in Bayesian estimation. Generally, in 
performing a Bayesian estimation, the accident frequency is chosen as Poisson 
or binomial, and the prior distribution as gamma or beta. However, the problem 
of selecting the parameters of the prior distribution can be serious, and the 
choice of these parameters will influence the resultant posterior distribution [4]. 

The above result provides a method of selecting parameters. Suppose the 
binomial distribution is chosen for accident frequency, with a given n. Then if 
the population mean is II, the mean of the prior distribution of the pi is 
u/n = m. Similarly, if the variance of observed results is VXR, the variance of 
the prior distribution of the pi is 
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s2 = (VAR - n m (1 - m)) / (n (n - 1)). 

Given these values of m and s*, the two parameters of the prior beta distribution 
are easily determined. 

This discussion may help clarify two apparently misleading items in Drop- 
kin’s paper. First, Dropkin’s criterion for choosing whether to model accident 
frequency by a Poisson or negative binomial distribution is the observed relation 
of the population variance to the population mean. If the population variance is 
approximately equal to the binomial variance, i.e., p (1 - p), where p is the 
population mean, then use a Poisson distribution; if it is significantly larger, 
then use a negative binomial distribution. 

Presumably, this criterion should be, “If the population variance is approx- 
imately equal to the Poisson variance, i.e., p, where p is also the population 
mean, then use a Poisson distribution .” Dropkin’s statement at first seems 
logical if he is referring to the probability of having one or more accidents, 
rather than to the number of accidents per exposure unit. But then the accident 
frequency is a Bernoulli distribution, and the population variance will be inde- 
pendent of the underlying distribution of mean accident frequencies. 

Second, Dropkin implies that the only choices for modeling the accident 
frequency are the Poisson and the negative binomial. He shows that his data 
has a variance and mean incompatible with the Poisson distribution, and he 
concludes: 

We can, however, go further. Since a Poisson distribution is not indicated for 
the distributions by number of accidents, a negative binomial is indicated [3]. 

This is hardly so. His actual data only indicates that the Poisson distribution 
does not provide a perfect fit. It in no way indicates that a negative binomial 
distribution is better than other two-parameter distributions. The negative bi- 
nomial distribution is only “indicated” if one assumes that each individual has 
a Poisson accident frequency and the mean accident frequencies among individ- 
uals are gamma distributed. One may test this by calculating the third moment 
of the observations and comparing it to the hypothetical third moment of the 
negative binomial distribution; unfortunately, Dropkin does not do this.3 

3 George Phillips, an actuary with the Transamerica Corporation, has recommended to me that use 
of other statistical methods, such as percentile matching, may give better results than examination 
of the third moment. 
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Other users of Dropkin’s results have adopted this reasoning, such as May- 
erson, et al., in “On the Credibility of the Pure Premium” [l] (though since the 
authors’ purposes there are heuristic and not intended for practical applications, 
one can hardly fault them). They take the first two moments from Dropkin’s 
accident frequency distribution, assume that it can be modeled by a negative 
binomial distribution, and calculate the third moment. But until one compares 
the derived third moment with the observed third moment, there is no evidence 
that the negative binomial provides an appropriate model. (I must reiterate, 
though, that the purpose of this paper is only to show how to apply a theory, 
not to provide firm credibility tables, and for such heuristic purposes, the 
assumptions are entirely plausible.) 

To sum up: the Poisson distribution is a theoretically appealing model for 
accident frequencies for each individual. The accident frequency distribution 
for the population as a whole will depend upon the distribution of mean accident 
frequencies among the individuals in the population. The negative binomial 
distribution for the population accident frequency is indicated only if the indi- 
vidual mean accident frequencies are gamma distributed. The form of the mean 
accident frequency distribution may depend upon the line of insurance, class of 
risk, and so forth; in any case, there is no easy way to test it. Rather, one may 
test the first three (or more) moments of the observed results. In Dropkin’s 
case, the first two moments provide the parameters of the negative binomial 
distribution as well as of the underlying gamma distribution. The observed third 
moment would then test whether the negative binomial provides an appropriate 
model. If not, a different two parameter population accident frequency distri- 
bution may be assumed. If the individual accident frequencies are Poisson 
distributed, this implies an underlying distribution of mean accident frequencies 
among individuals that is not gamma. Once more, the observed third moment 
can test whether this population accident frequency model is appropriate. 

Of course, the more complex the distribution chosen, the better it may agree 
with observed results, but the less mathematically tractable it may be-and a 
mathematically intractable model is hardly useful. A great advantage of the 
Poisson distribution is its simplicity; the negative binomial distribution is also 
quite versatile. Nevertheless, there is a need to test the hypothetical models, to 
strike a balance between simplicity and accuracy. 
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