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The actuarial literature has discussed several candidates for size-of- 
loss distributions-log normal, Weibull. multi-parameter Pareto, 
gamma, as well as others. However. despite the demonstrated success 
of these distributions, there is a dependence on techniques such as 
empirical data, judgment, or at times some unwieldy formulae. This 
suggests that there may be a need for a size-of-loss distribution that is 
relatively easy to apply in practice. 

The one-parameter Pareto is an example of such a distribution. Its 
use may be restricted to the tail of a distribution, but it is easy to apply. 
The formulae for the mean, variance. and the variance of the aggregate 
loss distributions are simple in form and may be used as quick approx- 
imations in many cases. 

I. INTRODUCTION 

“The ultimate goal of model-building is cithcr NS (I ~rwl for c.om,nunic,utirIg 
or fbr predicting urrd muking clrcisions ” 

-William S. Jeweli 

Although model-building is common to many branches of science, there are 
important distinctions among the properties of various models. The laws of 
physics such as Newton’s laws arc attempts at mathematical models of reality. 
These efforts have been particularly successful because the major forces at work 
are few in number and often constant over time and position. Although tech- 
nically there are many forces involved in, say, the movement of the planetar) 
bodies. the dominant force of gravity dwarfs the other forces such as friction. 
Models can be developed based solely on the properties of the gravitational 
force which describe the motion of the planets to a very high degree of precision. 
In these situations, it is common to lind mathematical models with few param- 
eters that are highly accurate models of reality. It is appropriate, even if tech- 
nically incorrect, to speak of the search for the correct mathematical model. 



In the social sciences the situation is quite different. The forces involved in 
economics, for example, are numerous and usually not constant over time. 
Many forces exist that have the same order of magnitude; hence they cannot be 
ignored. Furthermore, in the social sciences it is often more difficult to do 
controlled experiments where one force is allowed to vary while all others are 
held constant. For these reasons, it is less appropriate to think of a search for 
the model in the social sciences than in the physical sciences. Although we 
might talk about such a concept theoretically, the practical reality is that any 
parameter-based model that completely describes an existing situation will re- 
quire so many parameters as to make it unusable. In these situations, model- 
building requires a trade-off between accuracy and practicality. 

Thus, the question “What is the appropriate loss distribution?” does not 
have a unique answer. It depends on the intended use of the distribution and 
the available data. 

The question requires a cost-benefit analysis. Different models will have 
various costs related to: 

* Mathematical complexity, 
* Availability of computer/calculator software routines, 
* Computer processing time requirements, 
* Conceptual simplicity (ease of explanation to others), and 
* Availability and accuracy of data. 

Generally speaking, increasing sophistication of the mode1 produces more 
accurate results. The selection of an appropriate model for a particular problem 
requires deciding whether the increased accuracy of the more complex model 
justifies the increased costs associated with it. Furthermore, in many situations 
the available data may be sparse or subject to inaccuracies. In these instances, 
a simple model may be preferred because the accuracy of results will not be 
materially improved by the use of a more complex model. 

For example, suppose an actuary is trying to solve a typical risk management 
problem: the projection of losses for an individual risk. A common procedure 
in this analysis is to separate the projections of the large or excess losses from 
the projections of the more stable primary portions of the losses. Several 
characteristics of this situation make a simple model particularly appropriate. 

* The projection of the limited losses may be accomplished without the 
need for a specific size-of-loss distribution. The moments of the data, 
using a frequency/severity or total loss approach, may be sufficient for a 



reasonable projection. It will then be necessary to tit a model only above 
a particular loss amount. Fitting a distribution to only a portion of the 
range will reduce the required complexity of the model. 

* Inaccuracy of estimates of expected losses arises from a number of 
sources. Two major ones are: 
-Oversimplified models, and 
-Misestimated parameters. 
In a situation involving an individual risk, the number of large losses used 
to estimate the parameters will typically be less than the number involved 
in an insurance company or industry analysis. The errors arising from the 
sample size may dominate those arising from a less complex model. As 
a consequence, the simplicity of the less complex model may be preferred 
because the possible loss of accuracy is more than offset by the benefits 
of a simpler model. 

* There may be a need to explain the loss projection process to people 
without extensive actuarial or statistical training. Although techniques 
should not, in general, be dictated by the sophistication of the audience. 
if competing models produce almost identical results, the ease of expla- 
nation of one may be an important consideration. 

The remainder of this paper will be organized as follows: 

* Section II-A discussion of the way distributions arc depicted. An alter- 
native to the “standard’ representation will be presented. 

* Section III-A discussion of the basic properties of the single parameter 
Pareto distribution. 

. Section IV-Various methods of parameter estimation using empirical 
data. 

. Section V-The results of trend on losses when a Pareto distribution is 
assumed. 

. Section VI-A method to simulate Parcto losses. 

* Section VII-Specific applications using a Pareto distribution. 
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bodied in this paper. 

II. SIZE-OF-LOSS REPRESENTATIONS 

Most texts on probability and statistics portray distributions (as well as 
density functions) using similar conventions. That is, the horizontal axis rep- 
resents the value of the observations and the vertical axis represents the relative 
frequency (for density functions) or the cumulative frequency (for distributions). 
It is clear, from a mathematical point of view, that this choice is arbitrary. The 
axes could be switched without violating or changing any of the statistical 
concepts. 

Despite the almost universal acceptance of this “standard” representation, 
the alternative representation turns out to be a clearer choice for size-of-loss 
distributions in some situations. The reason for this preference is that this 
representation can be developed in a “natural” way and will allow a number of 
concepts, such as loss limitation (truncation and censorship), to be applied in a 
more intuitive fashion. Appendix D contains a more detailed discussion of 
reasons for preferring this orientation. 

In the following discussion, we will develop a size-of-loss representation 
where the y-axis is the horizontal axis and the x-axis is the vertical axis. We 
will refer to this representation as the “alternative” representation. 

Because we have switched the axes rather than redefined them, the defini- 
tions of x and y will remain unchanged; that is, x refers to loss amounts and y 
refers to cumulative frequency. 

Discrete Case 

Consider a set of n losses from some arbitrary size-of-loss distribution where 
each loss has size Si, i = I, 2 ,. . . ,n. Represent each loss by a rectangle with 
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FIGURE 1 
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width one and height S,. Arrange these losses from smallest to largest, each 
perpendicular to the y-axis. Figure I displays a typical example of such a 
procedure. 

Define G(J)) to be the curve represented by the tops of each of the rectangles. 
Then, G(y) = Si for i-l < p 5 i. Note that the interpretation of the random 
variable Y is the number of losses less than or equal to G(y) (for integral values 
of y). 

Continuous Case 

When we consider the continuous case, the width of each loss is dy. The 
value of y ranges from 0 to I and represents the percentage of losses less than 
or equal to G(y). A typical example would look like Figure 2. 
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FIGURE 2 
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From this point on, the continuous version of the representation will be 
used. However, some of the concepts may be better understood if the original 
motivation of this representation is recalled, namely “stacking” individual losses 
along the y-axis. 

When we work with a set of losses (whether actual or theoretical), we 
generally wish to partition these losses in some way. The most common parti- 
tions are “large” versus “small” and primary versus excess. These partitions can 
be graphically represented by defining areas under the curve X = G(y). I 

Generally, we will indicate the losses of interest by defining one or more 
straight lines on the graph (see Figure 3). When we define an area by a pair of 
lines parallel to the horizontal axis, we will refer to these losses as a “layer” of 
losses. Alternatively, if we use a pair of lines that are parallel to the vertical 

I A third type of partition is described in Hewitt and Lefkowitz [HI]. That partition cannot be 
handled in this way. 
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FIGURE 3 
F 

PROPORTION OF TOTAL CLAIMS 

axis, these will be referred to as “interval” losses. In this case, we are referring 
to those losses that correspond to an interval specified on the (horizontal) axis. 

We could define the areas we are interested in by directly writing the integral 
over the appropriate limits. However, we can keep the notational complexity to 
a minimum if we adopt symbols for the areas that will be used most often. 

Given loss amount, r, we define? 

Verbal Mathematical 

T(r) - The average claim size of 
all losses less than or I 

r 
x dF(x) 

0 

I 

I 
equal to r; i.e., losses are dF(x) 
truncated at amount r. I, 

2 The reader may note that the notation used here is not entirely consistent with that developed in 
a discussion of LaRose [Ll]. The notation developed by LaRose calculates claim amounts as 
percentages of the average claim. Unfortunately, the average claim size is not always well-defined, 
so a more general notation is required. 
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FIGURE 4 

LARGE Loss DISTRIBUTION 
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C(r) - The average claim size of 
all claims where the 
amount of each claim is 
limited to size r; i.e., s 

r 
x dF(x) + r[ 1 - F(r)] 

0 

losses are censored at 
amount r. 

For example, if r is $100,000, then T($lOO,OOO) represents the average of 
all losses less than or equal to $100,000. In Figure 3, this average would be 
represented by the ratio of the area bounded by ABD divided by the number of 
claims in the interval. The quantity C($lOO,OOO) is the average of all claims 
where amounts greater than $100,000 are capped or limited to $100,000. 

The preceding discussion is applicable to any size-of-loss distribution. Figure 
3 applies to any distribution that is used to model the entire range of losses. In 
the remainder of this paper, we will work with the tail of a loss distribution that 
is applicable to “large” losses. Consequently, we will truncate the loss distri- 
bution at some value and remove each loss less than that value. A typical 
distribution representing the remaining “large” losses is shown in Figure 4. 



Figure 4 is derived from Figure 3 by truncating the loss distribution at loss 
amount r. Physically, we remove the portion of the graph to the left of the 
vertical line BD, then renormalize our axes so that the y-axis is the cumulative 
percentage of the “large” losses, that is. losses greater than or equal to r. It 
should be emphasized that Figure 3 is not drawn to scale for typical loss 
distributions. If we select a lower limit r such as $25,000. the cumulative 
probability that a claim is less than $25,000 (which is represented by point B) 
is typically in excess of 90%. We will work only with the large losses in the 
remainder of this paper, so Figure 4 is the important figure to keep in mind. 

111. BASIC PROPERTIES OF THE S1NGI.E PARAMETER PARETO 

The Pareto distribution as described in Johnson and Kotz IJ I ] has cumulative 
distribution function: 

k > 0: u > 0; .v 2 k 

This is also known as the “Pareto distribution of the tirst kind.” Strictly speaking, 
this distribution has two parameters, k and U. In general, both k and u may be 
estimated from the data. However, the verbal definition of k is the lower bound 
of the data in question. Although there may be situations where this value must 
be estimated, in virtually all insurance applications this value will be selected 
in advance. The typical insurance application will be to model losses whose 
value is in excess of some pre-selected size. such as $25,000 or $100,000. 

Furthermore, if we “normalize” our losses, that is, divide each loss by the 
selected lower bound, then the normalized lower bound is I, and the parameter 
does not need to be stated explicitly. Finally. we will use q as the parameter, 
rather than u, to be consistent with IS0 usage (IS0 [II]. p. 34). The distribution 
can then be written as: 

F(x) = 1 - .x-~ 

and the density function is 

(1) 

f(x) = q,r-“+I’ (2) 

This is the distribution that will be discussed in the remainder of this paper.3 
Typical values for q can range from .7 to 2.0, although values outside this 

’ See Appendix C for a discussion of alternative forms of the Pareto. 



range are possible. A typical value for y of property losses is 1 .O, while a 
typical value for casualty losses is 1.5 (based upon empirical evidence). Note 
that a lonj value of y corresponds to a distribution with high severity. Fire may 
not be thought of as a line with high severity, but that is because there are so 
many very small claims. Considering only larger claims, e.g., claims greater 
than $25,000, fire claims have a fairly “thick” tail. The density function for a 
Pareto with parameter q = 1.5 is shown in Figure 5; the corresponding c.d.f. 
is shown in Figure 6. 

If we “flip” the x- and y-axes of the cumulative distribution, we will produce 
Figure 4. Note that the curve intersects the x-axis at x= 1, because we have 
normalized the losses. The curve is asymptotic to I’= 1. As mentioned earlier, 
we can visualize the area under the curve as being made up of thin vertical 
rectangles whose height corresponds to the size of loss. Thus the total area 
under the curve represents the total losses, and the losses associated with various 
retentions or policy limits can be described by different areas under the curve. 

The distribution as shown in Figure 4 is based upon the assumption that the 
lower limit is 1 and the expected frequency of claims greater than or equal to 
this value is also I. Formulae will be derived under these assumptions. The 
necessary conversions to real problems are simple and straightforward. Exam- 
ples of conversions will be given in most cases. Although it may seem awkward 
at first to work with a normalized distribution, it will soon become very natural. 
The motivation for using the normalized distribution should become clear when 
we analyze the losses contained in different layers. 

Unlimired Claims 

The formula for the average claim size is as follows: 

Unlimited Mean Claim Size = --%- 
q-1 

q’l (3) 

Note that this formula also represents the expected total losses when the expected 
frequency is 1 (assuming independence of frequency and severity). 

If the data being analyzed has a lower limit of $K per claim, then the mean 
size in “real” dollars is: 

(34 
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If we anticipate n claims greater than or equal to $K per claim, then the 
total expected losses are: 

Unlimited Expected Losses = n K --!!-- 
i i 4- 1 

(3b) 

For example, suppose we are analyzing claims where the lower limit is 
$25,000. That is, all claims are greater than or equal to $25,000. After nor- 
malizing our losses (dividing each by $25,000) we conclude that a parameter 
value of q = 1.5 is appropriate. (A later section will discuss parameter esti- 
mation.) Then the normalized gross mean claim size is 1.51( I .5 - 1) = 3. In 
terms of “real” dollars, where K = $25,000. the gross mean claim size is 3 X 
$25,000 = $75,000. 

If we expect 7 claims to exceed $25,000, then our gross expected losses are 
7 X $75,000 = $525,000. (Again, it should be remembered that we are ana- 
lyzing the large claims only. The expected losses arising from claims less than 
$25,000 are assumed to be estimated separately.) 

We may wish to calculate the net losses, for example, if we have a $25,000 
deductible. The formula for the net mean claim size is derived from the gross 
mean claim size simply by subtracting 1: 

Net Mean Claim Size -I=-!- 
q-1 

(4) 

The conversion to “real” dollars and total losses follows the same approach 
as above. For example, with q = 1.5, K = $25,000 and a frequency of 7, the 
net expected losses above $25,000 are 7 X $25,000 x l/( 1.5 - 1) = $350,000. 

Censored Claims 

If we impose an upper limit (such as a policy limit) with value b, then the 
formula for the average loss limited to $h per claim is: 

If q = 1 we can calculate the formula using L’HGpital’s Rule: 

C(b) = I + In b q=l (6) 

In the case where we want net losses, we can simply subtract I from each 
formula. Note especially, when q = 1 the average loss with upper limit b is 
simply In b. 
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Continuing our previous example (with y = 1.5 and lower limit of $25,000), 
if we impose an upper limit of $500,000, then b = 20 X (500,000/25,000). 
The average claim whose value is greater than $25.000 but limited to $500,000 
can be calculated using (5): 

1.5 - 20” 5 = 3 553 
1.5 - 1 -’ 

In “real” dollars. the average claim is 2.553X $25,000 = $63,820 (calculations 
here and subsequently are performed without rounding at intermediate steps). 
If we are pricing reinsurance for the net layer ($475.000 xs $25,000), then 
we would subtract I first to calculate the net claim sire: I.553 X $25,000 = 
$38,820. Assuming we expect 7 claims over $25,OOO, the expected losses in 
the layer are 7 X $38,820 = $27 1,738. 

Truncated Cluims 

The situation described above (with an upper censorship limit) arises natu- 
rally in practice because of the existence of policy limits and the way companies 
commonly write excess of loss reinsurance. Another way to limit losses is to 
truncclfe the losses at some value. This means that losses in excess of the 
truncation point are “thrown away.” rather than simply “capped” at the limit. 
Note that this is different from censorship in two ways: 

1. More dollars are removed when losses are truncated at a value because 
the entire loss above the limit is removed. 

2. Truncation affects the frequency. Censorship removes the excess portion 
of a claim, but does not affect the number of claims. Truncation removes 
the rnlire claim, so the formulae for average values must reflect the 
reduced claim count. 

The concept of truncation arises rarely in property/casualty policy language 
(with the rare exception of franchise deductibles). However. the concept may 
arise in the analysis of experience. For example, it might be appropriate to 
separate losses into large versus small (rather than primary versus excess). In 
this case, the limit chosen to distinguish between large and small losses will be 
a rruncarion point, rather than a c~ensorship point. 

The formula for the average claim siLe with lower value I and truncation 
point b is: 

T(b) = 
q(l - b’-‘) 

(y - l)(l - bpq) 
qfl (7) 
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The comparable formula for the case q = 1 is: 

T(h) = f+ q= 1 (8) 

Continuing our example, suppose we are interested in the losses larger than 
$25,000 but ignoring all losses greater than $500,000 (rather than including the 
first $500,000 of those claims greater than $500,000). With q = 1.5 and h = 
20, the average claim size is calculated with (7): 

1.5 (1 - 20P s, 
,5 (, _ 2o-,.s) = 2.356 

In “real” dollars, the average claim is 2.356 X $25,000 = $58,888. If we 
expect 7 claims over $25,000 we can calculate the total dollars for the interval. 
Given 7 claims over $25,000, we expect 7 X F(20) = 7 X .9888 = 6.922 
claims in the interval between $25,000 and $500,000. We have already calcu- 
lated the average of those claims, so we multiply the frequency by the average 
claim size to yield the total dollars: 6.922 X $58,888 = $407,606. 

The formula for the average truncated size follows directly from the defi- 
nition of truncated claims given earlier. However, we can simplify the formula 
and reduce the amount of calculation by adopting a slightly non-standard con- 
vention. Note that, in our example, one of the terms in the denominator for the 
average truncated claim size is 1 - b -‘. Note also that the number of claims 
in the intervnl is calculated by multiplying the expected frequency (above the 
lower limit) by F(b) which is 1 - KY. Obviously, these terms cancel out when 
the total dollars in the interval are calculated. 

Define T’(b) to be the average claim size, where the denominator is not just 
the claims in the interval, but the number of claims above the lower limit. In 
other words, use the same denominator as in the censored situation. The moti- 
vation is two-fold: 

(1) The formulae will be simpler. 
(2) It is more likely that we will have an estimate of the total number of 

claims above a limit than that we will have an estimate of the number 
of claims in an interval. 

The formula for the revised “average” truncated claims size is: 

T’(b) = dl - b’-y) 
9-l 



When q = 1, the formula simplifies to: 

T’(b) = In b q= 1 (‘0) 

Redoing the example above, the “average” claim size is calculated using: 

1.5 (1 - 20. 3 = 2.329 
.5 

In “real” dollars, the “average” claim size is 2.329 X $25,000 = $58,229. 
Multiplying this by the number of claims expected over $25,000 yields 
7 x $58,229 = $407,606. 

In summary, if we are interested in the true average claim size, we use 
formula (7) or (8). However, if the calculation of the average claim size is 
simply an intermediate step in the calculation of the total dollars, we may prefer 
to use alternative formula (9) or ( 10). 

Next we will look at the excess portion of the distribution. In this case, we 
are interested in the total losses or average claim size of claims greater than 
some limit b. In terms of Figure 4, the area of interest is bounded by HJK. 
Rather than directly calculate the total losses and average losses in this layer, 
we will exploit a powerful property of the Pareto distribution. If we renormalize 
the excess portion by dividing each loss by b and dividing the excess frequency 
by 1 - F(b), the resulting distribution will have a shape identical to that in 
Figure 4. (This renormalization is the result of a scale change to both axes. For 
more discussion of scale changes, see Venter [V 11.) Thus. we may use the 
formulae already calculated, although keeping careful track of the appropriate 
factors to convert back to “real” dollars. 

The average gross claim size is still yl(q - I) and the average net claim 
size is l/(y - I). In terms of our first renormalization, the average gross claim 
size is b (q/(q - 1)) and in “real” dollars, the average is bK (y/(y - I)). The 
total dollars involved in claims greater than b can be calculated by multiplying 
by the frequency of claims greater than b which is I- F(h) = b y. 

In practice this works out easier than the formulae would indicate. Continu- 
ing our example (q = 1.5, K = $25,000, frequency over $25,000 = 7), suppose 
we are interested in the losses in excess of $lOO.OOO per claim. We don’t 
actually perform the renormalization; we simply use the formula for net average 
claim size (l/(y - 1)) and substitute q = I .5 into the formula yielding a net 
claim size of 2. Multiply by $100,000 (it isn’t necessary to multiply first by 
$25.000, then by 4) to produce the average net claim size of $200,000. To 



calculate the total dollars, recall that the ratio of claims exceeding $100,000 is 
calculated by using the cumulative distribution 1 - F(b) = bp4 = 4-1.5 = 
.125. Multiply this by the expected frequency over $25,000 of 7 yielding .875 
claims expected to exceed $100,000. Thus, the expected excess losses are 
,875 x $200,000 = $175,000. 

This concept is important, as it allows us to quickly calculate the total losses 
and average claim sizes for arbitrary layers and intervals. As another example, 
suppose we continue our assumption that losses over $25,000 have a Pareto 
distribution with 4 = 1.5 and the expected frequency of claims over $25,000 
is 7. Suppose we are asked to analyze the layer between $75,000 and $187,500 
(i.e., $112,500 xs $75,000). The first step is to calculate the value of 6, which 
is simply 187,500/75,000 = 2.5. We can use (5) to calculate the gross average 
(censored) claim sizes: 

1.5 - 2.5- ’ 
.5 

= 1.735 

The net average claim size is .735 or .735 x $75,000 = $55,132 in 
“real” dollars. The frequency of claims is 7 X (1 - F(75,000/25,000)) X 

F(l87,500/75,000) = 7 x (3-l.‘) x (1 - 2.5-l’) = 7 x (.192) x (.747) = 
1.006, so the expected losses in the layer are 1.006 X $55,132 = $55,482. 

Next, we will calculate the variance of the individual claim amounts as well 
as the total loss variance. The formulae shown above for expected values are 
sufficient for pricing on an expected value basis or some function of the expected 
value. However, there are methods of pricing that include risk loading based 
upon variance, as well as other risk theoretic analyses that require the calculation 
of variances. (See Gerber [Gl] for a discussion of various pricing approaches.) 

Again, this is one of the motivations for the use of the Pareto. The calculation 
of total loss variance is a fundamental issue in risk theory, yet the procedures 
necessary to calculate the variance generally involve complex formulae or, more 
likely, computerized estimation techniques. The formulae associated with the 
single parameter Pareto are often easy to evaluate and may provide, at the very 
least, a reasonable first approximation. 

Recall that the variance can be calculated as the second moment minus the 
square of the mean. The formula for the nth moment of the Pareto distribution 
with no upper limit is 

nrh moment = - 4 
9+n 

(1’) 



Thus, the second moment is y/(y + 2) and the formula for the variance of a 
single claim is: 

Variance = 15) - (51’ L/>2 (12) 

Again, we have the problem that the variance is undefined for typical values of 
4. But if we restrict ourselves to reasonable upper limits, the variance will 
always be finite. If we impose upper limit h. then the variance of losses within 
the layer is: 

Variance = ’ - 2h2mY y _ 2 - jy,‘, “I2 
The formula simplifies in the cases where C/ = 1 or 2 as follows: 

Variance = 2h - 1 - (1 + In h)’ q = 1 

Variance = 1 + 2 In h - ((2h - 1)/h)’ q=2 

These formulae apply in either the net or unlimited layer cases. 

(1%) 

(12c) 

To convert these results to “real” dollars, multiply by K’ where K is the 
lower bound of the losses. It is important to realize that these formulae reflect 
only the variance associated with the loss severity. The total loss variance also 
reflects the variability of frequency, which will bc covered shortly. 

We will continue the example where the lower limit is $25,000 and y = 
I .5. As we have shown earlier, the gross mean claim size is 3 and the net mean 
claim size is 2 when no upper limit is imposed. However. the variance is not 
defined in this case. With an upper limit of $500,000, h = 20 and the variance 
of a single claim is calculated by substituting into (12a) with y = 1.5 and b = 
20. The result is 8.372. In “real” dollars, the variance is 8.372 X ($25,000)’ = 
5.23 X IO’. This means that the standard deviation is $72.335. 

The claim size variance is rarely useful by itself. The major motivation for 
calculating this formula is because it is needed in the formula for the total loss 
variance. This refers to the variability of total losses, arising either from fre- 
quency or severity. The variance we will calculate is also sometimes called 
“process variance,” because it relates to the possible variations in results arising 
from the loss causing process. This is to be distinguished from “parameter 
variance,” which relates to the variations arising from the possibility that the 
parameters used differ from the “true” parameters. Parameter variance is beyond 
the scope of this paper. 
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Calculation of the total loss variance is necessary if a risk loading will be 
used that is a function of either the total loss variance or standard deviation. In 
addition, the variance can be used to specify percentiles of the total loss 
distribution using the Comish-Fisher expansion [Ml] or other techniques (L3]. 
For example, we may wish to determine the probability that total losses will 
exceed $1 ,OOO,OOO when the expected losses are $600,000. 

The general formula for the total loss variance is given in various sources 
including Mayerson, Jones and Bowers [M3]: 

a2 = Mf at’ + Mt u; (13) 

where M,, cr,?, M.,, and cr? represent the mean and variance of the frequency 
and severity distributions respectively. 

If we make the reasonable assumption that the claim frequency follows a 
Poisson distribution, then Mf = c$ and we can simplify (13): 

(J2 = Mf(Uf + Mf) (14) 

Again, recalling that the variance can be expressed as the second moment less 
the square of the mean, we note that the expression in parentheses above 
simplifies to the second moment of the severity. Thus, the total loss variance 
can be simply calculated as the product of the expected claim frequency and 
the second moment (mean of the squares) of the loss severity. 

We have seen the formula for the second moment of the severity in the case 
of no upper limit earlier (1 I). In this case, the total loss variance is: 

U2 zz M,.L 

Y+* 
q>* (15) 

where M, is the expected claim frequency. 

We have seen earlier that the severity variance is the same in the case of 
the unlimited and net layers. This is not the case for the total loss variance. If 
we have upper censorship point 6, the total loss variance for the unlimited layer 
is: 

u2 = M q - *tP 

f q-2 

In the case of the net layer, the total loss variance is: 

a2 = M/ 9 - 2b2-Y 
1 q _ 2 - 2 (“,“‘J + 1) 

qf2 (16) 

qf2 
Y#l 

(17) 



The expression in the parentheses may be recognized more quickly if we recall 
that E[(X - l)‘] = E[X’] - 2 E[X] + 1. Formula (16) for the case where 
q = 2 is shown in Appendix A. As before, to convert the results to “real” 
dollars. we multiply by K” where K is the lower limit of the losses used to 
normalize the values. 

If we have the truncated case. with truncation point b. the total loss variance 
for the unlimited layer: 

2 = M, 
y(1 - b’-Y) 

(q - 2)(1 - bpy) qf2 (18) 

Note carefully: the definition of M, in this case is the expected number of claims 
greater than the lower limit, not simply the number between the lower limit and 
b. The situation with truncation point b and a net layer is almost never seen in 
practice, so it will not be discussed. 

Continuing our example, suppose we are pricing the losses in excess of 
$25,000 but censored at $500,000. As we have seen earlier, the expected losses 
in this layer are $271,738 (assuming the expected number of claims is 7). 
Suppose we wish to add a risk loading that is a function of the total loss 
variance. We can calculate the total loss variance using (17). Substituting the 
parameters into the formula yields a variance of 75.48. In “real“ terms, this is 
75.48 X $25,0002. The standard deviation of this value is $217,199. We won’t 
go into methods for calculating a factor to multiply by the variance to arrive at 
an appropriate risk load, but, even without such methods, the total loss variance 
can be used to compare the relative risk on different treaties. 

Finally, we note that the formulae derived in this paper are only applicable 
to the portion of losses above the selected lower limit. In practical situations, 
it is necessary to combine the results of the analysis of the large losses with the 
results of the analysis of the small losses. Clearly. the expected losses of the 
two portions of the analysis can simply be added together. The overall average 
claim cost can be calculated as the weighted average of the means of each 
portion, where the weights are the expected number of claims. The variances 
of the severity cannot be combined so easily, although, if one recalls that the 
second moments can be weighted by claim counts. the formula for the combined 
severity variance follows easily. If we assume a Poisson distribution for the 
frequency of the small losses, then the total loss variance of the small losses 
will be of the same form as the large losses, specifically, the mean claim 
frequency multiplied by the second moment of the severity, so the total loss 



variance of the entire distribution is simply the sum of the total loss variance 
of each portion. 

IV. PARAMETER ESTIMATION 

Numerous articles in the actuarial and statistical literature (e.g., Patrik [Pl], 
p. 62.) discuss the attractive properties of the maximum likelihood estimate 
(MLE). However, the MLE is often difficult to calculate in practice. 

One of the attractive properties of the Pareto distribution is the ease of 
calculation of the maximum likelihood estimate of the parameter. Consider a 
set of n losses, each greater than or equal to some value K, which are normalized 
by dividing each loss by K. Denote this set by (Xi),i = I ,2, . . , n. The MLE 
ofqis 

n 

’ = C InX, 

Note that an alternative formula is 

n 
’ = In II X, 

These formulae are equivalent, but the second is easier to calculate. Note also 
that the MLE of q is such that e “’ is the geometric mean of the X,. If we use 
the 25 losses contained in Appendix B, the estimated parameter is q = 251 
26.16 = .955. 

Although the MLE has attractive properties and is easy to calculate, we will 
examine the use of alternative methods. Probably the most common method is 
matching of moments. We have shown that the mean of the unlimited Pareto 
distribution is ql(q - 1). If this is equated to the sample mean of the values in 
Appendix B, we have 

q - = 6.202 
4-l 

q = 1.192 

This value is not particularly close to the true value. The discrepancy arises, 
not because of the relatively small sample, but from the method itself. If the 
formula for the mean is examined, it will be clear that a value of 1.0 could 
never result. If the true value of the parameter of the distribution is I.0 or 



smaller, the method of moments will always produce too high a result. Because 
in many situations the value of the parameter may be close to or even less than 
I .O, the method of moments may not bc an appropriate method. 

Another method of parameter estimation is based on quantiles.’ Using the 
formula for the c.d.f.. 

F(x) = 1 - .t “. (21) 

we can equate the sample values of F(r) to their theoretical values. Although 
this method of estimation is somewhat less efficient’ than MLE, it is much 
faster and may be used as a quick method for approximating the parameter 
when only a rough estimate is needed. In our example the median, or 131h 
largest loss, is $55,843 or 2.234 when normalized. Solving 
.5 = I ~ 2.234-“ for y is straightforward yielding (1 = 0.826. If we look at 
the other two quartiles. which are approximately the 6’” and IY’” largest losses, 
we solve the equations 

25 = I - (1.311)-“ 

.75 = I - (3.Y55) ‘I 

which yield estimates 

y = 1.062 

q = 1.008 

A more important use of this method is when the individual claim sizes are 
not available (or not easily available), and only grouped statistics are available. 
Suppose that the losses in Appendix B had been incurred, but the only infor- 
mation was as follows: 

lnterval (000) Frequency 

25-100 20 
I oo- I ,000 5 
I ,000-r 1 

i Quantiles is the general term which includes the median, quartiles. and percentiles as special 
cases. 

’ For a discussion of efficiency. see Hoe]. Port and Stone [HS]. Iw~~drc~~tron ICJ Srctrisriwl Throrv, 
page 16. 
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Using the information that 80% of the losses are no greater than $100,000, we 
solve the following: 

,8 = ] - 4-” 

yielding 

y = 1.161 

This estimate is remarkably good when one considers the limited information 
available. 

Alternative methods of parameter estimation are discussed in Quandt [Ql]. 

To this point, in this section we have assumed that there is no upper 
limitation on the loss data either by an upper censorship point created by policy 
limits or an upper truncation limit where certain values may be missing. 

There are several reasons for suspecting that actual data has some type of 
limitation. In the case of insurance company data, the losses may be censored 
due to reinsurance agreements. In some cases, gross losses are available, but 
in others only net losses may be available in a usable form. Even if the losses 
are gross to reinsurance, there may be limitations due to policy limits.h Most 
casualty coverages have policy limits.’ 

One of the advantages of working directly on an individual risk is that these 
limitations can be overcome. Although the primary source for data is usually 
insurance company records, it is usually possible to make the appropriate 
adjustments whenever losses have been limited. 

This does not totally remove the problems of limitations. In the case of 
property insurance, there is an upper bound to the amount of loss, namely the 
total value of the property. There seems to be no useful upper bound to liability 
situations, but most actual data suggests that the tail of the Pareto is still 
somewhat too “thick” at extremely high loss amounts. In other words, the 
theoretical density at high loss amounts is larger than empirical experience tends 
to indicate. Rather than discard the Pareto, it is easier to postulate that the 
distribution is censored or truncated at some high, but finite, value. As we have 
seen earlier, any upper limitation (either censorship point or truncation point) 

’ A discussion of the impact of policy limits can be found in Patrik [Pl] 

’ Exceptions include workers’ compensation coverage A and no-fault PIP in some states 
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will produce formulae for the mean claim size that are tinite for all possible 
values of q. 

If we assume a censorship point C. then the density function is unchanged 
between I and c but will have a mass point at C’ and will be zero for all values 
greater than c. LetJ(.\-) be the unlimited Pareto density. that is 

fix) = y .t- “I + ’ 1 

Letj(,r) be the density function censored at C. Then. 

f; (x) = 0 .t- > (’ 

If we wish to consider the distribution truncated (above) at r. then the density 
function at all points less than or equal to t will have to be proportionately 
increased so that the total area under the curve still equals one, and the new 
density function is zero for all values greater than r. Letf;(.r) be the distribution 
truncated above at t. Then, 

.fi(.r) = 0 .t- > t 

Assume that we have n losses, of which m are less than the censorship limit 
c and n - m are equal to C. The maximum likelihood estimate is 

I1 - II1 
9 = ,I m 

2 In X, + (m)ln c 

Suppose we have the loss data in Appendix B except that each loss is 
censored at $100,000. Then, 

20 
’ = 13.104 + 5(1.386) 

= ,998 

Note that the MLE approach produces the parameter of the unlimited dis- 
tribution: censorship is handled through definition of the density function. 



V. EFFECT OF TREND 

One of the practical problems with fitting size-of-loss distributions is the 
proper way to handle adjustments for trend and development. With most distri- 
butions, inflation of losses will change one or more of the parameters. In Hogg 
and Klugman, (H2] page 180, there is a table that shows the parameters of 
various distributions after the application of a trend factor. In each case (in- 
cluding the Pareto and generalized Pareto), the parameters are changed due to 
inflation. 

However, the parameter of the Pareto distribution in this paper is unchanged 
due to trend. This result appears counterintuitive. After all, each of the formulae 
for mean claim size is a function of the parameter. If the parameter is unchanged, 
then the estimated average claim sizes must be unchanged. This appears unrea- 
sonable for several reasons. 

First, it is obvious that, under influence of trend, the overall average claim 
size increases. This is true, but note that the distribution in question does not 
apply to the entire range of losses. It is not simply hetfer suited for modeling 
excess losses, it does not fit small losses well at all. The typical size-of-loss 
distribution starts out with a small frequency of very small losses, growing to 
a larger frequency of intermediate losses, then a decreasing frequency of larger 
losses. The maximum density for the Pareto is always at the leftmost value, 
and the density is always decreasing as we move to larger claim sizes. Thus, 
the fact that the overall average claim increases with trend is simply evidence 
that the single parameter Pareto is not likely to fit the entire range. 

Second, it may be recalled that trend is assumed to have a leveraged effect 
on excess losses, where the Pareto is supposed to lit so well. This is true (see 
Miccolis [Ml]), but the leveraged effect is on the total excess dollars, not 
necessarily on the u\‘erage excess claim size. It may seem ironic, but the major 
effect of trend is to increase the frequency of an excess claim, rather than its 
severity, This may be more obvious if we recall that a size-of-loss distribution 
is, by definition, the distribution of the relative frequencies of various sizes of 
claims. 

Third, and most imporant, a review of empirical excess average claim sizes 
will show that they have been increasing over time for most coverages. This 
point is conceded and is inconsistent with an assumption that a Pareto fits the 
entire excess distribution to infinity. As has been noted earlier, the Pareto has 
“too thick” a tail, and, in most practical applications, an upper bound should 
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be used. If one looks at the average excess claim u,irh a reasonable upper limit, 
the average claim size will NH be materially increasing over time. 

Because this point is important, we will explore it in more detail. Consider 
the losses contained in Appendix B. These have been generated from a Pareto 
distribution with q = I .O. The appendix contains both the normalized values 
and the raw dollars, which indicate that the raw losses represent losses greater 
than or equal to $25.000. If we calculate the MLE of these losses (assuming 
we did not know how they were generated). we would estimate the parameter 
to be ,955. As can be verified. this value will produce average claim sizes for 
various layers of intervals (with reasonable upper bounds) that are reasonably 
close to the theoretical values. Specifically. we can use this parameter to estimate 
the average claim for layers or intervals where the lower limit is $50.000. Thus, 
this parameter can be thought of as the appropriate parameter for the size-of- 
loss distribution for claims greater than $50,0(K). 

Suppose these losses were from year zero. and we wished to project losses 
for year II. Suppose further that the annual trend. 1 + i. is such that ( I + i)” = 
2.00. If we were to trend each of our losses in Appendix B by this trend factor 
and use these losses to calculate a parameter to tit losses in excess of $50,000, 
it should be obvious that the estimated parameter would still be exactly ,955. 

What may be less than obvious is the fact that this parameter can be used 
for losses in excess of $25,000 in year II. This means that the losses between 
$25,000 and $50,000 in year II, which correspond to losses less than $25,000 
in year 0, must be distributed in such a way that the Pareto distribution will 
still tit the distribution above $25,000 (to the upper limit) in year II. 

As may be guessed, the requirement is that the Pareto distribution must fit 
the losses in year 0 as low as $12,500 ($25,000/2.(K)). In general, if we are 
using losses greater than K from year 0 to estimate a parameter to use in year 
II, we must assume that the Pareto distribution (with the same parameter) 
provides a reasonably good tit to losses in year 0 which are as small as K/( I + 
i)“. Experience has shown that this is typically true for casualty losses as low 
as $5,000 to $10,000 (higher for medical malpractice). so values of lower limits 
in the oldest year of experience greater than $25,000 will typically work. Of 
course, it is prudent to check the tit at the lower end of the range if possible. 

We have gone over this point in some detail because it leads to an extraor- 
dinary result: to calculate the MLE of the Pareto parameter, given individual 
losses greater than a single fixed value K arising from several different years, 
it is not necessary to adjust the losses for trend. 
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For example, suppose the following data are available: 

1978 100,000, 150,000, 225,000 
1979 109,000, 140,000, 180,000, 240,000 
1980 105,000, 115,000, 170,000, 290,000 
1981 104,000, 121,000, 160,000, 200,000, 300,000 

Suppose we are interested in projecting losses for 1984 and the annual trend, 
I+ i = 1. I. Under typical methods of analysis, we would trend each of the 
losses to a common date. The trend factor for 1978 would be (l.I)h = 1.77. 
But if we did not have any data on losses less than $100,000 for older years, 
we would have to use a lower limit of $177,000. Several of the losses in more 
recent years would then have to be thrown out, because their trended value is 
less than $177,000. 

With the Pareto distribution, we can use all of the data points, if we have 
reason to believe that the Pareto distribution tits losses as low as $100,000/1.77 
in 1978. But note that if we assume that the Pareto will fit above $100,000 in 
1984, this is equivalent to assuming that it fits equally well above $lOO,OOO/ 
1.77 in 197X (assuming trend affects all claim sizes approximately the same). 

Of course. this will allow us to estimate the parameter of the distribution, 
which will allow us to calculate the averugc severities for 1984. This is only 
half the problem, as we also need to estimate the frequency of claims to arrive 
at estimates of the total loss dollars. We cannot simply use the raw historical 
frequencies of claims greater than $100,000 to estimate our future frequency. 
We can, however, calculate an adjustment factor that will allow us to put each 
of the historical frequencies on a comparable basis. 

The calculation of this factor can be shown most easily with a concrete 
example. Suppose we expect 10 claims greater than $25,000 in year n, where 
q = 1.5. Recall the formula for the distribution is F(x) = 1 - .x-‘. How many 
claims in year n are expected to exceed 1. I X $25,000 = $27,500? We calculate 
this using the distribution function, F( 1. I) = 1 - 1.1-i.’ = ,133. This means 
13.37~ of the claims will be less than $27,500, or 86.7% will be greater than 
$27,500. Thus, we expect 10 X .867 = 8.67 claims greater than $27,500. This 
means that we expect 11.867 = I. 153 claims over $25,000 for every claim 
greater than $27,500. If we now examine year n - 1, the $27,500 claim in 
year n would be $25,000 in year n - 1, and the $25,000 claim would be 
$25,000/l. I = $22,727 in year n - I. Clearly, for every claim greater than 
$25,000 in year 12 - 1, we would expect I. 153 claims greater than $22,727. 



So if we multiply the number of claims greater than $25,000 in year n - 1 by 
I. 153, we have the best estimate of the number of claims greater than $22,727 
in year n - I, which corresponds to the number of claims that, if trended, 
would exceed $25.000 in year II. 

Typically. the frequency of claims in each year will be related to an exposure 
base such as number of beds (hospital malpractice), number of employees 
(workers’ compensation), etc. When using the Pareto distribution, the first step 
is to multiply the raw frequency of claims greater than the underlying limit by 
the adjustment factor. then divide through by the exposure. The resulting values 
may be averaged, or perhaps a regression analysis will be performed. (Note 
that inflation sensitive exposure bases such as sales or payroll must also be put 
on a comparable basis.) The adjustment factor for n years of trend at annual 
inflation rate I + i with parameter y is simply (I + ;)“I’. The following table 
displays the factors for various combinations of i and q. Each value in the table 
is the one-year adjustment factor. 

1 +i 

1.05 
1.08 
1.10 
1.12 
1.15 

VI. SIMULA.TION OF LOSSES 

One type of analysis frequently performed by actuaries involves Monte Carlo 
simulation of results based upon a particular model of the loss process. One 
advantage of this Pareto distribution is the ease with which it can be simulated. 

One method for simulating values for a function involves inverting the 
cumulative distribution. This is not always possible with some functions, but it 
is particularly easy with the Pareto. The cumulative distibution is 

F(X) = ] ~ ,y’ 
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Thus 

F-l(y) = (1 - y)-“Y 

where Y has the uniform distribution 

A moment’s reflection will reveal that (1 - Y) is symmetric when Y has the 
uniform distribution, so we can replace I - Y with Y. Thus, if we can generate 
a uniform random variable Y, then Yp’lq will have a Pareto distribution with 
parameter y. 

Consequently, we find that even hand-held calculators, such as the HP-15, 
can be used to simulate Pareto losses. For example, the following values in the 
first column were generated from a calculator with a random number generator. 
The second column contains the normalized loss when q = 1.5, and the third 
column contains the “real” claim amount if the lower limit is $25,000. 

(1) 
Random Value 

from Uniform Distribution 

(2) 
Normalized 

Pareto Value 

(3) 
“Real” 
Dollars 

.I9875 2.93630 73,407 

.73616 I .22655 30,664 

.52174 1.54298 38,575 

.97358 1.01801 25,450 

.26635 2.41562 60,390 

.54727 I .49462 37,366 

.85879 1.10682 27,670 

.31708 2.15058 53,764 

.38295 1.89630 47,407 

.23006 2.66341 66,585 

VII. APPLICATIONS 

In this section, we will discuss several applications of the Pareto distribution. 
In some of the cases, we will use actual data from published sources for two 
reasons: first, to demonstrate that this distribution works well with “real” data, 
and second, so that this distribution can be compared to those used in the 
original source of the data. 



Applicution I 

Consider the OL&T BI claims for policy year I976 contained in Appendix 
F of Patrik [PI]. We will fit the Pareto to losses greater than $25,000. There 
are 90 losses in this exhibit. Individual losses are not shown, but the ranges are 
quite narrow, as they are $5,ooO ranges up to $100,000, and $10,000 thereafter. 
We can use the average claim size in the range as a reasonable proxy for the 
individual claim amounts (with wider ranges. we might need to make adjust- 
ments). The sum of the normalized logs (dividing each claim by $25,000) is 
81.2; thus. our estimate of y is 1. IOX. Note that there are no claims greater 
than $500.000. We would expect 90 (I F(X))) = 90 x (20 ’ Iox) = 90 X 

.0362 = 3.26 claims greater than $500,(H)O if the Pareto fit all the way to 
infinity. This is evidence that the theoretical tail overstates the actual tail. We 
can calculate the expected average claim s&e with an upper limit of $500,000, 
using (5) with b = 20. This yields an estimate of $25.000 x 3.559 = $88,975. 
The actual average claim size is $89,703. 

Consider the 40 wind-related catastrophes in 1977 listed in Hogg and Klug- 
man IH2] page 64. Only claims of $2.000.000 or more were included. These 
values, recorded in millions, are as follows: 

2. 2, 2, 2. 2. 2, 2. 2. 3. 2. 
2, 2, 3. 3. 3, 3. 4. 4, 4, 5, 
5, 5, 5. 6. 6. 6. 6, 8. 8, 9, 

15, 17, 22. 23, 24. 24. 25. 27. 32. 43 

If we calculate the MLE of the parameter using (19) or (2(J), the result is q = 
,976. This tends to confirm the statement made earlier that a typical parameter 
value for property is 1 .O. In the same reference. on page 68, are 31 wind 
catastrophes over $1 million for 197 I The MLEZ for these losses is y = ,959. 

Suppose we have the following hypothetical information for the professional 
liability experience of a hospital. Assume that the hospital has a $25.000 
retention and that information on claims Icss than the retention is either un- 
available or unreliable. 



Accident 
Year 

# Occupied 
Beds 

Individual 
Claims 
Greater 
than 
$25,000 

1978 I979 1980 1981 

200 200 260 260 

127,000 7 I ,000 34,000 55,000 
28,000 I 19,000 26,000 43,000 
32,000 135,000 38,000 40,000 

103,000 42,000 93,000 42,000 
37,000 40,000 50,000 
55,000 34,000 31,000 

228,000 30,000 
57,000 29,000 
27,000 29,000 
36,000 137,000 

61,000 

Suppose we are interested in projecting the experience for 1984 for the layer 
$225,000 excess of $25,000. Assume that external data leads us to believe that 
the severity trend has been 20% annually between 1978 and 1981, but is 
projected to be I5’% annually between 198 I and 1984. We also estimate 240 
occupied beds in 1984. 

First, as noted earlier. we can use all 31 losses in the analysis. Each loss is 
normalized by dividing by $25,000. The MLE of the parameter is calculated 
using (19) or (20). The sum of the logs is 22.024, so the estimate of the 
parameter is 31/22.024 = I .408. 

We can calculate the average claim size in the layer $225,000 xs $25,000 
using formula (I ) 

XC(b) = qq-pb’;q 

With b = 250125 = IO and q = 1.408, the result is 2.493, which corresponds 
to an average claim size of $25,000 X 2.493 = $62,326. Thus, we expect that 
the average claim, greater than $25,000 but limited to $250,000, will be 
$62,326. The amount within the insured layer will be $62,326 - $25,000 = 
$37,326 per claim. 



To estimate the frequency of claim within the layer, WC tirst calculate the 
frequencies in terms of claims per 100 beds. The resulting ratios are: 

Year # Claims/ 100 Beds 

1978 2.00 
1979 3.00 
1980 3.85 
1981 4.23 

We now have to adjust the frequency for trend, so that each year will be on 
a comparable basis. We will convert each frequency to the frequency that would 
be expected in 1981. using the adjustment factor in the section on trend, 
(I + i)“y where 1 + i = 1.20, y = 1.408, and II is the number of years between 
each year and I98 I. For example. the adjustment factor for 1978 is 
(] .2o)3x I J(Nt = 2.16. This means that for every claim that exceeded $25,000 
in 1978, we would expect 2. I6 claims over $25,000 in 198 1. The adjustment 
factors and the adjusted frequencies are shown in the following: 

Year Raw Frequency 

1978 2.00 
1979 3.00 
1980 3.85 
1981 4.23 

Adjustment Factor 

2.16 
1.67 
1.29 
I .oo 

Adjusted Frequency 

4.32 
5.01 
4.98 
4.23 

We can calculate a simple average of the adjusted frequencies to arrive at 
an estimate of the frequency of claims greater than $25,000 for 1981. This 
value is 4.63. Alternative methods to calculate an overall frequency could be 
used. For example, it might be appropriate to use the number of occupied beds 
as weights. If the adjusted frequencies show a pronounced trend over time, then 
the frequencies are being affected by something other than changes in claim 
sizes and further analysis is indicated. 

We now calculate the frequency appropriate for 1984. Based upon the 
assumption of a 15% annual trend, the adjustment factor is ( 1.15)‘” ’ 40H = 
I .805. Thus, our estimated frequency for 1984 is 1.805 X 4.63 = 8.36 claims 
per 100 occupied beds. Using our assumption that there will be 240 occupied 
beds in 1984, we expect 8.36 X 2.4 = 20.07 claims greater than $25,000 in 
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1984. Thus, our expected losses in the layer $225,000 xs $25,000 are 20.07 X 
$37,326 = $749,301. 

Applicution 4 

Finally, we note that the fact that a typical value of q for property losses is 
1 .O and the formula for the average loss when q = 1 .O is so simple, allows us 
to easily provide a rough estimate of the average claim size for various layers. 
Suppose we are asked to quote a reinsurance cover on a book of property 
business for the layer $2,750,000 xs $250,000. The ratio of the upper limit to 
the lower limit is 3,000/250 = 12, so an estimate of the gross mean claim size 
is I + In 12 = 2.485 or $621,000. The net mean claim size would be $371,000. 
This could be used as a rough estimate for discussion purposes. More refined 
analysis can be performed if both parties to the intended transaction are still 
interested. 
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APPENDIX A 

SUMMARY OF FORMUI.At~ 

This appendix contains a summary of the most commonly used formulae. 
It begins with the formulae used to calculate the maximum likelihood estimates 
of the parameter. Formulae are shown later for the mean and total loss variance 
(under the assumption of a Poisson frequency). The formula for the variance of 
severity alone is not given, because the primary use for this formula is to derive 
the formula for the total loss variance. 

It should be noted that “K” is used to represent the lower bound of the 
distribution in nominal or “real” dollars. This is the value used to normalize the 
distribution. The letter “II” is used in the formula for the MLE to denote the 
actual number of losses used in the calculation. In the calculation of the expected 
losses, “II” is used to denote the expected number of claims in the period of 
interest. The letter “h” is used to denote an upper limit to losses, either a 
censorship or truncation point. 

Density fix, = q- ’ y 

Distribution F(x) = I - .I- I’ 

Maximum Likelihood 
Estimates 

Unlimited 

Censored at h 

Truncated at h 

or 

y = nl i In .r, - (n In b/(b’ - I )) 

Note that y is on both sides of the equation; thus, it must be 
solved using numerical methods 
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Gross Layer 

Mean Claim Size 
q+l 

“Real” Mean Claim 
Size 

“Real” Expected 
Losses 

Total Loss 
Variance 

Total Loss 
Variance in 
“Real” Dollars 
Where Expected 
Number of Claims 
is n 

4 
q-1 

K* 

4 flK- 
q-1 

9 

q-2 

9 
nK2 q - 2 ( ) 

1 

q-1 

K 

q-1 

nK 

q-1 

- ( 1 2q +1 
q-1 

( ) 
2q +1 

q-1 
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Censored Distribution 
(Gross Layer) 

5. 

Mean Claim Size 

qfl 

y= I 

“Real” Mean Claim Size 

Expected Losses 

Total Loss Variance 

Y#2 

q=2 

Total Loss Variance 
in Real Dollars 

q-h+ 

q-1 
I +lnh 

q - 2h2 y 

q-2 
I + 2Inb 

Truncated Distribution 
(Gross Layer) 

q (I - b’-Y) 
(y- I)(1 -b-q 

(In b) / (I - b-l) 

Multiply appropriate 
formula by K 

Multiply appropriate 
formula by nK 

y(l -b”-“) 
(y - 2) (I - KY) 

(2 In b) / (1 - b-2) 

Multiply appropriate 
formula by nK2 

Net Layer-Mean formula can be calculated by observing that E [X - I] = 
E IX] - 1. Variance formulae can be calculated by noting that the 
variance is equivalent to E [X’], and using the relationship 
E((X- l)‘]=E[X=]-2E[X]+ I. 
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APPENDIX B 

SIMULATED PARETO LOSSES 

25 pseudo-random losses from a Pareto distribution with q = 1 
and a lower limit of $25,000. 

Amount of Loss Normalized Amount of Loss 

I 69,976 2.799 
2 62,913 2.517 
3 25,766 1.031 
4 39,800 1.592 
5 97,739 3.910 
6 36,356 1.454 
7 139,665 5.587 
8 34,749 1.390 
9 45,716 1.829 

10 96,353 3.854 
11 1,847,213 73.889 
12 25,231 1.009 
13 48,057 I .922 
I4 3 1,744 I .270 
I5 98,882 3.955 
16 209,03 I 8.361 
17 214,700 8.588 
18 396,323 15.853 
I9 32,772 1.311 
20 45,190 1.808 
21 32,044 I .282 
22 55,843 2.234 
23 99 $0 1 3.984 
24 29,900 1.196 
25 60.463 2.419 

RI 
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APPENDIX C 

VARIOUS FORMS OF THE PARETO 

The Pareto distribution is mentioned in a large number of statistical texts 
and technical papers. Although many distributions (e.g., Poisson and normal) 
have a fairly standard notation, there is a wide variety of formulations of the 
Pareto distribution. This appendix will present a brief survey of some of the 
alternatives. 

Johnson and Kotz [J 1 ] contains one of the most thorough treatments of this 
distribution, as it devotes an entire chapter to the Pareto distribution. This 
reference includes a discussion of the history of the distribution, which can be 
traced to the Italian born, Swiss professor of economics, Vilfredo Pareto. Three 
main representations of the cumulative distribution are given: 

K > 0; a > 0; x 2 K 

KI 
Johnson and Kotz F, (x) = 1 - ~ 

(x + c)” 

Kle “’ 
Johnson and Kotz F, (x) = 1 - ~ 

(x + cy 

The first is referred to as the “Pareto distribution of the first kind,” the second 
as the “Pareto distribution of the second kind,” and the third as the “Pareto 
distribution of the third kind.” Johnson and Kotz note that the first two formu- 
lations are Pearson Type VI distributions. 

Patrik [PI] uses a form of the Pareto distribution of the second kind: 

Patrik F (xIf3,6) = I - (&$I” 

Hogg and Klugman [H2] discuss two formulations. The first is referred to 
as the Pareto distribution and has the cumulative distribution: 

a>0 A>0 



The second is referred to as the generalized Pareto distribution and has a 
cumulative distribution as follows (where B (.) refers to the beta distribution): 

Hogg and Klugman F (x) = B K, LX: & 

The density function is as follows: 

Hogg and Klugman f(x) = r (a + K) A” x”-’ 

r (a) I- (K) (A + X)K+a 

They note that the Pareto distribution is a special case of the generalized Pareto 
when K = 1. 

Formulations by authors who work primarily with the cumulative distribution 
include: 

Huang G (X; a, v) = 1 - a” x-” x>a,a>O,v>O 

Benktander F (x) = 1 - xeu x2 1 
” 

Quandt F (x) = I - : 
(> 

K>O, a>O, x?K 

Other authors present this distribution in terms of the density function: 

Malik f(x) = v (g,y-v- a > 0, v > 0, x Z a 

Lwin f(xlX, a) = A aA Y-’ a > 0, A > 0, x > a 

Kendall and Stuart dF=+ O<Ksxsm, cx>l 

Hastings and Peacock f(x) = cxmC-’ l’x, c>o 

Finally, the IS0 uses a Pareto distribution in the “Report of the Increased 
Limits Subcommittee: A Review of Increased Limits Ratemaking” [Ill. In that 
paper, they use “q” as a parameter. For that reason, “q” has been selected as 
the parameter in this paper. 



APPENDIX D 

REASONS FOR PREFERRING “ALTERNATIVE” REPRESENTATION 

Although we typically portray density and distribution functions with the 
loss size along the horizontal axis and the density or cumulative probability 
along the vertical axis, there are a number of logical reasons for preferring the 
“alternative” representation, as portrayed in Figures 1. 2. 3, and 4. 

1. In the standard representation, a loss limit is a vertical line and the excess 
losses lie to the right of the line. In my representation, a loss limit would 
be a horizontal line, and excess losses would lie above the line. It seems 
more intuitive to think of excess losses lying above a line. 

2. In my representation, losses eliminated by a deductible would be below 
the line representing the deductible amount, rather than to the left of a 
line. 

3. If we apply a trend factor to the cumulative distribution of losses, the 
new line is below the old line in the standard representation but above 
it in my representation. It makes more sense to think of inflation as 
producing a new curve above the old one. 

Finally, I would note that this alternative representation is not new. It is 
essentially equivalent to that used in Snader ISI] to depict the insurance charge 
and savings. 


