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Mr. Strcneck has presented the haric principles of applying utility theory in 
rcinsurance pricing in an admirahlc fahion. Hi\ article is straightforward and 
comprehensive. The footnotes pro\,idc an cxccllcnt bibliography of the current 
literature on the subject. 

The interested reader ix particularI> dircctcd to the monograph by Leonard 
Freifelder (Frcifclder ( 1976)). Thcac two worh\ complement each other well. 

Utility theory has been useful to this reviewer as a means of achieving ;i 
fresh viewpoint on a problem. rather than as ;I simplidic dution to the problem 
of finding numerical results (e.g.. rates) that adequately rutlect one‘s risk av- 
ersion. If the user avoids the pursuit of Gmple answers through abstract for- 
mulas. hc can find much of practical \;dut’ in the methods discus& by Mr. 
Steeneck. This is especially true t’or cuponential utility functions. 

Several of Mr. Stecneck’h point\ merit di$cuh\ion. Thi\ rc\ icu, also provides 
an opportunity to show two minor results of the rc\ icwer‘\ investigations into 
utility theory. 

Utility theory is practical. We arc all familiar with the inadequacy of the 
simple calculation of expected value. Using utilit! theory only requires that we 
shift our mental framework from calculating the I< 1x1 and l< (X - II)’ to include 
the calculation of E (U (X)). 

This mental shift will be clear if ;I train of thought developed by Steeneck 
on page 2.57 is followed. together with a change in taminology. L,et the utility 
function be 

RAC(X.c,) = c( I ~ exp (.I;(‘)). 



RAC(X,c) is the “risk adjusted cost” of outflow X with utility scale C. 

Then for an aggregate loss distribution 

F(X) = Pr(.x < X) 
RAC).-(c) = c In E, (exp (.r/~)) 

In other words, the risk adjusted cost of an aggregate loss distribution is a 
scale adjustment in c of the calculation of the expected value of the aggregate 
loss distribution. The adjustment in c scales down each possible loss to its 
multiple of C, inflates it using the exponential function, takes an average, and 
then backs out the scale adjustments by taking the log and multiplying by C. 

In the example given by Steeneck on page 259, c was $4,000,000. 

The use of c instead of l/r makes sense. It puts the constant in real units, 
dollars, instead of imaginary ones, (dollars) ‘. 

RAG(c) is a simple concept which includes a great deal of information about 
F(X). (As we shall see. it includes all of the information about F(X).) We expect 
to see the day when RAG(c) will be computed as routinely as Vat- (X) is today, 
particularly when it can be expressed in closed form. 

ES-I‘IMATlNG RISK CAPACITY 

It is easy to estimate the risk capacity, c, well enough for practical appli- 
cations. Reinsurance exists because all insurance companies have a limited 
capacity to bear risk. In some cases, risk aversion is so high that the firm will 
do whatever possible to ensure that a catastrophic loss will not bankrupt the 
hrm. In practical applications, however, the level of loss at which management 
begins to get really concerned is quite a bit less than the level of loss that would 
bankrupt the firm. In insurance jargon. we call this level of loss the firm’s “risk 
capacity.” 

Exhibit 1 shows an example of the risk capacity of a particular tirm. In this 
example, the height of the line shows the surcharge the reinsured would be 
willing to pay to avoid a 0. IO/ chance of losing a sum of money. The reinsured 
would be willing to pay only about 0.1% of the sum of money if this sum, X, 
were not very great. It would not pay a significant surcharge to avoid a 0.1% 
chance of losing $10,000. If the amount were much greater than the reinsured’s 
risk capacity, however, then the firm would be willing to pay much more than 
0.1% of the possible loss. 
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Move the bottom scale left or right until it is in the right place for your decision. 
Your risk capacity. c. will be below the vertical arrow. 



Because of the reinsured’s limited capacity to bear risk, management is 
willing to pay a surcharge (risk charge) to avoid financial fluctuations. To avoid 
a 0.1% chance of paying out $ I ,OOO,OOO, for example, management is willing 
to pay something in excess of 0. I % of $ I ,000,OOO. The additional amount is 
called a “risk charge.” The total amount management is willing to pay, perhaps 
$I ,100 in this example, is called the “risk adjusted cost” (RAC) of the risk’s 
probability distribution. 

As Cozzolino (1979) has pointed out, the selection of risk capacity c is not 
even necessary to make a decision. All that it is generally necessary is that 
one’s risk capacity is known to be in a certain range. 

The technique suggested by Cozzolino is to show the risk adjusted cost for 
one’s own aggregate loss distribution with and without the inclusion of the 
reinsurance contract being evaluated. Each net aggregate loss distribution leads 
to a unique risk adjusted cost profile. Exhibit 2 shows the profile for a reinsur- 
ante decision about a possible cession that involves a considerable amount of 
risk. In this example, if the reinsurer’s risk capacity is less than about 
$2,000,000, he will not accept the retrocession. 

The success of this technique hinges on the fact that more risky alternatives 
will always have curves that slope downward more steeply than less risky 
alternatives. As a result, different options will produce risk profile curves that 
intersect one another if there are significant differences in the uncertainty of 
results for the options. Obviously, if the risk profile curve for one option is 
lower than the risk profile curve for another option regardless of one’s risk 
capacity, it is the more attractive alternative. 

REINSURANCE NEGOTIATIONS 

Reinsurance makes sense even when the reinsurer is more risk averse than 
the reinsured. Steeneck’s statement, “If the reinsurer has the same utility func- 
tion or is less risk averse, a deal can be struck” is unnecessarily restrictive. This 
is seen in practice as small reinsurers take small pieces of treaties reinsuring 
large primary companies. 

The reason is simple: The reinsured losses are not correlated with the 
reinsurer’s losses; they are correlated with the reinsured’s losses. 
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EXHIBIT 2 

RISK PROFILE CLIRVES FOR THE REINSURANCE DECISION 

Risk-Adjusted 
cost 

(Thousands) 

$1000 

Risk profile if cession is accepted 

$ 500 

if cession is 

$-500 
$500 $1000 $2000 $5000 $10000 $20000 

Risk Capacity flhousamls) 

A risk profile is a display of RAC(X,c) for a range of C. A risk profile is a 
unique mapping of an aggregate loss distribution F(X). 



KI,INSURANCb. 173 

To the excess writer of, say, $l,OOO,OOO xs $l,OOO,OOO, the risk looks like 

Max(O,X** - $1 million) 
C, 

where X** is limited to $2,000,000, and the excess writer’s risk capacity is cP. 

To the primary writer, the cession is worth 

where X* is limited to $1 ,OOO,OOO, and the primary writer’s risk capacity is c,,. 

Reinsurance makes sense when 

RAC,, > RAC, 
This leads to two thoughts: 

- One’s own risk profile and estimates of the risk profiles of the potential 
players in a reinsurance deal can help one create a negotiating strategy. 
Changes in the terms of the reinsurance arrangement can be reflected in 
changes in the risk profiles. This will identify ways to change the deal 
to improve it for all parties. 

- This analysis makes it clear why new entries always appear in the 
reinsurance market. Reinsurers have portfolios of losses that are corre- 
lated with the potential cession. In workers’ compensation, for example, 
losses in various contracts may be correlated through inflation, benefit 
level changes, or loss of statutory immunities or defenses. The new 
entries have risk capacity arising from their own cash flow, but do not 
have existing portfolios of losses that are correlated with the new cession. 
(Of course, presumably, they do not have the underwriting expertise of 
the experienced writer, either.) 



EXPONENTIAL UTILITY VS. THE VARIANCE PRINCIPLE 

Two advantages of using exponential utility instead of the popular variance 
principle are: 

- Exponential utility provides the correct asymptotic behavior as the loss 
being considered gets large and its probability gets small. This is illus- 
trated in Exhibit 3. 

In contrast. the variance principle lcads to premiums greater than the 
loss itself. 

- Exponential utility leads to a more distinct concept of risk capacity. 
Exhibit 4 shows that the disutility associated with a loss in excess of 
one’s capacity (as defined above) reflects a marked aversion to losses 
greater than one’s risk capacity. This agrees with our intuitive under- 
standing of how we accept and cede risks. The variance principle, in 
contrast, does not show such a distinct “flinch point.” 

ESTIMATION 

New methods of estimating aggregate loss distributions make practical ap- 
plication much easier. Monte Carlo simulation is readily available, although 
somewhat costly in terms of computer time. Monte Carlo simulation handles 
virtually all practical problems including multiline contracts. Monte Carlo sim- 
ulation also gives the flexibility to break apart workers’ compensation losses by 
type of injury, distinguish various sublines of liability coverage, and so on. 

Aggregate distributions are receiving more attention recently. Heckman and 
Meyers (1983) describe a method of calculating aggregate loss distributions by 
a method of characteristic functions. Venter (1983a) shows an application of a 
method of numerical estimation developed by Panjer. Jewel1 (1983) extends 
Panjer’s work to a dynamic risk portfolio. Each of these authors shows how to 
calculate the expected value of an excess premium as well as tirst dollar losses. 
We can expand Venter’s conclusion (from page 69) to read: 

“By approximating the severity distribution with discrete probabili- 
ties, the aggregate distribution and excess premium functions and the 
risk adjusted cost can thus be estimated recursively.” 

Venter (1983~) has dicussed the advantages of modeling aggregate loss 
distributions with transformed Gamma distributions. Distributional models may 
lead directly to general formulas for the risk adjusted cost. 



EXHIBIT 3 

ASYMPTOTIC BEHAVIOR 

Surcharge to avoid l/1000 chance of losing x units 
of risk capacity, expressed as a multiple of X. 

S = (In (.999 + 401 exp (x/c)) + ,001 x/c) - 1 
(exponential utility principle) 

or 

s = .999x/c 
(variance principle) 

Surcharge 
for risk 
of loss 

1000 

800 

600 

400 

0 

This line is at the point you would 
pay 99% of the cost of the loss to 
avoid a 0.1% chance of the loss. 

J 

t 
The flinch point 

.I 1 10 100 1000 

X/C d 
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EXHIBIT4 

THE FI.INCH POINI 

Surcharge 
for Risk 

600% 

500% 

Exponential Utility 
?Principle 

400% 

300% 

200% 

100% 

.I .2 .3 .5 1 23 5 10 

x/c 
1‘ 

“flinch point” 
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DECREASING AVERSION TO RISK 

Venter (I 983b) has pointed out the theoretical advantages of 

RAC (X,c,p) = c (1 - exp (- 5)) 

or some other utility function with decreasing aversion to risk. 

This may be a valuable point, but in practice a reinsurer is not likely to 
vary its risk capacity significantly in response to a loss under a single treaty. It 
is more realistic to expect a reinsurer to become more or less aggressive in 
response to a series of losses, a change in the competitive marketplace, or some 
other factor affecting many treaties. In short, the refinement will not matter in 
most practical applications. 

Indeed, as we have seen, it is easy to explain the search for one’s risk 
aversion if risk aversion is taken to be constant. It is difficult to develop such 
a procedure if one’s risk aversion is supposed to be expressed as a function of 
the surplus left after the loss. 

Most importantly, using an exponential utility function does not necessarily 
result in a misstatement of our utility function. We can be correct if we can 
correctly see the utility of (a - X) from our vantage point at a. We can be as 
averse to (a - X) as we wish. 

DISTRIBUTIONAL STATISTICS 

Characteristic functions and moment generating functions (m.g.f.‘s) can be 
used in tandem to derive simple results for frequently used models. As Heckman 
and Meyers (1983) showed, 

I 

r 

C$F (I’) = E [exp(ifx)] = exp (itx) C(x). 
0 

where & is the characteristic function of F(x). 

This leads directly to 

I 

m 
RACF(c) = c In EF [exp (x/c)] = c In exp (x/c) C%(X) 

0 

1 
= c In 4b z 0 

where the subscript F refers to the aggregate loss distribution. 
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They also showed that 

b*df) = q+(t) @c(t) 

and that the characteristic function for an aggregate loss distribution F (with 
claim severity distribution S) is: 

This leads directly to 
I 

RACE(c) = c In c p(n) exp In . (RAC,(c)Ic)] ,I = 0 
where RAC, is the risk adjusted cost of a single claim 

The RAC, (c) is also closely related to the moment generating function of 
the severity distribution 

RAG.,(c) = c In M., i 
(> 

We mentioned earlier that the RACp(c) contained all the information in F(X). 
This is now clear because the m.g.f. of a probability distribution is unique 
(Hogg and Klugman (1984), page 19). Hogg and Klugman have shown (page 
50) that if the moment generating function of the severity distribution, M,(t), 
is known, and the claim frequency distribution is Poisson, the moment gen- 
erating function of the aggregate loss distribution is 

MM = expNM&) - I)1 

The risk adjusted cost is therefore 

RACF(c) = c In (M&l/c)] 
= c In [M,(IIc) - 11. 

For example, if the claim size distribution is exponential 

p(x) = 2 exp (- +) 

then 

exp (W 
MS(t) = 1 
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The roles of u, 8 and c as scale adjustments are clear. This leads to the 
following risk adjusted costs: 

RACF(C) = CA ] _ u,c - 1 
[ 

exp (WC) 1 
CA =- 

1 - a/c [ 
a + exp (WC) - 1 
c 1 

If8 = 0, 

RACF(C) = CA 2 

If B/c is close to 0, 

CT+0 
RACF(c) + CA c. 

This development suggests several obvious extensions to be pursued: 

-To determine the risk adjusted cost if the claim frequency distribution is 
negative binomial. 

-To determine the risk adjusted costs for other severity distributions for 
which the m.g.f. is known in closed form. 

-To determine the risk adjusted costs for truncated versions of distributions 
for which the m.g.f. is infinite. 

-Numerical approximations based on m.g.f.‘s, characteristic functions, or 
recursive methods. 

PROBABILITY, UTILITY, AND PRESENT VALUE 

The time value of money is important in many practical problems. In these 
problems a present value factor v(i) can be associated with each event that 
produces a loss X(i). The functions v and X may be continuous or discrete. 

Interest should be handled in such a way that the distributive property applies 
to the function MC. That is, the risk adjusted cost of a possible set of events 
should be independent of how fine a description one makes of the set of possible 
events. 



The function 

/UC(c) = c In ); p(i) r(i) exp (X,/c,) 

meets this criterion. So does its continuous counterpart 

&K(c) = c In 
I 

x 
v(x) exp (X/c) dF(X). 

0 

With this definition, the total risk adjusted cost &AC of a set of possible 
events with risk adjusted costs RAC(i) is the risk adjusted cost of all possible 
events, with each taken at its present value: 

RACo = c In c p(i) v(i) exp (RAC(i)/c) 

zz c In C p(i) v(i) x p(x) IO) exp (x/c) 
I wtrh,,, I 

= c In x x (p(i)p(x))(\li)v(x)) exp (-r/c) 
I wirhin 

In practice. then, probability and present value are almost interchangeable 
concepts. Present value and utility are not interchangeable concepts. This sur- 
prising result follows from the distributive property.’ 

CONCLUSION 

The reader is encouraged to try the utility-user’s viewpoint in practical 
problems. Starting perhaps with a discrete decision (such as whether or not to 
underwrite a particular risk or block of risks), decide on your risk capacity using 
Exhibit 1 or Exhibit 4. Sketch the risk profile curves for the decision by 
calculating a few points on each. Think about the interplay between your risk 
capacity and the decision you prefer (yes or no). Are you being consistent? 
Have you learned anything about the decision you didn’t know before? With 
use, this additional viewpoint may begin to feel as natural as considering both 
probability and time in the decision. 

I It would be reasonable to postulate that the multiplicative associativity of p(i) with plx) and v(i) 

with V(X) follows directly from a distributive property on RAC. I have not been able :o prove this, 
nor find an exception. A friend of mine says he proved it on a popcorn box at an Oilers game. but 
lost the proof. I would like a demonstration of whether or not “Oilers postulate” is true. 
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