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REGRESSION MODELS IN CLAIMS ANALYSIS I: THEORY 

GREG C. TAYLOR 

Abstract 

This paper considers the application of regression techniques to the 
analysis of claims data. Examples are given to indicate why, in certain 
circumstances, this might be preferable to traditional actuarial methods. 

The various errors of prediction which occur when loss reserves are 
estimated by regression are classijied and discussed. 

Formal procedures are discussed for determining which of the avail- 
able predictors will be entered into a regression, and the drawbacks of 
these procedures. 

Various approaches to the estimation of uncertainty associated with 
loss reserves estimated by regression are considered. 

The effect on regression techniques of outlying data points, and hence 
the subject of robustlresistant regression, is considered brie$y. 

1. INTRODUCTION 

Regression models have not been prevalent in claims analysis leading to 
loss reserving. This is evident from a survey of claims reserving methods 
(Taylor, [23]). 

The scarcity arises from the suspicion with which many actuaries regard 
such models. Their use does not have the “hands on” nature characteristic of 
methods based on age-to-age factors, for example, with which actuaries tend to 
feel at ease. There is a feeling of abstractness and loss of control in the estimation 
of parameters from the data. 
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This skepticism is justified by the countless misapplications of regression 
methods which occur in practice. Despite this, it appears that regression tech- 
niques have a very definite place in the actuarial repertoire. But they will serve 
their users effectively only if it is realized that blind and mechanical application 
of simple least squares regression will, in certain circumstances, be statistically 
inefficient. 

In these circumstances, regression becomes a delicate tool rather than the 
crude bludgeon as which it is often regarded, and in which role it is even more 
often used. A proposition which is all too often neglected in practice is that a 
user can expect effective performance of any body of methodology only if the 
user is aware of its general properties, its strengths and weaknesses, the circum- 
stances in which it should and should not be applied, the response of its output 
to input anomalies, the whole array of quirks and pitfalls awaiting the unwary, 
how to “tune” the model building procedure for maximum results, and so on. 

The intention of this paper is to canvass briefly the various aspects of 
regression modelling. Within this larger purpose, there are two intentions. First, 
some of the grosser abuses of such modelling will be suitably exposed. Second, 
from a more positive viewpoint, it is hoped that the exposure of the causes of 
anomalous regression output will set the procedures in a perspective from which 
their beneficial aspects can be more clearly seen. 

The following sections deal very briefly with such questions as: 

(i) Why use regression models as opposed to the “traditional” actuarial 
ones such as those using age-to-age factors? 

(ii) Precisely what criteria are to be satisfied, and how should the extent to 
which they are satisfied be assessed? 

(iii) How many of the available predictors should be included in a regression 
model, .and how should the choice be made? 

(iv) What procedures, other than ordinary least squares regression, are 
available for fitting the selected model to data? 

(v) How might the impact on the fitting of isolated rogue data points be 
assessed, and how might the fitting procedures be modified to reduce 
this impact? 
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2. MOTIVATING EXAMPLES 

Consider first a relatively complex example. A simpler one will be presented 
shortly. 

In what follows, let 

i= 
j= 

Ni = 
Nij = 
co = 
Sij = 
Fij = 

tjo’) = 

iii(k) = 

year of occurrence of claim; 
development year, i.e., number of years after year of occurrence; 
number of claims incurred in year of occurrence i; 
number of claims settled in (i,j); 
amount of claim payments (adjusted for claims escalation) in (i,j); 
C,/N, = average claim payment per settlement in (i,j); 
Nii/Nf = rate of settlement in (ij); 
c’,=, Nik/Ni = proportion of claims from year of occurrence i settled 
by the end of development year j; 
min(*[tQ) + ti(j + I)]& for some partition {uO, . . . , ~1,+~} of 
ro,11. 

Suppose that the following model has been suggested: 

Sij = a + 2 b&(k) + clFG + eq, 
k=O 

(2.1) 

where a, bo, . . , b,, and c are unknown parameters and eti is a random error 
term. This is the invariant see-saw model (Taylor, [22]). 

Formula (2.1) expresses Sg as a linear function of the observations iii(O), 
. . . ) &i(n), l/Fij and a random error. Evidently, the unknown parameters may 
be determined by some form of linear regression of the S, on these observations. 

Indeed, how else might the parameter estimation be carried out? Note that 
the parameter values a, bo, . . . , b,, c are common to all cells (i,j). In contrast 
with the example below involving age-to-age factors, there is no simple trans- 
formation of the dependent variable SG which will isolate any one of the 
parameters. 

In this example, the very “shape” of the model, the intertwining of dependent 
and independent variables, virtually demands regression for parameter estima- 
tion. 
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In the next example, a much simpler model is considered but the situation 
is somewhat subtler. Using the same notation as before, let 

Cc = NiUirj + e+ 

where 

(2.2) 

ui = average claim size (adjusted for claims escalation) experienced in year 
of occurrence i; 

rj = the average proportion of claim payments (again adjusted for claims 
escalation) deriving from year of origin i which are payable in devel- 
opment year j. 

The model (2.2) may be rewritten in the form: 

log Cij = log (NiUi) + log rj + fj, (2.3) 

wherefi, is a new random error term. The transformed model (2.3) is linear in 
the parameters log (Niui) and log Vj which may therefore be estimated by 
regression methods. This indeed is the basis of Kremer’s [13] ANOVA ap- 
proach. 

Note also, however, that (2.2) is the prototype for development of age-to- 
age factors (e.g., Skumick, [20]; Berquist and Sherman, [3]). This is because 
it implies 

Ci,j+r/Cij = rjtlirj + error term, 

or more commonly, 
j+l 

Ai,j+liAg = 2 rki 5 rk + error term, 
k=O k=O 

where 

Au = i Cik = total claim payments (adjusted for 
k=O 

(2.4) 

(2.5) 

claims escalation) made in respect of year of occurrence i 
up to the end of development year j, 

j+l 

and the rj+rlrj in (2.4), or the 2 t-k/ i rk in (2.5), are the age-to-age factors. 
k=O k=O 

This example is subtler than the previous one in the sense that one has a 
choice as to the method of estimation of its parameters. This choice should be 
made against reasonable criteria, and therefore one needs to specify these. 
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Consider, for example, the following three possibilities: 

(i) proceed with regression estimation of the log (NiuJ and log rj via (2.3) 
after appropriate specification Of fij; 

j+l 

(ii) ignore the error term in (2.5) and estimate x rk/ $ rk 
k=O k=O 

by Ai.,+ 1IAij; 

(iii) assume the vector (log t-0, log t-1, . . .) to lie within some finite- 
dimensional vector space spanned by gr, gz, . . , g, where g, = (g,o, 
gm1, . . .), and so use regression methods to fit the following adaptation 
of (2.3): 

log Ci, = log (NiUi) + x bmgmj + Jj. (2.6) 
m=l 

It is instructive to consider the number of parameters to be estimated in each 
case. 

In case (i), there are I + J - 1 parameters if I values of i are considered 
and rj is assumed zero for j = J, J + 1, etc. The - 1 arises from the constraint 

ki$o rj= 1, (2.7) 

by definition. 

In case (ii), there are again I + J - 1 parameters, the only difference 
between the two cases being that the former approaches parameter estimation 
in a formal manner whereas the latter takes an ad hoc approach. 

In case (iii), where the g,,, are fully specified in advance, the parameters b,, 
. . . , b, and the log (N,ui) number just I + S. 

Note that in the last case the number of parameters is independent of J. This 
contrasts with the first two cases in which increasing J without limit increases 
the number of model parameters also without limit. For example, consider the 
case I = J = 10, s = 3. The numbers of model parameters are: 

Case (i): 19 
Case (ii): 19 
Case (iii): 13. 

Case (iii) involves only two-thirds as many parameters as cases (i) and (ii). 
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Note that the number of parameters in case (iii) may be reduced further by 
treating the log (Niui) in the same way as the log rj and representing them in 
some vector space of reduced dimension. 

Every actuary is aware, intuitively at least, of the dangers of over fitting, 
i.e., fitting a model involving more parameters than are justified by the volume 
of available data. Generally, the fitting of models which are parsimonious in 
their use of parameters smoothes out the roughness inherent in the raw obser- 
vations. Increasing the number of model parameters diminishes this smoothing 
effect until ultimately, when there are enough parameters that they are in one- 
to-one correspondence with the observations, the instability of the parameter 
estimates is equal to that of the observations themselves. 

Many actuaries have a distaste for models like (2.6) on the ground that the 
parameters b, under estimation are too abstract, that they do not correspond 
sufficiently with real world objects. This is what I meant in referring at the start 
of Section 1 to the “hands on” nature of the more traditional actuarial models. 

The formal objection to models such as (2.6) is likely to take the form: 
“What if basis vectors bl, . . . , b, cannot be found (for s sufficiently small to 
be useful) which capture the more subtle features of the rj?” 

The answer is that any such losses of accuracy cannot be considered in 
isolation from possible gains in stability accruing from a reduction in the number 
of model parameters requiring estimation. In formal terms, the approximation 
of (2.3) by (2.6) may introduce some bias into the model, but this bias must 
be weighed against any reduction in variability of the model’s predictions. 

The distaste for abstraction that individuals may experience is perhaps un- 
derstandable, but ultimately the relative merits of competing models must be 
assessed by the models’ objective performance, rather than the users’ preferences 
or prejudices. 

The above remarks concerning questions of bias versus stability do no more 
than state the intuitively obvious. However, it is possible, and useful, to for- 
malize the concepts involved so that model selection (such as the choice between 
cases (i), (ii) and (iii) dealt with above) can proceed on a more rigorous basis. 

These matters are pursued in Section 4. A helpful preliminary to this is an 
examination and classification of the types of error that arise in the prediction 
of future observations on the basis of a model fitted to past data. This forms 
the subject of Section 3. 
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3. ERRORS OF PREDICTIONS 

3.1. Illustrative example 

Again it will be useful to consider an example which is highly simplified 
but nevertheless illustrative of the wrong turns that can be taken in a slipshod 
approach to errors of prediction. Though oversimplified, the essence of the 
model corresponds to some of the approaches which I have seen in practice. 

Suppose it is assumed for the model (2.2) that: 

V[Cgl{U,, rj}] = NdCT2, 

where o2 is independent of both i and j. 

(3.1.1) 

Suppose also, that estimates Lii, 3 of the ui, rj have been obtained in the 
manner described in case (ii) of Section 2. Hence, estimates C, corresponding 
to the observations C, have been found. More particularly, though, predic- 
tions Pi = EJEr+i C, have been obtained of the future claim payments 
Pi = Eg,+, Cij arising from year of occurrence i, where C’ir is the latest observa- 
tion on that year of occurrence. 

Suppose that one seeks: 

V[Bi] = g V[e,] + covariances. 
j=T+ L 

(3.1.2) 

In practice, the estimation of the covariances may prove awkward. However, 
let us concentrate for the moment on some of the pitfalls involved in the 
estimation of the V[cJ. 

An argument that seems to appeal to some practitioners begins by consid- 
ering the scaled residuals (C, - Co)/Nj’2z&. If C, is regarded as replaceable by 
E[Cij], assuming C, to be unbiased, the squares of these residuals become 
estimators of u2, i.e., 

6’ = n-’ C [(Cij - ~~j)‘/N;lii’], 
i,j 

(3.1.3) 

the summation running over the 12 pairs i,j for which observations exist, and 
perhaps with some reduction of n to reflect loss of degrees of freedom. The 
required estimate of V[eij] can then be obtained by means of (3.1.1) as: 

n-‘Ni&? 2 [(Ck, - C?kJ21N&I. 
k, i 

(3.1.4) 
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While this procedure may appear a reasonable practical solution to the 
problem, uncluttered by the quibbles of purists, it is suggested that it is in fact 
far from the truth. It is suggested further to contain a major error of reasoning 
likely to carry substantial numerical consequences. V[Pi] is not even the second 
moment of interest. Even if it were, material contributions to it have been 
omitted. 

Essentially, the difficulties arise from the cavalier approach to the problem. 
A more careful and organized approach is required. 

3.2. Component errors of prediction 

To achieve the requirement of the previous subsection, let us drop the 
particular problem we have been considering and consider a generalized problem 
instead. Let Y denote an observable n-vector whose ith component is, apart 
from random noise, some function of observable quantities Xii, . . . , Xi,: 

Y = f(x, + e, (3.2.1) 

where X is the n X p matrix with XV as (i&-element, f: RnP * R” has the 
particular (possibly non-linear) form described above, and e is a random error 
term with zero mean. 

Suppose that the functional form f is unknown in this context and consider 
linear approximations Xb to f(X) where b is a p-vector of parameters. Then 
(3.2.1) becomes: 

Y = Xb + Lf(X) - Xb] + e. (3.2.2) 

Suppose further that the exact set of independent variables on which Y 
depends (the columns of X) is unknown, and that as a consequence Y is modelled 
as a linear function of a subset of Y, i.e., Yi is modelled by: 

E X$j (3.2.3) 
jEA 

for some AC { 1, 2, . . . , p} instead of by 5 Xobj. 
j=l 

Let (3.2.3) be denoted by XAbA, whereupon (3.2.2) decomposes as: 

Y = XAb,zj + XBbe + [f(x) - Xb] + e, (3.2.4) 

where B denotes the set (1, 2, . , , p} - A. 
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Let 6j denote the regression estimate of bj, where the term “regression 
estimate” is deliberately left vague for the moment. Let X* denote an m X p 
matrix, each column of which represents m further values of the relevant 
predictor. The task is to predict the m-vector 

Y* = f* (x*) + e”, 

where now?: RmP * R”. 

(3.25) 

Corresponding to (3.2.4): 

Y* = XxbA + Xsbe + If*(X*) - X] + e* 

Let Y* be the regression prediction of Y*: 

P* = x36.4, 

so that the prediction error is: 

(3.2.6) 

(3.2.7) 

Y* - P* = XJ(b,., - &J + XSbs + v(X*> - x] + e* 

= X$(E& - &,) + [XJ(b/, - E&A) + Xj$bB] 
+ p(x*) - x] + e”. (3.2.8) 

In many applications X represents observation of the predictors in the past, 
and X* represents values to be assumed by the same predictors in the future. 

At this point it is convenient to stop and consider the components of 
prediction error appearing on the right side of (3.2.8). They are: 

(i) the specijcation error p(X*) - x] essentially due to unmodeled 
nonlinearity; 

(ii) the selection error [X3bB + X;$(bA - EVA)] due to incorrect selection 
of predictors; 

(iii) the estimation error X2(E6A - 6A) arising from the fact that even the 
most efficient estimators of the regression coefficients are still only 
random variables; and, 

(iv) the statistical error e* reflecting the inherent random noise in the 
process. 

The terminology in (i), (iii), and (iv) is taken from Bartholomew [2]. The 
terminology in (ii) is taken from Miller [ 151. 

By the first version of (3.2.8), it might appear simpler to regard 
X,$(bA - 6A) as estimation error and XebtT as selection error. Note, however, 
that the selection of the set A of (linear) predictors instead of AUB introduces 
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a bias in 6~ as estimator of bA. For example, in the case of ordinary least 
squares regression with no specification error, 

6.4 = (X~XJ’X~Y, 

whence (3.2.4) yields 

E&I = bA + (X:X,& ’ X:XBbs. (3.2.9) 

In the case of claims analysis, it is possible to characterize the four contri- 
butions to prediction error as follows. 

In the fitting of a model to past claims data, the wrong algebraic model 
structure may be chosen. This will lead to specification error. 

Suppose that the true underlying model is in fact linear, and all of the 
relevant predictors are identified, so that there is no specification error. Still it 
will usually be necessary to use past data (incorporating its random noise) to 
decide which of the available predictors are included in the model. The noise 
in the process may lead to wrong decisions; relevant predictors may be omitted, 
and irrelevant ones included. This will result in selection bias. 

Suppose that the true underlying model is linear and is correctly selected, 
so that there is neither specification nor selection error. Still it will be necessary 
to estimate the parameters of the linear model by reference to past data. As 
these data contain random noise, so will the parameter estimates. The deviation 
of these estimates from their true values constitutes estimation error. 

Suppose that, by some unspecified means, it were possible to select the 
correct (linear) model form and estimate its parameters precisely, so that there 
were no specification, selection, or estimation error. Even then future claims 
experience could not be predicted with precision because the inherent random- 
ness of the claims process would generate deviations of experience from ex- 
pected values. These deviations constitute statistical error. 

3.3. Prediction bias and mean square error of prediction 

Let us now consider the prediction bias Ef* - EY* and the mean square 
error of prediction (MSEP) 

E(Y* - f*)2 = E(Y* - f*)=(Y* - f*). 

By (3.2.6) and (3.2.7) the prediction bias is: 

Ef” - EY* = XA(E& - bA) - XB - p(X*) - Xl. (3.3.1) 
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In finding an expression for the MSEP, it will be advantageous to decompose 
the prediction error as: 

y* - f* = (y” - Ey*) - (f* - EPY) - (Ep* - Ey”) 

= (Y* - EY*) - (Y* - EY*) - prediction bias. (3.3.2) 

In any form of linear regression of Y on X A, Y* and Y* will be uncorrelated 
(easily checked from first principles since the former depends on future obser- 
vations and the latter on past), so that (3.3.2) yields: 

MSEP = E(Y* - EY*)2 + E(E” - .!?I;*)* + (prediction bias)’ 

= E(e*)* + E[X*(~A - E6,)]* + (prediction bias)*, 

by (3.2.5) and (3.2.7). 

(3.3.3) 

The MSEP is thus seen to comprise three identifiable contributions deriving 
from: 

(i) statistical error; 
(ii) estimation error; and, 

(iii) prediction bias (incorporating specification error and selection error). 

It is convenient at this point to revert to the example of Section 3.1, recalling 
particularly the critical remarks made at the end of that section. 

With the benefit of the more formal analysis of Section 3.2 and the present 
subsection, it is possible to recognize that the expression (3.1.4) for V[pJ is 
essentially only estimation error. Both statistical error and prediction bias are 
omitted. 

3.4 Components of selection error 

Section 3.2 defined selection error as the term [X8& + Xj(ba - E6A)] in 
(3.2.8). As seen in (3.3. l), this is the part of prediction bias not arising from 
nonlinearity. It was shown in Section 3.2 that the first member represents the 
bias introduced directly by the omission of the set B of predictors; the second 
member is the bias in 6A arising from this omission. 

It must now be recognized that E6A has been implicitly regarded as an 
unconditional expectation in the above. This would be appropriate if the set A 
were chosen without reference to the data Y. In practice, however, and partic- 
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ularly in claims analysis, this will not be the case. Usually, A will be chosen 
because it produces a better fit of model to data than certain other sets. 

In this case, 

-& = E[6~lPl + {E& - EhjPl), (3.4.1) 

where EhA is now explicitly the unconditional expectation of 6* and P denotes 
the procedure for subset selection. Substitution of (3.4.1) in the expression for 
selection error given at the start of this subsection yields: 

selection bias = Xsbs + XJ{bA - E[~A\P]} + Xx {E[~AIP] - E&A}. (3.4.2) 

There are now three contributions to selection bias: 

(i) omission bias, consisting of the first two members on the right of 
(3.4.2), and representing the bias due to the omission of the set B of 
predictors; 

(ii) stopping rule bias, consisting of that part of the final member of (3.4.2) 
which arises from the limitation imposed by P on the number of 
predictors included in A; and 

(iii) competition bias, consisting of that part of the final member of (3.4.2) 
which, for a given size of set A, arises from the manner in which P 
selects A from subsets of AUB of that size. 

These components of selection error are discussed in some detail by Miller [ 151 
(pp. 400-405), who gives various other references. 

Miller also gives a simple example of competition bias in a case in which: 

(i) AUB consists of just 2 predictors; 
(ii) A consists of just a single predictor; 
(iii) P consists of selection of the single predictor according to ordinary 

least squares; 
(iv) E&i = 1 and V[&] = V[&]; and, 
(v) the size of the sample of observations is large (presumably, results will 

be worse otherwise). 

Values of E[&]variable 1 selected] are calculated for varying values of E&, 
Vl64, and c[& ,621, and range from 1.02 to 1.53, compared with E61 = 1. The 
value of ~[6~1 variable 1 selected] increases with increase in each of the variables 
E62, V[bi], and C[61,62]. 
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Thus, it is apparent that selection bias may be substantial. Miller suggests 
a number of possible remedies for competition bias, though not for stopping 
rule bias. They are: 

(i) using half of the data to select predictors and the other half to fit the 
model; 

(ii) using jackknife or bootstrap methods (see Section 5 of this paper); 
(iii) using shrunken estimators of the ridge or Stein type; 
(iv) using simulation to estimate bias; or, 
(v) using maximum likelihood estimation of regression coefficients, taking 

the subset selection procedure P into account in the likelihood. 

4. SUBSET SELECTION 

4.1. General 

Consider the method by which the subset A of predictors (in the terminology 
of Section 3) might be chosen. What criterion might be adopted? 

Starting at the most naive end of reasoning, consider (3.2.8) and the iden- 
tification of the different types of prediction error in the passage immediately 
following. If all available predictors are included in A, then B is empty and 
selection error falls to zero. 

However, such a suggestion is likely to introduce the very practical problem 
(and, we shall see shortly, the theoretically objectionable fact) that the number 
of predictors runs literally into hundreds. Moreover, the evidence may be that 
the majority are statistically insignificant. 

Alternatively, then, one might consider including in A only those predictors 
which can be demonstrated as statistically significant, and specifically as sig- 
nificant not only in isolation but also in conjunction with the other members of 
A. This, typically, is the type of procedure followed by stepwise regressions 
(Efroymson, [6]). 

Certainly, this alternative procedure might reduce selection error to quite 
tolerable levels. It is necessary to recognize, however, that reduction of this 
type of error does not of itself result in efficient prediction. High efficiency in 
fact requires a low MSEP. 

Recall from (3.3.3) and the text just following it that the MSEP consists of 
three components, only one of which is selection error. Of the remaining two, 



REGRESSION 361 

statistical error is independent of the model selected. Hence, an examination of 
the prediction efficiency of various models amounts to an examination of the 
respective effects of increasing the number of predictors on: 

(i) selection error (as noted above, this decreases); and, 
(ii) estimation error. 

It turns out that, broadly, estimation error increases as the set of predictors 
increases. This is intuitive. The more predictors that need to be fitted to a fixed 
number of data points, the more difficult the fitting becomes. As the number of 
predictors becomes too large, the phenomenon of over fitting mentioned in 
Section 2 becomes more in evidence. 

In the extreme case in which the numbers of data points and predictors are 
roughly equal, the whole fitting procedure is concentrated on achieving adher- 
ence of the model to past observation. The model is then being fitted to the 
random noise of past observation as well as the underlying signal, with conse- 
quent loss of predictive power. That is, estimation error is increased. 

The opposite effects on selection error and estimation error of increasing 
the number of predictors are illustrated by Exhibit I. 

ERROR 

I PREDICTORS 
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This indicates the existence of an optimal subset of available predictors in 
the sense of minimizing MSEP. The next couple of subsections deal with simple 
statistics aimed at facilitating the selection of the subset which is optimal or, 
more realistically, which is not too far sub-optimal. 

4.2 Mallows’ C, statistic 

Consider once again the situation introduced in Section 3.2, but assume now 
the underlying algebraic structure f(.) in (3.2.1) is linear. In this case (3.2.2) 
becomes: 

Y=Xb + e, (4.2.1) 

where, as before, e has zero mean, and is further assumed to have stochastically 
independent components all with equal variance cr’. 

Recall the decomposition of MSEP: 

E(Y* - Y*)’ = E(Y* - EY*)’ + E(Y* - EY*)’ + (prediction bias)2. 
(3.3.3) 

A somewhat simplified version of this is: 

A = E(EY* - Y*)’ = E(Y* - Ep*)’ + (prediction bias)2 

= estimation error + prediction error. (4.2.2) 

The left side of (4.2.2) is a measure of deviation of the expected values of 
future observations from predictions, whereas MSEP is a measure of deviation 
of the actual values of future observations from predictions. 

The difference between the two measures is the statistical error E(e*)*. Since 
this is independent of the model chosen, subset selection according to minimum 
MSEP is the same as minimizing A. This is the basis of Mallows’ C, statistic 
introduced by Mallows [ 141 and discussed by Seber ([19], pp. 364-369). 

In the following, let a subscript q indicate that the quantity under consid- 
eration relates to a model based on q of the available predictors (one of them 
representing a constant term, i.e., a constant column of X). Seber shows that: 

As = qo* + (I’@;, (4.2.3) 

with PB denoting prediction bias 
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NOW the usual definition of residual sum of squares (RSS) is: 

RSS = (Y - fi2, 

and as is well-known, 

E(RSS,) = (n - q)a2 + (PB);. (4.2.4) 

By (4.2.3) and (4.2.4), 

E(RSS,) + (2q - n)u* = A4. 

Therefore, if 

C, = RSS,i62 + 2q - n, (4.2.5) 

with b2 a suitable estimator of 02, C, will be an approximately unbiased 
estimator of A,/o*. Then minimization of MSEP, equivalently of A4, will be 
approximately achieved by selection of the subset of predictors which minimizes 
C, defined by (4.2.5). 

In the case in which the number of predictors included in the model is 
denoted by p (recall that this symbol has been reserved for the total number of 
available predictors), (4.2.5) becomes C,. This is the name by which it is 
usually known-Mallows’ C, statistic. 

4.3. Breiman and Freedman S, statistic 

Breiman and Freedman [4] consider a situation similar to that of Section 
4.2. In their case, however, the elements of the design matrix X in (4.2.1) are 
random variables. 

It is assumed, in addition to the assumptions of Section 4.2, that e and the 
columns of X are jointly normal with zero mean and that e is stochastically 
independent of the columns of X. As before o* denotes V(e*), and in addition 
we adopt the notation: 

a; = vrxd%lx.41, (4.3.1) 

where Xa, XB, have the same meaning as in Section 3, the set A now containing 
q predictors. 
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Just as in Section 4.2, the quality of the regression is assessed by reference 
to the MSEP, though in the presence of random variation of X this requires 
further definition. Breiman and Freedman define 

MSEP = E[E[(Y* - I’*)‘)X, yl], (4.3.2) 

where the outer expectation operator is unconditional, i.e., averages over the 
data X, Y. The algebra is developed in terms of the case m = 1 (i.e., the vector 
Y* has a single component) though this does not result in any loss of generality 
in the S, statistic presented below. 

The algebraic development is rather similar to that of Section 4.2. The 
extended MSEP (4.3.2) may be written in the form, parallel to (3.3.3): 

MSEP = statistical error + E[estimation errorlX,YJ 

+ E[(prediction bias)*]X,Y]. (4.3.3) 

Now, apart from the averaging over data, the final two terms of (4.3.3) are 
those appearing as A on the right side of (4.2.2). Hence, (4.3.3) becomes: 

MSEP = a2 + E[(P@2]X,yl + E[estimation errorlX,Y] 

= u2 + a; + E[l& - EfGl)=x~xAt&l - -&4)~X,Yl, (4.3.4) 

where use has been made of (4.3.1). 

With a little further development, Breiman and Freedman show that: 

MSEP = (a2 + a;) [l + q/(n - 1 - q)]. (4.3.5) 

The first bracketed term on the right is estimated by (n - q)-l(RSS), whence 
MSEP is estimated by 

S, = (n - q)-‘(RSS)[l + q/(n - 1 - q)]. (4.3.6) 

The paper by Breiman and Freedman goes on to demonstrate certain optimality 
properties of S,. 

In the case in which the number of predictors included in the model is 
denoted by p (recall that in the present paper this symbol has been reserved for 
the total number of available predictors), (4.3.6) becomes S,. This is the name 
by which it is usually known-Breiman and Freedman S, statistic. 

In application of S,, the subset of regression predictors is selected from 
those available in such a way as to minimize S,. 
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The choice between C, and S, in regressions arising from claims analysis is 
not always easy. In the first example of Section 2, the values entering the design 
matrix, iij(k) and l/Fg will indeed be random variables, as allowed by S, (but 
not C,). On the other hand, however, their mean values will be necessarily non- 
zero, contrary to the assumption underlying S, (but not C,,). 

This will be particularly true of any constant term in the regression equation, 
such as a in (2.1). It is perhaps desirable to examine the behavior of both C, 
and S, as the subset of predictors entered into the regression is varied. 

Miller [15] (pp. 406-407) suggests in strong terms that the efficacy of 
stopping rules such as those based on C, and S, is very much limited by the 
existence of competition bias (Section 3.4): 

“the vast literature on stopping rules . . is an irrelevant academic exercise 
until the problems of estimation have been overcome.” 

He points out that competition bias can easily be of the order of two standard 
errors when the same data set is used for subset selection and parameter esti- 
mation. He provides a simulated example in which the true MSEP is compared 
with that estimated, ignoring competition bias, by the formula: 

MSEP (false) = [1 + (4 + 1)/n] RSSI(n - 1 - s), 

for a model containing q predictors and a constant term. The results were as 
shown in Exhibit II. 

4.4. Spj#tvoll’s goodness-of@ 

Spjotvoll [21] provides a test of the goodness-of-fit of one subset of predic- 
tors relative to another. This is dealt with in reasonable detail by Miller [ 151 
(pp. 397-399). 

Spjotvoll’s measure of goodness-of-fit is: 

(Xb - X,E6J (Xb - X.&A) = (Xb>=(Xb) - (Xbf X,4(x~x‘4>-‘XAT(Xb). 
(4.4.1) 

Since the first member of this last expression is independent of the subset of 
predictors selected, Spjotvoll chose to use just: 

(Xby xA(x;x,4- ‘xgxb). (4.4.2) 
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EXHIBIT II 
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NUMBEROF PREDICTORS 

Miller points out that, if goodness-of-fit is to be assessed for prediction 
purposes, (4.4.1) might reasonably be modified by the inclusion of a statistical 
error term. (See Section 3.2 for explanation.) Then (4.4.1) is replaced by: 

(Xb - X,s&)‘(Xb - X,6,) = (Xb)=(Xb) - (Xb)T X,(X:X,)-‘X;(Xb) 

- + u2 trace [XA(XiXJ’XAT], 

where a21 = Ve. This extra term is equal to qu2 (just as in (4.2.3)) when there 
are q linear predictors including a constant term, so that (4.4.1) is replaced by: 

(Xb - XA6,)*(Xb - XA&) = (Xb)T(Xb) - (Xbf X,(X:X,.,-‘X:(Xb) 

+ +J2, (4.4.3) 

and (4.4.2) by: 

(Xb)=X,(X:X.s,- ‘X,T(Xb) - qa2. (4.4.4) 

Note that (4.4.3) is identical to A, defined in (4.2.2) in the development of 
Mallows’ C, with the exception that in the latter case it is based on the future 
design matrix X* whereas (4.4.3) is based on the past X. 
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By (4.4.4), different subsets of predictors, say A4 and N, are compared by 
means of the statistic: 

GMN = (Xb)T[X,(XLX~)- ‘XL - XN(X;XN)-‘X;](Xb) - (qM - q,v)a’, 

= bTC.wvb - (qm - q,v)rr*, (4.43 

where CMN is the appropriate p X p matrix. We note that the final member of 
this expression was not used by Spjotvoll. 

Spjotvoll goes on (summarized by Miller) to develop maximum and mini- 
mum values for GiuN conditional upon b lying within a (1 - 01) confidence set 
of the form: 

Pr[(b - 6)‘Xrx’(b - 6) c k] = 1 - (Y, 

where 6 is the regression estimate of b in the full model. 

These limits on GM~ may be used to test whether A4 provides a significantly 
better or worse fit than N to the data. 

5. METHODS OF ESTIMATION OF SECOND MOMENTS OF LOSS RESERVES 

5.1. General 

This section will consider methods by which MSEP of loss reserves can be 
estimated. 

First note that this will not consist merely of estimating (3.3.3). Typically, 
Y* will be some vector of future claim payments, subdivided for example 
according to year of occurrence and development year. In such a case, the 
estimated loss reserve would be: 

lj = 1TF*, 

where 1 is an m-vector with every component equal to unity. 

Then (3.3.3) is replaced by: 

(5.1.1) 

MSEP(R) = lre(e*)’ 1 + l’,?Z[x*(6~ - &A)]* 1 + (prediction bias)2. 
(5.1.2) 

This last equation shows that the MSEP of loss reserve R consists of separate 
terms representing statistical error, estimation error and prediction bias respec- 
tively. 
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There is little that can be said as to the formal inclusion of the last of these 
components in any estimate of MSEP. To the extent that it is perceptible, it 
should be removed from the estimated loss reserve (i.e., first moment thereof) 
rather than allowed for in MSEP estimation. Some components of prediction 
bias, e.g., specification error (Section 3.2), are by their very nature, likely to 
defy any reliable formal evaluation. 

The usual situation is therefore that the first two members on the right of 
(5.1.2) can be evaluated in systematic manner, but only informal allowance can 
be made for the third, bearing in mind Miller’s remarks quoted in Section 4.3. 

There are several approaches to this evaluation. They are discussed in detail 
by Ashe [ 11. Brief details are given in the next few subsections. 

5.2. Parametric estimation 

The linear model (4.2.1) will be referred to here as the parametric model- 
parametric in the sense that the error term e is assumed to have certain (usually 
parametric) properties. 

If e is well-defined, then its parameters (e.g., 0’) may be estimated from 
the data, and hence the first two components of MSEP(R) in (5.1.2) estimated. 
Logically, this is straightforward even if the algebraic manipulation involved 
may be cumbersome occasionally. The algebraic details are provided by Taylor 
and Ashe [24]. 

The calculations involved in this procedure are quite manageable with just 
about any reputable regression package. Naturally, the results are reliable only 
to the extent that the parametric assumptions underlying the procedure may be 
relied upon. Care is therefore necessary in dealing appropriately with the co- 
variance structure of e. See, for example, the weighting procedure used by 
Taylor and Ashe [24] in their regressions. 

5.3. Jackknife 

The jackknife algorithm was introduced by Quenouille [17] and is now 
found in many standard texts, e.g., Mosteller and Tukey [ 161. The purpose of 
the algorithm was to reduce bias in parameter estimates based on limited data. 

An outline of the method is as follows. Suppose that some parameter 0 is 
estimated by a statistic S. This statistic may be a complicated function of the 
data. The precise properties of S are either unknown or difficult to compute. It 
is known, however, that the bias contained in S is of order n-r for sample size 
n. 
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Let S be denoted by S(n) for sample size n. Now, for each i = 1, 2, . . . , 
n, define Si(n) as the value of S based on the (n - 1)-sample obtained by 
deletion of the ith observation. Then define a pseudo-value: 

Pi(n) = d(n) - (n - 1) Sj(n), i = 1, 2, . , . , n. (5.3.1) 

By assumption, 

d(n) = 0 + a/n + o(n-‘). 

Hence 

/$i(n) = 0 + O(K’), 

and so 

F(n) = i Pi(n)/?2 = 0 + o(n-‘) + error term 
i=l 

(5.3.2) 

contains a bias of order less than n-l as an estimator of 8. 

The variance of P(n) is estimated by (Mosteller and Tukey, 1977, p. 135): 

{F2(n) - [P(n)l*}l(n - l), (5.3.3) 

where 

F*(n) = i P2(n)ln. 
i=1 

(5.3.4) 

This algorithm may be applied to the present context by setting S(n) equal 
to the estimated loss reserve obtained from a regression claims model based on 
n data points (a single data point being, for example, the observed claim 
payments in a given development year of a given year of occurrence). This can 
be generalized by taking S(n) to be the vector of loss reserves for the different 
years of occurrence; or the vector of claim payments projected for each of the 
years of run-off; or, indeed, any one of the many cross-sections which might 
be taken from the regression forecast of future cash flows according to year of 
occurrence and development year. 

In practical application, it might seem reasonable to adapt the jackknife 
estimates (5.3.1) to (5.3.4) to weighted regression. Possible replacement for- 
mulas are: 

Pi(n) = [WS(n) - (W - wi)Si(n)]/wi (5.3.la) 

where wi is the weight applied to observation i in the weighted regression and 
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F(n) = i VViP,(?Z)lW; 
i=l 

{P(n) - [F(n)]z} x ,g w?lW2 

P’(n) = i w;P’(n)lW. 
r=l 

(5.3.2a) 

(5.3.3a) 

(5.3.4a) 

Despite the seeming reasonableness of (5.3.la) to (5.3.4a), Ashe [l] (p. 
SIOS) points out that the response of the weighted jackknife to his particular 
numerical examples is wild. It is possible that the bias assumption underlying 
the jackknife is incorrect and that the adoption of unequal weights Wi magnifies 
this in P(n). Indeed, Miller [ 151 (p. 404) provides a semi-rigorous argument 
that competition bias is of order n-1’2, not n-’ as required for the jackknife to 
be valid. 

Ashe [l] (p. Sl 10) points out the usefulness of the pseudo-values in their 
own right as providing an indication of the influence of individual data points. 
A deviant value of pi(n) indicates that the whole regression is strongly influenced 
by data point i. Further discussion of the influence function and the appropriate 
response to it will appear in Section 6. 

There are two shortcomings of the jackknife. 

First, the entire procedure is dependent on the assumption that bias in the 
statistic S is of order n-i. In practical applications, this may not be known with 
any certainty. 

Secondly, variance estimates (5.3.3) and (5.3.3a) are in fact estimates of 
estimation error only. Presumably, regression estimates b’(n) of statistical error 
could also be jackknifed. The results would however be dubious since the 
assumption of a bias of order n-r would be even more uncertain in the case 
s*(n) than S(n). 

5.4. Bootstrap 

The bootstrap (Efron, [5]) is a procedure which makes use of data re- 
sampling. Application of the technique to regression problems is discussed by 
Freedman and Peters [7]. 
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Consider the model: 

Y = Xb + e, (5.4.1) 

where X is a given design matrix and e is a random vector with mean zero and 
covariance matrix V. 

As in previous sections, let 6 denote the regression estimate of b. Then let: 

ii! = Y - x6, (5.4.2) 

and 

,$ = v-‘/2@, (5.4.3) 

where the meaning of V -“’ is the conventional one for a positive definite matrix 
V. 

Note that the components of 5 are independent, identically distributed (i.i.d). 
Let F(.) denote the empirical distribution function obtained by assigning equal 
masses to them. It is now possible to generate pseudo-data sets: 

Y”‘=X6+e”‘,i= 1,2,. . . (5.4.4) 

where 
p = v”25(” 9 

and {e”‘} is a random sample drawn from F(.). Each set of pseudo-data leads 
to a new estimate 6”’ of b. 

Let X*, Y* have the same meaning as in earlier sections. Then each estimate 
6@’ leads to an estimate Y*“’ of Y* where 

k*(” = X*6”‘, i = 1, 2, . . . (5.4.5) 

The collection {Y*‘i’} provides an empirical distribution of the random variable 

k* = x*6. (5.4.6) 

This distribution may be used to study the mean, variance, non-normality, 
confidence limits, etc. of (5.4.6). Note that: 

;d) _ X*b = xy6”’ _ b], (5.4.7) 

which contains only estimation error. More pertinent to forecasting is a collection 
of forecasts of Y* which contains statistical error also. 
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This is obtained by replacing (5.4.5) and (5.4.6) by: 
+(i) = x*@O + e*(G, 

F* = Xx6 + e*, 

where 

(5.4.5a) 

(5.4.6a) 

e* = W”‘(*, (5.4.8) 

e*(i) = wlQp(l), (5.4.9) 

for a known matrix W, the components of t, <* are i.i.d., and {e”‘, e”‘*} is a 
random sample drawn from F(.), i.e., a particular 5”’ and i$‘)* are stochastically 
independent. 

In this case (5.4.7) is replaced by: 
$0 _ x*b = x”[p - b] + e*“‘, 

which includes both estimation and statistical error. 

(5.4.7a) 

Freedman and Peters [7] (p. 99) deal with the case in which V is unknown 
and provide an iterative scheme for its estimation simultaneously with the 
generation of pseudo-data. 

It is to be emphasized that the whole procedure assumes the validity of the 
basic model (5.4.1). If the model is invalid, estimates of second moments will 
probably be enlarged but not necessarily in the correct way. 

For example, if prediction bias is present in model (5.4.1), it will be 
absorbed into & of (5.4.2) and hence 5 of (5.4.3). The components of 5 will 
then have non-zero mean and will not in general be identically distributed as 
assumed in the generation of pseudo-data (5.4.4). 

5.5. Comparison of the estimation procedures 

The advantages and disadvantages of the three estimation procedures con- 
sidered in Sections 5.2 to 5.4 are summarized by Ashe [l] (p. S 112) as follows: 

Parametric estimation l small number of calculations 
l estimation error and statistical error available 
l accurate if the parametric assumptions are correct 

Jackknife: l influence of individual data points on the estimate is 
available 

l only estimation error is available 
l estimate of loss reserve possible has reduced bias 
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Bootstrap: l non-parametric 
l estimation error and statistical error available 
l distribution of loss reserve given 

6. ROBUSTNESS 

6.1. Influence function 

The concept of an influence curve was introduced by Hampel [9]. It is 
discussed by Mosteller and Tukey [16] (pp. 351-356). A generalization to an 
influence function, a multi-dimensional version of the influence curve, is dis- 
cussed by Rey [18] (pp. 15, 16). 

The influence function of data points yl, . , . , yn on statistic S(yi, . . . , 
yn) is defined as the vector, 

IcyI, . . . , yn) = g cyl, . . . ,Yn>, 

withy denoting the vector (yi, . . . , y,). It indicates the influence on S of small 
variations in the data points. 

A single component &S/@i of (6.1.1), plotted as a function of yi, with yl, 
. . . , yi-19 yi+l, . . . j y, fixed at their observed values, provides the influence 
curve Of yi. 

In the context of loss reserving by regression methods S(yi, . . . , yn) may 
be taken as the forecast (5.1.1): 

i = I$* = lTXX&, (6.1.2) 

where 

6.4 = &dYl, . . . , m> 

is the regression estimate of ba as in (3.2.7) and is a function of the data vector 
Y = (Y,, . . . , Y,)? 

Since Zi( .) measures the effect of small variations of yi on S, and the jackknife 
pseudo-estimate P,(n) measures the effect of removing yi from the data, the two 
are related, as foreshadowed in Section 5.3. As suggested there, the pseudo- 
values perhaps serve as some kind of proxy for the influence function. 
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6.2. Robust regression 

Regression need not be carried out by means of least squares, weighted or 
unweighted. Indeed, the importance of least squares regression derives, through 
the Gauss-Markov theorem (Graybill, [S]), from the oft-made assumption that 
random error terms in the data are normally distributed. When this assumption 
does not hold, least squares regression may not be appropriate. 

There is no doubt that most classes of insurance involve long tailed claim 
size distributions. The basic data of any claims analysis, such as claim payments 
subdivided by year of occurrence and year of development, are therefore likely 
to incorporate error terms with long tailed distributions. Under weighted least 
squares regression, one or two rogue data points might well drag the entire 
regression away from the estimates which it would otherwise provide. 

Robust regression encompasses procedures for fitting linear models whose 
properties are relatively insensitive to the distribution of these error terms. 
Resistant regression includes procedures leading to estimates which are not 
greatly distorted by extreme cases. 

The latter of these two concepts is evidently related to the influence function. 
The smaller the influence function of a particular data point, the more resistant 
the regression to outlying values at that point. 

Various methods have been used to reduce the influence function from that 
associated with least squares regression. For a summary, see Huber [ll], [12]. 
An actuarial reference is Hogg [lo]. Most of these methods can be viewed as 
fairly simple modifications of weighted least squares regression. 

Consider the model, 

Y = Xb + e, (6.2.1) 

where the notation is as in previous sections and, in particular, e is not neces- 
sarily normal although it is assumed to have zero mean. Under weighted least 
squares regression, b is estimated by that 6 which minimizes the weighted sum 
of squares (WSS): 

wss = (Y - x6)Tw(Y - X6), (6.2.2) 

for some n X n matrix W which is independent of Y. Under resistant regression 
(6.2.2) is replaced by: 

wss = (Y - Xlylv(2)(Y - X6), (6.2.3) 
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where the weight matrix W depends on an estimate Z of the vector of standard- 
ized residuals, 

Z = diag (6;‘, . , 6,‘)(Y - X6), 

with 6: an estimate of V[Y,]. 

(6.2.4) 

Most commonly, the form of W(z) is: 

wjj = hi(ij), j = i; 

= 0, j # i; (6.2.5) 

for some function hi which decreases asA& departs from zero. Thus, outlying 
observations, generating large values of Zi, are assigned little weight in WSS. 

Typical choices of the attenuating function h,(.) are: 

hi(Z) = wj, IZI ;s 2; 

= 4wJlz12, 1zI a 2, (6.2.6) 

where diag (WI, . . . , w,) is the weight matrix which would have been used 
for weighted least squares regression; or alternatively, 

hi(z) = WiZ-’ sin (2~/3), 1~1 S 3~/2; 

= 
0, IzI 2 37~12; 

or again, 

hi(Z) = Wi [1 - (Z/5)2]2, JZI G 5; 

(6.2.7) 

= 0, Iz( 2 5. (6.2.8) 

It is apparent that any system (6.2.3) in which the weight matrix W(Z) 
depends on 6 renders WSS non-quadratic in 6. Then the solution b is nonlinear 
in the data Y. It will usually be necessary, therefore, for (6.2.3) to be minimized 
iteratively. At each iteration, the a: need to be recalculated on the basis of the 
residuals at the preceding iteration. Then W(2) can also be calculated on the 
basis of the same residuals, and (6.2.3) minimized with the new W(Z) treated 
as independent of 6. 
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