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AN ANALYSIS OF EXPERIENCE RATING 

GLENNG MEYLRS 

Ahttwt 

Experience rating formulas that are currently in use have features 
that have no counterpart in the literature on Bayesian credibility. These 
features include the limiting of individual losses that go into the expe- 
rience rating, separate treatment of primary and excess losses, and the 
gradual transition to self-rating. This paper analyzes the effect of these 
features using the collective risk model. 

Most developments in Bayesian credibility assume that the variance 
of an individual insured’s experience is inversely proportional to the size 
of the insured. This will not be the case if the parameters of the insured’s 
loss distribution are changing over time. This paper analyzes the effect 
of this parameter uncertainty on the Baycsian credibility formulas. 

Finally, Paul Dorweiler’s method of testing experience rating for- 
mulas is updated using modem statistical methodology. The result is a 
very general method of evaluating the parameters of an experience rating 
formula. 

1. INTRODUCTION 

The passage of open competition laws for Workers’ Compensation has 
indeed sparked a high degree of competition. Much of the competition is taking 
place on the individual insured level in the form of schedule and experience 
rating. In this new competitive environment the performance of these rating 
plans becomes crucial. The purpose of this paper is to examine the performance 
of some experience rating plans that are currently being used. 

The predominant experience rating plan for Workers’ Compensation is pro- 
mulgated by the National Council On Compensation Insurance (NCCI). This 
plan is widely adhered to. In addition, the National Council performs the service 
of maintaining the experience and calculating the experience modification for 
each insured. These services relieve the insurance companies of considerable 
administrative expense. 

For lines other than Workers’ Compensation. an experience rating plan is 
promulgated by the Insurance Services Office (ISO). Variations from this plan 



by individual insurance companies are common. Also, IS0 does not maintain 
experience for individual insureds. Getting reliable experience for new insureds 
is a real problem. 

When designing experience rating plans, there are some administrative con- 
siderations that cannot be overlooked. The first is that experience ratings are 
done frequently and so simplicity is of paramount importance 

A second consideration is that experience rating, as opposed to class rating, 
is very visible to the individual insured. A consequence of this is that the 
experience rating plans must give due consideration to what the insured perceives 
to be fair. Historically, see Snader [ 11, these considerations have included the 
following: 

I. A single claim should change the experience modification by no more 
than a predetermined amount. This predetermined amount is known as 
the swing of the experience rating plan. 

2. All insureds above a certain predetermined size are self-rated, that is 
they are rated entirely on the basis of their own experience. 

In addition to the administrative considerations mentioned above, there are 
some mathematical considerations that should be made. The mathematical foun- 
dations of experience rating come from Bayesian estimation and credibility 
theory. As is the case with many other mathematical theories, a simplified 
mathematical model is proposed, and the optimal method of rating the insured 
is derived. The success of Bayesian estimation and credibility theory depend 
upon how closely the model represents reality. 

The experience rating formulas derived from administrative considerations, 
hereafter referred to as “practical” formulas, may be different from those derived 
from the mathematical considerations, hereafter referred to as “theoretical” 
formulas. This paper investigates the compatibility of these two kinds of rating 
formulas. We would judge the formulas to be compatible if the accuracy of the 
“practical” formula is near that of the “theoretical” formula on the simplified 
models. While it is by no means certain that accuracy on simplified models 
implies accuracy in real life situations, inaccuracy on a simplified model should 
imply that something is wrong with the formula being tested. 

Our first goal is to find “practical” formulas that perform well on simplified 
models. These formulas will depend upon unknown parameters which must be 
estimated from data. Our second goal is to show how these unknown parameters 
can be estimated. An example will be provided. 



2. CURRENT EXPERIENCE RATING FORMULAS 

We begin by briefly describing two experience rating plans that are currently 
in use. We will concentrate on the structure of the plans. The methods currently 
being used to derive the parameters of the plan are not really an issue at this 
time. In what follows, an experience moditication will refer to the ratio of the 
premium after experience rating to the premium before experience rating. 

2. I The Workers’ Compensdon Experience Ruling Plum 

The Workers’ Compensation Experience Rating Plan [2] has a long and rich 
history. Its development is described in detail by Perryman 13). Uhthoff [4] and 
Snader 11 J. It is very much a “practical” experience rating plan and it has a 
strong appeal to common sense. 

A feature of this plan is the partitioning of’ the actual losses into primary 
losses, denoted by A,,, and excess losses. denoted by A,.. In most states, the 
primary part, X,,, of a claim of amount X is given by the following formula: 

if X 5 2000 

x = 1ooooxx 
I’ x+8ooo 

if X > 2000 

The excess part of a claim, X,,. is equal to X X,,. A,, is the total of the 
primary parts of all claims, and A,. is the total of the excess parts. 

Let: E,, = expected primary loss; 
E,. = expected excess loss; and 
E = E,, + E,. 

Then the experience modification, Mod, is given by the following formula: 

Mod = 
A,, + W X A,. + ( 1 - W) x E,. + ( I - W) x K 

E+(l-W)xK 

W is equal to zero for E less than some number Q, typically 25,ooO. and 
increases linearly to one as E increases to the self rating point S, which is 
usually around 500,000. K is generally set equal to 20,000. 

E,] and E,. are products of expected loss rates and the amount of exposure 
for the insured. These expected loss rates are in the Workers’ Compensation 
rating manual and are updated whenever there is a rate change. 
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This formula has some very appealing properties: 

1. If E 5 Q, the formula simplifies to the following: 

Mod = 41 + Ee + K 
E+K 

(Equation 2.1) 

This simplifies experience rating for small insureds. 

2. Since X,, is always less than 10,000, the impact of a single large claim 
on the modification is limited. 

3. The insured is self-rated for E 2 S. Also, the transition to self-rating is 
gradual. 

4. It is generally believed that claim frequency rather than claim severity 
differentiates the good insured from the poor insured. The relatively 
greater impact of small claims is consistent with this belief. 

2.2 The General Liabilit4, Experience Rating Plan 

The General Liability Experience Rating Plan [5], like the Workers’ Com- 
pensation plan, is very much a “practical” experience rating plan. 

Let: ALR = adjusted actual loss ratio; 
AELR = adjusted expected loss ratio; and 

2 = credibility factor. 

Then the experience modification, Mod, is given by the following formula: 

Mod = 1 + 
ALR - AELR x z, 

AELR 

The term “adjusted” refers to the fact that individual claim amounts are 
limited before entering the experience rating calculation. This limit increases 
with premium size. It is chosen so that a single large claim can change the 
experience modification by no more than .3. 

Let: P = premium associated with the loss period; and 
K = credibility constant (currently lOO,OOO). 

Then the credibility is given by the following formula: 

p-!-L 
P+K’ 



If this formula were to apply for all values of P, no insured would ever be 
self-rated. Since self-rating is desired for very large insureds. the credibility 
formula changes to a linear function between a selected point. Q, and a selected 
self-rating point, S. 

For E > Q: 

Z=Q2+KxE 

(Q + K)’ 
(Equation 2.2) 

In the current General Liability cxperiencc rating plan. K = 100,000, 
(2 = 483,333 and S = 1,049,654. 

Currently, the premium used is collected basic limits premium. However, 
this is slated to be revised in 1985. The premium used in the adjusted expected 
loss ratio will be based on estimated prospective premium and adjusted for 
inflation and average exposure growth. Ideally, the premium should be based 
on the actual exposures of the experience period. but administrative considera- 
tions led to using estimated prospective premium. It should be noted that the 
plan contains optional provisions to use actual exposures if they are available. 

When comparing the two experience rating plans. it should bc noted that 
the Workers’ Compensation plan is mandatory in most states. This includes 
many open competition states! The National Council can enf’orce the standards 
of their plan on all companies. They do this. of course, with the consent of the 
member companies. 

3. MATHEMATICAL M0DEI.S WK FXPI'RIENCb RAIING 

Let X be a random variable which represents the total loss incurred by the 
insured. Let E be a measure of the size of the insured. E could be either the 
expected loss for the average insured or the premium of the insured which has 
been determined by a rating manual. Let R = X/E and p = E[R], where E[ ] 
denotes expected value. R and f~ are called the loss ratio and the expected loss 
ratio. 

Experience rating is based on the premise that the expected loss ratio. p, is 
different for each insured in a given classification. To model this. we assume 
that an insured has a loss ratio distribution, d, which is selected at random from 
a class of distributions, D. Each distribution tf has its own mean, k, and 
variance. V’. Let M = E[ p.1, T’ = Var[ p]. and (J' = E[ “‘1. where these statis- 
tics are calculated over all distributions (1 in D. 
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This process is described by the following algorithm: 

Algorithm 3. / 

1. Select the distribution, d, along with p and v2, at random from the class 
of distributions D. 

2. Select the loss ratio, R, at random from the distribution d. 

The goal of experience rating is to estimate the expected loss ratio, )J, given 
the loss ratio, R. 

Two solutions to this problem are described by Biihlmann (61. The first 
solution is the Bayesian solution: 

B(R) = W-#l 

Biihlmann shows that the solution is optimal in the sense that 

EIUW - t-d 

is minimized. 

A drawback to the Bayesian solution is that it requires knowledge of all the 
distributions d in D. The second solution, called the credibility solution, only 
requires knowledge of the quantities M, 7* and 02. It can be written in the form: 

C(R)=ZxR+(l -z)xM. 

Z is called the credibility factor. We want to choose Z so that 

El(CW) - 14~1 

is minimized. The solution, given by Btihlmann, is 

(Equation 3.1) 

Biihlmann goes on to show that the same choice of Z minimizes 

El(W) - BUW21. 

Thus the credibility solution can be characterized as the best linear approxi- 
mation to the Bayesian solution. As Hewitt [7] and Mayerson [8] demonstrate, 
the Bayesian solution can be linear, and thus the credibility solution is identical 
to the Bayesian solution. However, Hewitt also gives an example where the 
Bayesian solution is different from the credibility solution. As we shall see 
below, the distinction can be important. 



We shall use the collective risk model to describe the distribution of the 
losses. This model describes the total losses of an insured in terms of its claim 
count and claim severity distributions. This model has been described exten- 
sively by Meyers and Schenker [Y ]. Heckman and Meyers [ IO], and Panjer 
1111. 

Let N and S be random variables denoting the claim count and the claim 
severity for an insured, respectively. In its simplest form. the collective rihk 
model can be described by the following algorithm: 

1 Select the claim count, N, at random from a Poisson distribution. 

2. Do the following N times: 
2. I Select the claim severity. S, at random 

3. Set the total loss, X. equal to the sum of the claim amounts, S, selected 
in step 2.1. 

Since credibility formulas are applied over a wide range of premium sizes, 
we need to be concerned with how the quantity (r2 varies with premium. The 
usual assumption made is to let o7 vary inversely with premium This is done 
mathematically by setting a’ = X’I’/<. where x’ is the constant of proportion- 
ality. 

This assumption agrees with the intuition of many actuaries. One would 
certainly expect the variance of the loss ratio to decrease as E increases. This 
assumption can also be justified using collective risk theory. If we assume that 
the claim count distribution is Poisson for each insured and that the claim 
severity distribution is the same for all insureds. then it is demonstrated in 
Appendix A that u’ is inversely proportional to E. 

Substituting C.‘/E for CT’ in Equation 3. I yields the following expression for 
the credibility: 

Z=E 
E+K 

(Equation 3.2) 

where K = c’lr’ 

This formula for credibility is almost universally used in the actuarial liter- 
ature on Bayesian credibility. An exception to this is in a paper by Robert A. 
Bailey and LeRoy J. Simon [ 121. This exception is important and their dcm- 
onstration is worth discussing in detail. 



Using experience from the Canadian Merit Rating Plan, they were able to 
calculate empirical credibilities for the experience of a single private passenger 
car for one, two and three years of experience. These credibilities are given in 
the following table. 

TABLE 3.1 

EMPIRICAL CREDIRILITIES 

Class 1 Year 2 Years 3 Years 

1 ,046 .068 ,080 
2 ,045 ,060 ,068 
3 .051 .068 ,080 
4 ,071 ,085 ,099 
5 ,038 .050 ,059 

Let E denote the number of years in the merit rating period. Using the 
credibilities based on one year, the constant K in the credibility formula 
2 = E/(E + K) is calculated. The credibilities for two and three years are then 
calculated using this value of K. The results are in the following table. 

TABLE 3.2 

DERIVED CREDIBILITIES Z = E/(E + K) 

Class K 2 Years 3 Years 

1 20.7 ,088 .126 
2 21.2 .086 .I24 
3 18.6 .097 ,139 
4 13.1 ,133 .187 
5 25.3 .073 ,106 

We see, as Bailey and Simon observed, that the usual assumptions suggest 
that credibility should increase roughly in proportion to the number of years in 
the experience rating period. When comparing Tables 3.1 and 3.2 we see that 



the empirical credibilities are signiticantly less than what the usual assumptions 
would suggest! 

Bailey and Simon attribute the failure of the usual assumptions to match the 
empirical credibilities, in part, to an “individual insured’s chance for an accident 
changes from time to time within a year and from one year to the next.” This 
phenomenon is very similar to that of parameter uncertainty. which is described 
by Meyers and Schenker 191. In Appendix A it is demonstrated that the collective 
risk model with parameter uncertainty implies that a2 is of the form z’/E + p, 
where B > 0. Substituting X’iE + B for CT’ in Equation 3. I yields the following 
expression for the credibility: 

z= E 
ExJ+K 

(Equation 3.3) 

where J = I + B/-r’ and K = 2’1~~ 

Using Equation 3.3, it is possible to take the credibilities for one and two 
years and solve for J and K. One can then calculate the credibility implied for 
three years. The results of these calculations are in the following table: 

TABLE 3.3 

DERIVED CREDIBILITIES Z = EI(E x J + K) 

Class 

1 
2 
3 
4 
5 

J 

7.7 
11.1 
9.8 
9.4 

13.7 

K 

14.1 
11.1 
9.8 
4.4 

12.6 

3 Years 

.0x I 
,068 
,077 
,091 
.0X) 

By comparing the above tables we see that the credibilities derived using 
Equation 3.3 come much closer to the empirical credibilitics than those derived 
using Equation 3.2. 

It should be noted that the maximum credibility obtainable in Equation 3.3 
is l/J. Recall J 1 1. Low maximum credibilities could be interpreted by saying 
that the insured is changing over time and that change is of a significant size 
when compared to differences between insureds. 
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Besides parameter uncertainty, there are other reasons why the usual as- 
sumptions may not be appropriate. The variable loss limit that is in the IS0 
experience rating plans is one such case. In Appendix A, it is demonstrated 
that the constant of proportionality, x2, depends upon the second moment of 
the claim severity distribution. Since the effect of changing the loss limit is to 
change the claim severity distribution, one should not expect x2 to be the same 
for all loss limits. 

Since the loss limit increases with premium size, we would expect a2 to 
decrease slower than l/E (See Appendix A.) Thus an attempt to impose a 
credibility formula of the form Z = EI(E + K) will result in credibilities which 
are too small for the small insureds, and too large for the large insureds. 

The formula a2 = x*/E + B also has the property that CJ’ decreases slower 
than l/E. Thus Equation 3.3 should provide a better estimate of the credibility. 
But the derivation of Equation 3.3 did not anticipate an increasing loss limit, 
and so one should not expect the estimated credibility to be perfect. 

4. THE EFFICIENCY OF AN EXPERIENCE RATING PLAN 

In the previous section we discussed optimal (for specific assumptions) 
experience rating plans. There are a number of reasons why an optimal plan 
might not be used. As discussed above, there may be several practical reasons 
for using some alternative plan. Another reason is that one must estimate the 
parameters M, -r2 and cr’. Estimation error will occur. The purpose of this 
section is to present a yardstick for comparing the performances of alternative 
experience rating plans. 

The purpose of experience rating is to estimate the expected loss ratio, CL. 
If experience rating were not used, our estimate of p would be M, which would 
be subject to error. A good measure, with historical precedent, would be to 
calculate the amount the expected error is reduced by a given experience rating 
formula. 

Let F be an estimator of f.~ which results from an experience rating formula. 
F can be a function of any kind of loss experience of the insured such as total 
losses, claim count or limited losses. We then define the efficiency of F by the 
expression: 

EI(p. - W21 - E[(P - F)*l 
Ei(p - W’l 



If F is a perfect estimator for p, its efficiency will be equal to I. If F = M, its 
efficiency will be equal to 0. It is possible, a\ WC shall soon see. for the 
efficiency to be negative for a poorly chosen F. 

One should note the similarity of this measure of cfticiency with the statistic 
R’ that is used in regression analysis. It is different from K’ in that it does not 
automatically assume that F was chosen in some optimal manner. 

If F is a credibility estimator of the form Z X R + (I - 2) X M. it is 
shown in Appendix B that the efficiency of F is given by the expression 2 X 
Z - Z’/Z,,,. where Z,,, is the optimal credibility given by Equation 3. I. A graph 
of the efficiency as a function of S is shown in Figure I. This expression has 
the following properties: 

i 
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1. The efficiency is maximized when Z = Z,,. This is Buhlmann’s [6J 
result. 

2. As a function of Z, the efficiency starts at 0 when Z = 0, raises to a 
maximum of Z,,, when Z = Z,,, and falls to 0 when Z = 2 X Z,,,. The 
efficiency is negative for Z > 2 X Z,?,. 

It is not difficult to see why credibility , even the non-scientific version, has 
been so popular. If Z < 2 X Z, then a credibility estimate using Z will be more 
accurate than no experience rating. If Z,,, > 0.5 then any choice of Z 5 1 will 
guarantee an improvement in accuracy. 

It should be noted that Z,,, is not the maximum efficiency obtainable by any 
experience rating formula. As noted above, a Bayesian formula could be more 
accurate. As we shall soon see, it is also possible that an experience rating 
formula that uses detailed information such as claim count and claim severity 
can be even more accurate than the Bayesian formula. 

5. THE GENERAL LIABILITY EXPERIENCE RATING PLAN 

We now use the concepts developed above to analyze the General Liability 
experience rating plan. In particular, we will discuss the effect of self-rating 
and loss limits. Also, credibility and Bayesian estimation will be compared. 

Let us suppose, for the sake of discussion, that the credibility formula Z,,, = 
EI(E + K), with K = 100,000 is the “correct” formula. Now suppose that 
instead of using Z,,, for credibility we use Z = (Q2 + K X E)/(Q + K)‘, where 
Q = 483,333. Then the following table shows the efficiency of the formula for 
Z. 

TABLE 5.1 

E Z Efficiency of Z ZlTl 

500,000 .8335 .8333 .8333 
600,000 .8629 .8571 .8571 
700,000 .8922 .8748 .8750 
800,000 .9216 .8877 .8889 
900,000 .9510 .8971 .9000 

1 ,ooo,ooo .9804 .9035 .9091 



Examination of this table shows that there is minimal loss of effciency when 
using Z instead of Z,,,. If one accepts the crcdihiliq formula Z = E/(E + K), 
the gradual shift to self-rating should also be acccptablc. 

We now turn to loss limits. The collective risk model will be used to describe 
the loss distributions. The mathematics will be less cumbersome if there is a 
finite number of loss amounts. For this reason. the claim count distribution will 
be binomial with N trials and the probability of a claim equal to p, The claim 
severity distribution will be a discrete version of the shifted Pareto, which is 
used to describe claim severity in many lines of casualty insurance. The prob- 
ability, F(x), that a claim will be less than or cyual to .\ is given by: 

F(.r) = I - (h/(x + h))’ .\- = I. 2. , 30 

The remaining probability will bc at the basic limit. 50. 

The parameter y will be set equal to I .15 for all prior distributions. The 
parameter h. in the claim severity distribution and JJ. in the claim count distri- 
bution may be different for each prior. N will retlcct the size of the insured. 

For a selected loss limit, L. the total losses can vary anywhere from 0 to 
L X N. Using Panjer’s algorithm [ 1 I] one can calculate the probability of each 
total loss for each prior distribution. One then calculates credibility and Bayes 
estimates of the experience modification for basic limits losses. as well as the 
efficiency of each estimate. Detailed calculations arc given for one case in 
Exhibit 5.1. Efliciencies for several cases arc given in Tables 5.2-5.4. 

We first consider the case where only the claim count distributions vary. 
The efficiency is at a maximum for both the credibility estimator and the Bayes 
estimator when the loss limit is equal to 1, and &creases as the loss limit 
increases. This should come as no surprise. When the loss limit is I. there is 
no random element due to claim severity. As wc increase the loss limit. we 
increase the randomness in our measurements. 

As expected, the Bayes estimator is more accurate than the credibility 
estimator. It is worth noting that the Bayes cstimatur is less affected by the 
increasing loss limit. The accuracy of the credibility approximation to the Bayes 
estimator gets worse as the loss limit increases. 

We now turn to the case where only the claim severity distributions are 
varying. In this case, information about the distribution, as well as the random 
element. increases as the loss limit increases. The efficiency of both the crcdi- 
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bility and the Bayes estimators is near maximum at a loss limit of 8. After that 
point the increase in efficiency is, at best, marginal. In fact it can decrease. 

When both the claim severity and claim count distributions vary, the effi- 
ciency first increases and then decreases as the loss limit increases. The best 
loss limit is 4 for this example. 

Attempting to draw conclusions about real life experience rating plans from 
models can be a risky undertaking. But accuracy is important, and not attempting 
to draw conclusions can also be risky. With this in mind, we proceed. 

The first conclusion is that limiting the loss for an individual claim is a good 
idea. A well chosen loss limit will be large enough to capture differences in 
claim severity distributions. If the loss limit is too large? increased randomness 
will wipe out any extra information gained by the higher loss limit. This has 
been the traditional argument in favor of loss limits. It is gratifying to see it 
verified on a mathematical model. 

While the Bayes estimator is more accurate, in practice we do not have 
enough information to use it. An alternative is to create conditions where the 
credibility estimator is a good approximation to the Bayes estimator. A loss 
limit serves this purpose. 

The negative effects of high loss limits appear to be less pronounced for 
larger insureds. Perhaps this could be taken as justification for varying the loss 
limit. However one should not raise the loss limit indefinitely. Once the loss 
limit reaches a sufficient level to capture enough information on the claim 
severity, it should go no higher. 
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Prior# 

X - 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
I4 
15 
16 

EXHIBIT 5.1 

C~t~lk31t.113. ANI) HAk,kS I31 Ihli\ I ts 

N=4 Loss limit = 4 

Limited Limited Basic Limits 
Weight p h y SW. Mean Std. Dev. SW. Mean ___ __ __ __ 

0.25 0.20 0.25 1.25 1.24 0.69 
0.25 0.30 0.50 
0.25 0.40 0.75 
0.25 0.50 I .oo 

1 

I 

1.48 
.2s I .47 O.Y3 2.03 
.‘S I .6X I .O7 3.57 
.2s 1.x5 I. 16 3 OY 

Aggregate Probabilities 

Prior# 1 Prior#2 

0.40960000 0.240 10000 
0.35481700 0.30735000 
0.14376800 0. lY673800 
0.04484430 O.OY76 12x0 
0.02853980 0.0757 IO90 
0.0 I326000 0.04735030 
0.00364740 0.0202 1520 
0.0009094 1 O.(J077 I Y6X 

0.00044414 0.00442423 
0.00013752 0.001X62X3 
0.00002474 0.0005387’3 
0.00000535 0.000 1666X 
0.00000245 O.OOOOXW7 
0.00000042 0.0000207X 
o.OOOOOO04 0.0OoOO341 
0.00000001 0.00000l01 
o.oooooooo 0.00000048 

Limited Grand Mean = 7.2X643 

Prior#3 

0. 1’960000 
0.‘?576000 -- 
0. lY920200 
0. 13228600 
0. I I665700 
O.OYO4 1290 
0.0s 102 120 
0.02505340 
0.016124SO 
0.00844632 
0.003239 I3 
0.0013292x 
0.0006x I 5 I 
0.0002 1562 
0.00004769 
0.0000 1s 5 2 
0.000008 1 Y 

Prior#4 

0.06250000 
0.14488800 
0. I6774800 
0.14045300 
0.13708900 
0. I’598400 
0.0884 I X80 
0.05248 160 
0.03707380 
0.023 15500 
0.01092810 
0.004x 155x 
0.00287956 
0.001 11993 
0.0002Y946 
0.00010565 
0.00006104 

Credibility = .216312 



X - Prob(X) 

0 0.21045000 
1 0.25820400 
2 0.17686400 
3 0.1037’)900 
4 0.08949920 
5 0.06927680 
6 0.04082570 
7 0.02154100 
8 0.01451670 
9 0.00840042 

IO 0.00368269 
II 0.00155422 
12 0.0009 1200 
13 0.00033919 
14 0.00008765 
15 0.00003055 
16 0.00001743 

Credibility Mod Bayes Mod 

0.7837 0.7325 
0.8783 0.8629 
0.9729 I .0177 
I .0675 1.1504 
1.1621 1.2006 
1.2567 I. 2722 
1.3513 I .3487 
1.4459 I .4012 
1.5405 1.4218 
I .6352 I .4552 
I .7298 1.4880 
1.8244 1.5071 
1.9190 1.5152 
2.0136 1 .s347 
2.1082 I .5498 
2.2028 I .5551 
2.2974 1.5605 

Difference 

0.0512 
0.0154 

-0.0448 
-0.0829 
-0.0385 
-0.0155 

0.0026 
0.0447 
0.1188 
0.1799 
0.2417 
0.3173 
0.4037 
0.4789 
0.5584 
0.6477 
0.7369 

Expected Error Bayes = .226192 Credibility = .230147 
Efficiency: Bayes = .222546 Credibility = .208954 

EXHIBIT 5.1 (continued) 
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TABLE 5.7 

Loss Credibility 

Limit N=4 N=X N= 16 N = 4 N = x N= 16 ___ ___ ___ 

I 1x9 
4 1123 

,317 .4X7 .IYO 3’3 ._ -_ ,496 
.71x .3SY .IS2 .237 ,377 

X ,087 ,160 ,275 ,147 ,714 ,309 
12 ,069 ,130 ,230 .I46 ,210 .2XX 
16 ,059 I12 ,201 .I45 .2OY .2x1 
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TABLE 5.3 

SEVERITY DISTRIB~JTIONS VARY 

Prior P b Y 

#I 0.4 0.25 1.25 
#2 0.4 0.50 1.25 
#3 0.4 0.75 1.25 
#4 0.4 1.00 1.25 
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Loss Credibility Bayes 

Limit N=4 N=8 N= 16 N=4 N=% N= 16 - ___ - - ___ 

4 .026 .051 ,096 ,038 ,059 ,101 
8 .035 ,068 ,127 .046 ,077 ,134 

12 ,035 ,068 .I27 .048 ,079 .I37 
16 .034 ,065 .I22 ,048 ,080 ,137 



TABLE 5.4 

COUNT AND sEVb.Rll Y t)lSl RIB\’ I IONS VARY 

Prior 

#I 
#2 
#3 
#4 

I’ 1’ ‘1 

0.2 0.25 1.75 
0. 3 0.50 I .2s 
0.4 0.75 1.25 
0.5 I ,oo 1.25 

LOSS Credibility Bayes 

Limit N=4 N=X N= 16 N = 4 N=X N= 16 

I ,189 .317 .4X’ .190 ,323 ,496 
4 ,209 ,344 ,507 ,223 ,365 ,536 
8 ,178 ,301 ,461 ,223 .354 .I510 

12 ,154 ,267 ,421 ,223 .351 ,495 
16 .I38 ,242 .3x9 ,223 .3so ,488 



6. THE WORKERS’ COMPENSATION EXPERIENCE RATING PLAN 

It was demonstrated in the last section that a loss limit can increase the 
accuracy of an experience rating plan. However, the Workers’ Compensation 
Experience Rating Plan gradually introduces excess losses as the size of the 
insured increases. We now analyze this treatment of excess losses using the- 
collective risk model. 

We shall use the Weibull distribution to model claim severity. The proba- 
bility, F(x), that a claim will be less than or equal to x is given by: 

F@) zz ] - e-(t’h’c, 

The Poisson distribution will be used to model claim count. The probability of 
n claims, P(n), is given by: 

P(n) = emA x X”ln! 

The parameter c’ will be set equal to .25 for all prior distributions. The 
parameter h for the claim severity distribution and the parameter A for the claim 
count distribution will be independently chosen at random from the following 
table. Each parameter value is equally likely to be chosen. 

TABLE 6.1 

h A - - 

30 40 
40 70 
50 100 
60 130 
70 160 

It was necessary to resort to Monte Carlo methods in order to properly treat 
primary and excess losses. The following algorithm was repeated 10,000 times. 

Algorihn 6. I 

1. Select the Poisson parameter, A, at random from Table 6. I. 

2. Select the number of claims, n, at random from a Poisson distribution 
with parameter A. 
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3. Select the Weibull parameter. A. at random from Table 6. I. 

4. Do the following tz times. 
4.1 Select a claim value. .r, at random from a Weibull distribution with 

parameter h and c( = .25). 
4.2 From x, calculate the primary loss. x,~, and the excess loss, x,,. 

5. A,) is the sum of all the x,,‘s and A,. is the sum of all the .T?‘s. 

It can be demonstrated by numerical integration of the severity distribution that 
E,, = 48,000 and E, = 72,000. 

In addition to the standard Workers’ Compensation experience modification 
formula, we want to consider a modification formula in which the excess losses 
are ignored. This formula will take the following form: 

M=A*+K 
Ep + K 

(Equation 6. I) 

One should note the difference between this formula and formula 2.1. Using 
Hewitt’s formulas [7], it can be demonstrated that the optimal value for K in 
this formula is 22.900. 

For each trial in the simulation it is possible to calculate the modification 
for various formulas involving primary and excess losses. By comparing the 
calculated modification with the “true” modification one can estimate the effi- 
ciency of each formula. The results are in the following table. 

TABLE 6.2 

EFFICIF.NCY 

W K = 18,0(K) K = 23,000 K = 28,000 

Formula 6.1 0.68 0.68 0.66 
Standard Formula 0.0 0.48 0.46 0.45 

I, II 0. I 0.51 0.50 0.49 
I, ,, 0.2 0.50 0.50 0.49 
v, ,I 0.3 0.44 0.44 0.44 
II !, 0.4 0.32 0.33 0.34 
I! !I 0.5 0.13 0.15 0. I7 
I, l, 0.6 -0.12 -0.09 -0.07 
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Formula 6.1 is a clear winner in this case. There are two possible reasons 
for this. First, as demonstrated in the previous section, the primary losses seem 
to capture most of the information about the severity distribution. Second, the 
structure of the experience rating formula may very well be wrong! The Bayesian 
and credibility formulas described above are optimal under certain specified 
conditions. This author does not know of any conditions where the standard 
formula is optimal. At the very least, a proposal to retain the present formula 
should include a plausible model in which the present formula outperforms the 
competing formulas. 

7. CHOOSING AN EXPERIENCE RATING FORMULA 

So far, we have seen how modeling can give some good hints for the right 
form of an experience rating formula. Since we rarely, if ever, have the distri- 
butional information to do a pure Bayesian analysis, it appears that a good 
choice of an experience rating formula would be a credibility formula. The 
credibility could be given by either Equation 3.2 or Equation 3.3. A loss limit 
of some kind should definitely be used. 

As of this writing, there is no nice clean way to pick an optimal loss limit. 
This author has had good luck with the Weibull distribution for severity in 
Workers’ Compensation and the shifted Pareto distribution, see Patrik [ 131, for 
the severity in other lines of insurance. By trial and error on various models, 
as was done in the previous sections, one might come up with a reasonable loss 
limit, or loss limit formula. There is room for improvement here. 

Once a loss limit has been selected one then gathers the limited losses and 
the expected limited losses for individual insureds over a period of years. This 
information is absolutely essential. Experience rating depends upon how well 
the experience of one year predicts that of another. With data such as this one 
can use the empirical Bayesian credibility procedure as described originally by 
Biihlmann and Straub [ 141, and later by the IS0 Credibility Subcommittee 1151 
and Meyers [ 161. 

A problem with these procedures is that they all assume that the u2 is 
inversely proportional to the expected losses, which results in using Equation 
3.2 for the credibility. While these procedures might well be modified to handle 
more general assumptions about u’, the author would like to propose a different 
approach. This approach has the advantage that: (1) it is easy to modify the 



parameter estimation to accommodate alternative assumptions about a’; and (2) 
one can test the assumption made about u’. This approach has its origins in a 
study done by Paul Dorweiler ] 171. 

In what follows we shall take the term “loss ratio” to mean current losses 
divided by the modified premium. where the experience modification is calcu- 
lated from prior years’ loss experience. We assume that the expected losses 
used in the experience rating formula are correct. If the loss ratio is positively 
correlated with the experience modification. then the credibility factors used are 
too low. Conversely, if the loss ratio is negatively correlated with the experience 
modification. then the credibility factors used arc too high. 

This can be justified by the following. Suppose an insured had a low 
experience modification and tends to have a lower than average loss ratio. Then 
to raise his loss ratio, one can give the insured a lower experience modification 
by giving more credibility to the experience. A similar argument applies when 
the insured tends to have a higher than average loss ratio. 

Dorweiler tested the performance of an experience rating plan by partitioning 
insureds by manual premium size and modification sil-o. For each premium size 
group he calculated the trend in loss ratio as the modification increased. The 
idea was to compare the number of times a positive trend occurred with the 
number of times a negative trend occurred. This method of testing credibility 
formulas is very general. No assumptions about the nature of the experience 
rating formula are required. 

During the past fifty years, our understanding 01‘ statistics has vastly im- 
proved. Our computing capability today was unthinkable in Dorweiier’s time. 
Today, Dorweiler’s method might well be similar to the following. 

Assume we have the correct form of the experience rating formula and we 
want to know if we have selected the right parameters. That is. we want to test 
the hypothesis 

Ho: The parameters of the experience rating I‘ormula arc correct 

against the alternative hypothesis 

HI: At least one of the parameters of the experience rating formula is 
incorrect. 

To test this hypothesis, we proceed as follows. 
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I. Partition the insureds into groups with similar modified premium size. 
Modified premium is used rather than manual premium because we want 
all insureds in the group to have the same loss ratio distribution. It is 
felt that expected losses rather than exposure is a better indicator of the 
loss ratio distribution. 

2. Calculate the correlation coefficient between the loss ratio and the ex- 
perience modification for each group. 

Kendall’s T, see Conover [IS], is the preferred measure in this case. 
This correlation coefficient compares the number of pairwise increases 
with the number of pairwise decreases. Let 7, denote Kendall’s cor- 
relation coefficient for group i and let ni be the number of insureds in 
group i. Under the null hypothesis, 7, = 0 for each group, the distribu- 
tion of 7, is approximately normal with mean 0 and variance 
%(a - I) (2n, + 5)/l 8. This is a nonparametric result. 

3. Calculate the normalized correlation coefficient, for each group, and a 
combined normalized correlation coefficient. These terms are defined as 
follows. 

For each group i, set T, equal to T, divided by its standard deviation. 
Under the null hypothesis T, is approximately normal with mean 0 and 
variance I. We call T, the normalized correlation coefficient for group i. 
Let rn be the number of groups. Set T equal to the sum of all the T,‘s 
divided by the square root of m. T also has mean 0 and variance 1 under 
the null hypothesis. We will call T the combined normalized correlation 
coefficient. 

4. Reject Ho at significance level 01 if the percentile of T is outside the 
interval (o/2, 1 - a/2). The percentile of T can be determined from the 
standard normal distribution. 

By noting that the confidence region of the parameters is the set of all 
parameters for which one fails to reject HO, one can find a confidence 
region of the parameters by testing several sets of parameters. Acceptable 
parameters are those for which the percentile of T falls within the interval 
(a/2, I - a/2). A best estimate of the parameters is one for which the 
percentile of T is equal to .5. 

Let’s see how this test works on live data. During the late seventies, the 
Individual Risk Rating Plan Committee at IS0 issued a special call for individual 
insured data from actual experience ratings. IS0 supplied the author with the 



following data elements from this call. For each of three years there was given 
the basic limits premium and the basic limits losses (adjusted for the loss limit). 
In addition, the adjusted expected loss ratio (AELR) was given. Ideally, one 
would like to have the losses that resulted from the policy that was actually 
experience rated, but we did the next best thing. The first two years of data 
were used to predict the third year. 

Before doing the analysis, two adjustments to the IS0 data were made. 
First, all insureds which did not have a full three years of experience were 
deleted. Second, the AELR was adjusted so that the total expected losses were 
equal to the total actual losses for the tirst two years. In all, there were 1,980 
insureds which form 33 groups of 60 insureds. 

Let us first assume that the credibility formula given by Z = Pl(P + K) is 
correct. Hypothesis tests were performed for a set of K values, with the following 
results. 

TABLE 7.1 

K T 

16,000 -2.9442 
18,000 -2.1870 
20,000 ~ I. 1476 
22,000 -0.2060 
24,000 0.2449 
26,000 0.5558 
28,000 I .0665 
30,000 I .6194 
32,000 2.1078 
34,000 2.5697 
36.000 2.9850 

Percentile 

.0016 

.0144 

.I256 

.4184 

.5967 

.7108 

.8569 

.9473 

.9825 

.9949 

The best estimate for K will be between 22,000 and 24,000. The 95 percent 
confidence interval for K will range from slightly over 18,000 to slightly less 
than 32.000. Table 7.2 shows the T,‘s for each group when K = 22,000. 

Close examination of Table 7.2 reveals that the correlations are predomi- 
nantly positive for the smaller insureds and very definitely negative for the 
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larger insureds. This indicates that the credibility is too low for the smaller 
insureds and too high for the larger insureds. Thus the formula Z = Pl(P + F-J 
is not the correct form of the credibility formula. This can be explained in terms 
of the changing loss limit and parameter uncertainty as described in Section 3 
above. If we have the correct form of the credibility formula, the hypothesis 
test described above should apply equally well for any subset of groups. 

Let us now examine the credibility formula Z = Pl(P X J + K). In addition 
to calculating the combined normalized correlation coefficient for all insureds, 
we calculate the combined normalized correlation coefficient for the five differ- 
ent subsets of groups. The rationale for selecting the subsets will be discussed 
below. 

Before discussing the above tables one should note that there are some small 
reversals in what might seem to be a clear pattern. These are random fluctuations 
caused by the insureds shifting groups with each set of parameters. Recall that 
the groups were based on modified premium. 

Let us first examine the subsets consisting of Groups 1 to 5, Groups 6 to 
19 and Groups 20 to 33. It can be observed that when J = 1.0, no value of K 
is in the 9.5 percent confidence region for each subset. The following pairs (JJQ 
are in the 95 percent confidence region for each subset. 

(3.0, 5ooo) 
(3.0, 6000) 
(3.0, 7000) 
(3.0, 8000) 
(3.0, 9000) 
(3.0, 10000) 
(3.0, 12000) 

(2.0, 14000) (3.0, 14000) 
(2.0, 16000) 

(4.0, 1000) 
(4.0, 2000) 
(4.0, 3000) 
(4.0, 4000) 
(4.0, moo) 
(4.0, 6000) 
(4.0, 7000) 
(4.0, 8000) 
(4.0, 9000) 

The details of the calculations for J = 4.0 and K = 2,000 are given in Table 
7.3. As mentioned above, the derivation of the credibility formula Z = Pl(P X 

J + K) does not anticipate a loss limit which increases as the size of the insured 
increases. Thus we should not expect this credibility formula to be exactly right 



TABLE 7.2 

Headings 

MINMBLP -Minimum modified basic limits premium 
MAXMBLP -Maximum modified basic limits premium 
N -Number of insureds 
TAU -Kendall’s tau correlation coefficient between the loss ratio and the experience modification 
MODPCTIO -lOLh percentile of experience modifications 
MODPCTSO -50th percentile of experience modifications 
MODPCT90 -90Lh percentile of experience modifications 
T -Normalized correlation coefficient 

EXPERIENCE RATING ANALYSIS-GENERAL LIABIL.II.Y: K = 22,000 J = 1.00 

OBS 

1 10.0 ‘50 60 0.10031 0.962409 
2 25 1.5 418 60 -0.01243 0.962809 
3 422.4 604 60 0.10056 0.929858 
4 606.5 754, 60 0.02147 0.908815 
5 762.8 884 60 0.01469 0.892809 
6 887. I 1032 60 -0.05537 0.879143 
7 1036.8 1151 60 -0.041XI 0.864093 
8 1151.7 1279 60 0. 10345 0.862320 
9 1286.5 1447 60 0.023 I8 0.824655 

10 1452.0 1603 60 -0.02373 0.839008 
11 1609. I 1747 60 -0.05537 0.845583 

MINMBLP MAXMBLP N 
- TAU MODPCT 10 MODPCTSO MODPCT90 

0.98257 0.99638 
0.97386 0.98161 
0.95987 1.01518 
0.94638 0.97613 
0.93845 0.97723 
O.Y3260 I .01479 
0.92675 I .Ol257 
0.92053 1.18874 
0.91Y98 1.10541 
0.90577 I .06497 
0.90363 l.lS102 

7 

T x 
r 
= 

I.1324 I ? 
-0. 1303 

I.1353 
0.2424 
0.1658 

-0.6350 
-0.4720 

1.1678 
0.2616 

-0.2679 
-0.6250 



TABLE 7.2 (continued) 

OBS MINMBLP MAXMBLP N TAU - MODPCTlO MODPCTSO MODPCT90 T 

12 1747.7 1910 60 0.20339 0.818599 0.89558 
13 1913.8 2020 60 0.02938 0.803793 0.89252 
14 2024.6 2169 60 0.14237 0.798667 0.90054 
15 2169.8 2316 60 -0.02712 0.785614 0.86615 
16 2318.4 2495 60 0.14463 0.786776 0.86784 
17 2498.1 2680 60 0.08475 0.743469 0.86263 
18 2681.3 2885 60 0.08927 0.766698 0.85704 
19 2885.0 3064 60 -0.00452 0.743238 0.84386 
20 3067.4 3346 60 0.07006 0.723105 0.84160 
21 3352.6 3629 60 0.25085 0.717498 0.85007 
22 3632.1 3880 60 0.02147 0.667270 0.85448 
23 3883.3 4209 60 0.10734 0.713127 0.81707 
24 4215.7 4580 60 0.01243 0.675236 0.80978 
25 4581.6 5023 60 -0.04859 0.684537 0.82988 
26 5040.9 5529 60 0.0531 I 0.634504 0.77695 
27 5533.5 6302 60 -0.08701 0.590834 0.83498 
28 6316.8 7390 60 -0.08023 0.641002 0.86242 
29 7405.5 8645 60 -0.35593 0.522315 0.80239 
30 8702.0 10808 60 -0.19955 0.468991 0.78968 
31 10847.9 15885 60 -0.20000 0.447977 1.06263 
32 16077.5 26102 60 -0.21695 0.622667 1.36827 
33 26118.2 297046 60 -0.26893 0.652677 1.52027 

1 .OOY20 2.2961 
1.17428 0.3317 
1.20914 1.6072 
1 .Oll41 -0.3061 
1.16782 1.6327 
1.23809 0.9567 ; 
1.06101 1.0077 ; 
1.18246 -0.0510 g 
1.20551 0.7909 5 
1.24072 2.8318 T: 
1.33079 0.2424 ; 
1.26421 I.2118 c 

1.91797 0.1403 
1.90822 -0.5485 
I .28748 0.5995 
1.91602 -0.9822 
1 .Y5935 -0.9057 
1.89673 -4.0181 
1.9743 1 -2.2527 
2.48548 -2.2578 
2.34570 -2.4491 
2.96620 z -3.0359 ‘a 



TABLE 7.3 

Headings 

MINMBLP -Minimum modified basic limits premium 
MAXMBLP -Maximum modified basic limits premium 
N -Number of insureds 
TAU -Kendall’s tau correlation coefficient between the loss ratio and the experience modification 
MODPCTlO -lOth percentile of experience modifications 
MODPCTSO -50th percentile of experience modifications 
MODPCT90 -90th percentile of experience modifications 
T -Normalized correlation coefficient 

EXPERKNCE RATING ANA~YSIS-GENERAL LIABILITY: K = 2000 J = 4.00 

OBS MINMBLP MAXMBLP 

I 9.9 230 60 0.07764 0.870207 O.YO3XY 0,96442 
2 232.9 382 60 0.07910 0.862833 0.88592 0.90232 
3 389.4 572 60 0.01582 0.834214 0.86588 0.91637 
4 572.3 70s 60 -0.07910 0.X22935 0.85410 0.96478 
5 709.2 821 60 -0. I1073 0.81215X 0.84499 0.89705 
6 823.7 961 60 -0.26328 0.80X248 0.83594 0.88607 
7 971.3 1085 60 -0.02712 0.8 10787 0.83640 0.98953 
8 1086.9 1232 60 ~0.05483 0.8 10880 0.X4006 I .03652 
9 1243.2 1390 60 -0.11815 0.7945 I I 0.83726 1.19594 

10 1394.3 1553 60 -0.07910 0.799560 0.83418 1.06445 
II 1555.2 1701 60 0.03277 0.80305 1 0.83198 1.09454 

.v - TAU MODPCTIO MODPCTSO MODPCT90 
i 

7 x 
L 

0.8765 r 
0.8929 
0.1786 

-0.8929 
- I.2501 
-2.9721 
-0.3061 
-0.6190 
- I .3337 
-0.8929 

0.3699 



TABLE 7.3 (continued) 

OBS MINMBLP MAXMBLP N TAU - MODPCTlO MODPCTSO MODPCT90 T 

12 1701.3 1830 60 -0.00339 0.799704 0.83866 1.35855 
13 1833.6 1996 60 0.06893 0.795396 0.83288 1.33904 
14 1996.4 2142 60 0.11186 0.794848 0.82466 1.02667 
15 2146.2 2326 60 0.07797 0.788719 0.82349 1.01559 
16 2340.1 2518 60 0.10508 0.796236 0.82021 I. 20622 
17 2518.6 2717 60 0.23616 0.792849 0.82674 1.27064 
18 2719.5 2924 60 -0.02486 0.787838 0.80931 1.04337 
19 2927.5 3174 60 0.07232 0.785318 0.81290 1.21608 
20 3174.8 3446 60 0.13672 0.789134 0.82195 1.80638 
21 3450.3 3767 60 -0.06441 0.798985 0.85378 1.35756 
22 3782.2 4143 60 0.15254 0.789817 0.90983 1.81165 
23 4147.5 4535 60 0.19096 0.782837 0.82072 1.32675 
24 4541.2 5042 60 -0.20791 0.790398 0.89006 2.10844 
2.5 5043.4 5426 60 0.00452 0.783358 0.82616 1.84692 
26 5439.8 6073 60 0.05198 0.791312 0.84412 1.74888 
27 6084.6 6997 60 0.00339 0.788521 0.87782 2.34622 
28 7011.6 8064 60 -0.00339 0.785978 0.88043 2.35557 
29 8115.5 9887 60 -0.11751 0.791988 0.98504 2.35900 
30 9899.0 12103 60 -0.17467 0.783483 0.90444 2.02998 
31 12344.9 17413 60 -0.04746 0.779974 0.90431 2.50209 
32 17495.2 26177 60 -0.03164 0.810414 1.12274 1.73464 
33 26221.3 20694 1 60 -0.00565 0.808315 1.05283 2.17655 

-0.0383 
0.778 1 
1.2628 
0.8802 
1.1863 
2.6660 7 

-0.2806 i 
0.8164 s 
1.5435 = 

-0.7271 F 
1.7220 ; 
2.1557 ’ 

-2.3471 
0.0510 
0.5868 
0.0383 

-0.0383 
- 1.3266 
-1.9719 
-0.5357 
-0.3572 
-0.0638 5 
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TABLE 7.4 

J = I .o 

K Groups I:33 Groups 6:33 Groups I:5 Groups 6:lY Croups XI:33 

18000 .OI44 

20000 .I256 
32000 .41x4 
24000 .SY67 
26000 .710x 
‘8000 .X569 
30000 .Y473 
32000 .YX24 
34OOO .YY3Y 
36000 .YYXh 

.oos I 

,066 1 
,241 I 
.3YSY 
.SlY7 
.7050 
.X665 
.Y4YX 
.Y7YS 
.YY33 

,679s 
.7306 
.X716 

.XYSO 
YOSO 

.YXS 

.Y374 

.Y367 

.Y6OY 

.Y6SS 

.X646 

YT) h... 

.Y677 

.YXhl 

.YX75 

.903X 

.YY76 

.YYY I 

.YYY4 

.YYY7 

.oooo 

.0002 

.00x 

.004Y 

.()I49 

.0412 
1063 

.2lSY 

.3SY4 
,534s 

J = 2.0 

K Groups I:33 Groups 6:33 Groups I :S Group5 6: I Y Groups X:33 

8000 .Ol 18 
10000 .0x43 

I2000 .238X 

14OcO .5767 

16000 .79(x) 

I8000 .X964 

20000 .9727 

22000 .9X93 

24000 .9979 

.()I32 

.0X63 

.2336 

.Sl86 

.7016 

.835X 

.YdlO 

.9754 

.YY43 

.2x75 

.37X5 

.45X6 

.6SOS 
.7940 

.X235 

.x919 
x951 

.Ylhl 

.6563 

.x020 

.XY77 

.9662 

.Y604 

.9x00 

.YYl2 

.YYS4 

.YYXO 

.OOo2 

.0027 

.OlO8 

.0391 

.I568 

.2449 

.4356 

.S696 

.7624 
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TABLE 7.4 (continued) 

PERCENTILES OF T’s 

J = 3.0 

K Groups I :33 Groups 6:33 Groups I:5 Groups 6: 19 Groups 20:33 

3000 .Ol36 .OlS2 .2913 .2652 .0075 
4000 .0535 .05X7 .3316 .4202 .0220 
5000 .I626 .I677 .4024 .S796 .0590 
6000 .30x0 .2940 .4972 .7576 .0715 
7000 .4104 .3x37 .5471 .7x54 .I134 
x000 ,564s .5234 .6096 .‘)I 1.5 .I026 
9000 .7601 .738X .61X3 .9435 .24X1 

I0000 .8223 .808X .6205 .9469 .3519 
12000 .9430 .Y229 .7546 .9597 .6054 
14000 .9X27 .9715 .X235 .9750 .7677 
16000 .9Y63 .Y93S .X421 .993l .X535 

J = 4.0 

K 

1000 

2000 
3000 
4000 
5000 
6000 
7000 
8000 
9000 

10000 

Groups I :33 Groups 6:33 

.s953 .4443 
,503s .51x5 
.6lll .6415 
.7106 .7164 
.X044 .810X 
.X676 .X405 
,921s .9317 
.9596 .9592 
.987X .98X6 
.994l .9929 

Groups I :5 Groups 6: I9 Groups 20:33 

.X293 .6717 .2602 

.4653 .6574 .3672 

.447 I .7501 .4356 

.52X9 .8901 .33x0 

.5472 .8704 .5467 

.6938 .7904 .7262 

.5450 .8689 .X373 

.6421 .90X7 .X707 

.6526 .9732 .9014 

.7510 .9771 .928X 
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over the entire range of premium sizes. Examination of Table 7.3 reveals this 
to be the case. However, the results are superior to any that could be obtained 
with the credibility formula Z = PI(P + K). 

If loss limit increases with the size of the insured the credibility will increase 
more slowly than the formula Z = P/(P X J + K) would suggest. This is 
verified in Table 7.4 where the formula tends to assign too low a credibility to 
the medium size insureds in Groups 6 to 19 and too high a credibility to the 
large sized insureds in Groups 20 to 33. However, the formula tends to assign 
too high a credibility to the smaller sized insureds in Groups I to 5, and too 
low a credibility to the medium sized insureds in Groups 6 to 19. This is the 
opposite of what is expected. 

We attempt to explain this reversal. We first note that there is a minimum 
premium size that qualifies an insured for experience rating. It is possible for 
an insured to have a sizeable decrease in exposure which will result in premiums 
which are below the minimum in the year being rated. But this happens rather 
infrequently. A far more common cause of inxureds having a smaller size is for 
the insured to have low modification. This can be verified in Table 7.3 where 
over ninety percent of the insureds in Groups I to 5 have experience modifi- 
cations which are less than 1 .OO. 

Two possible explanations for the reversal can be given. First, since most 
insureds are those with good experience, the groups arc more homogeneous 
(i.e. T’ is lower) and lower credibility is called for. Second. since the loss limit 
is assigned according to unmodified premium. (Y’ is not necessarily smaller for 
the smaller insureds. This would also have a tendency to lower credibility for 
the smaller insureds. If these explanations are correct, one should separate the 
very smallest insureds from the main part of the analysis. This is why the 
subsets were grouped in the above manner. 

In summary. a very general way of analyzing data for experience rating has 
been proposed. Not only can it be used to detennine parameters of an experience 
rating formula, but one can also test to see if the assumptions made in deriving 
the form of the credibility formula are valid. 



8. SUMMARY AND CONCLUSIONS 

This paper has attempted to use collective risk theory to analyze experience 
rating. Particular attention was paid to experience rating formulas used by the 
National Council on Compensation Insurance and Insurance Services Office. 
The first goal of this paper was to find an experience rating formula that worked 
well on mathematical models and would be easy to administer. An examination 
of the performance of experience rating plans on mathematical models led to 
the following conclusions. 

I. A loss limit can be an effective tool for increasing the accuracy of an 
experience rating formula. Loss limits are particularly helpful when there 
are differences in claim frequency. Even if the only differences among 
the insureds are in claim severity, little accuracy will be lost with a loss 
limit. 

2. The current formula in the Workers’ Compensation Experience Rating 
Plan, which has a separate treatment of primary and excess losses. is 
less accurate than a formula which uses only primary losses. 

3. There are some very plausible situations when the standard credibility 
formula 2 = E/(E + K) is not appropriate. These include parameter 
uncertainty over time and a loss limit which increases with the size of 
the insured. Failure to recognize this will result in overstating credibilities 
for larger insureds. 

The author would recommend an experience rating formula based on the 
credibility formula Z = E/(E X J + K). A loss limit that does not vary by size 
of insured should be a part of the plan. Excess losses should not be a part of 
the plan. This formula is less complicated than current formulas and should be 
easier to administer. 

It should be noted that the service performed by the NCCI in calculating 
the experience modification is probably more important than the choice of 
experience rating formulas. IS0 would do well to perform a similar service, or 
at the very minimum, provide experience in a standard format so that individual 
insureds could calculate their own experience modifications. 

A second goal was to show how the parameters of an experience rating plan 
could be estimated from data. This paper demonstrates, with live data, a very 



general procedure for testing the parameters of a proposed credibility formula. 
Systematic testing of various alternative parameters should enable one to derive 
a reasonably accurate formula. This method requires data with which one can 
compare actual losses with losses predicted by the proposed formula. The author 
considers this kind of data absolutely essential for accurate experience rating. 

Experience rating has always been a combination of scientifc and intuitive 
reasoning. While the intent of this paper is to put experience rating on a more 
scientific basis, it is hoped that the reader now has a hetter intuitive understand- 
ing of this very important subject. 
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APPENDIX A 

WITHIN VARlANCE AND THE SIZE OF THE INSURED 

In this appendix we discuss how the expected within variance, u*, depends 
upon the size of the insured. 

Let: N be a random variable denoting the claim count; 
A be the expected number of claims; 
x be a random variable with E[x] = I and Var[ x] = c; 
S be a random variable denoting the claim severity; and 
p be a random variable with E[ I@] = 1 and Var[ l/p] = h. 

The collective risk model with parameter uncertainty can be described by the 
following algorithm. 

Algorithm A. 1 

I. Select x at random. 

2. Select the number of claims, N, at random from a Poisson distribution 
with parameter x X A. 

3. Select p at random. 

4. Do the following N times. 
4.1 Select the claim severity, S, at random. 

5. Set the total loss, X, equal to the sum of the claim amounts, S, divided 
by P. 

b and L‘ measure uncertainty in the scale of the claim severity distribution and 
the mean of the claim count distribution, respectively. 

Let RI = XlE[X]. Meyers and Schenker [9] show that 

Var[R,] = (I + b) X E[S’]/(A x E’(S]) + b + c + b X c. 

The size of the risk E is proportional to E(X] and can be written as C X E[Xl. 
Thus we can then write: 

Var[R] = C$E + ~YI (Equation A. I) 
where 2.: = (1 + b) X C X E[S’]IE[S] and 

aI =b+c+bxc. 

In keeping with the notation of Section 3, let d denote a distribution gen- 
erated by the process described above. The linear relationship of Equation A.1 



is preserved when taking expected values over all distributions. rl. Thus we 
have 

cr2 = X’IE + ci (Equation A.2) 
where r’ = E[z;f] and 

a = E[a,]. 

Equation A.2 is used to derive the credibility formula 3.3. If’ 17 and c are 
equal to zero for each distribution 11. then U’ = f’li?‘. In this cast the credibility 
formula 3.2 applies. 

We see from Equation A. 1 that 2;‘. and thus x’, depend upon the severity 
distribution. An increase in the loss limit will increase 1’. 



APPENDIX B 

A FORMULA FOR THE EFFICIENCY 

We prove that the efficiency is equal to 2 x Z - Z’iZ,,,. The proof is simply 
a rearmngement of concepts originated by Biihlmann [6] and discussed by IS0 
1151. 

Lemma I: CovlX,kj = 7’ 

Proof: Cov[X,p] = E[(X - M) x (p - M)] 
= E,[E[(X - hi’) x C/J+ - M,/pll 
= E,I(F - Ml’1 
zr 72 

Lemmu 2: Var[XI = u’ + G 

Proof: Vat-lx] = E,[Var[Xlp]] + Var,[E[X\p]] 
z & + 7 

Theorem: Efficiency = 2 x Z - Z’IZ,,, 

Proof: Let F be an estimator for p. By the definition of efficiency given 
Section 4 we have: 
Efficiency = I - E[(F - p)2]/r’ 
Inourcase:F=ZXX+(I -Z)xM.Thuswehave: 
Efficiency = I - E[(Z X (X - M) - (p - A4))2]/r2 
= I - (Z’ X Var(X) + r2 - 2 X Z X Cov(X,fk))/r’ 
= 1 -- (Z2 x (a2 + 72) + T2 - 2 x z x T2)/T2 
= 2 x z - z?z,,, 

Corollury: The efficiency is maximized when Z = Z,,, 

Proof: d(Efhciency)ldZ = 0 when Z = Z,,,. 

This corollary is simply a restatement of Biihlmann’s result. 

in 


