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A PROBABILISTIC MODEL FOR IBNR CLAIMS 

FARROKH GUlAHI 

A hstract 

IBNR reserl-es are presented as a stochastic variable. The model 
presented shows explicitly that the main factors contributing to IBNR 
resewes are number of claims, severity, and report lag distributions. 
The mean and variance of IBNR reserves are derived. Procedures to 
obtain an IBNR conjidence interval are discussed. Two examples are 
provided on the use of the model. Suggestions are made as to how to 
obtain model parameters from actual insurance data. 

I. INTRODUCTION 

Accurate estimation of IBNR liabilities is a matter of concern for regulators, 
management, and investors in proper evaluation of financial statements of prop- 
erty-casualty insurance companies. Some commonly used methods to compute 
IBNR reserves were presented in Skumick (1973), and in Bomhuetter and 
Ferguson (1972). In a survey of loss reserve methods, Skumick (1973) men- 
tioned the runoff method and the procedures that apply a factor to a current 
value of a base. Bomhuetter and Ferguson (1972) recommended procedures that 
initially require the computation of age-to-age factors derived from a loss 
development triangle. In a critique of reserve methodplogies, Khury (1980) 
stated that reserve estimates are point estimates with no provision given for 
possible rrariations from their respective true values; he also stated that the 
actuarial assumptions used in determining reserve estimates are not mentioned 
explicitly. 

Some commonly used procedures have two main shortcomings. First, a 
procedure that applies a constant factor to a current value of a base is ad hoc. 
For instance, statutory IBNR reserves for fidelity and surety coverages are 
computed as 10%~ and 5%, respectively, of premiums in force. Such an ad hoc 
procedure does not differentiate among companies with respect to underwriting 
practices, company operations, and management’s attitude to risk bearing. Sec- 
ond, many of these procedures are a by-product of a retrospective reserve 
analysis (e.g., the runoff method or age-to-age factors derived from a loss 
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development triangle). A retrospective reserve analysis provides information 
with regard to the adequacy or inadequacy of prior reserve estimates, but its 
implications about the accuracy of a current reserve are questionable. 

Another more philosophical problem associated with retrospective proce- 
dures such as the runoff method or procedures based on age-to-age factors is 
that these procedures are not “statistical.” A “statistical” procedure would con- 
sider an estimator that is usually unbiased and/or consistent: see Bickel and 
Doksum (1977). Statistical theory would guarantee that such estimators will be 
“about” the true parameter value or will “converge” to the true parameter value 
for large sample sizes (large volume of data). Even when adjusted for the 
volume of business or other pertinent facts. methods based on runoff procedures 
are not “on the average” guaranteed to cstimatc the true IBNR value. Similarly. 
procedures based on age-to-age factors. even when these factors are trended, 
cannot be relied on to estimate the true IBNR value correctly. Runoff procedures 
and procedures related to age-to-age factors may have an intuitive appeal for 
calculating IBNR. But there is no proof, at least to the extent of the author’s 
knowledge, that these computational methods have desirable properties such as 
being unbiased and/or consistent. 

In this presentation a probabilistic model. a statistical procedure. is devel- 
oped that may be used as an altcrnativc method for computing IBNR reserves. 

' IBNR MODhI -. 

IBNR liability is presented as a stochastic variable. Parameters used in the 
model are distribution of number of claims. scvcrity. and report lag by accident 
periods. These parameters (frlctors) arc dependent on a company’s mix of 
business written (current and past) and to some extent on a company’s proce- 
dures for investigating and reporting claims. In this section, the probabilistic 
formulation of the model is considered. The specitication of parameters has 
been delegated to another section. IBNR is presented as a tinite sum of random 
variables. Each term in the finite sum is an “IBNR contribution by an accident 
period.” These IBNR contributions are random sums (see Appendix B). Mean 
(expected value) and variance of 1BNR have heen dcrivcd. 

Claims are grouped by accident periods. The unit of time for an accident 
period may be a month or a quarter. For the sake of simplicity it is assumed 
that each accident occurs at the middle of an accident period. It should he noted 
that when the accident period is one year. the assumption that all accidents 
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occur at the midpoint of the accident year may be invalid for certain types of 
coverage because of seasonality and other pertinent facts. The “experience 
period” includes all the accident periods of interest. Diagram A is useful in 
presenting the “experience period.” 

DIAGRAM A 

experience period > 

t----------- c, - 

s - 1 
“initial”s 

i- 1 i t-l t 
accident “current” 

accident period period i accident period 

where ci = t - i + ( l/2), a known constant, 
i = s. s + I, , t. 

The accident period i is the interval (i - I, il. In this presentation, accident 
periods s and t represent “initial” and “current” periods, respectively. 

The model assumptions and the main symbols used are as follows. For each 
accident period i, 

(i) N,, a random variable, denotes the number of accidents occurring; 
(ii) corresponding to N,, there are claim amounts X,,, j < N,, that are 

independent identically distributed (i.i.d.) random variables with the 
same probability distribution as X,; 

(iii) each claim X,, corresponds to a report lag denoted by T,,. For a given 
claim, the report lag is defined as the time difference between the 
accident date and the claim report date. The To, j s N,, are i.i.d. 
random variables with the same probability distribution as T,; 

(iv) it is assumed that N,, X,,, and T;, are independent random variables for 
each j < N, and i = s. s + I, . , t. 

The random variables N,. X,. and T,, for s < i < t. correspond to the number 
of claims, the severity, and the report lag, respectively. Ni’s are related to both 
frequency and volume (exposure). The values of X,,, correspond to their ultimate 

cost realizations. The probability distributions for N,, X,, and T, can be different 
for each i. In Section 4, more information about the specification of N,, X,, and 
T, distributions is provided. The assumption of independence, (iv) above, has 
two major implications: for each accident period, the number of claims is 
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independent of claim amounts; and for each claim, the claim amount is inde- 
pendent of its report lag. If there is strong unpirical e\kfencr that for certain 
types of coverage a significant correlation (say. positive correlation) exists 
between claim amounts and their respective report lags. then the independence 
assumption, (iv) above, is violated and the derivations based on it are invalid. 
In such a case, one has to modify the model, or alternatively assess the sensitivity 
of the model to departures from independence. 

Let la denote an indicator random variable for the event A. That is. 

/A = 
1 

I, if A occurs, 
0, if A does not occur. 

The following equation ( I) 

1 = 1(7,/Z<.,) + fir,, ‘I.,1 (1) 

implies that the claim X,, is either a reportrd claim or an IBNR cluitn as of the 
end of accident period I. Let Y, denotc the contribution to IBNK liability from 
accident period i. Then, 

Note that Y, is a random sum (see Appendix B) (i.e.? Y, is the sum of random 
variables with the number of random variables contributing to the sum being 
random). IBNR as of the end of the “current” accident period t is dctined as, 

IBNR = c Y,. (3) 
t-5 

(4) 

Equation (3) presents IBNR as a sum of a tinite number of random variables, 
where each random variable in the sum is a random sum denoting an accident 
period contribution to IBNR. 

The mean and variance of Y,. equation (2) above, are 

E(Y,) = E(N,)E(X,)P(T, > c,), (5) 

where P(T, > c.,), in (5) above, denotes the probability that the random variable 
Ti exceeds the value c,. and 

Var(Y,) = E(N,)E(X:)P(T, > c,) + [E(X,)P(T, > ~~,)l’IVar(N,) ~ E(N,)l. (6) 
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Equations (5) and (6) are a consequence of (iv) above and Appendix B. 

The Expected Vulue (Mem) of lBNR 

Using (3) and (5), we have 

E(IBNR) = 2 E(N,)E(X,)P(T, > c,), 
I-5 

where B, = E(N,)E(X,), 
It’, = P(T, > c,). 

(7) 

B, is “expected incurred losses” for the accident period i. If we use “expected 
incurred losses” as a LISP. it is clear from (8) that IBNR is a function of current 
and prior base values. Because it is common for IBNR estimates to be calculated 
from a base that is only a function of a single year, the above analysis, equation 
(8), implies that such procedures are inappropriate. The weights W, can be 
computed using the report lag distribution(s), and their effect diminishes as we 
consider earlier accident periods. A deterministic procedure for calculating 
IBNR using lag probabilities, I$‘, above, has been presented by Patrik (1978). 

The Vcrriutwe of IBNR 

Using the independence assumption about N,, X,,, and T,], and equations (3) 
and (6), we have 

Var(IBNR) = c E(N,)E(Xf)P(T, ) c,) 
I \ 

+ c IE(X,)P(T, > c,)]‘[Var(N,) - E(N,)J. 
I-\ 

If Ni’s are Poisson random variables, equation (9) becomes 

Var(lBNR) = i E(N,)E(Xf)P(T, > c,). 
,- 5 

(10) 

One may be interested in Poisson number of claims for at least two reasons. 
First, if one expresses the parameter of a claim process in terms of the “oper- 
ational” time rather than the “natural” time, then many claim count processes 
of interest are in fact Paissotz processes. A claim count process is a stochastic 
process, {N(u), s - 1 S u S t), where u is the parameter of the stochastic 
process. The parameter II denotes the time (“natural” time), and N(u) is the 
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number of claims (accumulated number of claims) at time u during the time 
interval (s - I, u]. The number of claims in the accident period (i - I. i], N,, 
can be expressed in terms of the claim count process by the following relation- 
ship: N, = N(i) - N(i - I ). For an elaborate discussion of “operational” time 
and claim count processes, the interested reader should refer to Biihlmann 
(1970). Second, the negative binomial is a suitable probability model for htting 
claim count data; see Benjamin ( 1977). But negative binomial distribution arises 
from a Poisson random variable because of uncertainty in its parameter speci- 
tication: see Longley-Cook ( 1962). 

Equation ( IO) may be written as 

Var(IBNR) = x M,B,. (I 1) 

14, = (E(X’)IE(X,)]P(T, > c,). 

Now the weights U, depend on both severity and report lag distributions. When 
the number of claims has a Poisson distribution, the variance of IBNR can also 
be expressed in terms of current and prior values of a base. Moreover, in the 
case of the Poisson number of claims and the further assumption of a severity 
distribution. X. that does not change over the entire “experience period,” we 
have 

Var(IBNR) = c IE(N,)E(X)P(T, ’ (,,)I /E(X’)/E(X)I. 

= E(IBNR) IE(X’)/E(X)]. (12) 

Equation (12) implies that the ratio of Var(IBNR) to E(IBNR) depends only on 
the severity in this case! 

Some remarks on the derivation of a confidence interval for IBNR arc 
appropriate at this time. In order to &rive an fwrct confidence interval for 
IBNR reserves, it is necessary to know the distribution of IBNR. Note that 
IBNR is composed of a sum of a tinite number of random variables. where 
each term in the sum is a random sum. Determining the exact distribution of a 
random sum is extremely difticult. It requires the evaluation ot’ an intinite 
number of distributions where each one is a convolution of many distributions. 
This problem is well known in reinsurance. that is. the aggregate losses in stop- 
loss reinsurance arrangements are in fact a random sum; see Buhlmann (1970). 
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The distribution of IBNR can be analytically approximated by using the 
cumulative distribution of standard normal distribution, its derivatives, and the 
moments of IBNR. This approach is known as Edgeworth expansion and is 
discussed in Beard, Pentikainen, and Pesonen (1969). This approximate distri- 
bution can be used to construct a confidence interval for IBNR. 

Expressions for the mean and variance of IBNR have been given; now a 
crude IBNR confidence interval may be computed by using the Chebyshev 
inequality. 

The author believes that a reasonably accurate IBNR confidence interval 
may be obtained by resorting to simulation. IBNR realizations can be generated 
and a “simulated” distribution computed by specifying an input scenario, that 
is, specification of the claim count, the severity, and the report lag distribution 
for each accident period, based on actual insurance data. Such a distribution 
may be used to derive a reasonable contidence interval for IBNR. 

3. APPLICATION 

In this section are two examples that use the preceding model. The speci- 
fications of input parameters in these examples are not based on any real 
insurance data. but are stated merely for illustrative purposes and c‘ompututiotzal 
e.rpediemy. Given specifications of input parameters should not be construed as 
model assumptions. The main assumptions of the model are in condition (iv) 
in Section 2: independence of claim count, severity, and report lag. A more 
appropriate use of the model would be to generate many IBNR values (realiza- 
tions) by resorting to simulation based on input parameters derived from actual 
insurance data. Results of such a simulation may be used to provide an IBNR 
confidence interval and determine the sensitivity of IBNR to input assumptions. 

E.wtple A: Effkt of Changes in Input Purumeters on IBNR 

IBNR, or more precisely, expected value of IBNR, can be calculated ac- 
cording to equation (7) in Section 2. Each IBNR computation requires an input 
scenario, that is, a specification of expected number of claims, mean severity, 
and report lag distribution for each accident period included in the experience 
period. In this example, we consider one input specification and refer to it as 
“Scenario A.” We then investigate the effect of change(s) in input parameters 
relative to Scenario A on the value of IBNR. These investigations will show 
the sensitivity of IBNR value to changes in input parameters. In Table A, 
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several deviations from Scenario A’s input specifications are considered. In each 
case, a percentage change in IBNR value has been computed. 

TABLE A 

Scenario A: (i) Growth in expected claim count is 6% annually. 
(ii) Mean severity increases uniformly at the rate of 5%’ an- 

nually during the entire IO-year experience period. 
(iii) Report lag distribution for each accident period is exponen- 

tial with mean of 40 months 

Change in Input Assumptions 
Relative to Scenario A 

1. Change in growth rate for expected claim count 
from 6% to 9%. 

2. Change in rate of increase in mean severity from 
5% to 10% during the second S-year experience 
period. 

3. Change in mean lag from 40 to 50 months (as- 
suming the distribution of lag remains exponen- 
tial). 

4. Changes in expected claim count and mean se- 
verity as in I and 2 above. 

5. Changes in expected claim count and mean lag 
as in I and 3 above. 

6. Changes in mean severity and mean lag as in 2 
and 3 above. 

7. Changes in expected claim count, mean severity. 
and mean lag as in 1, 2. and 3 above. 

*Percentage Change 
in IBNR 

24.1 

15.0 

15.6 

43.3 

42.4 

31.8 

63.0 

*To compute the percentage change, let (IBNR),, and (IBNR)., denote the value of mean 
IBNR according to Scenario 0, that is any other scenario. and Scenario A. respectively. 
Then, the percentage change in IBNR is defined as 

For more detail5 on computation of the above percentage\ rekr to Appendix A. 
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Example B: Projecting IBNR Values After Discontinuing Writing u Line of 
Business or u Coverage 

Consider a situation in which at time t, end of the experience period, the 
insurer decides to discontinue writing a certain line of business or a coverage. 
The insurer may pay for IBNR claims as they are subsequently reported and 
settled, or the insurer may transfer the liability at a given price to an accom- 
modating reinsurer. The rate of decline in IBNR, subsequent to discontinuation 
of coverage, is considered as follows. 

Let E[IBNR(u,v)] denote the mean value of IBNR as of moment t’ evaluated 
at time u. Then, according to equation (7), we have 

E[IBNR(r,t)] = x E(N,)E(X,)P(T, > c;). (13) 
I=, 

If coverage is discontinued at time I, E(N,) = 0, for i > [. The claim X,, is an 
IBNR claim as of moment t + 1 if T,, > L‘, + 1. Thus, 

EIIBNR(r,t + I,] = c E(N,)E(X,)P(T,, > c, + I). (14) 
I -\ 

If T,‘s are exponential with density f(r), 

f(t) = 4x8’, t > 0, 

where the parameter 19 is equal to l/(mean lag). Then 

P(T, > c, + 1) = em ““+I) = em”P(T, > c,), 

Using (I 3). ( 14). and (I 5). we have 

E[IBNR(r,t + I)] = eF”E[IBNR(l.r)]; 

(15) 

similarly we have 

E]IBNR(t,f + k)] = (eF”)“E]IBNR(r,r)], for k = !,2,... (16) 

In particular, if the accident period is one month, then, according to equation 
(16), the projected value of IBNR a year after the evaluation date is equal to 
the current IBNR value multiplied by a factor (less than one) that is equal to 

le. 
I ,mean Lig) 

1 
17 

(17) 
The above factor is based on the premise that the lag distribution remains 
unchanged during the entire experience period and is exponential. Choosing an 
accident period of one month, IBNR is declining geometrically at an annual 
rate given by equation (17). Note that no restriction is put on the expected claim 
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counts and the mean severity by accident periods. Table B shows one year 
decline factors for different mean lags assuming exponential lag distribution. 

TABLE B 

ONE YtAK bK’I.INt F,\c.t’o~ 

Mean Lag 
(Months) 

IO 
20 
30 
30 
50 

Factor 

,301 
,549 
,670 
,741 
.7X6 

The emerged IBNR amounts in the respective future accident periods t + 
1, t + 2. . . . . are given by the following differences 

E[IBNR(t,t)l - E[IBNR(t.t + I)], 
E[IBNR(t,t + I,] - EI1BNRCt.r + 211. 

based on our evaluation at time r. These emerged IBNR amounts may be used 
to give an estimate of a “discounted” IBNR. 

4. SPE(‘IFI(‘A I ION OF MODtL. I’AKAMI: I I:KS 

For each accident period i. the specification of distributions for number of 
claims, severity, and report lag (i.e.. N,. X,, and T,) is required. 

In determining N,. the number of claims. distributions commonly fitted to 
insurance data are Poisson and negative binomial: see Benjamin (1977). In the 
case of Poisson, the only required input is the value of E(N,), the expected 
number of claims. E(N,) should not be based entirely on reported claims in 
accident period i, but adjusted for accident period i claims that will be subse- 
quently reported. As Salzmann ( 1984) stated, “the extrapolation of the incurred 
count is straightforward and results are quite dependable.” 
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The specification of claim distribution X, is a more difficult task. Many 
parametric distributions have been fitted to claim data. Some popular distribu- 
tions used are lognormal, Pareto, and gamma; see Beard, Pentikainen. and 
Pesonen (1969). It is the author’s belief that for earlier accident periods, the 
claim cost data are nearly “fully developed,” and a parametric distribution fitted 
to individual claims (incurred losses) is the appropriate procedure. The term 
curlier uccident periods. in the preceding sentence, depends on the circum- 
stances of a given situation. It should be evaluated in terms of the volume of 
claim cost data and the claim settlement period relevant to that line of business. 
Finger (1976) wrote an interesting paper related to fitting a lognormal curve to 
claim data. For more recent accident periods, the claims are only “partially 
developed” and are not close to their “ultimate” cost values. A possible approach 
is to extrapolate (trend) the distribution of earlier periods to arrive at distributions 
for more recent periods. A procedure for trending distrihutiom was presented 
by Rosenberg and Halpert (1981). 

The distribution of report lag, T,. can be obtained by a procedure outlined 
by Weissner (1978). where reported lags are fitted, by the method of maximum 
likelihood, to a parametric truncated distribution. The underlying report lag 
distribution is recovered by exploring the relationship between truncated and 
nontruncated distributions. 

The last point to consider is the selection of an appropriate “experience 
period.” Usually t is December 31 of the year of IBNR evaluation. The choice 
for .I‘. the “initial” accident period, requires considerable judgment. For a new 
company or an existing company with a new line of business, the s should be 
the earliest possible period. In other cases. the choice of s depends on the report 
lag distribution. From equation (8). it is clear that for earlier accident periods, 
I$‘, is small because C, is large. and consequently the contributions to IBNR from 
earlier accident periods tend to diminish. Thus, when IBNR is computed by 
lines of business or coverages, a judgmental choice with regard to the value of 
s should be made. 

Finally, the distributions of N,, X,. and T, are based on our knowledge at 
the end of the current period t. If the accident period is a month and IBNR is 
computed annually, at time t + 12, we have to update these distributions in the 
light of data gathered during period (t,t + 121. Thus, the distributions for the 
claim count, the severity, and the report lag may be updated from one evaluation 
period to the next. 
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5. (‘ONCI LISION 

The model described in this paper has merits of its own in estimating IBNR 
reserves. particularly the following points. The model is not ad hoc because the 
parameters used are dependent on a company’s book of business written. which 
is the most important factor in determining IBNR. The input parameters (dis- 
tributions) may be continually updated from one evaluation to the next. If the 
company’s operations change. or if other factors suggest an appreciable diver- 
gence from past development of input parameters. then. to the extent that these 
changes can be quantified, “historical” inputs should be replaced by these 
“subjective” inputs that incorporate the changes. The model is stochastically 
presented so that we can evaluate variability. The actuarial assumptions used 
are stated explicitly in terms of probability distributions for the number of 
claims, the severity. and the report lag. We have a tool. a stochastic model, to 
work with. More time can now be spent in examining the model assumptions 
and improving methods of estimating parameters from actual insurance data. 
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APPENDIX A 
FORMULAS USED IN COMPUTING THE PERCENTAGES GIVEN IN TABLE A 

Precise specification of the input parameters for the computation of per- 
centages in Table A is given below. The accident period is assumed to be one 
month. Let s = 1 in equation (7); rl denotes the rate of growth for the expected 
number of claims; r-1 and rj denote the rate of growth of the mean severity 
during the first and second five years of the experience period, respectively. 
The input specifications are as follows: 

E(N,) = E(N)(l + r,)” ‘)“‘, for 1 <i-(120 

E(X,) = 
1 

E(X)( I + r2)“m” I’, for I -(is60 
E(X)( I + r2)(M’m ““2( I + r3)‘i-ho)“z, for 6O<i-(120 

where E(N) and E(X) denote the expected values of claim count and severity in 
the initial accident month. The lag distibution is selected to be exponential for 
each accident period with the densityf(t) as given in Example B. Using equation 
(7), the mean IBNR value is 

E(IBNR) = E(N)E(X) ($ (1 + r,)” ““‘(I + r2)” m”“zemBc” 
,= I 

120 
+ 2 (l + r,)tr-I,,r2(l + r2)c60-lv12(] + r3)11-M))‘12e-AC~, 

IFhI 1 

where 6 = l/(mean lag). 

For Scenario A, rl = .06, t-2 = r-3 = .05, with mean exponential lag of 40 
months. For any other scenario, the input parameters that are not explicitly 
changed (see Table A) will be the same as those of Scenario A. In computing 
the percentage change in IBNR values, the E(N)E(X) term drops out. 
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MEAN AND VAKIAN~‘I: OF A RANDOM SUM 

In this appendix, we state (not derive) the appropriate expressions for the 
mean and variance of a random sum. The interested reader may refer to Feller 
(1971) or Mayerson. Jones, and Bowers ( 196X) for the derivation of the results 
stated below. 

Let Y, Yr. Y:, ._., Y,,, be independent and identically distributed random 
variables with tinite first two moments. Let N denote a nonnegative integer- 
valued random variable with finite first two moments. A random sum. SN, is 
defined as 

s,v = c Y,. (B.1) 
,= A 

Let us assume that N and Y,. Y?. ..are independent variables; then it can 
be shown-see Feller ( 197 I fithat 

f3S.v) = EW)E( Y). (B.2) 

Var(S.v) = E(N)Var(Y) + [E(Y)j%‘ar(N). (B.3) 

Equation (B.3) can be rewritten as 

Var(S,v) = E(N)E(Y’) + [E(Y)]‘IVar(N) ~ E(N)]. (B.4) 

If N is a Poisson random variable. the second term on the right-hand side of 
(B.4) is equal to zero. 

It should be noted that for an indicator random variable I,\ (see Section 2). 
we have 

E(I,) = P(A) . and 
E(l;i) = P(A) 

These results concerning the mean and second moment (about Lero) of the 
indicator random variable have been used in the derivation of equations (5) and 
(6) in Section 2. 
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