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Abstract 

Insurers paid $1.6 billion on property claims arising from catastro- 
phes in 1984. Researchers have estimated that annual insured catastro- 
phe losses could e.weed $16 billion. Certainly, thejnanciaI implications 
for the insurance industry of losses of this magnitude would be severe; 
even industry losses much smaller in magnitude could cause financial 
di$iculties for insurers who are heavily exposed to the risk of catastrophe 
losses, 

The yuantiJication of exposures to catastrophes and the estimation 
of expected and probable maximum losses on these exposures pose 
problems for actuaries. This paper presents a methodology based on 
Monte Carlo simulation for estimating the probability distributions of 

property losses from catastrophes, and discusses the uses of the proba- 
hilit?: distributions in manugement decision-making and planning. 

INTRODUCTION 

There were 28 catastrophes in 1984; they resulted in an estimated $I .6 
billion of insured property damage. Most of these catastrophes were natural 
disasters such as hurricanes, tornadoes, winter storms, and floods. In 1985, 
Hurricane Elena caused over $543 million of insured losses, and a tornado 
outbreak affecting nine states caused insured damage of $231 million. 
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Hurricane Elena barely rated a three on ;i severity scale ranging from one 
to five, in which destruction from hurricanes increases exponentially with in- 
creasing severity. A hurricane that rated a tour hit New York and New England 
in 1938; 600 people died and wind speeds of IX3 mph caused hundreds of 
millions of dollars of damage. 

If this storm were to strike again, dollar losses to the insurance industry 
could exceed ten billion given the current insured property values on Long 
Island and along the New England coast. Estimates of the dollar damages that 
will result if a major earthquake occurs in Northern or Southern California are 
even larger in magnitude. 

A very severe hurricane or earthquake would produce a year of catastrophic 
loss experience lying in the upper tail of the probability distribution of annual 
losses from catastrophes. It is the opinion of the author that the 1984 catastrophe 
loss figure lies in the lower end of this distribution. However, the determination 
of the shape and the estimation 01’ the parameters that describe this distribution 
are tasks that are not easily performed using standard actuarial methodologies. 
Yet since insurers require knowledge of their exposure to catastrophes and the 
probability distributions of annual catastrophe losses to make pricing. marketing, 
and reinsurance decisions. actuaries must be able to estimate the parameters of 
the distributions. including the expected and probable maximum losses. 

Standard statistical approaches to loss estimation involve the use of historical 
data to estimate future losses. However. approaches that employ time series ol 
past catastrophe losses can give poor estimates of potential catastrophe losses. 
Catastrophes are rare events so that the actual loss data are sparse and their 
accuracy is questionable; average recurrence intervals are long ho that many 
exogenous variables can change in the time periods between occurrences. In 
particular, changing population distributions, changing building codes. and 
changing building repair costs alter the annual catastrophe loss distribution. 

Since most catastrophes are caused by natural hazards. and since most natural 
hazards have geographical frequency and severity patterns associated with them, 
the population distribution impacts the damage-producing potentials of these 
hazards. A natural disaster results when a natural haLard occurs in a populated 
area. Changing population patterns necessarily alter the probability distribution 
of catastrophic losses. Since the average recurrence intervals of natural hazards 
in any particular area are long. patterns of insured property values may vary 
between occurrences to an extent that damage figures of historical occurrences 
have little predictive power. For example. the 1906 San Francisco earthquake 
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caused losses of $364 million. In 1985 dollars, this equals $4.5 billion. Yet 
some have estimated that an earthquake of this size could cause damages 
exceeding $30 billion today. 

It is primarily the influence of the geographic population distribution that 
renders time series models of natural catastrophe losses inadequate, although 
changing building codes also alter the loss-producing potentials of natural haz- 
ards. Over time, building materials and designs change, and new structures 
become more or less vulnerable to particular natural hazards than the old 
structures. Of course, changes in building repair costs also affect the dollar 
damages that could result from catastrophes. 

The above issues do not render the estimation problem intractable, but they 
do indicate a need for an alternative methodology to approaches which employ 
historical catastrophe losses adjusted for inHation to estimate the probability 
distribution of losses. Even models which adjust historical losses for population 
shifts can give only very rough approximations of expected and probable max- 
imum losses. 

This paper presents a methodology based on Monte Carlo simulation, and 
it focuses on property damage arising from natural disasters. The next two 
sections discuss the simulation approach to catastrophe loss estimation. A wind- 
storm example is then presented. Output analysis. model validation, and model 
uses are discussed in the following three sections. 

THE SIMULATION APPROACH 

The simulation approach is. very basically, the development of computer 
programs which describe or model the particular system under study. All of the 
system variables and their interrelationships are included. A high speed computer 
then “simulates” the activity of the system and outputs the measures of interest. 

Simulation models may be deterministic or stochastic. Monte Carlo simu- 
lation models are stochastic models, and therefore, the variables which they 
include are random variables. Numbers are generated from the probability 
distributions of the random variables to assign values to the variables for each 
model simulation. These probability distributions are either standard statistical 
distributions (selected on the basis of good fits with empirical data) or actual 
empirical distributions. 

Typically, many simulations or iterations are performed to derive estimates 
of the measures of interest from Monte Carlo simulation models. This is nec- 
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essary to ensure that the output distribution ha:, converged to the true distribution 
and that model derived estimates are “accurate.” Obviously, the larger the 
variances of the model variables. the larger the number of model iterations 
necessary to reach convergence. 

Computer simulation models can provide powerful tools for the analyses of 
a wide variety of problems, especially problems which involve solutions that 
are difficult to obtain analytically. Law and Keltctn IX) xtate that “Most complex. 
real-world systems cannot be accurately described by a mathematical model 
which can be evaluated analytically. Thus, a simulation is often the only type 
of investigation possible.” The natural ha/at-d loqs-producing system is one such 
system. 

I-HE NAl.URAI. HA%RD SIML’1.A I-ION MODE1 

The natural hazard simulation model is a model of the natural disaster 
“system.” The primary variables arc meteorological or geophysical in nature. 
They may be classified as frequency or severity variables. The frequency vari- 
ables determine the number of occurrences of tho particular events within a 
given time period. Severity variables account for a hazard’s force, size. and 
duration. These variables are. of course. random variables with stable (time 
independent’) probability distributions. 

The model simulates the physical occurrences of the natural hazards by 
generating numbers from these probability distributions. Numbers are generated 
to assign values to each variable for each simulated occurrence. The probability 
distributions are estimated using historical data combined with the knowledge 
of authoritative meteorologists and geophysicists. 

It is most efficient from a computational standpoint to generate numbers 
from the well-known statistical distributions. The empirical distributions formed 
by the raw data may be fit to these theoretical distributions using appropriate 
goodness-of-fit tests. If the data do tit any of these probability distributions, the 
moments of the distributions may be estimated and employed by the simulation 
model. 

If the empirical data do not tit any theoretical distributions. the empirical 
distribution may be used for the generation of values for particular model 
variables. This procedure, however. has some drawbacks. First, since the sample 
is a collection of random data, a different sample could yield a very different 
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empirical distribution. Second, the generation of random variables from an 
empirical distribution precludes the possibility of generating values of the var- 
iable outside of the observed range, and the observed range may not include all 
possible values of the variable. If the empirical data are sparse or do not fit 
theoretical distributions, knowledgeable physical scientists may provide infor- 
mation regarding the ranges of possible values of particular variables, as well 
as the shapes of the distributions and the most likely values of the variables. 

Variables that change with time, e.g., the geographic distribution of expo- 
sure units, the insured property values, and the building construction types, are 
inputs into the model. The probability distribution of losses from natural hazards 
given these inputs is the model output. Per occurrence as well as annual 
aggregate distributions are estimated. 

The model simulates the physical occurrences of the natural hazards and 
their effects on exposed properties thousands of times in order to estimate the 
distributions of losses. Thousands of iterations are performed to ensure that all 
possibilities have been simulated in accordance with the actual probabilities of 
occurrence and that the estimated distributions converge to the true distributions. 

A WlNDSTORM EXAMPLE 

A model of the hurricane hazard has been developed and will be used to 
illustrate the Monte Carlo simulation approach. Exhibit I is a simplified flowchart 
of the computer model. 

Most of the storm data used in the development of the model were obtained 
from the U.S. Department of Commerce. The data had been collected and 
analyzed by various agencies of the National Weather Service, and they included 
86 years of history spanning the period 1900 to 1985. Complete and accurate 
meteorological data were available for most of the hurricanes that struck the 
U.S. in this time period. 

A hurricane is a closed atmospheric circulation which develops over tropical 
waters and in which winds move counterclockwise around a center of pressure 
lower than the surrounding area. It is a severe tropical storm, with a center of 
pressure less than or equal to 29 (inches), which causes sustainable wind speeds 
of 74 mph or more. One hundred and thirteen hurricanes made landfall in the 



74 CAI’ASTROPHt RISK ASStSSMtN I 

U.S. during the sample period. One hundred and thirty-eight hurricanes either 
approached and bypassed (within IX) nautical miles). exited?, or entered the 
U.S. during the period. 

Referring to Exhibit I. the first step of the model (for each iteration) is the 
generation of the annual number of landfalling hurricanes. Table I shows the 
number of years in which the number of occurrences was 0. I, 2, and so on. 
The historical data tit a negative binomial distribution with s = 5 and p = .79. 
The chi-square goodness-of-fit test statistic equals 2.923 which is not significant 
even at the cy = .S level. 

TABLE I 

ANNUAL. NUMBEK OF HCKKK,\N~S L~NDI.AL.I INC; IN L!.S 

(EXCLUDING EXITING STORMSI 

I c)oo- 19x5 

No. Storms 
Per Year 

0 
1 
2 
3 
4 

>4 

Observed Relative 
Occurrence Frequency 

26 ,302 
29 ,337 
IX ,209 
6 ,070 
6 .070 
I ,012 

Neg. Bin. 
Rel. Frey. 

.308 

.323 
,204 
.I00 
,042 
,023 
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EXHIBIT1 

MODEL FLOWCHART 

GENERATE VALUES FOR SEVERITY VARIABLES 

(PO. R, T, A) 

CALCULATE MAXIMUM WIND SPEED I 

J, 

GENERATE ANNUAL NUMBER OF HURRICANE OCCURRENCES 

GENERATE LATITUDE AND LONGITUDE 
COORDINATES OF LANDFALL LOCATION 

For each zip code in affected area 
CALCULATE WIND SPEED 

(dependent on distance from eye and hours since landfall) 

CALCULATE DAMAGE FACTOR 

APPLY TO DOLLARS OF INSURED LIABILITIES 
DAMAGE FACTOR AND WLNERABILITY FACTOR 

i 

TOTAL DAMAGE 

+ 

I I , Yes / 

II{ Go to next iteration 1 



The next step of the model is the determination of the landfall location of 
each storm. Hurricanes enter the U.S. from the Gulf and East Coasts. The map 
in Exhibit II shows the U.S. coastline from Texas to Maine divided into 31 
smoothed 100 nautical mile segments. ’ The number of hurricanes that entered 
through each segment or bypaxscd within 150 nautical miles of the segment 
during the sample period is also shown. 

The numbers indicate that there are variations in locational frequencies. In 
this case. it would not be correct to generate the landfall location from a 
distribution which assigns equal probabilities to all values, i.e., a uniform 
distribution. Neither would one want to use the actual numbers of storms to 
form the empirical distribution from which the landfall locations will be gen- 
erated. This is because the selection of length of coastal segment is necessarily 
arbitrary. If a different length were used, the empirical distribution would be 
different. Additionally. although several segments are completely free of his- 
torical storm occurrences, it is not clear that the probability of hurricane landfall 
is zero in those areas. 

To derive the model locational freyuencY distribution. the raw data on the 
numbers of occurrences were smoothed using a procedure selected on the basis 
of its ability to capture turning points in the data while smoothing slight varia- 
tions. The coastline was redivided into SO nautical mile segments, and the 
number of occurrences for each segment was set equal to the weighted average 
of I 1 successive data points centered on that segment. The smoothed frequency 
values were obtained as follows: 

2 w, c, +,I 
,I= -5 

F, = 
5 w,, 

n--5 

where C, = the number of historical hurricane occurrences for the ith 
segment; 

F, = the smoothed frequency value for the ith segment: and, 

w,, = .30. ,252. .14. ,028. -.04. --.03 

for tf = 0. ?I, k2, 23. 24. 25. respectivelY. 

’ The coastline 1s smoothed for irrepularitws wch ;I\ mlet\ and bays. 
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EXHIBIT11 

HURRICANES ENTERING OR BYPASSING THE U.S. 1900-1985 



This is the preferred smoothing procedure in climatological analyses because 
the weighting scheme maintains the frequency and phase angle of the original 
series of numbers. The endpoints of the series arc approximated so that each 
segment of the coast is assigned a relati\,e frecluenc!~. The landfall location of 
each storm is generated from the thus derived locational frequency distribution. 

Sr\wi!\ 

Step three of the model is the generation of values for the severity variables. 
There are four primary variables which account for hurricane severity. These 
variables are: the minimum central pressure. the radius of maximum winds. the 
forward speed, and the angle at which the storm enters the coast, i.e.. the track 
direction. 

Central pressure (/I~,) ia defined as the sea-lcvcl pressure at the hurricane 
center or eye. This is the most important variable for computing hurricane wind 
speeds. and it is a universally acccptcd index of’ hurricane intensity. All else 
being equal, the square of the wind speed \aric\ directly with &I ($ = II,, -- 
pll where I>,, is the peripheral pressure). 

The radius of maximum winds (R) is the radial distance from the hurricane 
center to the band of strongest winds. Forward speed (7‘) refers lo the rate of 
translation of the hurricane center from one geographical point to another. Track 
direction (A) is the path of forward movcmcnt along which the hurricane is 
traveling and is measured clockwise from north. 

Hurricane severity varies by location as does frequency. In general. as 
latitude increases. average hurricane scvcrity decreases. When a hurricane 
moves over cooler waters. its primary source of energy (latent heat from warm 
water vapor) is reduced so that the intensity of circulation decreases in the 
absence of outside forces. As such. the shapes and parameters of the severity 
variable probability distributions wcrc r\timatcd for each coastal location. 

For each severity variable except track direction, samples of data points 
from 400 nautical mile segments of coastline were used to estimate the param- 
eters of the distribution for each 100 nautical milt segment. Overlapping 400 
nautical milt segments were centered on huccc\sivc IO0 nautical milt segments. 
the data were tit to theoretical statistical distributions. and the parameters were 
estimated. 
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The selection of 400 nautical mile lengths of coastline was somewhat arbi- 
trary; 300, 400, and 500 nautical mile segments have all been used in clima- 
tological analyses of hurricane data. Obviously, shorter segments capture more 
of the variation in the historical data while larger segments increase the size 
and hence the credibility of the data sample used for estimation. 

CENTRAL. PRtSSURE 

The distribution of historical hurricane central pressures is a skewed distri- 
bution with an upper bound of 29 inches. Tropical storms with higher central 
pressures will in most cases not produce winds of hurricane force. Since the 
distribution is truncated at one end, the variable Pdif’ was modeled instead of 
po. P&f was defined as 29 minus the central pressure of the storm. Pdif also 
has a skewed distribution so that the historical data were tit to both lognormal 
and Weibull distributions using the Kolmogorov-Smirnov goodness-of-fit test. 

The Weibull distribution produced the best tit of the empirical data. Table 
2 shows the estimated parameters, LY and p, for each coastal segment along 
with the number of data points in each sample, N, and the goodness-of-tit test 
statistic, KS. No klS statistic was significant at the 99% confidence level. 

RADIUS OF MAXIMUM WINDS 

The distribution of R for each coastal segment is symmetrical around the 
average value. The normal distribution provided a good tit of the historical data, 
and the parameters of this distribution were estimated for each coastal segment. 
The mean value of R increases with increasing latitude. Exhibit III shows a plot 
of latitude versus the radius of maximum winds for the historical Gulf and East 
Coast hurricanes. 

The radius of maximum winds seems to be positively correlated with central 
pressure as well as with latitude. Table 3 shows linear correlation coefficients 
(Pearson’s) between the pairs of variables. Although tests of significance could 
not be performed on the correlation coefficients since it could not be assumed 
that pairs of variables form bivariate normal probability distributions, it is 
assumed that there is a positive correlation between ,uo and R. The meteorological 
literature on hurricanes supports this assumption. 
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TABLE 2 

CENTRAL PRESSURE-WEIHUI 1 DIS~I~KIHUIION 

PARAMETER ESTIMATES F~K I00 NAII I KAI MII by SIX;MENTS 

100 n.mi. 
Segment 

400 n.mi. 
Segment 

I - 150-250 
2 - 50-350 
3 50-450 
4 150-550 
5 250-650 
6 350-750 
7 450-850 
8 550-950 
9 650-1050 

IO 7.x- 1 I50 
II 850-1250 
I2 950-1350 
I3 1050-1450 
I4 1150-1.550 
I5 1250-1650 
16 1350-1750 
I7 1450-1850 
I8 1550-1950 
I9 1650-2050 
20 1750-2150 
21 1850-2250 
22 1950-2350 
23 2050-2450 
24 2 150-2550 
25 22.50-2650 
26 2350-2750 
27 2450-2850 
28 2550-2950 
29 3550-2950 
30 2550-2950 
31 2550-2950 

(Y 

2.020 

I.773 
.XX? 
.8lY 
.46X 
.350 
33-3 .--_ 

,270 
.12x 
.I61 
.251 
.2Y6 
.lII 
,545 

I .52Y 
I.423 
I.703 
I.534 
0.844 

,007 
.2x5 
.204 
,316 
.-Iris 
.I77 

1 .SS6 
I.439 
I.325 
I.325 
I.325 
I .325 

B N 

I .0x0 Y 
0.974 I6 
0.910 22 
0.906 22 
0.738 26 
0.80 I 23 
0.707 23 
0.690 25 
0.571 23 
0.573 20 
0.426 IX 
0.624 I6 
0.837 21 
0.875 2x 
0.953 31 
0.x3x 24 
0.815 I3 
0.485 x 
0.463 7 
0.563 I2 
0.676 IY 
0.655 I8 
0.668 I6 
0.6% I2 
0.566 x 
0.663 9 
0.646 Y 
0.596 IO 

0.5Y6 IO 

O.S96 IO 
0.596 IO 

KS 

,223 
I65 

.I47 

.14Y 

.I I I 

.OY4 
,066 
OYO 
.09s 
IO7 

.I87 
,135 
.l3Y 
,144 
.I I6 
I40 
I41 

.I76 
,166 
.I56 
,207 
,204 
.302 
,234 
,296 
,260 
,277 
.252 
,252 
,352 
.252 



CATASTROPHE RISK ASSESSMENT 81 

EXHIBIT III 

LATITUDE Vs. RADIUS OF MAXIMUM WINDS 

t 

a : 

t 2 88 
8 
ts 

cc 8 t t 
88 88 888 

88 88 8 
8 182 
88828n2 88 8 

282ua 888 
8221 383 88 8 

2 1 83: 2!i 8 
2 ttst 

8 882 8 
882 88 8 
88 8 8 8 
28 

8 
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TABLE 3 

East Coast Hurricanes Gulf Coast Hurricanes 

PO R T A Lat /‘U R T A Lat 

PO .I!7 -.04 -.08 .31 p 1 .31 .04 .I7 .I7 
R .35 .24 .49 R .I3 04 .16 
T .42 .73 7 .06 .35 
A .SO A .I1 

This correlation is accounted for by the model in two ways. First. since p. 
and R are both correlated with latitude and the distributions of p. and R have 
been estimated at various latitude points. the simulated values of the variables 
will necessarily be correlated. Also. the lower and upper bounds of simulated 
R values are determined by the value of /to for the simulated storm. As shown 
in Table 3. p. and R are positively correlated so that severe storms typically 
have smaller R’s than weak storms. 

It should be noted at this point that the simulated values of all severity 
variables are bounded so that only storms with a nonzero probability of occur- 
rence are simulated. The upper and lower bounds of the model variables have 
been determined somewhat subjectively by meteorologists who are experts on 
the subject of hurricanes. The model procedure is to regenerate values that are 
out of range rather than assign a value equal to the lower or upper bound of the 
range. This ensures that the simulated values will not be clustered at the 
endpoints of the ranges. Since the estimated distributions fit quite well. the 
simulated values fall within the acceptable range a high proportion of the time. 

The historical data on forward speed fit lognormal distributions, and these 
distributions are employed by the model to generate values of 7‘ for each 
simulated storm. The average value of T increases with increasing latitude, and 
the lower and upper bounds of Tare dependent on latitude. Exhibit IV is a plot 
of latitude versus forward speed for the historical storms. 
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EXHIBIT IV 

LATITUDE Vs. FORWARD SPEED 

20*00 25*00 30*00 35,oo 4om 45.00 som 

t 
I * 1 I I 
I I 1 1 I t 

75*00 t 

65.00 t 

8 
8 

88 
8 

8 8 
48 883 2 

88 822W2888 
823388U286828 
8S3848 8 8232 
882 38 

8 

8 

8 

8 
88 
8 

88 
3 
8 2 

8 8 8 
88 8 

8 

88 288 

--- : 1 I 1 . I t 

20.00 25.00 30.00 35.00 4otoo 45.00 50.00 

I ATITUDE (DEGRk.ES) 



Four hundred nautical mile segments were not used to estimate the param- 
eters of the distributions of track direction I’or each coastal location. Since the 
orientation of the coastline influences the likel! as well as the possible angles 
of entry at each coastal point, segments of varying length were employed. The 
length that was selected for each segment was the length of smoothed coastline 
with the same angle orientation as the segment of interest. 

Track direction is distributed symmetrically around its average value. thus 
values for A are generated from the normal distribution. However, at some 
coastal locations, the standard deviation is quite wide relative to the range 01 
possible values so that the distributional shape begins to tend to uniform. In 
these cases, a relatively high proportion of simulated values could need to be 
regenerated. For example, at three coastal segments. the range of possible values 
is only + one standard deviation wide. Values for A could need to be regenerated 
32% of the time for storms landfalling in these segments. Fortunately, the 
number of such segments is small. 

Mcr.ritnwt~ Wind Speeds 

Once values are obtained for all of the severity variables, the maximum 
sustained wind speed is calculated via straightforward meteorological formulas. 
The movement of the storm is next simulated by the computer model, and 
maximum wind speeds are calculated for each zip code area in the affected 
region. 

The wind speed at each zip location is dependent on the distance of the 
location from R and on the hours since landfall. The wind speeds decrease as 
the distance from R increases and as the time since landfall increases. 

Insured Dtrmuges 

Dollar damages are estimated by applying damage and vulnerability factors 
to the insured property values in each zip code area. The damage factors are 
based on the results of engineering studies of the relationship between wind 
speed and structural damage. The vulnerability factors account for the variability 
in inflicted damage due to construction type and age. The dollar damages are 
accumulated for each storm. 

Two thousand years of hurricane experience are simulated by the model. 
These two thousand iterations provide estimates of the complete probability 
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distributions of annual hurricane losses and per occurrence losses from which 
expected and probable maximum loss estimates are derived. 

OUTPUI' ANALYSIS 

Exhibit V shows the expected losses as well as the X0’%, 90%. 95%. and 
99% confidence level losses calculated as the 80th. 90th, 95th. and 99th per- 
centile losses, respectively, for the geographical distribution of property expo- 
sures of a hypothetical company. The confidence level losses may be interpreted 
in two ways. A given confidence level loss shows the loss amount for which 
the probability of experiencing losses above that amount is I .O minus the 
particular confidence level. For example, for the loss distribution in Exhibit V, 
the probability of experiencing losses greater than $10 million is .20. The 
confidence level loss also shows the loss amount for which losses greater than 
that amount will be experienced, on average. once in every I.O/ 
(1 .O - confidence level) years. Again, from Exhibit V, losses greater than $10 
million will be experienced once in every five years, on average. The loss 
distribution is highly skewed with a median value which is much below the 
mean and a high proportion of zero values. 

EXHIBIT V 

MODEL-GENERATED Loss ESTIMATES (000’s) 

Insured Expected 
Liabilities Losses 

7.170.753 9.01 I 

Confidence Level Losses 

80% 90% 957c 99% 

10.003 24,179 44,827 117,946 

Since the estimated loss distribution is so skewed, many model iterations 
are performed to ensure convergence to the true underlying loss distribution. 
Unfortunately, there is no straightforward formula for calculating the number 
of iterations necessary to obtain estimates with specific levels of precision. If 
computer resources are not a constraint, thousands of iterations should be 
performed to ensure convergence. If computing power is limited, iterations can 
be performed in groups of a hundred or so. and the distribution can be tested 
for significant changes after each group of iterations. When changes become 
arbitrarily small, the simulation run can be terminated. 



MODtI. VAI 1I)A’l ION 

The validation of simulation models is often problematic. Since simulation 
models are representations ofrcal world systems, they are usually simplitications 
of complex systems. As such. statistical tests of differences between actual data 
and simulated data will typically show statistically signiticant differences even 
if the simulation model is a good or at least “acceptable” representation of 
reality. As mentioned previously, simulation models are often built when no 
alternative means of analysis are available. The model builder must decide if 
model performance is acceptable or if more resources should be employed in 
improving the simulation model. The decision is more of a cost versus benefit 
decision than an accept versus re.ject decision. 

In cases in which there is little actual data to compare to the simulated data. 
model validation is even more difficult. The natural hazard simulation model 
output, i.e., the catastrophe loss distribution, is an estimate of long run average 
costs given a particular geographical distribution of property exposures. It 
includes estimates of long run expected losses and probable maximum losses. 
There are no actual data to compare to the model output. 

There are, however, two sets of assumptions to be tested. The first set 
includes all of the assumptions concernin g the physical characteristics of the 
particular type of natural hazard. Do the physical characteristics of the simulated 
natural hazards match the characteristics of actual historical occurrences’? If the 
probability distributions of the t’requency and severity variables have been 
selected and estimated properly, simulated occurrences should bc very similar 
to the historical occurrences. 

In the hurricane model, the probability distributions of the model variables 
were tit to theoretical statistical distributions using the chi-square and Kohno- 
gorov-Smimov goodness-of-tit tests. Since the theoretical distributions were 
selected on the basis of a good tit with the empirical data. the simulated values 
of the variables match closely the historical values. 

The second set of assumptions to be tested include all of tho engineering 
assumptions which correlate the loss-producing phenomena with actual structural 
damage. These assumptions are more difficult to test empirically since actual 
loss data are needed. Testing requires the comparison of losses from particular 
natural catastrophes with the losses that the model would estimate for occur- 
rences with the same physical characteristics. given the same geographical 
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distributions of exposed properties. Frequently, these data are unavailable. If 
they are available, they are generally not available in the quantity necessary for 
statistical testing. 

Results of these tests could be used to calibrate the model. however, it is 
not clear that the model builder would want to calibrate the model to a small 
number of actual data points. The objective of the model is to project long run 
average costs, not to predict losses from individual occurrences. There is so 
much randomness involved in a single occurrence that one cannot expect the 
model loss estimates to mirror exactly actual losses on each individual occur- 
rence. 

The question that arises then is whether or not the model is valid if it cannot 
be tested statistically. What is the value of the model if one cannot prove that 
its estimates are “correct”? 

The nature of statistics is such that one can never prove that the sample is 
a true representation of the population. Statistical tests of significance merely 
provide confidence intervals for parameter estimates which are based on certain 
assumptions. These tests are used to choose between alternatives or competing 
hypotheses. 

In the case of the catastrophe simulation model. there are no good alternative 
estimators. Yet there is a real need for the model output. i.e., an estimate of 
the catastrophe loss distribution. Insurers and reinsurers make decisions every 
day that affect the catastrophe loss distributions. They need to know how their 
decisions impact these distributions so that they can make the appropriate risk 
versus return trade-offs. 

The degree of confdence that one has in model-generated estimates is a 
direct function of the level of confidence in the model assumptions. If each 
assumption has been tested for reasonabilityj, then the model output should 
provide reasonable estimates. The area of validation of the natural hazard 
simulation model is an area worthy of further research. 
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Knowledge of the probability distrihutionh of propert> losses due to catas- 
trophes enables management to plan for these events. The natural haLard sim- 
ulation model helps insurers to manage their exposure to catastrophes: it serves 
as an aid to decision-making in the areas of pricing. marketing, and reinsurance 
buying and selling. 

Pric,ittg 

The model-generated expected lash estimatc~ can bc used to calculate catas- 
trophe premitmi loadings. Theoretically. it’ an insurer establishes a reserve for 
catastrophe losses and makes annual ctmtrihutions equal to the annual expected 
losses, the insurer will break even with respect to catastrophe losses over the 
long run. 

Of course, competitive factors influcncc the amount of freedom that an 
individual insurer has to set prices. If demand is very elastic. small increases 
in price will lead to large decreahcs in market share. Pricing can be used as part 
of marketing strategy to manage the geographical distribution of property ex- 
posures and hence the catastrophe 10~4 distributions. 

Marketing 

The windstorm simulation model output as illustrated in Exhibit V shows 
the probability distribution of annual countrywide losses from the hurricane 
hazard. For marketing purposes. however. it may bc more useful to divide the 
country into smaller zones so that the specific areas 01‘ high windstorm risk are 
clearly identifiable. 

The computer model can be programmed to accumulate dollar damages by 
state. by country, or by any other geographical configuration. Exhibit VI shows 
the state of Louisiana divided into eight Lanes. The dollars of liability, i.e. 
exposure. the expected loss. and various confidence level losses” are shown for 
each zone. The figures clearly show that the higher risk areas arc the coastal 
zones. The hurricane is at maximum force .just as it crosses over land; as it 
travels inland, the storm dissipates because OK the elimination of its primary 
energy source (kinetic energy from the ~a) and because of surface frictional 
effects. 

’ It is intrrestlng 10 note thar li)r WXIII geographic area\. the ccmtidrncc lekct lo\w\ ma) be mn, 
since the trequrncirs of hurricane\ m \pcclfic Iocatlon\ are low 
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EXHIBIT VI 

I 1 

b nI-2 

LOUSIANA WINDSTORM ZONES 

Zone $ Exp 
Expected - 

Loss 80% 

Confidence Level Losses 

90% 95% 99% 

LOUIS I 90.417.112 
LOUIS 2 9,210,1 13 
LOUIS 3 56.674,660 
LOUIS 4 50.672.900 
LOUIS 5 79.796.656 
LOUIS 6 I76.149,552 
LOUIS 7 40.664.7 16 
LOUIS 8 33.114,748 

256.512 0 276,770 I-947,396 4.938.375 
25.540 0 12.932 213,693 537,37 I 
94,866 0 31,306 653,101 2.098,500 
71.042 0 0 234,088 I ,722,377 
80.965 0 0 547,837 2,021,005 

231.604 0 0 598,946 6,823,092 
47,598 0 0 193,227 1.309,985 
16,552 0 0 5,991 772,278 



Because all natural hazards have associated with them geographical fre- 
quency and severity patterns. they will produce gradations of damage or pockets 
of high risk and low risk. Management will want to avoid concentrations of 
property exposures in high risk areas, and the model output enables the devel- 
opment of marketing plans that are based on the long term profit potentials of 
various markets. 

Property business in high risk areas may be veq protitable in years of no 
natural hazard occurrences. As ycarx pass and no catastrophes occur, insurers 
may begin to compete for the business in a high ri& area. The competition may 
drive the protits as well ax the catastrophe loadings to zero so that there are no 
resources available to cover the catastrophic losses when they occur. Knowledge 
of the probability distributions of losxcs from nutural hazards in these areas 
enables insurers to resist the temptation to write business based on the very 
recent loss experience in these areas. 

The natural hazard simulation model provides an cxccllcnt tool for evaluating 
the exposure to natural hazards resulting from alternative marketing plans. 
Alternative geographical distributions of property cxpoana may be input into 
the model to estimate the resulting catastrophe 105s distributions. 

Pricing in accordance with cxpectcd losses does not eliminate the risk of 
large losses since catastrophes can occur when the loss fund is at a level that is 
not sufficient to cover all of the losacs. Nor can marketing plans eliminate this 
risk since no area of the continental U.S. ia free of natural hazards of all types. 
Insurers can use the probable maximum loss estimates to decide how much 
reinsurance to purchase for protection against large losses. .4n estimate of the 
probable maximum losses enables company management to make the appropri- 
ate risk versus return tradeoffs in evaluating reinsurance options. 

SUMMAKY AND CONCLUSlONS 

Catastrophic events can impact significantly the results of property and 
casualty insurers. Since the losses resulting from the occurrences of catastrophes 
could affect adversely the financial condition of a company. management must 
plan for these events. In order to plan for these events. an estimate of the 
probability distribution of losses ib needed. 

The Monte Carlo simulation approach to the estimation of the probability 
distribution of catastrophe losses involves the development of computer models 
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to simulate catastrophes. Each model is developed around the probability dis- 
tributions of the random variables of the loss-producing “system.” 

There are several advantages of the simulation approach. First, it is able to 
capture the effects on the catastrophe loss distribution of changes over time in 
population patterns, building codes, and repair costs. Second, this estimation 
procedure provides management with a complete picture of the probability 
distribution of losses rather than just estimates of expected and probable maxi- 
mum losses. And finally, the Monte Carlo simulation approach provides a 
framework for performing sensitivity analyses and “what-if” studies. 

Disadvantages of the simulation approach include long model development 
time and potentially high development costs. Model validation is also problem- 
atic. However the benefits provided by the model and the value of the model 
output would seem to outweigh the costs. The simulation approach, while not 
perfect in an absolute sense, is far superior to competing approaches to catas- 
trophe risk assessment and management. 
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