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DISCUSSION BY STEPHEN P. LOWE AND DAVID F. MOHRMAN 

Mr. Sherman’s paper presents a potpourri of practical applications involving 
the fitting of a parametric equation to loss development factor data. The partic- 
ular equation utilized is called the inverse power curve, the form of which is 

where a, b and c are parameters to be estimated, and f represents time as it 
relates to the maturity of the body of claims. 

It should be readily seen that the parameter c provides a linear transformation 
of the time variable I, and is therefore somewhat extraneous to the formulation. 
The definition of f is arbitrary; f (t) can be the development factor from t to 
t + I, or alternatively f(t) can be the development factor from t - 1 to t. 
Similarly, the beginning of the accident year can be t = 0 or t = I (or even 
r = -I or t = 1.7275). 

The above comment is not intended to suggest that the selection of the time 
scale embodied in the variable I is trivial; a different result will be obtained for 
each scale chosen. However, to simplify discussion, we can express Mr. Sher- 
man’s equation as 

where we are searching for the best a, b, and scale f that Iits the data. - 

Like the author, these reviewers have found it useful in many circumstances 
to fit parametric equations to incomplete, erratic or irregular loss development 
data. This review will expand slightly on Mr. Sherman’s paper by offering some 
alternative equations, and discussing some desirable characteristics for loss 



development models of this kind. In addition, we will offer some specific 
comments and point out some pitfalls associated with Mr. Sherman’s approach. 

ALTERNATIVE MODELS 

The parametric equation in (2) above is referred to by the author as the 
inverse power curve. We refer to this equation as the polynomial decay model. 
As the author points out in Section II, this equation has the property that the 
initial development, a, decays at a rate of 

(3) 

over the interval from (t - 1) to t. For example, if b = 1, then the following 
decay rates would apply. 

Rate 
t Development from t - 1 to f of Decay 

1 1+Cl 
2 I + a x ‘12 50% 

3 I + a x ‘h x % 33% 
4 1 + a x % x % x 3/4 25% 
5 I + a x % x Y3 x 34 x ?4 20% 

An alternative model to the polynomial decay is one involving exponential 
decay: 

f(t) = 1 +; (4) 

In this model the initial development, a, decays at a constant rate, I - 6, over 
each interval. 

Viewing loss development as a decay process is intuitively appealing. It is 
certainly reasonable that, as an ever increasing proportion of losses are paid, 
their propensity to develop must decline. 

Both the polynomial and the exponential decay models can be expanded by 
the addition of a third parameter involving a squared term. 

f(t) = 1 + ; + $ (5) 



f(t)= 1 +g++ b- 

There are also a variety of mixed models that might prove useful. 

f(t) = 1 + 9 (8) 

All of these six models have been used by the reviewers to tit emergence data 
of one form or another. 

Equations (5) and (6) are interesting as they can be conceptualized as 
modelling two different kinds of development taking place simultaneously, but 
decaying at different rates. For example, if the data were accident year reported 
losses. the (I term might represent development caused by newly reported claims, 
while the c term might represent development on existing claims. 

A specific instance where this approach is very useful is in the case of 
subrogation and salvage. The following table compares actual loss development 
factors for Auto Physical Damage to those obtained using the three parameter 
polynomial decay model. presented in equation (5). 

Year of Actual 
Development Development 

2:1 I ,240 
3:2 .Y93 
4:3 ,996 
514 ,998 
6:5 .Y99 
7:6 1 .ooo 

Model 
Development 

1 .240 
,992 
,997 
,994, 
,999 

I .oocl 

In this instance the parameters of the model are u = - .07, h = 3 and c‘ = .31. 
In this instance the model has a nice intuitive appeal. The positive development 
of losses embodied by the c term decays very quickly, leaving the slower 
negative development of subrogation and salvage embodied by the a term. 
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CHOOSING A MODEL 

As we have noted, all of the models described previously have proven useful 
in fitting various kinds of emergence data. We suspect that the reader could 
easily conjure up other models that would also prove useful. 

Each of the models that we have described is “well-behaved”, but only over 
a limited range of parameter values. It is worthwhile to consider what kinds of 
constraints on the parameters are necessary for a model to be reasonable. 

In traditional applications, we want the development factors to be positive, 
decreasing, and approaching one. These can be expressed mathematically as 

1. f(t) 2 1 lim f(t) = I 
,-CC 

2. f’(t) < 0 lim f’(t) = 0 
r--r= 

3. f”(t) > 0 lim f”(t) = 0 
I-x 

While the constraints on the limits are probably necessary in all situations, 
special circumstances may require the relaxing of one or more of the constraints 
on values off(r), f’(t) or f”(t). For example, to produce the auto physical 
damage factors cited earlier, it was necessary to violate the first constraint, 
Similarly, the third constraint restricts us to curves that are concave upward 
over the entire domain of t. In some instances a curve that starts out concave 
downward may be desired. 

For Sherman’s two parameter polynomial decay model 

f’(t) = -ba 
[h+’ 

f”(t) = b(b + 1)~ 
t h-t2 

We see that all conditions are satisfied when a > 0 and b > 0 (and t > 0). 

For the two parameter exponential decay model 

f’(t) = 3 In r c J h 



f”(t) = z (ln $)’ 

Here all conditions are satisfied when (I > 0 and b > I 

Similar calculations to these should be performed on any proposed model 
before its use, so that a clear understanding of the properties and limitations of 
the model is obtained. 

A much more critical property of any model used to estimate report-to- 
report development factors is whether the product of the infinite series con- 
verges. While arbitrary truncation of the series at some point (such as 80 years) 
may be acceptable from a practical standpoint, it would be more desirable to 
restrict the model by requiring that it produces a less-than-infinite development 
factor to ultimate. 

Unfortunately, testing for convergence of the product of an infinite series is 
often difficult, as it usually involves intractable series of logarithms. 

Such is the case with Mr. Sherman’s equation. Several quick attempts failed 
to produce an algebraic solution to the question of whether the product series 
converges for all values of a and h, or some limited set. The reviewers are. 
however, convinced that with further effort (perhaps by someone more adept at 
real variable analysis) a solution to this question is obtainable. 

Our investigations did lead us to the following conclusion, however. Con- 
sider the following hypothetical loss development data. 

Maturity(r) 
Reported Report-to-Report 
Losses Development Factor 

2 
3 
4 
5 
6 
7 
8 
9 

10 

$ loo 
200 
300 
400 
300 
600 
700 
800 
900 

1,000 

2 000 
I.500 
1.333 
1.250 
I.200 
I.167 
I. 143 
1.125 
1.111 



The reader should readily recognize that if the loss development continues at 
its present rate of $100 per interval, losses will be infinite. It follows that the 
loss development factor product series must not converge. 

However, it is also true that the development factors above can be produced 
identically using Mr. Sherman’s equation by setting both LI and h equal to one. 
This strongly suggests that the parameter b should be restricted to values greater 
than one in order to guarantee convergence. 

We were led to raise the question of convergence by the discussion in 
Section II of Mr. Sherman’s paper. In that section he derives the rate of 
decay for his model and points out that the rate of decay (as we have defined 
it) declines towards zero as t increases. (His “decay ratio” approaches unity.) 
This is in strong contrast to the exponential decay model, under which the 
rate of decay is constant for all values of t. 

Upon initial reading of this section of the paper we were concerned that a 
declining rate of decay implied non-convergence of the ultimate development 
factor. However. upon reflection this does not appear to be the case, 

It seems reasonable that there should be a relationship between the rate of 
decay of the development and the convergence or non-convergence of the 
development factor to ultimate. Clearly this question should be resolved before 
any model gains widespread use. 

FITTING THE FUNCTION TO ACTUAL. DATA 

In Section I of his paper, Mr. Sherman suggests a simple procedure for 
fitting his equation to loss development factor data. The technique uses only 
natural logarithms, exponentials and linear regression, and therefore has the 
distinct advantage of requiring only a (reasonably sophisticated) pocket calcu- 
lator to perform the calculations. 

While the technique is handy, any prospective user should be aware that it 
dots suffer from several problems. First, under the proposed transformation, an 
actual loss development factor of 1.000 is inadmissable because the natural 
logarithm of zero is undefined. What does one do under such circumstances? 
One possibility is to substitute a factor “sufficiently” close to 1.000. 

A similar problem exists with observed development factors less than I .OOO. 
These must be ignored or somehow smoothed out of the data. 



Another problem is that the fitting technique minimizes the errors of 
In(f(t) - 1) and not the errors of ,j(r). The result is that. in the fitting process. 
differences between actual and fitted values arc more signifcant when the 
development factors are close to 1.000 than when the development factors are 
significantly greater than 1.000. This bias in the errors is not necessarily bad; 
it simply needs to be understood as a part of the fitting process. 

A related problem is that. since the measured errors are of the logs of the 
factors rather than the factors themselves. the coefficient of determination that 
results directly from the computation is inaccurate. and usually overstates the 
goodness of the tit. 

For example, the coefficient of determination of the tit presented in Exhibit 
I is described as .99887. This is the coefficient of determination of a straight 
line through coiumn (4) and not the coefticient of determination of the inverse 
power curve through column (2). This latter coefticient of determination is .97 I. 
which is still good, but less favorable than the author suggests (especially 
considering that there are only three data points being fit). 

Obviously, the proper measurement of errors. and the decision as to what 
errors to minimize is key to any curve fitting procedure. 

A particular problem with fitting Mr. Sherman’s inverse power curve (or 
any of the other alternative curves that WC have proposed) to the report-to-report 
development factors is that the resulting titted factors will be multiplied together, 
compounding the errors. This can be a particular problem when the errors are 
not random. In such cases a signiticant error in the development factors to 
ultimate can accllmulate. 

For example, in Section II of his paper, Mr. Sherman uses his model to 
extrapolate general liability report-to-report development factors, using only the 
first few development factors to obtain the equation’s parameters. While ex- 
pressing some caution about the reliability of the resulting factors. the author 
does suggest that the extrapolated report-to-report development factors compare 
relatively favorably when compared to the actual factors over each interval. 

The comparison is considerably less favorable if one compares the com- 
pounded, rather than the report-to-report, development factors. The errors 
in the IBNR reserve that would result from using the extrapolated factors 
range from 16% (1.667 vs. 1.575). to I l2O+ (1.495 versus 1.234). 
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Year of 
Development 

Extrapolated Development 
Factors Based On 

First 2 First 3 First 4 
Factors Factors Factors 

Actual 
Factors 

3 to I5 1.667 I .575 
4 to I5 1.455 1.670 I.329 
5 to I5 I.331 I.495 1.322 I .234 

An alternative fitting approach that avoids the compounding of errors would 
be to fit the curve that results from compounding the factors to the actual loss 
emergence data, measuring the errors between actual and fitted losses reported 
at each valuation point. In essence, this alternative approach “dollar weights” 
the titted factors. 

An outline of this approach can be stated as follows. Minimize 

Where L,,,,,, is a valid point in the loss triangle, with p representing the exposure 
period of the losses (accident year, for example) and I representing the valuation 
point; and 

where L&*, is some base value for the accident year in question at some time 
f* (e.g., the latest valuation point), and f is the chosen decay model. 

The problem so stated can be solved using partial derivatives and non-linear 
programming techniques. 

CONCLUSION 

Mr. Sherman’s paper provides an excellent introduction to a timely topic. 
The paper presents practical ideas and approaches for the solution of problems 
encountered with increasing regularity in reserve analysis: incomplete, immature 
or fluctuating loss development data. We wholeheartedly agree with the author 
that the fitting of loss development data to curves such as the inverse power 
function often provides a practical solution to these problems. 


