
272 

CREDIBILITY FOR CLASSIFICATION RATEMAKING 
VIA THE HIERARCHICAL NORMAL LINEAR MODEL 

STUART KLUGMAN 

Abstract 

In the past twenty years there has been ever increasing improvement 
in the techniques of classcfication ratemaking. Most of this has centered 
around improvements in credibility procedures and most of the improve- 
ments have been due to incorporating aspects of Bayesian analysis. In 
this paper, I attempt to take this trend to its (perhaps) final stage by 
developing a true Bayesian approach to the classification ratemaking 
credibility problem. 

The opening section will provide the rationale for the Bayesian 
approach. I will argue that a hierarchical model with a noninformative 
prior is the most appropriate general framework. I will argue further 
that a normal model is a reasonable choice, and this model will provide 
results at least as good as those currently available. An indication of 
how the normality condition can be relaxed will also be presented. 

The second section contains a general description and analysis of 
the hierarchical normal linear model (HNLM). Included are point esti- 
mation, estimation of the error in the estimator, and prediction intervals 
for future losses. The last two items are of special interest since current 
credibility procedures provide little insight with respect to variation. 

The next two sections discuss the special case of the one-way model. 
This is the most common ratemaking model and is the simplest case of 
the HNLM. In Section 3, the formulas from Section 2 are evaluated for 
this model. In Section 4, two data sets are analyzed. TheJirst set provides 
an indication of the computational work required to use the HNLM. The 
second set provides a comparison of this method with two other rate- 
making approaches. 

The$nal section contains a discussion of the more complex models 
that can be handled with the HNLM. 
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1. JUSTIFICATION FOR BAYESIAN CREDIBILITY WITH A NORMAL MODEL AND A 

NONINFORMATIVE PRIOR 

The historical basis for credibility procedures is long, varied, and generally 
considered to be one of the major actuarial contributions to statistical data 
analysis. Virtually from the beginning (Whitney [35] and Bailey [l]), the 
Bayesian and shrinkage nature of the problem was recognized. In a breakthrough 
paper, Btihlmann [6] placed the credibility problem in the framework of Baye- 
Sian decision analysis. I will begin by reviewing the Bayesian view and then 
discuss the four schools of Bayesian methodology that are prominent today. As 
part of this paper, I will argue that one of these methods is superior to the 
others. Next, I will argue that the normal model is appropriate even though we 
know that it does not accurately model insurance losses. This part closes with 
a suggestion for allowing for non-normal losses while retaining the advantages 
of normal theory. The final element of this section is a discussion of the 
noninformative prior. 

1 .I Credibility as a Bayesian Problem 

The basic credibility problem for classification ratemaking can be posed as 
follows: The population can be separated into k groups, the various rating 
classes, Our objective is to estimate the mean loss per year generated by a 
randomly selected member of a particular group. Data is collected from a sample 
of members from each group. It is usually assumed that the observed losses are 
independent and that the variances of the observations are proportional to some 
measure of exposure. If this were all that were known, the most reasonable 
answer would be to use the sample mean from each group as an estimate of the 
population mean. Usually, however, we know more. In particular, when indi- 
vidual classes have abnormally good or bad experience, we tend to discount the 
experience when setting rates. This clearly makes good business sense and with 
the correct model makes good statistical sense. 
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The usual way to model this phenomenon is to treat the group means as a 
random sample from some probability distribution. This implies that experience 
from the other groups tells us something about the overall level of claims (the 
mean of this second level distribution), and therefore tells us something about 
the mean for the group in question. It also sets bounds on how much one can 
legitimately expect one class to differ from another. If more is known about the 
relationship among the groups, that knowledge can be incorporated into the 
second level distibution. Examples of this are presented in Section 5. 

The model described in the previous paragraph is a standard Bayesian 
problem. We have a model given by the p.d.f. p(xlO,g) where x represents the 
data and (8,g) represents all unknown parameters. The parameters in 8 are the 
ones we want to estimate. The parameters in g are nuisance parameters, usually 
variances. In the above setting, 0 would be the group means. The prior (second 
level) p.d.f. p(O,g) represents our knowledge of (tl,g) before the data are 
collected. Since the Bayesian approach has now been widely accepted among 
actuaries (at least for this estimation problem), I will provide no further argu- 
ments to support that view. Interested readers who desire a wide ranging dis- 
cussion of the merits of the Bayesian view are referred to Berger [2]. 

Given this setup, there are two ways to proceed. If the forms of the two 
distributions are known, the Bayes estimator is the posterior mean of Cl given 
the data X. Btihlmann [6] took a different approach. To avoid thinking about 
the distributions, he first restricted himself to estimators that are linear functions 
of the data. He then searched for the estimator that minimized the mean squared 
error. This mean would be taken over all possible values of x and 8. For his 
result it was essential that g be empty. That is, the model variance had to be 
known. Under this framework, it turned out that the estimator depended only 
upon the first two moments of the model and prior distributions. To many 
people, the word credibility is now reserved only for procedures that find linear 
estimators. In fact, Hewitt [14] compares a credibility estimator to a Bayes 
estimator (as I have defined it above). In this paper, the objective is to find the 
best estimator, and I see no reason to restrict attention to those that are linear 
functions of the data. I use the word credibility to describe any procedure that 
uses information (“borrows strength”) from samples from different, but related, 
populations. 

A larger problem is the fact that the moments of the model and prior are 
rarely known, and therefore must be estimated. This has led to a number of 
schools of Bayesian thought. Having agreed to use a Bayesian procedure, the 
remaining task is to identify the best one. 
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I .2 Four Schools of Bayesian Analysis 

There are at least four different approaches that are currently being used to 
solve the estimation problem. In this section I briefly outline them and then 
offer some opinions as to their respective merits. 

1.2 .I Pure Bayes with Two Levels 

This is the view that has already been mentioned. Here, the prior distribution 
must be elicited. This is very difficult to do in the insurance setting as one 
would have to be able to set out a distribution that describes the class-to-class 
variation in losses. Since we do not even know the means (determining them 
is the point of the exercise), it is unlikely that we know much about how the 
means vary. 

This problem can be resolved by removing the prior to a higher level of 
abstraction. This is done in the fourth school discussed in this subsection. To 
my knowledge, no one today is using the two level approach. At best, it is a 
starting point for the second method to be discussed here. 

I .2.2 Empirical Bayes 

This method evolved as an attempt to resolve the problems created by the 
first method. Although they did not use the phrase “empirical Bayes,” Btihlmann 
and Straub [7] were the first to employ this method in the credibility setting. It 
remains popular, being advocated in more recent articles by the Insurance 
Services Office [16] and Meyers 1251. There is considerable evidence that it 
provides excellent solutions to the estimation problem. 

Many people do not consider empirical Bayes methods to be at all Bayesian. 
Also, there is considerable disagreement as to what the phrase “empirical Bayes” 
means. To avoid controversy, I will describe an estimation method that corre- 
sponds to the approach used in the papers cited above. It will be referred to as 
the EB approach and the reader can decide what that means. Begin with the 
density p(xlO,g), the first level density (or distribution, when talking about the 
random variable). The density p(B,glh) will be referred to as the second level 
density. Note the introduction of h. To the pure Bayesian, the parameters of the 
second level density must be known, and therefore do not need to be displayed. 
In reality, that is not true, so we add them to the formulation. 

In brief, the EB idea is to first act as if g and h were known and find the 
Bayes estimate of 0. Next, use the data in some manner to estimate the nuisance 
parameters g and h and insert these estimates into the Bayes solution. The first 
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thing to note is that upon doing so, we no longer have a Bayesian analysis. The 
second level distribution was supposed to represent prior opinion, yet here we 
are unable to establish this distribution until after we have seen the data. The 
usual justification is to show that as the sample size goes to infinity, the estimates 
of the second level distribution converge to what they ought to be if we had 
complete knowledge (which is what one has with an infinite sample size). A 
thorough discussion of these principles can be found in Norberg [30]. 

An alternative approach can yield the same solution as the EB approach. 
Assume again that the nuisance parameters are known and then search for the 
estimator that is linear in the data and minimizes the expected squared error. 
Once again, substitute ad hoc estimates of the nuisance parameters into the 
solution. This has been called least-squares credibility. 

There are three major objections to the EB approach. The first is that some 
external theory must be used to find estimators of the nuisance parameters. 
Since these parameters are usually variances, it is common to begin with sums 
of squares that look “right” and then to adjust them to create unbiased estimators 
of the various parameters. One drawback is that the resulting estimators (even 
in the simplest cases) can take on negative values. This does not make sense 
when one is trying to estimate a variance. The second objection is that EB 
theory gives no guidance as to the optimal choice of the estimator. All that is 
required is that they be consistent. The final objection is that for complex 
models, there may be no hope of finding useful sums of squares. 

A final problem with EB methodology is that it gives no insight into the 
sampling error of the estimator. The best it can do is evaluate the error when 
the variances are known. The additional error introduced by estimating the 
variances cannot be accounted for. Even if a good estimator of the nuisance 
parameters can be found (in which case, the method works quite well), the 
investigator will have no idea of the quality of the estimate. The previous 
statement that EB methods work well was in reference to alternative methods 
and does not mean that the results could be considered accurate. That can only 
be determined by some measure of sampling error. The next method is an 
attempt to rectify this problem without leaving the EB framework. 

1.2.3 Parametric Empirical Bayes 

To see the difficulties in determining the variance of the estimator, we need 
to take a closer look at what we are trying to do. The general Bayes problem 
is to find E(0)x), the posterior mean given only the data. The EB approach uses 
the result E(6)x) = E[E(Bl.~,g,h)l. The interior expectation E(Blx,g,h) is just the 
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pure Bayes solution with g and h known. The EB approach avoids taking 
the outer expectation and instead replaces g and h with their estimates. EB 
theory indicates that this is a reasonable thing to do. A measure of the qual- 
ity of the result would be the posterior variance, Var(Blx). We have 
Var(0ln) = E[Var(B\x,g,h)] -t- Var[E(BIx,g,h>]. It is apparent that merely in- 
serting estimates of g and h in Var(Blx,g,h) will underestimate the desired 
variance. The second term reflects the additional variance due to the estimation 
of g and h. EB theory does not provide any ideas for estimating the second 
term. 

An attempt to resolve this problem is the parametric empirical Bayes theory 
of Morris [27]. The key ingredient is to have some idea of the variability of the 
estimators of g and h. His theory requires not only the discovery of good 
estimators of g and h but also the ability to determine their sampling distribu- 
tions. In simple cases (normal distribution, equal exposures), it is possible to 
show that the usual estimators have chi-square distributions. In slightly more 
complicated cases, the distribution is approximately chi-square. A detailed 
discussion of the distribution of some commonly used variance estimators is 
given in Klugman [21]. As should be apparent, there are considerable difficul- 
ties associated with putting this method into practice. One that is not apparent, 
and is often not mentioned in Morris’s articles, is that to complete the calcu- 
lation it is necessary to formulate a prior distribution for g and h. Morris uses 
p(g,h) = 1, but does not provide a justification for that choice. Other choices 
are supported by an argument that the resulting estimator of the credibility factor 
is unbiased, a surprising justification for a Bayesian. 

The fourth model also requires prior distributions for g and h but proceeds 
in a more direct Bayesian manner. Before moving on, I should add one final 
criticism of the parametric empirical Bayes approach. Whatever errors in esti- 
mation are introduced cannot be reduced by improving the computational aspects 
of the method. The errors are due to lack of knowledge of the exact distribution 
of the estimators of the variances and no amount of computation can resolve 
that issue. 

1.2.4 Hierarchical Bayes 

We have seen that the two EB schools are somewhat artificial attempts to 
resolve the problems of the pure Bayes method. This is mostly due to a lack of 
recognition of the real problem with the pure Bayes approach. The problem is 
that the second level distribution is not a prior distribution at all, but is part of 
the model. In the ratemaking setting, this distribution contains our knowledge 
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of the relationships among the various rating classes. It is not our prior opinion 
about a particular class. The solution is to reformulate the model into three 
levels. 

Level 1: p(.@,g)-Describes variations within each group. 
Level 2: p(8lp,h)-Describes variations among the groups. 
Level 3: p@,g,h)-A true prior distribution on the unknown parameters. 

This is once again a pure Bayesian problem. As with any Bayesian analysis, 
a prior distribution must be established before any data is collected. By dis- 
placing the prior to a level further removed from the observations, the choice 
of the prior will have less influence on the final outcome. To repeat, level 2 
describes an underlying (though not directly observable) physical process. Sub- 
jective beliefs enter only at the third level. The remaining problems are to select 
the prior distribution and to select the form of the p.d.f.‘s for levels 1 and 2. 

Assuming the two problems just mentioned can be resolved, this would 
appear to be an ideal solution to the credibility problem. With the three densities 
in hand, it is just a matter of employing the probability calculus to obtain the 
posterior distribution of 0 given X. Any difficulties that will be encountered will 
be of a computational nature. Once the posterior distribution has been obtained, 
additional computation will yield the mean and variance. Another useful quantity 
is the predictive distribution, the p.d.f. (or the mean and variance) of the next 
observation from the group in question. This is once again obtained by an 
application of the probability calculus. The other methods do not provide this 
item. 

An additional advantage of this approach is that the tools of Bayesian 
modeling and inference are all available. For example, one might want to 
compare various models for the level 2 distribution (e.g., cross-classification 
vs. one-way classification). Many of these tools are presently in the development 
stage, but more and more techniques are likely to become available in the future. 

1.3 The Normal Model 

As mentioned in the previous subsection, it is necessary to specify the 
probability distributions for the three levels. For levels 1 and 2, multivariate 
normal models are an appropriate choice. At the end of the section, a suggestion 
for improving the process is proposed. 

It is obvious that individual losses do not follow the normal distribution. 
Since losses are non-negative quantities, a distribution with support on the entire 
real line cannot be expected to be a good model. Furthermore, there is consid- 
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erable evidence that the tails of loss distributions are much heavier than those 
of the normal distribution. See Hogg and Klugman [15] for a number of 
examples. One way to minimize the disparity is to work with loss ratios. The 
distribution at the second level will now reflect group to group variations in the 
departure from the expected losses. This will be more stable than the group to 
group variation in the absolute level of losses. In addition, loss ratios are likely 
to have identical unconditional distributions. That is, if you were given a list 
of risk classes and a list of loss ratios, you would be unable to do better than 
chance in attempting to match them up. The loss ratios are likely to be depen- 
dent. Knowing that the loss ratio for one class is high increases the chances 
that the others are also. The multivariate normal model is one of the few 
multivariate models that allows for dependence in a manner that is easy to 
construct and interpret. 

Despite the fact that the observations are not normally distributed, there are 
a number of good reasons for employing the normal model. The first, though 
least appealing, justification is computational convenience. Although the algebra 
is tedious, as demonstrated in Section 2, a number of results can be obtained 
analytically. The remaining numerical work will be simple, at least relative to 
that required for non-normal models. It is likely that as our numerical capabilities 
increase, this argument for normality will lose its validity. For the present, the 
following quote due to Novick and Jackson [31] is appropriate. 

“Surely it is better to get some results using a model which is only approximately 
relevant than to sit twiddling one’s thumbs in front of a model which is felt to 
be more accurate but which one is unable to manipulate.” 

The second justification for normality is related to the link between the 
normal model and linear credibility. It was mentioned above that in a particular 
simple model, the linear least squares solution depended only upon the first two 
moments. It turns out that the Bayes solution for the same model with normal 
distributions is identical. Therefore, at least in this case, normality and linear 
least squares are equivalent. It has been shown that, in general, any model that 
is a member of the linear exponential family of distributions will produce the 
same result as the linear least squares solution (Ericson 191 and Jewel1 [17]). 
There has been speculation (Goel [ 111) that the linear exponential family con- 
tains all the distributions with this property. So, to a certain extent, those who 
are willing to accept linear solutions should be equally comfortable with models 
from the linear exponential family. As far as choosing the normal distribution 
as the member to use, a second argument is needed. Most current practitioners 
estimate the variances using sums of squares. These estimates are unbiased for 
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use. In Section 4, an indication of how one might “verify” the choice of model 
and prior is presented. 

Three approaches can be taken to specifyingp(p,g,h). The first is to always 
use p(p+g,h) = 1, Morris [27] uses this prior in obtaining his parametric 
empirical Bayes results. The first thing to note is that since the support of 
(p,g,h) is usually unbounded in at least one direction, this prior is not a proper 
probability distribution. Box and Tiao [3] argue that this is acceptable. Suppose 
l..~ is the average loss ratio over all rating classes. We can be virtually certain 
that this value is between 0 and 10. A uniform distribution over this interval 
combined with one that tails off slowly outside this interval would reflect the 
fact that very little is known about the true average loss ratio. Inferences that 
we would make using this prior would differ very little from those made using 
p(p) = 1 for --CO < lo < m. Two features of this approach should be noted. 
First, there is no guarantee that the posterior distribution of 81~ will exist. This 
would make it impossible to determine the posterior mean or variance. Second, 
the posterior mode is identical to the maximum likelihood estimator (after 
integrating out all nuisance parameters). In general, when this prior admits a 
solution it is quite reasonable. 

The second school of thought is to find a general way of obtaining prior 
distributions that reflect minimal prior knowledge. Words such as “noninform- 
ative” or “reference” are often attached to such priors. The goal of research in 
this area is to find a way to automatically generate the noninformative prior for 
a given distribution. The fact that there is still disagreement on the appropriate 
reference prior for the probability of success in a sequence of Bernoulli trials 
(Geisser [lo]) indicates how much work remains in this area. In the simple 
univariate case, Box and Tiao [3] support the prior p(g) = l/g when g is the 
variance. An extension is given by Tiao and Zellner [33] who argue that if g is 
a covariance matrix, the appropriate prior density is the inverse of its determi- 
nant. 

The third belief is that only proper densities (those that integrate to 1) should 
be allowed for the prior distribution. Proponents of this approach insist that 
everyone has a prior distribution and it is just a matter of care and effort to 
bring it out. This makes excellent theoretical sense but is very difficult to 
implement. It is even more difficult to convince someone else that your opinion, 
as expressed by your prior distribution, is valid. 

I have elected to take the middle ground. For credibility problems, the 
reciprocal prior for variances seems to be an appropriate choice for the prior 
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density. This prior appears to be more “balanced” than the uniform one. Since 
the support is the interval from zero to infinity, we should expect that our prior 
opinion is equally apportioned between points near zero and those near infinity. 
The prior l/g does this as it bounds an infinite area over all regions of the form 
(0,~) and (a,~). The uniform prior puts infinite probability only on the latter 
region. That is, it seems biased towards larger values of the variance. In Section 
3, some brief attention will be given to a proper prior, so those who have one 
can still employ the methods to be discussed. 

All of the ideas presented in this section other than the use of normality are 
summarized in the following quote (Berger [2]): 

“We would indeed argue that noninformative prior Bayesian analysis is the single 
most powerful method of statistical analysis, in the sense of being the ad hoc 
method most likely to yield a sensible answer for a given investment of effort.” 
(author’s italics) 

2. THE HIERARCHICAL NORMAL LINEAR MODEL 

In this section, the algebraic manipulations required to evaluate the three 
level hierarchical model are performed. Attention will be restricted to linear 
versions of the model. This is done mostly for computational convenience. 

Before beginning the manipulations, a few notational items will be pre- 
sented. Scalars will be represented by lower case letters. Vectors will be rep- 
resented by bold face characters. Matrices will be represented by upper case 
letters. In classical statistics it is common to use upper case symbols to represent 
random variables. In a Bayesian analysis the various quantities are sometimes 
random and are sometimes fixed, so no attempt is made to use notation to 
identify random quantities. For example, in the model, the data are random and 
the parameters are fixed, but in the posterior, the parameters are random and 
the data are fixed. At times, the distribution of some parameters conditioned on 
others is needed. When examining a density function, the way to tell the fixed 
quantities from the random ones is to look at the left hand side. For example, 
p(B/y,G,H) indicates that in the function which follows, 8 is the random quantity 
and is the variable in the density, while y, G, and H are fixed quantities. The 
density is for the indicated random variable, conditioned on the specific values 
given. When the two sides are separated by a proportionality symbol (m), the 
constant of proportionality may depend upon the conditional items. The constant 
can always be found by integrating the function with respect to the random 
elements. 



CREDIBILITY 283 

2,l The Model 

The linear version of the three level Bayesian model is usually attributed to 
Lindley and Smith [24]. The three levels are: 

yl%G - NAW) @’ x 11, 

%0-f - WW,,,H) (k x 11, 

and 

(r. - N(W) (z x l), 

where p and C are known and A and B (also known) are of full rank. A special 
case, and the only one considered here, is obtained by letting C-i + 0. This 
is equivalent to setting p(p) 0~ 1, the widely accepted noninformative prior for 
the mean. It is not necessary in this case to make any statement about p. In 
most applications the covariance matrices G and H will not be known. It is then 
necessary to specify a prior distribution for them. Let p(G,H) be the density for 
this prior distribution. 

The standard credibility problem is to make inferences about 8, the expected 
losses (or loss ratios) for the various groups under consideration. The matrix A 
reflects the nature of the data collected. For example, there may be data from 
various years for each group. The second level indicates any relationships 
between the groups. One particular version of this model is analyzed in Sections 
3 and 4; examples of other models are presented in Section 5. In any event, the 
objective of all the manipulations in this section is to obtain the posterior 
distribution and moments of 9 given the data y. Of less interest are the posterior 
distributions of G and H. 

2.2 Three Helpful Mathematical Items 

The first useful relationship is a matrix equation that is true for any symmetric 
non-singular matrix G; it will be used for completing the square. 

X’GX - 2x’B = (x - G-‘B)‘G(x - G-IB) - B’G-‘B. 

The second item relates to the multivariate normal density. In general, the 
multivariate normal p.d.f. for a random variable with mean p and covariance 
C (a positive definite matrix) is 

f(x) = (2+ZJ)-“2exp[-(x - p) ‘C-l(x - ~)/2], 

where ICI denotes the determinant of the matrix C. This implies that in general 

Jexp{- (x - I.L) ‘C-l(x - p)/2]dx = (~IT[C[)“~. 
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The final item is concerned with finding conditional densities. The general 
problem is the following: Letf(a,, . . a&, . . ., b,) be proportional to the 
conditional density of AL, . . _, A, given BI = br, . . ., B, = b,, (n may be 0). 
To find the conditional density of Al, . . ., A, given B1 = bl, . . ., BJ, = bh 
(where g 5 m and h I n and at least one of the inequalities is strict) evaluate 
J _ _ . Jf(u,, . . am/b,, . . ., b,)du,+l . . . da, and then drop all terms that 
involve only bl, . . ,, 6,. (This latter step can be done first; additional terms 
can be eliminated after the integration.) The resulting function will be propor- 
tional to the desired density. 

A related fact is that a conditional density is proportional to the conditional 
density in which some of the quantities on the left hand side of the “I” are 
moved to the right hand side. For example, f(ul, u2Jbl, b2) is proportional to 
the conditional density of A, given AZ = ~2, BI = bl, B2 = b2. Any factors 
that depend only on uz can be deleted. 

2.3 Two Useful, Non-Buyesiun Quantities 

In the first level of the model, with G assumed known and 8 taken to 
represent a fixed, but unknown, parameter, the classical least-squares estimator 
of 0 is found by minimizing 

tj - AO) ’ G-’ (y - AO) 

= y’ G-‘y - 20’ A’ G-‘y + 0’ A’ G-IA8 

= y’ G-‘y + 
[8- (A’ G-IA)-’ A’ G-‘y]’ (A’ G-‘A) [t-I- (A’ G-‘A)-‘A’ G-‘y]. 

Let A = (A’ G-‘A)-‘, a positive definite matrix. Then the minimum must occur 
at 6 = AA’ G-‘y. 

Combining the first two levels gives 

yl/wZH - N(ABp,G + AHA’). 

The same manipulations yield 

jI = [B’A’(G + AHA’)-‘AB]-‘B’A’(G + AHA’)-‘y 

and some matrix algebra produces the alternative form 

p = [B’(H + A)-‘B]-‘B’(H + A)-%. 

While the theory behind the above development is not germane to a Bayesian 
analysis, it is comforting to note that a Bayesian analysis often produces results 
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that match those from classical theory. The quantities fi and p will appear often 
in the analysis that follows, but will arise from a different algebraic procedure. 

2.4 The Joint Density of (y,0, p,G,H) 

The joint density involving all of the quantities from the three levels is the 
ideal place to begin. The last concept presented in Section 2.2 indicates that it 
is also the conditional density of any subset of the five variables given the 
remaining ones. The density is given by 

pCvle,G)p(O(~,H)p(l~l)p(G,H) 

which is proportional to (recalling that p(p) 0: 1) 

X exp[-0) - A0)‘G-‘0, - A@/2 - (fl - Bp)‘H-‘(8 - Bp)/2]. 

It would be pleasant to proceed directly to the density of 0 given y. However, 
it is not possible to obtain this density analytically. Instead, begin by obtaining 
those conditional densities that are reasonably easy to derive. This is done in 
the next section. In the following section these densities are used to obtain the 
desired result. 

2 .S Several Conditional Densities 

The following subsections contain the derivations of a number of important 
conditional densities. The results are summarized in Section 2.5.6. Readers 
who are uninterested in the derivations can skip to that point. 

2.5.1 Density of B(y,G,H 

This derivation is presented in great detail in order to indicate how these 
calculations are done. Since the joint density from Section 2.4 is also the 
conditional density of (O,p(y,G,H) it is only necessary to integrate p out of the 
joint density. Begin by removing terms involving only y,G, H, and constants. 
The remaining part of the joint density is 

exp[-0, - A0)‘G-‘01 - A@/2 - (0 - Bp)‘H-‘(0 - Bp)/2] 
= exp[-(y - AO)‘G-‘0, - A@/2 - B’H-‘(32 + ~I.A’B’H-%/~ 

- p’B’H-‘Bp/2]. 

Let B = (B’H-lB)-l. Completing the square with respect to h in the above 
expression yields 

exp[(-0, - AB)‘G-‘O, - A@/2 - B’H-%/2 
_ (,,, _ gB’H-lfj)fz-L (p - tiB’H-‘8)/2 + O’H-‘BBB’H-‘O/2]. 
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Now integrate with respect to w. p only appears as the quadratic form in the 
third term and upon integration produces only constants and the determinant of 
E. Since 5 is a function of H only, it can ‘be dropped. Therefore the density 
is proportional to 

exp[-0, - AO)‘G-‘0 - A@/2 - 0’H-‘O/2 + O’H-‘B%B’H-‘O/2]. 

Expand the first term and remove the part not involving 8. The result is now 

exp[-B’(A’G-‘A - H-‘BEB’H-’ + H-‘)0/2 + B’A’G-‘y]. 

Let V-’ = A’G-‘A - H-‘BSB’H-’ + H-‘. 
Complete the square on 0 to obtain 

exp[-(0 - VA’G-‘y)‘V/-‘(8 - VA’G-‘y)/2 + y’G-‘AVA’G-‘y/2]. 

Since the second term does not depend on 8 it can be dropped. The final result 
is 

p(@/y,G,H) 0~ exp[-(0 - VA’G-‘y)‘V-‘(0 - VA’G-‘y)/2]. 

By inspection it is immediately apparent that 

t$,G,H - N(VA’G-‘y,V). 

Let fi = VA’G-ly be the conditional mean. It can be rewritten as 

6 = (H-’ + A-‘)-‘(A-‘6 + H-‘BP). 

This is the customary weighted average common in a Bayesian analysis. It is 
also a (linear) credibility formula. In fact, this is the result that arises from an 
EB analysis. As discussed in Section 1, the point of departure is the treatment 
of the unknown G and H. 

2.5.2 Density of p!y,G,H 

This calculation is included mostly for completeness. It is not used in any 
subsequent work. The procedure is exactly the same as that used above, only 
now integrate out 8 instead of I.L. The result is 

ply,G,H - N(@,[B’(A + H)-‘B]-‘). 

2.5.3 Density of O,G,Hb 

To find this density, integrate or. out of the joint density. The difference 
between this calculation and the one in Section 2.5.1 is that terms involving G 
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and H must be retained. The result is 

p(B,G,Hjy) 0: p(G,H)/G/-1’2)H/-1’2)zj1’2 
X exp[-(y - AB)‘G-‘(y - A@)/2 - B’H-‘O/2 
+ 8’H-‘BEB’H-‘8/2]. 

Let Q = H-’ - H-‘BSB’H-‘. Then 

p(B,G,Hjy) 0~ p(G,H)~G~-1’2~H~-1’2~~~1” 
X exp[ -(y - AO)‘G-‘0, - A@)/2 - tYQt3/2]. 

2.5.4 Density of p,G,Hb 

Begin by integrating 0 out of the joint density, once again retaining terms 
involving G and H. 

p(p,G,Hb) m p(G,H)(G(-“*IHI-“*Jexp[-yG-‘y/2 + 2BA’G-‘y/2 
- WA’G-‘A812 - WH-‘O/2 + 20’H-‘BP/~ 
- &B’H-‘Bp./2]d% 

m p(G,H)IGI-1’21HI-1’2Jexp[ -yG-‘y/2 - W(R-’ + H-‘)8/2 
+ 2O’(A’G-‘y + H-‘Bp)/2 - &8-‘p/2]d0. 

The third term in the exponent can be written A-% + H-‘BP. Complete the 
square to obtain 

p(p,G,H/y) m ~(G,H)/Gj-~‘~lHI-“*Jexp(-y’G-‘y/2 
- [8 - (A-’ + H-‘)-‘(A-% + H-‘B&]‘(A-’ + H-l) 
X 18 - (A-’ + H-‘)-‘(A-% + H-‘BP)] 
+ (A-‘6 + H-‘B&‘(A-’ + H-‘)-‘(A-% + H-‘BP) 
-P ‘?~/2}d0 

cc p(G,H)IGI-“*~H~-“*~A-’ + H-‘I-“* x exp[-y’G-‘y/2 
-P ‘E-‘p/2 + $B’H-‘(A-’ + H-‘)-‘H-‘By/2 
+ 2pB’H-‘(A-’ + H-‘)-‘A%2 
+ ~YA-~(A-’ + H-‘)-‘A-‘&2]. 

Now use the three identities 

H-‘(A-’ + H-‘)-‘H-l = H-l - (A + H)-‘, 

H-‘(A-’ + H-‘)-‘A-’ = (A + H)-‘, and 
A-‘(A-’ + H-l)-‘A-’ = A-’ - (A + H)-‘. 
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Let T = A + H. Then, 

p(p,G,H!y) CC 1?(G,H)IGI-“21HI-“21A-’ + H-‘1-“2 X exp[-y’G-‘y/2 
‘8-‘p/2 + p’B’H-‘Bp12 - p’B’?-‘BP/~ 

I ~p%W,2 + e’A-‘ea - &T-%/2]. 

The second and third terms in the exponent cancel. From Section 2.3, 
(B’Y’B)& = B’q-‘4. Complete the square to obtain 

p(p,G,Hb) cc p(G,H)IG(-1’ZIHI-1’21R-1 + H-11-1’2 X exp[-y’G-‘y/2 
- (p - @)‘(B’q-‘B)(p - jk)/2 + &‘(B’q-‘B)@I2 
+ &n-‘&2 - &W’8/2]. 

2.5.5 Density of G,Hly 

Integrate p out of the density in Section 2.5.4 to obtain 

p(G,Hly) m p(G,H)~G~-1’2~H~-1’2~A-1 + H-‘I-1’21B’~-1BI-1’2 
X exp[-y’G-‘y/2 + &h-‘&2 - 8’q-18/2 + @‘(B’q-‘B)&I2]. 

In the second term of the exponent write 6 in terms of y. Then complete the 
squares to obtain 

p(G,H(y) CC p(G,H)IGI-1’2/Hj-1’2jA-’ + H-11-1’2)B”P-1BI-1’2 
X exp[-(‘y - Ab)‘G-‘(y - Ab)/2 
- (6 - Bp>T’(e - B@)/2]. 

The two terms in the exponent are the within and between sums of squares, 
respectively. Both depend on the unknown variances, G and H. While it is once 
again comforting to note that frequentist quantities have appeared in the Bayesian 
development, we should keep in mind that these quantities have no special 
meaning. The determinants can be rewritten as 

(~G-‘~I~A’G-1A~)“2()~-1(I~B’~-1B()”2. 

The two numerator terms can form the basis for a prior distribution on (G,H). 
This is somewhat consistent with the ideas presented in Box and Tiao [3] and 
in Tiao and Zellner [33]. 

2.5.6 Summary 

The important matrices and distributions from this section are repeated for 
convenience: 

A = (A’,-‘,)-’ 

a = (,f,-‘,)-l 
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“P=h+H 

Q = H-’ - H-‘BEB’H-’ 

V = [A’(--‘A - H-‘BEB’H-’ + H-l]-’ = (A-’ + Q)-’ 

(j = &‘G+,, 

fi = [B’(H + A)-l~]-l~‘(H + A)-% 

6 = (H-’ + A-‘)-‘(A-% + H-‘BP) 

Ob,G,H - N&V) 

X exp[-(y - AO)‘G-“0, - A@/2 - 0’QW2] 

p(G,H!y) cx p(G,H)~G~-“2~~~1’2~!4’-1’2~B’~-1B(-”2 
X exp[-0, - AB)‘G-‘O, - A&)/2 
- (6 - Bfi)‘?-‘(6 - Bfk)/2]. 

2.6 Two Empirical Bayes Approaches to Estimating 8 

As introduced in Section 1.2.2, the EB approach begins by finding the 
posterior mean of 8 given the covariance terms G and H. In the HNLM this is 
6. External estimates are then found for G and H. In this section, two general 
approaches to finding such estimates are introduced. 

The first method uses the posterior density p(G,H!y). Either the mean or the 
mode could be used as the estimate. The mean is superior in that it is guaranteed 
to be in the interior of the parameter space. The mode is often easier to compute, 
but may be on a boundary. Either estimate usually requires a numerical evalu- 
ation, Specific formulas for a simple model are presented in Section 3.8. 

The second method is an iterative technique. Begin with a preliminary 
estimate of 8, say 6. Then in p(B,G,Hb) hold 8 fixed at its current value and 
find the values of G and H that maximize this density. Obtain a revised estimate 
of 0 by evaluating 6 at the values of G and H just obtained. Repeat this 
procedure until 6,G, and H stabilize. It is not entirely clear what the results 
mean, but the procedure is similar to that recommended by Morris [27]. Com- 
putationally, this tends to be the simplest approach, as the maximization can 
often be done analytically. This is demonstrated for a simple model in Section 
3.5. If an analytical approach is not possible, an all-purpose maximization 
method like that of Nelder and Mead [29] is likely to provide the answer. 
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Recall that one of the drawbacks of the usual EB method is its inability to 
produce variance estimates. In Section 3.8, it is shown how this can be done 
when G and H are estimated by the posterior mean. 

2.7 Finding Posterior Quantities by Integration 

All of the integrations done up to this point were easy to accomplish by 
completing the square. The one needed to obtain the posterior density of fjy is 
found from 

P@~Y> = Sp(0(G,H,r>p(G,Hly>dGdH. 

The first density in the integrand is a multivariate normal density and was 
obtained in Section 2.5.1. The second density was obtained in Section 2.5.5 
up to a constant of proportionality. We must obtain that constant in order to 
insert the exact density in the integral above. That can be found by integrating 
the expression found in Section 2.5.5 with respect to both G and H. These two 
integrals are of equal difficulty and usually must be done numerically. The 
degree of difficulty will depend on the form of the covariance matrices G and 
H and the prior density p(G,H). It will be seen in Section 3 that in a specific 
case the problem can be analytically reduced to a one-dimensional numerical 
integration. Some excellent procedures for performing multidimensional nu- 
merical integration are given in Smith, Skene, Shaw, Naylor, and Dransfield 
[321. 

In most applications, the vector 0 will be of a reasonably high dimension, 
certainly greater than two. It is unlikely that much insight will be gained by 
examining the posterior density. The remainder of this section is devoted to 
obtaining various summary quantities. This will conclude the development of 
the general hierarchical normal linear model. 

2.7.1 Posterior Mean of 0jjy 

One way to obtain this quantity would be to evaluate the following integral: 

Jfhp(~/y)dfJ. 

Given the fact that a numerical step is necessary to yield each evaluation of the 
integrand, the cost of performing this integration is likely to be quite high, 
Instead, employ the following result (this notion was introduced in Section 
1.2.3): 

E(eiJy) = E[E(OilG,H,y)] = E(fiib) = JBp(G,H/y)dGdH. 

Note that 6, is a function of G and H. 
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2.7.2 Posterior Variance of 0ib 

A similar argument yields the following. 

V~(~i~> = VdE(0iJG,H,y)] + E[VX(B~~G,H,Y)] 

= Vat(BJ+y) + E(v&) 

= J(Bi)$(G,H!y)dGdH - [E(Oib)]’ + S~iip(G,H~)dGdlY 

where Vii is the ith diagonal element of the matrix V introduced in Section 2.5.1. 

2.7.3 Posterior Density of Oi!J 

This univariate density could be plotted to provide insight about a particular 
group mean. An approximate integration needs to be performed to get each 
point from the posterior density. The formula is 

P(eib> = SP(eiJG,H,y>p(G,Hlv)dcdH. 

The first density is a univariate normal density with mean 6, and variance 
Vii. 

If this calculation appears to be too time-consuming, the posterior distribu- 
tion may be approximated by a normal distribution with moments as given in 
Sections 2.7.1 and 2.7.2. This result is given in Berger [2] and is a Bayesian 
version of the central limit theorem. The same result applies in the following 
section. 

2.7.4 Predictive Density of a Future Observation 

In the insurance setting it may be more useful to get information about the 
losses in a future period than to estimate the class mean. Such a calculation 
would incorporate both the uncertainty with respect to the group mean and the 
uncertainty about the experience of next year’s insureds. 

In general, consider a new observation, x - N(AxO,Cx) where C, will depend 
in some way on the elements of G. A typical example would have A, be a 
1 X k vector of zeros with a one in the i” column. This would make x (a scalar) 
an observation from the i” group. The matrix C, would be a scalar of the form 
o*/P where o2 is the variance from the original model and P is a measure of 
exposure for the year to come. 

The density of interest is 

p(xb) = Sp(xle,G,H,y)p(B,G,Hly)dedGdH. 
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This is likely to be difficult to obtain. It is much easier to get the moments, 

W/y1 = EF~x(B,G,H,y)l 
= E[A,Bly] = AxE[e/y]. 

The expectation can be found using the formula in Section 2.7.1 since each 
element of the vector of expectations can be found individually. 

For the variance 

Covb/yl = Cov[E(x~B,G,H,y)l + EPv(x(B,G,H,y)l 

= CovktxB~yl + EGbI 

= A,Cov[B!y]A,’ + E[C,(y]. 

The covariance requires evaluation of CoV(Bi,Bj(y). This can be done from 
Jv;jp(G,H!y)dGdH. The (ij)‘h term of the expected value is evaluated as 
S(Cx)q~(G,Hly)dGdff. 

3. THE ONE-WAY MODEL 

In this section a specific hierarchical model is investigated. It is similar to 
the model treated by Biihlmann and Straub [7] in their EB analysis and is 
appropriate when there are k identically distributed groups and the goal is the 
simultaneous estimation of their means. The three levels of the one-way model 
are 

Level I-yijlt3i,u2 - N(0i,U2/Pij) i = 1, . ) k j = 1) . . . ) t~i 

Level 2-4~,~~ - fV(p,~~) 

Level 3-p - N(O,m). 

The random variables at each level are conditionally independent and Pij is 
some measure of exposure. The usual situation is that yij is the average loss (or 
loss ratio) in year j for class i. This differs from the Btihlmann-Straub model 
in just one respect. In their model, the level one variances were allowed to 
differ from class to class. Their result, however, uses only the average of these 
variances. That is, at no point is this variability taken into account. An indication 
of how one could truly account for unequal variances is given in Section 5. 

To use the formulas of the previous section it is necessary to identify the 
various matrices and vectors. Begin by letting y be the N X 1 vector of the 
observations where N = Xni. Arrange the observations so yl,, . . , yr,,, appears 
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first, followed by ~21, . . . , yzrz2. and so forth. The matrix A is N X k and 
contains only zeros and ones. In the first column, the ones are in the first nl 
rows. In the second column, the ones are in rows ni + 1 through ni + n2, and 
so forth. The vector 8 is k X 1 and contains the unknown group means, 01, 
. . . ) Ok. The covariance matrix G is diagonal with diagonal elements running 
from a’/Pii in the upper left corner to o*/P knk in the lower right comer. At the 
second level, B is a k X 1 vector consisting entirely of ones. Let 1 indicate 
such a vector. The vector or. is a scalar and so will be written k. The covariance 
matrix H is diagonal with all elements equal to r2, that is, H = T~Z~. 

The exposition will proceed in four steps. The first is a development of a 
pair of useful matrix relationships. They will aid in the evaluation of the 
determinants and inverses. Next, prior distributions for c? and r2 are introduced. 
The third step is to obtain the conditional densities. The final step is to perform 
the integrations. 

3.1 Two Useful Matrix Facts 

If A is a nonsingular matrix and c and d are vectors, then 

IA + cd’\ = (Al(1 + d’A-‘c). 

If the determinant is non-zero then 

(A + cd’)-’ = A-’ - (A-‘cd’A-‘)l(l + d’A-‘c). 

For the special case where A is diagonal (al, . . , , ak), c = cl, and 
d = 1, the results are (where Jk = 11’) a k X k matrix) 

\A + cJk( = (k)(l + 6%; ‘) 

and 

(A + cJk)-l has (iQth term a; ’ - c/(u?~) and (ij)‘h term -c/(a&) 

where b = 1 + c&z;‘. 

Derivations of these results can be found in Graybill [ 121 (Theorem 8.9.3). 

3.2 Prior Densities for (G,H) 

In this section, three noninformative priors and one proper prior will be 
introduced. Two of the noninformative priors are based on a general theory that 
can be used in any setting of the HNLM. The third one is particular to the one- 
way model. 



294 CREDIBILITY 

The easiest one to describe is the naive version of a noninformative prior. 
It is p(G,H) = 1. In the one-way model the only random elements are o* and 
72, so the actual prior in this case is P(u’,T~) = 1. This prior is used by Morris 
[28]. While it is convenient for computational purposes, there are good theo- 
retical reasons (Box and Tiao [3]) for not using it. The essence of the argument 
is that this prior puts too much weight on large values of the parameters. On 
the other hand, it is often the case that this improper prior will yield a proper 
posterior (something that must always be checked when using a noninformative 
prior). Also, the posterior mode is the maximum likelihood estimate. This should 
give comfort to those who are troubled by Bayesian methods. Call this prior 1. 

The second prior is based on the arguments of Box and Tiao [3] for the 
balanced model. The balanced model is the special case where nl = . . = izk 
and PII = . . . = Pknt. The first requirement is common in insurance studies, 
as n, often is the number of years of observation for the ith class. However, it 
is extremely unlikely that the exposures will be equal for all years and all 
classes. In any event, in the one-way balanced model the reasonable noninform- 
ative prior is p(02,r2) CC (~~)-‘(a’ + PTZT~)-’ where P is the common value 
of the PC and n is the common value of the ni. A generalization for the un- 
balanced model is to use p(cr*,~~) w (a*)-‘(~* + m?-‘. Since m is to play 
the role of Pn one choice is m = XPij/k. An alternative is taken from the 
constant used when creating the unbiased frequentist estimator of 72. It is 
m = [(EPy)2 - C(Pi)2]/(k - l)CPij where Pi = EPij. Call this (with arbitrary 
m) prior 2. 

The final noninformative prior is, like the first one, available in all situations. 
In general, it is 

p(G,H) cc I(--Pdim(G)/dim(G)lA + ~I-pdim(W/dim(fO~ 

This prior is taken after Box and Tiao [3] and is related to the Fisher information 
about G and H. In the above expression, pdim(G) refers to the number of 
distinct parameters in the matrix G while dim(G) is the number of rows in G. 
For the one-way model, P(u*,T~) CC (u2)-‘[lI(u* + P~T~)]-“~. In the balanced 
case this prior is identical to prior 2. Call it prior 3. 

The fourth and final prior is an attempt to offer a proper distribution. As 
such, it requires that the investigator have a genuine opinion about the variances. 
When seeking a proper prior, mathematical convenience is always a high prior- 
ity. At the very least, the family of proper priors should include a sufficiently 
large variety of possibilities so as to give the investigator a chance of finding a 
representative prior. The natural choice for variances is the inverse gamma 
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distribution. The general form of the density is 

p(x) K x-“exp( - h/x). 

For it to be a proper distribution we must have 1, > 1 and h > 0. The limiting 
case of 1, = 1 and h = 0 is similar to prior 2. Since prior 1 is equivalent to v 
= 0 and A = 0 we see how far from being a proper distribution prior 1 is. The 
inverse gamma prior will be referred to as prior 4. A specific version appropriate 
for the one-way model will be given later. 

3.3 Conditional Densities in the One-Way Model 

This section contains all the details of the evaluation of the formulas in 
Section 2 in the special case of the one-way model. 

3.3 .I Preliminary Quantities 

A = diagonal (02/PI, . . . , u2/Pk) where Pi = &Pij 

E = 7*/k (a scalar) 

6i = CjPijyijlPi 

b = CW&W. where wi = P(T~/(~ + PATS) and W. = CiWi. 

3.3.2 91y,G,H 

This is a multivariate normal random variable. The mean vector 6 has ith 
element 

6, = W&j f (1 - Wi)/i. 

The matrix V- ’ is 

V- ’ = diagonal (r? + O-‘Pi) - (kT2)-‘Jk 
= diagonal [?(l - wi)-‘1 - (kT’)-‘Jk, 

where as before Jk is a k X k matrix of 1’s. The covariance matrix is V. Using 
the inversion formula from Section 3.1, 

vii = Var(Bi~,02,r2) = r2(1 - wJ[l + (1 - wJIw.] and 

Vij = COV(Oi,0jjly,U2,T2) = T2(1 - wij(i - Wj)lW. 
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3.3.3 O,G,H/y 

The two required sums of squares are 

0, - AO)‘G-‘0, - AtI) = Z,P,&j - 8J2/a2 
= [EijPij(yij)’ - ZiPi( + ZiPi(Oi - 8i)*]/O* 

and 

O’QO = [X,(0,)’ - kG2J/7* where 6 = C#i/k. 

The second version of the first quantity is useful for computational purposes as 
the first two sums depend only on the data while the last sum has only k terms. 
The desired density is 

p(e,02,T21y) cc p(u2,T2)(u2)-N’*(T2)--(k-‘)‘2 
X exp(-&Pjj(yti - Oi)2/2U2 - (Ei(Oi)* - ke2)/2T2}. 

3.3.4 G,H!y 

Two important matrices are 

1I’ = diag(u2/Pi + T*) = T*diag(llwJ 

and 

B’?-‘B = W./T*. 

The two sums of squares are 

0, - Ad)‘G-‘(JJ - Ad) = XijPij(yij - fii)*/U’ 

and 

(e - B~)‘~-l(~ - By) = ~iWi(ei - ~)*/T*. 

The desired density is 

For computation the exponent can be written 

-[X~P,(yij>’ - EiPi(Bi)*]/2~* - [CiWi(8i)’ - (CiWidi)*/W.]/Z!T*. 
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3.3.5 Prior Distributions for (a2,7’) 

To make this section complete, the four priors developed in Section 3.2 are 
displayed. 

Prior l----p(0~,7~) = 1. 

Prior ~-~(cJ~,T~) m (cr2)-‘(0’ + rn?-‘. 

Prior 3-p(u2,T2) m (d)-‘[IIj(U* + Pi72)]-1’k. 

Prior 4--P(a*,?) m (u2)-V’(?-Vzexp(-X~/u2 - h2/T2). 

Prior 4 uses two independent inverse chi-square random variables. Prior 1 is a 
special case. In the next section the four priors will be written with one general 
formula. 

3.4 A Transformation 

It turns out that calculations are much easier to carry out with a transfor- 
mation of u* and 7’. The one to use is 

6 = T2/02 and o = u2. 

The Jacobian for this transformation is CY. The four prior densities become 

Prior l-~(a$) K cy. 

Prior 2--p(a,6) E or-‘(1 + ma)-‘. 

Prior 3--p(a,6) cc a-‘[I&(1 + Pi6)]-1’k. 

Prior 4--p(o,6) m cx ~~“‘+vz~1~8~v*exp(-A~/~ - h2/a6). 

A general form that includes all four is 

p(43 cc cx -q’2h(6)exp(-X1/o - &/(x6). 

The two important conditional densities become (note that since the Jacobian 
was included in the prior, no other adjustments are needed) 

P@dd.Y) cx (a) 
-(N+k+q-l)/2~~)-(k-11)/2h(6) 

X exp{-[A, + &jPij(yG - 8i)2]/2Cl 
- [A2 + (Zi(8J2 - k~=)1/21d} 

and 

P(‘Y,FlYY) Oc (a> -(N+q--)/=(~)-(k-l)/*h(~) [~iwiIw~~l’= 

X exp{-[Al + CuPij(yij - 6i)*]/2CX 
- [A2 + Ci(6i - ~)2~i]/2~6}. 
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The other important quantity is the distribution of 8!y,a,6. From Section 
3.3.2, it is multivariate normal. The ifh element of the mean vector is 

6, = widi + (1 - wi)l?, where wi = P&(1 + P,6) and b = E,WiGi/W. . 

The covariance matrix has diagonal elements 

Vjj = cUS(l - Wj)[ 1 + (1 - Wj)IW.] 

and off diagonal elements 

Vi = cXS(l - Wj)(l - Wj)lW. 

3.5 Iterative EB Estimates 

Recall the two-step iterative procedure from Section 2.6. For the one-way 
model, the first step is to find the values of cx and 6 that maximize p(8,01,6/y) 
with 4 replacing 0. This density was obtained in the previous section. Let 

C = Al + EjjPjj(yjj - Gj)* 

and 

D = h2 + Cj(Qj - fi)’ where F = CiGi/k. 

Differentiating the density with respect to cx and 6 produces the two equations 

C + D/6 - (N + k + q - l)cx = 0 

and 

Dh(G)lcx - (k - l)h(6)6 + 2h’(6)F2 = 0. 

Solve the first equation for 01 = (C6 + D)l(N + k + 4 - 1)s. Insert this in 
the second equation to obtain 

2Ch’(6)6* + [2Dh’(S) - (k - l)Ch(6)]6 + (N + q)Dh@). 

The solutions for the four priors are 

Prior l-8 = (N - 2)Dl(k - l)C. 

Prior 2-8 is the non-negative root of 
(k + l)mC6* + [(k - 1)C - NmD]G - (N + 2)D. There 
is exactly one non-negative root and it is slightly larger than 
NDl(k + I)C. 

Prior 3-This one must be solved numerically. 

Prior 4-6 = (N + 2vr - 2)Dl(k - l)C. 
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The second step is to obtain the revised estimate of 9. It is 

6 = Wi6 + (1 - wi)@ where Wi = P&( 1 + PiS). 

A surprising observation is that for prior 4 the estimate does not depend on 
~2. The solution with prior 1 is the ratio of the appropriate sums of squares but, 
unlike the usual EB estimate, it can never be negative. It is, however, possible 
to get a value of zero. 

3.6 Density of S(y 

As indicated in Section 2.6, the iterative algorithm does not provide the 
other quantities of interest. Before developing the integration formulas, analyt- 
ically integrate (x out of the posterior density of CX,S~. For future use, let c be 
the constant of proportionality in the posterior density of ol,Sjy. 

p(S(y) = JC(ol)-‘N+q-1)‘2(S)--(k-1)‘2h(S)[lIIiWJW.]1’2 

X exp{-[hr + C,P,(yO - 8J2]/2a 
- [h2 + Cj(6i - /i)2Wi]/2CY-S}dol 

= c(S) -(k- *“2h(8)[IIiWi/W.]“2 X {hl + CPij(yij - 63’ 

+ [h2 + Cj(6i - /i)2Wi]/8}-(N+q-3)‘2 

x r[(iV + q - 3)/2]2(N+q-3)‘2. 

3.7 Evaluation by Integration 

Let f(S) be the essential part of ~$31~). That is, 

AS) = (6)-‘k-1”2h(8)[niWj/W.]“2 

X {hl + EijP,(yi, - 6,’ + [X2 + Ei(6i - ~)2Wi]/S}-(N+q-3)‘2. 

Let the constant g = Jf(S)&. Sop(SLy) = gf(S) and the relationship between 
the constants g and c is 

c = {gr[(N + q - 3)/2]2(N+q-3)‘2}-1. 

The integral for g must be done numerically. An approach that is not necessarily 
the most efficient but is sure to work is to use separate numerical integrations 
on the intervals [O,l], [1,2], [2,4], [4,8], . . . until the contribution from the 
latest interval is sufficiently small. An iterative Gaussian integration converges 
fairly quickly. Any numerical analysis text (e.g., Burden, Faires, and Reynolds 
[Xl) is likely to prove useful. 

When doing numerical integration, it is important to know in advance if the 
integral will be finite. For the integral above it is sufficient to look at the 
balanced case. After removing some constants that depend only upon n and P, 
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the integrand becomes 

h@)(l + nP6)-(k-‘)‘2[C, + AZ/i5 + &(I + nP8)]--(N+q-3)‘2 

with cl and c2 being positive constants that depend only on the data. The four 
priors can be generalized to h(6) = Sdu2(1 -t- nBPh where v2 = vz for prior 
4 and is zero otherwise and h is 1 for priors 2 and 3 and zero otherwise. It is 
necessary to verify the conditions under which the integral will exist as both 
6 + 0 and 6 -+ ~0. For the first case, the essential part of the integrand is 

ij-yc3 + h2/q-‘N+9-w2, 

For existence, either 

hZ>OandN+q-2v2>10r 

A2 = 0 and (u2 > 1 or v2 = 0) 

must hold. This condition is always satisfied for priors 1 through 3. For the 
second case, the tail behavior is governed by 

p-1 +2/2+2v92 

and so the integral will exist if k - 1 + 2h + 2v2 > 2. This reduces to k > 3 
for prior 1, k > 1 for priors 2 and 3, and k > 3 - 2~2 for prior 4. Keep in 
mind that both conditions need to be satisfied. Rather than repeat these argu- 
ments for the integrals that follow, the existence results are summarized in a 
table at the end of this section. 

Returning to the estimation problem, the first quantity to compute is 

E@(y) = JSf(S)&/g. 

The next, and most useful quantity, is 

E(B;[y) = J[w,& + (1 - wJ;lf(S)&lg. 

The next quantity of interest is Var(B,ly). From Section 2.7.2, two integrals 
are needed. The first one is similar to the one above. It is 

E(8l’ly) = J[wAi + (1 - wi)kJ2f(6)&/g. 

The second one is Jviip(o,GJy)doA. With regard to cx (see Section 3.4), vii 
contributes a multiplicative constant of (Y and so the integral with respect to (y 
is similar to the one done in Section 3.6. 
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SViiP(~,~l.Y)dffd8 = J(1 - Wi)[l + (1 - Wj)lW.]Scwp(ol,Sly)dolds 

= J( 1 - Wi)[ 1 + (1 - Wj)/W.]S 

x cm -‘k-“‘2h(S)[~iWilW.]1’2 X {Xl + CuPij(yij - 6i)” 
+ [A2 + Xj(hj - ~)2Wj]/S}-(N+q-5)‘2 

x r[(TV + q - 5)/2]2(N+4--5%8. 

Letf*@) = (S)-‘k-1)‘2h(S)[IIiWilW.]“’ 

X {Xl + CPij(yg - 6,” 
+ [h2 + Cj(6j - $)2Wj]/S}-(N+q-5)‘2 

+ (iv + q - 5) 
and so 

Jviip(CJ,S~)dotdS = J(1 - Wi)[l + (1 - Wi)/W.]Sfy(S)dS/g. 

In case there is interest in the two variance components, their posterior 
means are given by 

Wu2b) = J?VWS/g 

E(r2(y) = j-8~(6)&lg. 

The predictive distribution for the next observation in the ith class was 
discussed in Section 2.7.4. If the next X is N(Bi,02/Ri) then 

E(XI.Y) = E(ei1.Y) 

Va~(Xly) = E(a2~)/Ri + Var(Bi(y). 

These quantities have already been obtained. 

The final item to obtain by integration is the posterior density of Bi. From 
Section 2.7.3, 

p(ejly) = J(bSi)-1S-k’2h(S)[lIiWi/W.]1’2 

X {[(ej - mi)/Ssi12 + CPij(Jij)2 - Eij(6i)2PiWi 

- (~iWi6i)2/W.S}-(N+q-2)‘2dS 

x r[(N + q - 2)12]l{r[(N + q - 3)/2]&} 

where 

l?Zi = WiQi + (1 - Wi)b 

and 

(LS~)~ = (1 - Wj)[l + (1 - Wi)IW.]. 
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TABLE 1 

CRITERIA FOR THE EXISTENCE OF THE INTEGRALS 

SfGWS 
j%&S)dS Sr;@W 
J+@flf)dS SSf@)ds $vi~(S)dS SVYSWS 

Prior 1 k>3 k>5 k>3 k>5 
Priors 2,3 k> 1 k>3 k> 1 k>3 
Prior 4 k > 3 - 2vz k > 5 - 214 k > 3 - 214 k > 5 - 2~~2 

and XZ > 0 N + 2v, > 3 N + 214 > 3 N + 219 > 5 N + 2~1 > 5 
or A* = 0 IQ > 1 or vz = 0 v2 > 2 or v2 = 1 Y2 > 1 or vz = 0 vz > 2 or vz = 1 

3.8 An EB Procedure Based on Integration 

To do all the calculations listed in the previous section requires a large 
number of approximate integrations. It would be helpful if those that are needed 
for each of the k groups individually could be avoided. A compromise that is 
reminiscent of EB methodology is presented here. 

To proceed it is necessary to obtain a general result for the mean and variance 
of a function of a random variable. To do this begin with a general random 
variable X and a function g(x). Use the Taylor series expansion about 5 = E(X) 
to write 

WX)I + EMS) + (X - Sk’(81 = g(t) 
and 

Vark(X)1 G VarMO + (X - E>s’@l = k’(5)12Var(X). 
Generally, for these approximations to be reasonable, the random variable X 
should in some sense be the average of a fairly large number of observations 
and the function g(x) should be thrice differentiable around 5. Almost any 
advanced text on mathematical statistics will contain theorems that make the 
above results precise. The random variable under consideration here is 6/y and 
its density will converge in the same manner in which a sample mean converges 
as the sample size, N, increases. 

To evaluate E(fli(y) = E(w,& + (1 - Wi)ib), let S/y play the role of 
X and so 5 = E(6jy) = 6, a quantity obtained in Section 3.7. Then let 
Rj = P&(1 + P$). Finally, 

E(O& * @j& + (1 - ~Cj)fi 
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demonstrate the evaluation of prediction intervals. In both cases, the results will 
be compared to those obtained from the usual EB formulas. 

4.1 Workers’ Compensation Frequency Data 

The data were supplied by the National Council on Compensation Insurance 
(NCCI) and comprise observed frequencies from 7 years on 133 rating groups 
in 36 states. To make this data set somewhat manageable, the years were 
combined to yield the following: 

yij = relative frequency in state j from group i 

Pq = Payroll in state j from group i. 
i=l,..., k = 133 j = 1, . . . , FZ~. 

The number of states per group (ni) is not always 36 as some states had no 
exposures for some groups. The total number of observations was N = 4,572, 
indicating that 216 cells had no exposure. 

The objective is to estimate 8i, the relative frequency of claims from insureds 
in rating group i. While the payrolls were adjusted for inflation, no attempt was 
made to adjust for any trend in the number of claims. As a final note, only 
claims resulting in permanent partial disability were included. It is important to 
recognize that the purpose of these illustrations is not to recommend a specific 
ratemaking procedure for workers’ compensation insurance, but rather to illus- 
trate the calculations using the formulas of Section 3. In particular, one might 
check the possibility that a cross-classified (state by group) model better de- 
scribes the process. 

For comparison, the formulas recommended by Biihlmann and Straub [7] 
were evaluated. These are the conventional EB formulas and produce the fol- 
lowing results: 

I? = ZPij(yij - di)‘/(N - k) = 4.746 

‘i2 = [CPj(& - $)2 - (k - l)&‘]/(P - XPf/P) = -. 1123 
where b = EPidilP and P = CPi. 

When a negative value is obtained for r2, the convention is to use zero. This 
produces credibility weights of zero and so the grand mean is used as the 
estimate for each of the group means. As has been mentioned before, this 
method does not allow for evaluation of the quality of the estimates. 

The key function in all the integrations isA6) as displayed in Section 3.7. 
The only item that involves the index j is Z(y,- - &)’ and it depends only on 
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the data and so is constant. The number of observations per group will not 
affect the computation, other than the evaluation of a single sum of squares. 
All of the sums that involve 6 have k = 133 terms. A second item is the size 
and shape of the integrand. The function fl6) is well-behaved, being small at 
8 = 0 and zero as 6 --$ 30, and having a single mode. However, because a vari- 
ety of constants were removed from this density, it turned out that the value at 
the mode was very large. To see just how large, a variety of values of ln(A6)) 
were computed. In the actual calculations that followed, I worked with 
fl6)/exp(4,650) as the maximal value was near exp(4,650). Since all expressions 
are the ratio of two integrals involving this function, the adjustments cancel. 
Finally, it should be noted that f(6) was calculated by first obtaining the loga- 
rithm of each of its constituent factors, adding them, subtracting 4,650, and 
then exponentiating the result. This avoided any overflow or underflow problems 
in the intermediate calculations. 

In Table 2, the results for the first three priors are displayed. Note that while 
the posterior mean of ~~ is indeed small (so zero was not an unreasonable 
estimate), it is large relative to a2/Pi, and so zero was not a reasonable choice 
for the credibility weight. This led to results that were considerably different 
from those obtained by the Btihlmann-Straub formula. Values of p. and the zi 
were found by solving the following system of k equations: 

E(eib) + z&i + (1 - ~i)(i where p = Ez~~JCZ~. 

The zi then take on the role of credibility factors. These do not automatically 
arise in a Bayesian framework, and except for the fact that actuaries are accus- 
tomed to seeing this quantity, there is no reason to compute it. The three classes 
displayed were the ones with the smallest, median, and largest values of 8i, 
respectively. 

It is not surprising that the three priors produced virtually identical results. 
The large amount of data overwhelms all of these priors. In addition, I computed 
the standard deviation of (r2!y). Under prior 2 it is 0.000416. The mean of 
0.003087 is over seven standard deviations above zero, indicating that the 
Biihlmann-Straub estimate is extremely unlikely to be valid. 

The same items were evaluated using the approximations from Section 3.8. 
This was done only for prior 2, since the results will be similar for the others. 
The results are displayed in the last column of Table 2. In this case, the 
approximation performed well. 
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TABLE 2 

ESTIMATES BY INTEGRATION IN THE ONE-WAY MODEL 

Prior 1 Prior2 

E(~/Y) .0006613 .0006498 

E(~Y) 4.755 4.753 

W%) .003143 .003087 
Inferred p .07488 .07487 

Class 107 (Auditors, Accountants, Draftsman) 

Pi 102,471 102,471 

e, .002762 .002762 

E(O;;; 
.9852 .9849 

.003830 .003848 

SD(Oijy) .006763 .006761 

Class 68 (Explosives and Ammunition Mfg.) 

PI 3,018 3,018 
6, .06262 .06262 

E(Oiii 

.6638 .6599 
.06674 .06679 

SW~IY) .03237 .03227 

Class 89 (Stevedore) 

PZ 11,275 11,275 
6, .3895 .3895 

E(Oi{i 
.8800 .8782 
.3518 .3512 

SW& .01980 .01979 

CPU (sec.) 14.92 15.23 
Cost ($) 3.91 3.97 

Prior3 

.0006503 
4.753 

.003089 
.07487 

EBStyle 

d .0006498 

a .07488 

102,471 102,471 
.002762 .002762 

.9850 cj .9852 
.003847 .003829 
.00676 1 .006762 

3,018 3,018 
.06262 .06262 

.6600 Pi% .6623 
.06678 .06676 
.03227 .03234 

11,275 11,275 
.3895 .3895 
.8783 K& .8799 
.3512 .3517 

.01979 .01980 

15.11 12.49 
3.94 3.50 

The computation was done on an IBM 4381 computer. The time did not include 

that used for setting up the data set (computing and arranging the values of yii 
and Pii), so this can be viewed as the increase in cost of the Bayesian method 
over the Biihlmann-Straub formula (which is essentially free). 
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In addition, the iterative algorithm (Section 3.5) was employed with 
prior 2. Eight iterations were required for convergence. The results 
were 8 = 0.0005936, 6’ = 4.625, and a = 0.07479. The results compare 
favorably with those obtained by integration. 

4.2 Workers’ Compensation Loss Ratio Data 

This data set was taken from Meyers [25]. He provided loss ratios for three 
years of experience in 319 rating classes in the state of Michigan. In addition, 
the premium volume was given for each class/year; they will be used as the Pij 
as in the Meyers paper. In that paper he used the Btihlmann-Straub formulas to 
obtain the credibility estimates. In view of the success from the previous section, 
I only computed estimates based on prior 2 and the EB approximation. The 
results were (the column labelled EB contains the results from the Meyers 
paper): 

EB HNLM 
cr2 92,374 101,650 
T2 0.019237 0.019762 

P 0.5822 0.5799 
K = 02h2 4,801,900 5,143,710 

It is not surprising that the results are similar. This also indicates that the 
Btihlmann-Straub formulas are indeed based on a hidden assumption of nor- 
mality. 

One of the most useful features of the Meyers data set is that it also provided 
the premiums and actual losses for the year following the three years of expe- 
rience. This admits an evaluation of the predictive ability of the various pro- 
cedures. I will begin the evaluation by duplicating the two tests performed by 
Meyers. In performing the tests, the expected losses based on the estimated loss 
ratios were adjusted to make the total expected losses equal to the actual losses. 
This is legitimate, since both credibility procedures were formulated to indicate 
relativities, not the absolute level of future losses. To do so would require trend 
factors to be incorporated into the analysis. An indication of how this might be 
done within the HNLM is given in the next section. 

The first test is to measure the squared error of the predicted versus the 
observed losses. Bayes procedures (of any kind) should do well since the 
objective is to minimize squared error. The formula is XPi(Ai/Ei - 1)*/k where 
Ai is the observed losses, Ei is the expected losses, and P; is the premium. Also 
available for this test were the losses expected according to the rates promulgated 
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by the NCCI. In addition, the weighted average relative error of the predictions 
was computed. The formula is CPi(A,/Ei - ll/XPi. The results were: 

Mean squared errors Mean relative errors 
NCCI 298,063 0.26776 
EB 289,651 0.26396 
HNLM 287,416 0.26368 

The second test was invented by Meyers [25]. He called it the “Underwriting 
Test.” The idea is to consider an insurer with established rates and a new entrant 
into the market. The new entrant uses his own method to determine premiums. 
He then offers insurance only to applicants in those rating classes for which his 
calculations produce rates less than those of the established insurer. He then 
charges a slightly lower premium than the established insurer and gets all of 
this business. If the new entrant’s ratemaking methods are superior, he will 
expect a profit from his actions. Assuming differences only in relativities, but 
not in overall level, the established insurer will lose the same amount that the 
new entrant gains. A formalization of this process has Ai as the actual losses, 
Ei (for established) as the established insurer’s expected losses, and N, (for new) 
as the new entrant’s expected losses. The profit and loss ratio, respectively, for 
the new entrant will be 

C(Ei - Ai) and CA;/CEi, 

where all sums are taken over those classes for which N, < Ei. The comparisons 
among the three estimators are presented in Table 3. 

TABLE 3 

THE UNDERWRITING TEST 

Established New Entrant Profit for New Ent. Loss Ratio 

NCCI EB 9,751,941 .950 
NCCI HNLM 9,929,786 .949 
EB NCCI 2,311,720 .990 
EB HNLM 7,493,090 .952 
HNLM NCCI 2,584,151 .989 
HNLM EB -6,753,204 1.026 
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According to Meyers [25], a loss ratio of less than 0.957 has less than a five 
percent probability of occurring by chance. The results are consistent with the 
mean squared error ordering in that HNLM has a significant loss ratio as a new 
entrant against both EB and NCCI. Neither is significant as a new entrant against 
HNLM. By the same reasoning, EB is superior to NCCI. There is also an 
inconsistency present in that HNLM appears to do better versus NCCI than it 
does versus EB. An examination of the data reveals that the problem is the lack 
of sensitivity of this approach. Below are the results from two of the 319 classes 
(all figures in thousands of dollars): 

Expected 

Class Loss NCCI EB HNLM 

8033 4,704 8,135 8,165 8,149 
9079 22,208 15,464 16,087 16,108 

In these classes HNLM scores a big “win” over EB, although the predictions 
are indistinguishable. Also note that in class 8033, HNLM defeats EB but loses 
to NCCI. It happened that there were no similar cases producing great gains 
under EB with a premium only slightly better than HNLM. The similarity of 
the expected losses should not have produced such a large overall difference 
between EB and HNLM. I attribute this to the method itself. 

Recall that one of the stated advantages of HNLM is that it also produces 
prediction intervals for the future observations. This was done for the 319 
classes. The standard deviations of the predictions were computed according to 
the approximation in Section 3.8. The formula is 

Var(Bi\y) e (di - 0.5’799)2(Pi)2(2.030 X 10-15)/(1 + 1.957 X 10-7P34 
+ (0.01993 + 3.842 X 10e9Pi)/(l + 1.944 X 10-7Pi)2. 

If all is well, the standardized actual losses (actual minus predicted divided by 
the standard deviation) should follow a normal distribution with mean zero and 
variance one. To see if that is so, two plots were prepared. Figure 1 shows a 
histogram of the 319 standardized losses. It is apparent that there is more 
skewness present than one would expect from a normal distribution. The chi- 
square goodness-of-fit test statistic using 20 intervals is 71.55. With 17 degrees 
of freedom there is clearly a lack of fit. Figure 2 is a plot of the standardized 
errors against the expected losses. This can be used to check for serial corre- 
lations and constant variances. The former is not a problem and that is confirmed 
by performing a sign test. There are 153 sign changes out of 318 opportunities, 
clearly close to the expected number of 159. There does appear to be a problem 
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Standardized Prediction Errors 
Histogram from 319 predictions 

50 
1 

with the variances. For small predicted losses, the points are much too concen- 
trated about the horizontal axis. This would lead us to suspect that we are 
overstating the variances in this range. One way to allow for this would be to 
adopt the unequal variance model of Section 5.1. 

With these problems in mind, is there any value in attempting to predict 
these values? I believe there is. First of all, as was stated in Section 1, an 
inadequate model is almost always better than none at all. Secondly, we have 
some idea of the shortcomings, and could make some ad hoc corrections in the 
future. 

As an illustration of the benefit of knowing the prediction errors, consider 
the following analysis which is done in the spirit of the “Underwriting Test.” 
Identify all classes for which the HNLM predicted loss exceeds the NCCI 
predicted loss by at least k standard deviations. Do not offer insurance to these 
classes. For k = 1 there is only one class, number 4420. In thousands the 
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Std. Pred. Error vs. Predicted Loss 
(222 smallest predicted losses) 
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predictions were 4,329 and 3,427. The actual loss turned out to be 3,855. The 
point here is that this analysis can help identify classes in which the current rate 
levels are out of line, perhaps inspiring an investigation to see if something 
unusual has happened, either to the insureds in that class, or to the data in the 
process of recording it. 

A final comment is in order. The above analysis leads us to believe that the 
normal model is not appropriate for these losses. In most settings we would not 
have the actual losses available in order to check this out. Can this be done 
with the original data? Box [4],[5] suggests the following approach to model- 
checking. In the general Bayesian setting, let X be the marginal distribution of 
the observations. Its density is computed from f(x) = @$(9)fltl)& where, as 
usual, &]0) is the model density and f(O) is the prior density. If the model and 
prior are reasonable, the observed data x should, in some sense, be a “typical” 
observation from this density. While Box suggests a specific test, I will just 
display the standardized observations. 
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First Level Std. Obs. 
Histogram from 957 values 

Figure 3 

In particular, I will restrict attention only to the assumption of normality 
and will condition on the other aspects of the model such as constant variance. 
I will also condition on the estimated values of the variances. In the general 
HNLM, the distributions of interest are 

First level-y - N(A6,6), 

Second level-6 - N(Bb,&), and 

Overall-y - N(AB$,G + A&A’). 

In the particular case of the one-way model, these distributions become 

First level-yij - N(&,~-‘/&‘Q), 

Second level-& - N(l?.,+2), and 

Overall-yii - N(/I,G2/Pij + t2). 
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Second Level Std. Obs. 

40 
Histogram from 319 values 

1 

Figure 4 

Figures 3, 4, and 5 display the histograms for the three sets of observations. In 
each case the appropriate values Cyii or 6i) were standardized according to the 
indicated means and variances. If the normal model was correct, the histograms 
should correspond to the standard normal distribution. An examination of the 
figures indicates that normality might indeed hold at the first level, but definitely 
does not at the second level. As a result, it is clear that the overall model should 
not be normal and that is indicated by the histogram. 

Does the discovery of non-normality invalidate all the work that has been 
done? I believe the answer is no. We are at least as well off as one who used 
the EB methodology and we have the additional knowledge that we do not have 
the optimal solution. It is now a matter of deciding if the extra effort of analyzing 
a non-normal model is justified. Perhaps the ideas suggested in Section 1.3 are 
worth investigating. 
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Combined Model Std. Obs. 
Histogram from 957 values 
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1 

Figure 5 

5. OTHER HIERARCHICAL LINEAR MODELS 

In this section I will present a number of other models that fit the framework 
set out in Section 2. No attempt will be made to analyze these models and, in 
particular, no attempt will be made to assess the computational difficulties of 
evaluating these models. Unless there is an indication to the contrary it should 
be assumed that all of the random variables at a given level of the model are 
conditionally independent. 

5.1 Unequal Variances 

The process variance within each class may differ from class to class. From 
year to year within one class it is still assumed that variances are proportional 
to some exposure measure. The first two levels of the model are 

Level l-Yg/ei - N(Bi,o?/Pii) and 

Level 2-41il~ - ~V(~J,T*). 

Noninformative priors would then be placed on p,, r2, and UT, , . . , a:. 
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It is easy to see what the EB approach to this model would be. Each (T? 
would be estimated from data in the i” class. This is not in the spirit of credibility 
analysis where we would expect that information from the other classes can 
improve the estimation of a particular a:. A model that would do this would 
have an additional component at Level 2 such as 

cdlu,X - Inverse gamma(v,X). 

Noninformative priors would then be placed on l.~, TV, u, and A. 

5.2 Parameter Uncertainty 

Suppose it is possible that the class mean 8i varies from year to year, but 
not in any predictable manner. A model for this would be 

Level l-Y&j - N(CXij,U*/Pi/) 

Level 2aGl0i - N(&,y2), and 

Level 34~ - N(~,T*). 

Collapse the first two levels to produce 

Yijl8i - N(Oi,U*/Pij + r2) 

This is similar to a model proposed in Meyers [26]. It is not possible to derive 
EB estimates of the three variance terms as the within sum of squares is all that 
is available to estimate both u2 and y2. There is, however, a least squares 
approach based on the relationship of the variance in one group to its exposure 
that can yield estimates of the three parameters. A detailed HNLM analysis of 
this model is presented in Klugman [23]. The major problem is the evaluation 
of a two dimensional integral. 

5.3 Hierarchical 

In this paper, the word hierarchical applies to all the models. In credibility 
work this term has been reserved for the case where the k classes can be divided 
into g groups, where the i* group would have rni classes in it (ml + . . . + mg 
= k). Begin with a three level model: 

Level l-Yfj*I 8ij - N(Oij,U2/Pijt) 

Level 2-0ijlf3i - iV(Bi,r*) 

Level 3+3iJp - N(p,r2) 
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Noninformative priors would be required for p, 72, y*, and u2. Levels 2 and 3 
may be combined to form a single distribution. However, when conditioned 
only on p, the t3;/ are no longer independent. EB formulas for this model and 
the one in Section 5.4 are given in Venter [34]. 

5.4 Cross-Classified 

Suppose each rating class is identified by two variables, such as sex and 
age, or state and occupation. An additive model, with the possibility of error, 
can be expressed with three levels: 

Level l-Yijrl0, - N(O~j,O*/Pij~) 

Level 2--8ijl~,CYi,@j - N(p + (Yi + pj,r’) 

Level 3~~ - N(0,7:) 
@j - N(Ojd) 

Noninformative priors would be placed on p,, r:, & y2, and cr2. The first two 
levels are easily collapsed to produce the single level 

Yijtlk9&,Pj - N(/Jw + 01, + pj,r” + U’IPijr). 

It has been common to set y2 = 0 in analyzing this model. Including it allows 
for some departure from additivity. Letting T: and 7: become infinite (so uniform 
priors are placed on all (Yi and l3,) produces a simple version of the model. The 
credibility compromise is between a strict additive model and the use of indi- 
vidual class means. 

5.5 Linear Trend 

In the one-way model we might observe that there is a year to year trend in 
the means. A simple linear trend would be modeled as 

Level l-Yi,lCXi,Bi - N(CX; + jBi,021Pjj) 

Level 2dilpi - N(pr,r:) 
PiI& - Mp2d) 

with noninformative priors on pl, b2, 77, r:, and u2. This is similar to the 
well-known model introduced by Hachemeister [ 131. It could be generalized to 
other types of trend by altering the structure of the mean at level 1. 

5.6 Time Series 

A linear time series model can be formulated in two stages. Here the 
subscripts indicate observations at a given time t. 
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Level l-Y,l& - N(F&, A) 

Level 2--&l&- 1 - N(G& i ,B) 

The matrices F, and G, are known while A and B require prior distributions. 
The first level is the process distribution which explains how the observations 
relate to the underlying parameters. The second level is the state distribution 
which explains how the parameters change over time. 

As an example, consider the linear trend model from Section 5.4. In this 
setting it would look like 

Level 1-Y$3U - N(0U,cr2/Pjj) 

Level 2-0,10i,j- 1 - N(pi + O,j-l,T’). 

It is not exactly the same, as level 2 implies that there are some disturbances 
that let the progression of means depart from strict linearity. The parameter (pi 
in Section 5.5 is unchanging over time. Prior distributions would be needed for 
&,o (to get the system started) and for pi, r2, and u2. 

This model is very similar to the Kalman filter. An excellent non-Bayesian 
application of this model to loss reserving is found in deJong and Zehnwirth 
[ 181. A discussion of its relationship to the usual credibility models is given in 
deJong and Zehnwirth [19]. 

6. CONCLUSIONS AND AREAS FOR FUTURE RESEARCH 

The intent of this paper was to introduce the hierarchical normal linear 
model as a tool for classification ratemaking. This model has three advantages 
over the EB approach. First, methods for estimating the variances do not have 
to be created on a case-by-case basis. Instead, the estimates fall naturally out 
of the analysis. Second, estimates of estimation and prediction error are avail- 
able. Finally, model-checking and model-selection procedures can be employed. 
The latter was not discussed in this paper, but methods do exist for identifying 
the most appropriate model when there are several to choose from (for example, 
a one-way vs. a cross-classified analysis). See Klugman 1231 for an application. 

Of course, this approach also introduces difficulties of its own. Foremost 
among them are the intensive computations needed to perform the analysis. In 
addition, the derivation of formulas for specific models can be very time con- 
suming (although once obtained they can be used over and over). These prob- 
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lems are really another advantage of the HNLM approach; they are all technical 
in nature and are certain to be solved if there is sufficient interest in doing so. 

The major area for future work (other than grinding out the solution to the 
many models of interest) is the relaxation of the normality assumption. There 
is overwhelming evidence that insurance data are not normal and so methods 
to accommodate that fact are most desirable. I envision two ways to attack this 
problem. One is to create methods that are robust against general departures 
from normality. To do this, the t-distribution or a mixture of normal distributions 
could be used in the model. Another way would be to find methods that are 
superior under specific distribution assumptions that are likely to correspond to 
insurance experience. In any case, considerable sensitivity testing should be 
done to any recommended formula. 
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