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AN ESTIMATE OF STATISTICAL VARIATION 
IN DEVELOPMENT FACTOR METHODS 

ROGER M. HAYNE 

Abstract 

This paper explores some properties of the lognormal distribution. It 
is possible that these properties can provide information not only re- 
garding the variability of age-to-age development factors but also re- 
garding that of age-to-ultimate factors, if the actuary is willing to assume 
that these factors are lognormally distributed. Considered are problems 
of parameter estimation and uncertainty under the assumption of inde- 
pendence of the age-to-age factors. Some results are generalized by 
weakening the independence hypothesis, and a method of parameter 
estimation with missing observations is presented. This paper is intended 
as a starting point, indicating useful results if factors are assumed to be 
lognormally distributed. Still an open question is the specific situations 
where such is the case. 

1. INTRODUCTION 

Development factor techniques have long been in the casualty actuary’s 
repertoire of projection methods and are used extensively in both ratemaking 
and in the estimation of loss reserves. There are, however, numerous sources 
of variability in such results. For this reason an actuary often applies several 
techniques to obtain several estimates of ultimate losses. The actuary then selects 
a “best estimate” which reflects his or her best judgment of the amount of those 
losses. 

The complex interactions in the data and the influence of non-random events 
(such as changes in claims practices) add to the variability inherent in the results 
of any projection technique. This makes it difficult to assess whether random 
fluctuations alone can be responsible for a range of estimates provided by various 
techniques or whether the various methods detect different patterns actually 
present in the data, or whether some combination of the two exists. 

This paper will not present a loss projection technique but rather will explore 
properties of the lognormal distribution which will allow for some estimation 



of the statistical variability inherent in development factor projections if certain 
specific assumptions are satisfied. This can be useful in judging the differences 
among several projection techniques. For example, if wide fluctuations can be 
expected in projections (evidenced by wide confidence intervals), then variations 
in projections using different methods can be expected. If, on the other hand, 
there is little evidence of statistical variability and if the results of two methods 
are “far” apart, there is reason for further investigation to determine the cause 
of such differences. 

Since the objective here is to study variability, the results depend on the 
underlying probability distributions and not on the particular age-to-age factors 
selected in practice. Thus, the resulting estimates of variability can be used as 
a measure of a “range of reasonableness” for various development factor selec- 
tions and projections of other methods. 

There are several useful properties of the lognormal probability distribution 
which motivated its choice as the statistical model here. First, the lognormal is 
defined for positive values of the random variable (development factors, except 
for extreme situations, are positive). Next, the distribution is skewed to the 
right but retains positive probabilities for large factors. This also has intuitive 
appeal for development factors which can be very large and experience anom- 
olous swings. A third, and most useful. property of the lognormal distribution 
which suggested its consideration is its reproductive property. As will be stated 
in more precise form and greater generality below. the product of two lognormal 
random variables is. under certain assumptions. itself lognormal. In addition, 
the parameters of the product distribution can be determined easily from those 
of the two distributions. In terms of development factors this allows inferences 
regarding the age-to-ultimate factors to be made based on assumptions on the 
age-to-age factors. 

The purpose of this paper is to explore the consequences of the assumption 
that the development factors are lognormally distributed. As stated above, the 
lognormal was chosen due to its useful properties and not on the basis of 
empirical data. Just as the normal distribution has been used to derive approx- 
imations in other areas of statistical work, it is possible that the lognormal 
model here may provide useful approximations in practice. 

2. NOTATION AND BASIC TONCEPTS 

This paper will deal with development factor techniques (see, for example, 
[ 11). For this purpose, let L,, , denote data for exposure period i valuedj valuation 
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periods from the start of the exposure period i. Exhibit 1 gives a few of the 
possible choices for each of the parameters. For simplicity, Li,i will generally 
be referred to here as incurred losses for accident year i valued j years from the 
beginning of year i. This is by no means an attempt to limit the results shown 
here. 

Let D, denote the factor to develop losses valued at j years into losses valued 
at j + 1 years (commonly called the age-to-age development factor). Thus, if 
the loss data strictly followed this model, the following relation would hold: 

&,,+I = D,L,, (2.1) 

Let 0: denote the factor to develop losses from age j years to their ultimate 
value (commonly called the age-to-ultimate development factor). From the 
above definition of D, the following formula holds: 

0;” = i D, (2.2) 
k=j 

Extensive use will be made here of the lognormal probability distribution 
which depends on two parameters, denoted here by CL and u*. As used in this 
paper the probability density function is defined as: 

fix) = exp{-[(In(x) - ~)*]/~IJ*}/x~VG (2.3) 

Here In(x) denotes the natural logarithm and exp(x) its inverse. This distribution 
has been used rather extensively in actuarial work especially in the modeling 
of size-of-loss distributions (see, for example, [2], [3] and [4]) and has many 
useful properties. 

In particular, if the random variable X is lognormally distributed with pa- 
rameters p and cr*, then the random variable Y = In(X) is normally distributed 
with mean k and variance a*. This fact, and reference to tables of normal 
probabilities, allows for easy calculation of confidence intervals for this distri- 
bution. 

Probably of greatest use here is the following theorem (see p. 11 of [5]): 

THEOREM 2.1 

If {Xj} is a sequence of independent variables, where Xj is lognormally 
distributed with parameters pj and uf, (bi) a sequence of constants and c = 
exp(a) a positive constant, then provided Cb,/.I,j and Xufbf both converge, the 
product 



is lognormally distributed with parameters u 

(2.4) 

t Eb,F, and Cbfuf 

This theorem thus gives rise to the primary result used in this paper. In 
particular: 

COROLLARY 
If: (1) each age-to-age development factor D, is lognormally distributed with 

parameters p, and a; Cj = I, 2. 3. . ..). 
(2) all age-to-age development factors are independent. and 

74 r 
(3) x l.~, and c a,? both converge; 

]==I ,‘I 

then each age-to-ultimate development factor D,* is lognormally distributed with 
parameters 

z x 
c pk and c at (2.5) 
k=/ k=, 

In most applications the third assumption above is fulfilled. Usually it is assumed 
that loss development stops after some finite point in time so that l.~, = a; = 0 
for j sufficiently large. 

3. SIMPLIFIED EXAMPLE 

As an example of an application of these results assume that there is no 
development after four years (i.e. p,, = a; = 0 for j > 3). that the age-to-age 
development factors DJ, Dr, and Dj are each lognormally distributed with known 
hypothetical parameters given in the top half of Exhibit 2. and that all D,, D2, 
and D, are independent. Then the age-to-ultimate factors DT, DT, and DF are 
all lognormally distributed with parameters as shown in the bottom part of 
Exhibit 2. 

These parameters then allow for the calculation of various percentiles for 
the distributions of the age-to-age and age-to-ultimate development factors. To 
this end, let t denote the p (0 < p < I) quantile of a standard normal random 
variable Z. That is, I satisfies the equation 

P(Z < t) = p (3.1) 

Since D, is assumed to be lognormally distributed with parameters p, and a; 
the following formula holds: 



W, < exph + ta,>) = P. (3.2) 

Formula (3.2) then allows the computation of percentiles for the age-to-age 
factors using )I,, Uj and various percentiles of the normal distribution. Some 
examples are 
.674 x 8 

resented in the top part of Exhibit 3. For example, exp(. 175 + 
.075) = 1.433, and so forth. Similar examples for the age-to-ultimate 

factors are shown on the bottom of that exhibit. 

4. REFINEMENTS 

Under the assumption of lognormality, this procedure provides a means to 
estimate the statistical uncertainty inherent in the development factor method. 
This method assumes the parameters I-L/ and a? are known. Yet to be addressed, 
however, is the uncertainty surrounding p,, and uf. In actual practice k, and 
uf are not known for certain. Most often the only source of knowledge lies in 
the historical development factors themselves. 

Assume here that there are n, accident years of incurred loss data available 
valued at year j and year j + I and that there are k such periods of development 
under consideration. Thus L,, , and Li. ,+ I are defined for i = 1, 2, 3, . . , nj and 
j = 1, 2, 3, . ., k. Assume further that the historical development factors at 
age j, defined by 

4.j = L;,,+I/L~,,, (4.1) 

form a random sample from a lognormal distribution of unknown parameters 
CL/ and a:. Moreover, define the statistics: 

Y, = i $, In(d;.j) (4.2) 
, i- 

(4.3) 

It follows that Y, and Sf are the maximum likelihood estimators of l.~, and a: 
respectively (see 151, p. 39) but, as in the normal analog, $ is biased. However, 
the statistic 

(4.4) 

is an unbiased and minimum variance estimator for u,“, though it is no longer 
a maximum likelihood estimator (see [6], p. 165). Using these statistics, con- 



fidence intervals for I*, and a; can be obtained. This follows from the fact that, 
under these assumptions of lognormality and independence, for each j, 
In (d,,,) form a sample from a normal distribution and thus 

~ has a t distribution with II, - I degrees of freedom, and 
V,lV$ 

(4.5) 

(n, - uv; 
u,z 

has a chi-squared distribution with !I, ~ I degrees 
of freedom. (4.6) 

Exhibit 4 shows a hypothetical development factor triangle which is gener- 
ated using lognormally distributed random numbers. Since it is assumed that 
each column represents a random sample from a lognormal distribution, Y, and 
V;’ provide estimators for /Lj and of. respectively, for each value of j. In addition, 
the above observations regarding the distributions of Y, and V,’ lead to the 
confidence intervals for t-r+, and a; given on the bottom of that exhibit. This 
information is helpful in estimating the degree of parameter uncertainty con- 
tained in the various age-to-age estimates. It cannot, however, be easily extended 
in general to the age-to-ultimate factors without additional assumptions, usually 
made about a,‘. 

Since ln(di,j) are normally distributed with mean CL, and variance u:, the Y, 
values are normally distributed with mean p, and variance ufln,. Moreover, any 
sum, such as Y, + Yz + + YA, is also normally distributed. in this case with 
mean PI + p2 + . . + p,k and variance afin, + &in: + + u$n~. If uI , 
cr2, . ..) uk are all known then the normal distribution can be used IO obtain a 
confidence interval for kl + ~2 + + pi of the form 

Y, + . . . + Ykk tv&l, + + CT% (4.7) 

where t is the selected percentile for the standard normal distribution 

Normal distribution theory also provides results in the case where a: = ai 
= a: = . . . = ai = u2 but all are unknown. The obvious generalizations can 

be made in this case; however, it is quite unlikely that this would occur in 
development factor applications. The author is not aware of further statistics 
which do not need a restrictive assumption such as those on a: through a: 
above and which can be used to obtain estimates of parameter variability. 

Exhibit 5 provides an example of an application of the first of these as- 
sumptions, that the values of uf, a$. . . . . ai are all known. Here they are 



assumed equal to the corresponding estimates V,‘. The second set of assumptions, 
that all the uf are equal, is not applied to this data. The fact that the 90% 
confidence interval for a: does not intersect any of the confidence intervals for 
the remaining ai leaves the validity of this assumption open to serious question 
in this case. 

5. RELAXATION OF INDEPENDENCE CONDITIONS 

In the results presented this far, independence has been a necessary condi- 
tion. The principal result in Theorem 2. I, however, is a special case of a more 
general theorem where the independence assumption can be replaced with one 
of multivariate lognormality. For this, some additional notation is necessary. 

Denote by R”‘“” the set of matrices with m rows and n columns, having 
real entries. Follotiing Aitchison and Brown (see [5], p. 11) a random variable 
iE R”xI IS said to have a multivariate lognormal distribution with parameters 
Is, E R”“’ and 2 E R”“” if the variable ? = In(?) = (ln(Xi), . . . . ln(X,,))’ has a 
multivariate normal distribution with mean vector lLi, and covariance matrix z. 
It is assumed that 2 is symmetric (i.e. u,,, = oj, ,) and positive definite, thus 
assuring that its inverse, z-‘, exists. If A is a matrix, denote its transpose by 
A’. The following result then holds: 

THEOREM 5.1 

If the age-to-age development factors fi = (Di, . ., D,,)’ E R”” ’ have a 
multivariate lognormal distribution with parameters & = (F,, . . , P,?)’ E R”” ’ 
and C = (Vi. ,) E R”“” , symmetric and positive definite, then, each age-to- 
ultimate factor 

0: = fi DI, j = I, 2, . , n (5.1) 
I-J 

is lognormally distributed (with a single variate lognormal distribution) with 
parameters given by: 

(5.2) 

Proof: By definition Y = In(D) is normally distributed with parameters i; and 
Is. 

By a well known result in multivariate normal analysis (see (61, p. 383), 
the sum Y, + Y,+, + + Y,, is normally distributed with mean and variance 



given respectively by the parameters in (5.2). Since Y, + Y,, , + + Y,, = 
In(D,) + In(D,+,) + + In(D,,) = In(D, X D,, , X X D,,) = ln(D,*), it 
follows that ln(D,*) is normally distributed and thus Df is lognormally distrib- 
uted. The parameters for that distribution arc then given by the sums in (5.2). 
This completes the proof. 

From multivariate normal theory (161, p. 3X2). each of the above Y, is 
normally distributed with mean P, and variance u,. ,. Thus, each D, has a 
lognormal distribution with parameters p, and o,.,. Hence, once 6 and z are 
known, confidence intervals for the D, can be determined as in the case when 
independence is assumed. Similarly. confidence intervals for the D,* can be 
determined. 

Parameter estimation, however, is not as simply generalized. The author is 
unaware of any method to estimate the parameters tIi and 2 in the general case 
based on the usual triangular form of historical development factors arrays. 

If d,, , denotes the historical age-to-age factor for accident year i from age j 
to age j + I and the collection of such factors is based on II + I years of 
annual experience, ending in the current year, then ‘I,., is not defined if i + j 
exceeds II + 1. Thus, the usual estimators for @ and z% which would require 
data for all allowable ij values, cannot be applied. If it is assumed that the 
age-to-age factors are independent for j 2 IN for some NI then the previously 
stated results apply to each column for which j 2 tn. 

If, now, m 5 (n + 1)/2 then the array of factors d,, ,, i = I , 2. , n; j = 
1. 2, , m; i + j 5 n + I will have at least m observations in each column. 
In this case the results of Bhargava 171 are applicable. In that paper. Bhargava 
derives maximum likelihood estimators for @ and z for normal distributions 
based on samples with data missing in particular patterns. The available data 
from the first m columns of a development triangle form such an array if m < 
(n + 1)/2. 

Following Bhargava, set 
h-l 

I-Q. = Vh + c f$“‘p, 
,-I 
h -. I 

u,, I = uk.r = J; p;%J,, ,; i = 1, 2. . . . . k - I 

(5.3) 

(5.4) 

uh. k = &, + x c p:“‘p;“‘u!. , 
,=I ,=I 



Given the parameters ti and z, the equations in (5.4) form a set of k - 1 linear 
equations in k - 1 unknowns, B:“‘, pi”, . . . . Pi”1 1. Once these values are 
determined, vk and a&, can be found from (5.3) and (5.5), respectively. 
conversely, given vk, pCk’ and &,, these equations give the parameters @ and 
2. Bhargava then determined maximum likelihood estimates for the parameters 
vk, p(k), and u$~,, and. using (5.3), (5.4) and (5.5), derived maximum likelihood 
estimates for tIi and 2. 

To state those results some further notation is necessary. Suppose that 51, 
4’2, ,V3, . , y,! are n independent observations from a population that has a 
multivariate normal distribution with m variates with m 5 (n + 1)/2. The sample 
will satisfy Bhargava’s definition of a monotone sample if observations for the 
ith variate are available in yI, F2, . . ., m+,-i. Since m 5 (n + 1)/2, there will 
be at least m complete vectors. Note, this merely formalizes the situation that 
exists in a development factor matrix showing annual development for n + I 
accident years if the vector y,, is thought of as the first m elements of the j’” 
row. Though independence of the various age-to-age factors is no longer as- 
sumed, independence of the rows (accident year observations) is. 

Given this sample, define the matrix y(,. kP I) as the matrix composed of a 
column of l’s, followed by the first k - 1 elements of the observations *G,, 4’2, 

?,,+A~,. This is a matrix with a column of I’s followed by the first k - I ..., _ 
columns of the largest matrix containing observations for all of the first k variates 
in the data triangle. Let ,$a, denote the column matrix composed of the 
n + k - 1 observations of the kth variate. 

With this notation, Bhargava presents the following result: 

THEOREM 5.2 

Assume that 6 E RmX’, s E R”“” IS symmetric and positive definite, and 
that -1, $, . . . , ,Vn is an independent, monotone sample from the multivariate 
normal population with mean vector ii and covariance matrix 2. If vk, BCk) and 
crz,e) are defined as in (5.3), (5.4) and (5.5) then the maximum likelihood 
estimators for vk, pCk’ and cr&, are given by: 

A -(kl I 
(vk$ ) = ~~‘,I.k-I,~,,.k-~,~-‘~‘~l.k-l~~~k~ (5.6) 

nil-k k-l 

(n + 1 - k)&,, = x b,. h - +k - ,z fi:“‘y,.;)’ (5.7) 
,=I 

= “,&,(I - j(kdy’Cl. k-l)y(l. k-I))-‘j,k$?kl 
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Though not immediately obvious, the value of irk is the constant coefficient of 
the least squares multiple linear regression of .?,I, against the first k - 1 variates, 
ba;;d on the observations in the first n + I - k rows of the matrix. Similarly 
P are the coefficients of each of the first k - I variates. Finally, &&, is the 
conditional variance of the fit. It denotes the amount of variance which remains 
unexplained by the regression. Thus, estimation of the VL, P(k) and u& can be 
accomplished using multiple regression for k = 2, 3. , nt while 0, and &f,R, 
are the sample mean and variance of the first column of the matrix. 

If, now, it is assumed that the first m columns of the development factor 
matrix have a multivariate lognormal distribution with parameters 6 E R”“’ 
and X E R”““‘, symmetric and positive defnite. then the above procedures, 
applied to .v,. , = In(d,, ,), will produce the maximum likelihood estimates for 
VA, p’k’ and a:,“, and thus @ and x. This result follows since. under this 
assumption, the values of In(d,, ,) form a monotone sample from a multivariate 
normal distribution. 

As an example of these methods, Exhibit 6 shows the estimators tik. fitk) 
and a:,,,, along with estimators for @ and x based on the hypothetical devel- 
opment factors shown in Exhibit 4. In this case, the matrix is 6 X 6 (n = 6). 
Here it is assumed that m = 3, that there is no development after the sixth year, 
that is, & = D7 = DX = = I, and that DJ through D6 are all independent 
and independent of the first three factors. Finally. it is assumed that D, through 
DJ have a multivariate lognormal distribution with parameters li E R3x’ and x 
E Rsx7. symmetric and positive definite. 

If it is assumed that the parameters of the distributions for Dl through D6 
are equal to their maximum likelihood estimates then Exhibit 7 shows the 
resulting conlidence intervals for the resulting age-to-age and age-to-ultimate 
factors. The intervals for D, through D.I are based on the fact that the natural 
logarithm of each is normal with mean pi and variance UL. L. This exhibit also 
compares the intervals with those derived under the assumption of independence, 
assuming that the parameters equal the values of Y, and 1$ in Exhibit 4. 

Correlation among the age-to-age development factors will, of course, im 
pact the marginal variance of any given factor and also the variance of the 
resulting age-to-ultimate factors. If the various age-to-age factors are positively 
correlated then the resulting age-to-ultimate factors will have wider variation 
(and hence wider confdence intervals) when derived using the multivariate 
estimation than those derived using the assumption of independence. Con- 
versely, if there is negative correlation among the age-to-age lactora then the 



resulting estimates of the age-to-ultimate factors derived using the multivariate 
techniques will probably have less variation than those derived assuming inde- 
pendence. This follows from the variance formula given in (5.2). 

Parameter uncertainty is not as straightforward as in the completely inde- 
pendent case. Though the author does not know the distributions of the various 
estimates, Bhargava does provide likelihood ratio tests to test the hypothesis 
HO: & = 0 against H: & E R”” ‘. Those results are sufficiently complex, however, 
that they will not be presented here. One interesting result mentioned by Bhar- 
gava, however, is that the distribution of (n + 1 - k) (r&+&,, given the 
observations in the first n + I - k rows and k columns, has a chi-squared 
distribution with II + 1 - 2k degrees of freedom. 

6. OBSERVATIONS 

The usefulness of any theory lies in the nearness of the hypothesis of that 
theory to reality. In this regard, the first question that comes to mind is that of 
the lognormality of development factors in actual practice. The lognormal 
distribution has the benefit of being defined for only positive values of the 
random variable and does not impose an upper bound on those values. This 
corresponds to development factors which are generally positive and are un- 
bounded. In practice, statistical tests such as the Kolmogorov-Smimov Test as 
presented by Gary Patrik (181, p. 65) may help in assessing the validity of the 
assumption of lognormality. 

The independence of the various columns may also be able to be tested. 
Since ln(d,, ,) are assumed to be normally distributed for i = 1, 2, . . , nj a test 
based on the sample correlation coefficient between the natural logarithms of 
two columns may give some insight as to the validity of this assumption. In 
addition, these results require the independence of the development factors of 
a given age from each other. Again, usual statistical tests, applied to the natural 
logarithms of the development factors, may be helpful in assessing the validity 
of this hypothesis. In any case, in actual applications, actuarial judgment is 
required to detect any patterns which may appear in the data (for example, 
correlation between columns, trend in age-to-age factors over time, etc.). Such 
patterns often add to the variation apparent in the factors. Actuarial judgment 
will thus decrease statistical variability. 

In order to compare the results of various loss projection methods, the age- 
to-ultimate development factors must be multiplied by the appropriate loss 
amount to date. To draw statistical conclusions about the resulting loss projec- 



tions, the age-to-ultimate factors must then be assumed to be independent from 
the amounts recorded to date. 

The methods presented here can only provide estimates of .st&.stic.a/ varia- 
bility under very explicit assumptions. They should be looked on as providing 
a “range of reasonableness” of loss projections, based on such variability, rather 
than as a confidence interval about any specilic ultimate loss estimate. In the 
latter case, the actuary’s judgment is used to narrow a large range of possible 
choices (as presented by the historical dcvclopmcnt factors) in light of his or 
her knowledge of the underlying data. 

7. CONCLUSIONS AND BEGINNINGS 

This paper is presented more as an opening to further investigation than as 
a definitive solution to a problem. The model selected for study. that of devel- 
opment factor projection, is one of the simplest of the projection techniques in 
use by casualty actuaries and any actuary with cxpcrience in applying this 
technique knows its limitations and weaknesses. Hopefully the results presented 
here help in assessing the variability inherent in this method. 

The larger challenge still facing casualty actuaries is to devise estimates of 
the amount of variation to be expected in the more complex projection methods 
used. However. a precise estimate of variability inherent in an actuary’s “best 
estimate” probably is not possible. Actuarial judgment used to interpret diverse 
results of various methods, in light of the actuary’s knowledge of events that 
may impact the patterns to be expected in the data, cannot bc statistically 
quantified. This judgment is usually the most important aspect of the estimation 
of ultimate losses, but any further insight that can he gained from these tech- 
niques can be helpful in forming that judgment. 
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EXHIBIT 2 

SIMPLIFIED EXAMPLE DEVELOPMENT FACTORS 

Parameters for the Age-to-Age Factors 
LI,, Dz, and DJ 

j FJ u/ 2 
- 

1 0. I75 0.075 

7 0.045 0.005 
3 0.005 0.00 I 

Parameters for the Age-tn-Ultimate Factors 
LIT. Dz. and 0: 

.i 
* 

FJ 
:ic2 

(r/ - 

1 0.225 0.081 
2 0.050 0.006 
3 0.005 0.001 

EXHIBIT I 

SOME CHOICES AS TO DATA ARRANCEMENI 

FOR DEVELOPMENT FKroK TECHNIQUES 

Type of Data (L) Aggregation Type 

Paid Losses 
incurred Losses 
Paid (Closed) Claim Counts 
Reported Claim Counts 

Report Period 
Accident Period 
Policy Period 

Exposure Period (i) Valuation Period (j) 

Year Year 
Half-year Half-year 
Quarter Quarter 



EXHIBIT 3 

EXAMPLE PERCENTILES BASED ON 

SIMPLIFIED DEVELOPMENT FACTOR DATA 

Percentile 

10% 25% 50% 75% 
Age (t = - 1.282) (t = - 0.674) (t = 0.000) (t = 0.674) 

Percentiles for Age-to-Age Development Factors 
1 0.839 0.990 1.191 1.433 
2 0.955 0.997 1.046 1.097 
3 0.965 0.984 1.005 1.027 

1 
2 
3 

Percentiles for Age-to-Ultimate Development Factors 
0.869 1.034 1.252 1.517 
0.952 0.998 1.051 1.108 
0.965 0.984 1.005 1.027 

90% 
(t = 1.282) 

1.692 
1.145 
1.047 

1.804 
1.161 
1.047 
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EXHIBIT 4 

HYPOTHETICAL DEVELOPMENT FAC.I.ORS 

Accident Stage of Development (years) 

Year 211 312 

1 1.932 1.036 
2 1.975 1.038 
3 1.809 1.041 
4 1.954 I.043 
5 I .997 1.035 
6 1.932 

Estimators: 
Y 6.59x 3.79x 

lo- ’ 10-I 

V’ 1.21 x 1.05x 
IO-? 10m5 

90% Confidence Intervals for: 
6.30x 3.48~ 

10-l lo- z 
F to to 

6.88X 4.10x 
10-l 10-I 

5.45x 4.41 x 
lo-J 10mh 

cJ* to to 
5.26x 5.89~ 
lomy lO-s 

413 514 

1.009 
1.013 
1 .Ol 1 
1.009 

1.003 
1.006 
1.005 

615 716 

1.002 1.000 
I.001 

1.04x 
10 2 

3.66X 
10 ’ 

3.59x 
10mh 

2.31 x 
lo-” 

I .50x 
IO 1 

4.99x 
IO-’ 

8.20X 2.10x -1.65x 
10 1 10 ’ IOV 
to to to 

1.26x 7.22x 4.65x 
10 2 IO- lo- ’ 

1.3Xx 7.71x 1.30x 
IO ” lo-’ IO 7 
to to to 

3.06x 4.49x 1.25x 
IO 5 10 5 lOmJ 



EXHIBIT 5 

EXAMPLE CONFIDENCE INTERVALS FOR THE PARAMETERS 

OF THE AGE-TO-ULTIMATE DEVELOPMENT FACTORS 

Assumptions: 
of = 1.21 x 1om3 2 u* = 1.05 x lop5 
af = 3.59 x lomh 
a; = 4.99 x lo-’ 

a: = 2.31 x 10mh 

(TJ ‘=p,,=Oforj~6 

Age 

1 
2 
3 
4 
5 

Estimator 90% Confidence Interval for 
for $ for p,* 

0.714 0.690 to 0.737 
0.0554 0.05 I 1 to 0.0578 
0.0166 0.0143 to 0.0189 
0.00616 0.00450 to 0.00782 
0.00150 0.000678 to 0.00232 



Variable: 

Estimators: 

Vh 

‘II) 
P 

6.59 x 10 ’ 6.31 x IO J 

-3.84 x 10 2 

1.01 x 10 1 6.60 x 10 ” 

6.59 x 10 ’ 3.79 x lo-? 

1.01 x 10 1 -3.86 x lo-? 
-3.86 x lo-’ 8.08 x lomh 

3.20 x 10~” -8.42 x IO ' 

1.53 x lo-” 

-1.00 x lo-3 
-1.09 x 10-l 

2.61 x 10mh 

1.05 x 10-I 

3.20 x lomh 
-8.42 x lo-’ 

2.70 x 10 ’ 



EXHIBIT 7 

EXAMPLE 90% CONFIDENCE INTERVALS BASED 

ON MULTIVARIATE PARAMETER ESTIMATION 

Intervals For Age-to-Age Factors: 
D, D2 D.7 D4 DS 

Assuming Independence: 
1.825 1.033 1.007 1.002 1.000 

to to to to to 
2.046 1.044 1.014 1.007 1.003 

Using Multivariate Estimators: 
1 .X34 1.034 1.008 1.002 1.000 

to t0 to to to 
2.036 1.044 1.013 1.007 1.003 

Intervals for Age-to-Ultimate Factors: 
* 

DI DT 
* 

D3 DX 
* 

DS 

Assuming Independence: 
1.926 1.049 1.013 1.003 1.000 

t0 to to to to 
2.161 1.063 1.021 1.009 1.003 

Using Multivariate Estimators: 
1.904 1.050 1.013 1.003 1.000 

to to to to to 
2.147 1.062 1.021 1.009 1.003 


