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FOREWORD 
The Casualty Actuarial Society was organized in 1914 as the Casualty Actuarial and 

Statistical Society of America, with 97 charter members of the grade of Fellow: the Society 
adopted its present name on May 14. 1921. 

Actuarial scicncc originated in England in 1792, in the early days of life insurance. 
Due to the technical nature of the business, the first actuaries were mathematicians; even- 
tually their numerical growth resulted in the formation of the Institute of Actuaries in 
England in 1848. The Faculty of Actuaries was founded in Scotland in 1856. followed in 
the United States by the Actuarial Society of America in 1889 and the American Institute 
of Actuaries in 1909. In 1949 the two American organizations wcrc merged into the Society 
of Actuaries. 

In the beginning of the twentieth century in the United States, problems requiring 
actuarial treatment were emerging in sickness. disability. and casualty insurance ~~ partic- 
ularly in workers’ compensation-which was introduced in 191 1. The differences between 
the new problems and those of traditional life insurance led to the organization of the 
Society. Dr. I. M. Rubinow. who was responsible for the Society’s formation, became its 
first president. The object of the Society was, and is, the promotion of actuarial and statistical 
science as applied to insurartcc other than life insurance. Such promotion is accomplished 
by communication with those affected by insurance. presentation and discussion of papers, 
attendance at seminars and workshops. collection of a library, research. and other means. 

Since the problems of worhers’ compensation were the most urgent. many of the 
Society’s original mcmbcrs played a leading part in developing the scientific basis for that 
line of insurance. From the beginning, however. the Society has grown constantly, not only 
in membership. but also in range of interest and in scientific and related contributions to 
all lines of insurance other than life, including automobile. liability other than automobile. 
fire. homeowners and commercial multiple peril, and others. These contributions arc found 
principally in original papers prepared by members of the Society and published in the 
annual Proceedings. The prcsidcntial addresses. also published in the Proceedings, have 
called attention to the most pressing actuarial problems. some of them still unsolved. that 
have faced the insurance industry over the years. 

The membership of the Society includes actuaries employed by insurance companies. 
ratemaking organizations, national brokra. accounting firms. educational institutions, state 
insurance departments, and the federal government; it also includes independent consultants. 
The Society has two classes of members. Fellows and Associates. Both classes arc achicvcd 
by successful completion of examinations. which arc held in May and No\cmber in various 
cities of the United States and Canada. 

The publications of the Society and their rcspectivc prices arc listed in the Yearbook 
which is published annually. The Syllabus of Examinations outlines the course of study 
recommended for the c.xaminations. Both the Yearbook. at a $10 charge, and the Syflabus 
of Exuminations. without charge, may bc obtained upon request to the Casualty Actuarial 
Society, One Penn Plaza. 250 U’cst 34th Street. New York. New YorA IO1 19. 
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ON STEIN ESTIMATORS: 
“INADMISSIBILITY” OF ADMISSIBILITY AS A 

CRITERION FOR SELECTING ESTIMATORS 

JAMES E. BUCK 

Abstract 

Stein estimators are an alternative (non-Bayesian) explanation for 
credibility. Until this year, the syllabus for Part 4 of the Society’s 
examinations contained an article discussing Stein estimators, or James- 
Stein estimators, as part of the credibility readings for the exam (21. The 
article focuses on some examples where Stein estimators are applied to 
baseball players’ batting averages, among other things. In the examples, 
Stein estimators seem much like Bayesian credibility estimators and, in 
fact, credibility estimators derived from Stein’s theory have been used 
by the Insurance Services Office for products liability classification rate- 
making. 

Alike as Stein estimators and Bayesian credibility estimators are in 
practice, the theory behind Stein estimators is very much different and 
does not make much sense from the author’s point of view. This paper 
consists of a discussion of the theory that underlies Stein estimators, 
including an example which illustrates the flaw in logic behind this 
alternative explanation of credibility. 
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INTRODUCTION 

The literature of the Casualty Actuarial Society has been replete for years 
with papers on the theory of credibility (for instance. [ 3 1, [ 71, [ 81). Practice, at 
least for most direct lines of business, has lagged far behind. In 1980, the 
Insurance Services Office (ISO) Credibility Subcommittee [ 51 produced a com- 
prehensive report on credibility which recommended adoption of an empirical 
Bayes credibility procedure for products liability classification ratemaking. Nor- 
mally, one would rejoice at this attempt of life to imitate art. However, the 
method chosen for use was adapted from the method of Morris and Van Slyke 
191, which in turn is based on Stein estimation. Stein estimation is derived from 
the work of Charles Stein [IO] (also, James and Stein [6]), and herein lies the 
reason for the author’s less-than-jubilant reaction to the method of estimation 
chosen: the theory underlying Stein estimators doe5 not make sense. 

From a practical point of view, the adapted Morris-Van Slyke procedure 
worked better than the Buhlmann-Straub empirical Bayesian procedure in the 
testing done by the ISO. This is not all that surprising, given that the Morris- 
Van Slyke procedure is biased upwards and the testing included groups where 
the expected class loss ratios trended up or down over time. One of the as- 
sumptions underlying the Buhlmann-Straub credibility procedure is that the 
expected loss ratio of a class remains fixed over time. If the expected loss ratio 
changes, then the credibility to be applied to the most recent experience should 
be higher, since this recent experience is more related to the expected future 
experience of the class than the rate based on past class data. 

While the Morris-Van Slyke procedure seems to work well in the simulations 
performed by the ISO. its theoretical flaws make the application of the technique 
to other problems dangerous. For example, the degree of upward bias in the 
class credibilities is directly related to the number of classes in the group: in its 
report, the IS0 Subcommittee notes (p. l-19), “An interesting observation is 
that this process [the adapted Morris-Van Slyke method] effectively produces a 
minimum credibility of 3/k [where k is the number of classes] for each class in 
the group.” Interesting, indeed. The IS0 testing procedure involved groups with 
between 9 and 24 classes, and so the minimum credibility for each class was 
between 113 and 118. However, if the Morris-Van Slyke credibility procedure 
were applied without adjustment to private passenger auto territorial ratemaking 
for Rhode Island, the experience of each of the three territories would be given 
full credibility, regardless of the amount of experience! In this instance, it is 
clear that the Morris-Van Slyke procedure would not work well. What we have, 
then, is a procedure which works well in some instances. and yet produces poor 



results in other instances. Why? In the author’s view, it is because the Morris- 
Van Slyke procedure used by the IS0 is based, among other things, on Stein 
estimators, and Stein estimators are theoretically unsound. To understand the 
flaw in the theory, it is necessary to review the underlying statistical assumptions 
that form the basis of the development of Stein estimators. 

THE THEORETICAL BASIS FOR STEIN ESTIMATORS 

The focus of Bayesian estimation and Bayesian credibility is on modifying 
an estimate based on additional data. That is, the Bayes approach assumes that 
we already know something about the parameter to be estimated (the prior 
distribution). Bayes theorem and Bayesian credibility give us a way to combine 
that prior knowledge with additional information to produce a revised estimator 
of the parameter. 

Stein estimators are based on a different (sometimes called frequentist or 
classical) view of estimation. According to this view, it is meaningless to discuss 
prior distributions of parameters; the parameters of a distribution are fixed 
values, even though the values may be unknown. Frequentists study the distri- 
bution of estimators about parameters in order to make inferences about the 
quality of different estimators. One of the properties of estimators used for 
comparison is expected squared error. To use a more specific example, let’s 
take the normal distribution of mean p and variance I, or N( p,, I). If we select 
a sample point x from the distribution and use it as an estimator of p., we know 
from the definition of variance that the estimator has an expected squared error 
of 1. Are there better estimators of CL? That is a very tough question to answer 
directly, if you believe that talking about the distribution of p. is meaningless. 
Since f~ is fixed but unknown, there may well be better estimators, depending 
on the particular value of p. For instance, if p happens to be between 1 and 
3, the fixed estimator j(x)=2 has smaller expected squared error than I, the 
expected squared error of the estimator x. 

Thus, we need an additional requirement besides low expected squared error 
if we are to choose among estimators in the frequentist framework. One such 
requirement is that an estimator be unbiased. An estimator is said to be unbiased 
if its expected value is always equal to the parameter to be estimated. In terms 
of the example, an estimator is unbiased if the expected value of the estimator 
is equal to JL for all values of p. The sample point, x, is an unbiased estimator 
of p and has been shown to be the unbiased estimator of minimum expected 
squared error (see, for example, [4], pp.362-365). 
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The requirement that an estimator be unbiased is one way to help define 
what is meant by best estimate, but in some cases it is felt to be too stringent. 
After all, an estimator that is biased but with low expected squared error may 
well be more desirable than an unbiased estimator of high expected squared 
error. This led to the alternate standard of admissibility for estimators. An 
estimator is said to be admissible with respect to a loss function (e.g. expected 
squared error) for a class of distributions if there is no other estimator which 
has expected squared error less than or equal to the expected squared error of 
the estimator for all distributions in the class, with the strict inequality holding 
for at least one distribution. Admissibility certainly sounds like an admirable 
quality for an estimator to have, but using it produces some disturbing results. 
In fact, the theoretical basis for Stein estimates is a proof by Stein [IO] that the 
sample mean is not an admissible estimator of the mean of the n-variate normal 
distribution, n 2 3. (This result is sometimes referred to as Stein’s paradox.) 

In order to discuss Stein’s results, let’s review briefly the multivariate normal 
distribution and its notation. Conceptually an n-variate normal distribution can 
be thought of as a collection of II separate variables, each normally distributed. 
Using vector notation, any particular multivariate normal distribution can be 
specified as N( &,C), where @ is a mean vector @(FI,. .p.,,), with p,; repre- 
senting the mean of the i-th variable, and 2: is a symmetrical n-by-n covariance 
matrix, with each element of the matrix. crt. representing the covariance between 
the i-th and j-th variables. If the n-variate distribution is independent. then the 
covariances between variables are equal to zero, and 2: is a diagonal matrix. 

Stein considers the task of estimating @( ~1,. .,k,,) given a single sample 
point ?(.xi,. . ,x,,) selected from the multivariate independent normal distribution 
of variance I, i.e., .7 - fV(p, I), where I is the identity matrix. The usual 
estimator, X, has expected squared error of II, the number of parameters to be 
estimated. James and Stein (61 developed an estimator with smaller squared 
error. The development of the estimator is based on the following property of 
the multivariate normal distribution: for any point I,, 

P(lX - pi > I@ - 21) > .50 

In words, there is always a better than even chance that a point chosen at 
random from the multivariate normal distribution is farther away from j than 
&, the mean of the distribution, is from 6, no matter what i; is chosen to be. 
Stein estimators which shrink +? to an arbitrary j by a factor of 
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have smaller expected squared error than X for all @. That is, 

[ 
n-2 

for;= 1-n 1 n-2 _ 
~ 

lx - PI 
X + ,x _ -.I2 p, n 2 3 

When Stein estimators are applied to problems, jj is usually chosen to be 
the average result for the groupin the notation above, the average of the x,- 
and the resulting formula looks a lot like a Bayesian credibility estimate. 

It’s important to note, however, that there is no requirement that F be chosen 
as the average of the group in the theoretical work by Stein. And this flexibility 
with regard to j? produces unusual results, particularly if we change the frame 
of reference. For instance, consider the three-dimensional case, where we select 
.I-(x~,s~,.~~) from a multivariate normal distribution of mean $(pi,k2,~3) and 
covariance matrix /. the identity matrix. To make the presentation simpler, let 
.X = (O,O,O), the origin. According to Stein, .r can be combined with any arbitrary 
j3 (shrunk toward 3) to produce a better estimate of 6. For example, if we select 
F = (I ,O,O), the Stein estimate combining fi and .? is 02 + Ii;, or j itself. In 
fact, for any point chosen from the sphere of radius I centered at origin, the 
estimate is the point itself. Thus, every point on the sphere of radius I centered 
at the origin is a “better” estimate of k than .?, the origin. 

If that were not unusual enough, we can go further and show that any point 
(1 is a Stein estimate of CL, if we select an appropriate F. The fi to choose, 
for any given 6, is determined from the formula &I$. So, to show that 
(I = (lOO,O,O) is a Stein estimate, we need only choose 6 = (.Ol ,O,O). There- 
fore, based on the theory underlying Stein estimators, even a point as far away 
as (lOO,O,O) is a better estimate of @. than 4 = (O,O,O), the sample point! 

THE CIRCLE DISTRIBUTION 

To understand what’s wrong with Stein estimators, it helps to go through 
the development of a Stein-like estimator for a simpler distribution. The chosen 
distribution is the one-dimensional distribution defined on a plane by the function 

I 
f(X,,X>) = - , xf + x: = 1 

2n 
= 0, elsewhere. 

This distribution represents the chance of randomly picking a point on the circle 
of radius I centered at the origin. The mean of the distribution is also the origin. 



The circle distribution was chosen because from any point p on the plane, there 
is a better than 50% chance that the distance between a randomly selected point 
on the circle and I, will be greater than the distance between the origin and jj. 
Geometrically, we can see this by noting that, for any point i;, the arc around 
I-, through the origin contains less than half the circle. Because the circle 
distribution shares this property with the multivariate normal distribution, we 
should be able to shrink the values of the circle distribution to an arbitrary j5 
and get an estimate that is, on average. closer to the mean. Indeed. if we notice 
that. for any i; = (~1, pz), the average squared distance between the circle 
distribution and I, is 

(p, - sin 8)’ + (p: - cos 0)’ de 

we might consider estimators of the form 

IX - 1)12 + (’ ~ I - 
I.\ - i;l’ + (’ -r 

And, in fact, Appendix I shows that if C’ is greater than (I.7 ~ jj + I)‘, the 
expected squared error of this estimator. fi. is always less than I. the expected 
squared error of the usual estimator, .7. 

If one were to take the classical viewpoint. and the viewpoint that underlies 
the standard of admissibility of estimators. we should use this form of estimator 
in determining @, given a particular .i--. The fallacy in this approach can be seen 
by taking a Bayesian point of view. Let’s again use the circle distribution of 
radius I and choose at random a point .\ from a circle of radius I with an 
unknown center. Without loss of generality, we can set 4 = (0.0). Now, we 
want to estimate the center of the circle, given that Z- is a point on the circle. 
If we consider all possible circles of radius I equally likely. then a good 
candidate for the distribution ofJ@ll = (0.0)) would be 

= 0, elsewhere. 



In fact, if we represent equally likely (or no prior knowledge) as the prior 
distribution 

= 0, elsewhere, 

among others, then the candidate distribution shown asA&) above can be derived 
through the use of Bayes Theorem for continuous functions (see Appendix II). 

Now, from a Bayesian point of view, we have determined the distribution 
off(&$. The next step is to determine the best point etimate of the @. distribution 
(uniform distribution on the unit circle centered at the origin). The squared error 
function between the k distribution and any estimate 2 = (ei,ez) is given by 

1 
I 

2-n 
- 
27F 0 

(sin 0 - pi)* + (cos 9 - er)2 de 

= 1 + ef + es 

which obviously is at a minimum at (O,O), or X. 

Stein estimation takes another approach. Stein’s argument in this case would 
be, let us select an arbitrary point p, say j = (2,0). It was previously shown 
that, if we shrink the g’s to j by a factor of 

1 - ,k _ jr2 + c , c 2 (I@ - PI + I)*, 

the transposed 6’s are closer to X. Based on this, it is therefore appropriate to 
shift X towards i; by a factor of 

(or, equivalently, choose an estimate of (2/13, 0)) to give a better estimate of 
k 

A geometric analogy may be of some help in understanding this point. 
Figure I shows the problem in graphical terms, from a Bayesian standpoint. 
Imagine that c represents the rim of a dartboard attached to the back of a door, 
and p represents the doorknob. The problem is to place a dart on the wall that 
is closest, on average, to the points on the rim of the dartboard (f(@lX)). From 



the calculations above, and from common scnsc, we can see that the dart should 
be placed at the center of the dartboard (I-). 

Figures 2 and 3 represent the Stein estimator approach. Figure 2 shows that 
if one syuishes the rim of the dartboard a bit towards the doorknob (shifts the 
G’s), there is a smaller average distance between the rim of the dartboard and 
the center of the dartboard (.r). This is then used to justify aiming the dart at a 
point closer to the doorknob, even though the problem is to get as close 
as possible, on average, to the rim of the original (unshifted) dartboard 
(Figure 3). 

APPLICABILITY TO MULTIVARIATE NORMAL DISTRIHUTION 

While it is easier to see the fallacy of‘ admissibility and Stein estimators 
with respect to the circle distribution. Stein estimators are equally invalid for 
the multivariate normal distribution. Let’s again take the problem of estimating 
ji given 7, I- - N(IJ-,I). 

Using a variety of “Hat” prior distributions, including N(O,z) and the rec- 
tangular distribution used above, we can derive tIi. -- N(.T,l). Here. also. the 
standard of admissibility asks the wrong question from the Bayesian viewpoint. 
The proper question to ask is not what function .fl@) minimijcs E/f(k) - S)‘, 
but rather, what value I, minimizes Elp. ~ /,I’. B ecause the multivariate normal 
distribution is independent and can bc expressed as the product of one-dimen- 
sional normal distributions. the minimum of p at .i follows from the fact that 
the squared distance function is minimized at the mean in the one-dimensional 
ca.se. 

From a theoretical point of vievv, it would seem that the major accomplish- 
ment of Stein estimators is to show that admissibility as applied by Stein isn’t 
a very good criterion for choosing estimators and that the Bayesian theory of 
estimation, when properly applied, gives consistent and reasonable results. In 
fact. Stein’s paradox is not a paradox at all when viewed from a Bayesian 
standpoint. From a practical point of view, biased estimators are still appropriate 
to use in many cases, but not those derived from this particular theory of 
estimation. 

The author would like to thank Messrs. Chris Svendsgaard and Steven Yaset 
of the IS0 for their review and comments on earlier drafts of this paper. The 
Committee on Review of Papers was also very helpful in this regard. 
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APPENDIX I 

DEMONSTRATION THAT THE MEAN IS INADMISSIBLE AS AN ESTIMATOR OF THE 

CIRCLE DISTRIBUTION 

The following shows that there is a function that combines a data point, X, 
with any p to produce an estimate of @ = (0,O) that has expected squared error 
less than 1, the squared error of X. This treatment is consistent with the frame 
of reference discussed in the text. However, this is equivalent to showing that 
for a circle distribution centered at b, there is a function which combines X, a 
randomly selected point on the circle, and the origin to produce an estimate of 
fi, the mean of the circle distribution, with expected squared error of less than 
I. We consider estimators of the form 

For .? = (sin B,cos 6) and fi = (PI,&, the expected squared error is given by 
1 

- I 

2rr 

27T 0 [ 

2 - 
sin 8 + 

pi sin 8 

(PI - sin t3)’ + (~2 - cos 0)’ + c I 

pz - cos 0 1 
2 

+ cos 0 + 
(p, - sin t3)’ + (p2 - cos 012 + c 

d0 

I =- 
I 

271 

sin2 8 + 
2(p, - sin 8) sin 8 

27r 0 (p, - sin 0)2 + (p2 - cos 0)’ + c 

+ [(PI - 
(p, - sin 6)’ 

sin 8)2 + (p2 - COS 0)2 + c]’ 
+ CO? e 

+ 
2(p:! - cos 8) cos 8 

(p, - sin 0)’ + (p2 - c0S 8)2 + c 

+ [(PI - 
(pz - cos 8)' 

sin 8)2 + (~2 - cos 0)' + c]' 
d0 



In - 
1 + 2(p, 

- sin sin 8 
0) 

+ cos 
2(p: 0) 1 cos 8 

+ 
1 

(p, - sin 0)’ + (p, - cos 8Y + C’ 
d0 

2p,sin 8 + 2p:cos 8 ~ I 
pi - 2plsin 0 + p: - 2p2cos 0 + I de + ( 

I In 
=- 

I 27F 0 1+ 
Zp,sin f) + 2p,,cos H - 1 

Zp,sin 8 + 2pzcos 0 ~ 1 ~ (pf + pi + C) 
d0 

_.. u h 
Using the relation ~ = I + ~ 

u-b 0 ~ h 1 

,,f + p; + (’ 
2p,sin 0 + 2p~cos 0 ~ I - (pf + 112’ + C) 1 d0 

= -(pf + pi + C) 
27T I 

z71 d0 
(, 2prsin f3 + 2pzcos 0 - (p;’ + ps + c + I) 

= -(pf + p; + C) dH 
2n 

C 
2plsin (7r + 0) + 2p:cos (7r + 0) 

> 1 
- (ITi + p‘ + (’ + I ) 1 

= pf + pf + C‘ 
I 

IT de 
2lT -T Zplsin 0 + 2p~cos 8 + pf + pi + C’ + I 

Using integral tables, we find that the above is equivalent to 

tans ’ 
2p1 + (pf + pi + c + 1 - 2~:) tan (H/2) T 

ep: + p: + (’ - I)? - (‘p,)? - (?p$ -- 7-r 
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p: + p: + c 2%! = 
2Tr . v/(p: - p: + c + ly - (2pd2 - (2P2)’ 

(pi + pf + c? 
- (p: - p$ + c)’ + 2(pf + p: + c) + 1 - 4p: - 4pf 

= r 
tp: + p: + d2 

(pf + p; + cy + 2c + I - 2p: - 2p: 

So, if c > pf + p: - l/2, the squared error is less than 1. In particular, since 
(!j? - .i) + 1)’ > p: + pi - l/2, if we choose c 2 (b - Xl + I)‘, the estimator 
has expected squared error of less than I. 



APPENDIX II 

DERIVATION OF THE POSTERIOR DISTRIBUTION USING THE CIR(‘L.E DISTRIBUTION 

AND A “FLAT” PRIOR DISTRIBLTION 

The purpose of this appendix is to determine,/(&l.i-) for 

fc.q/l, = & , /.r - @I’ = I 

= 0. elsewhere and 

h(F) = lim g,,(k~.p-2) = $ , -n 5 /.L, 5 n. -n 5 pz 5 II. 
,P+= 

= 0, elsewhere. 

For S = (0,O) and any particular n 2 I, the joint distribution is given by 

f.Tl’i)g,,(/Li) = & , 1s - 61’ = I. -tI 5 pi (- II. -Jr 5 ‘J,? 5 n, 

= 0. elsewhere. 

= 0, elsewhere, and 

1 
4ri 

From Bayes Theorem for continuous functions, we huvc. for all II 2 I, 

= 0, elsewhere. 



and thus the distribution off(@).?) is given by 

15 

= 0, elsewhere. 



DISCUSSION BY CHRISTIAN SVENDSGAARD AND PAUL BRAITHWAITE 

INTRODUCTION 

Having worked on Empirical Bayes credibility for a combined total of over 
ten years, we share Mr. Buck’s frustration at the slow acceptance in practice of 
Empirical Bayes techniques. Part of the reason, we believe, is the inherent 
conservatism of the insurance business. Considering the sums at stake, practicing 
actuaries are reluctant to adopt new methods until they have been thoroughly 
researched and tested. It is gladdening, then, to see further discussion of cred- 
ibility in the Proceedings. Only after undergoing thorough scrutiny can new 
methods hope to be adopted in practice. 

Mr. Buck has written a paper that considers one aspect of credibility-stein 
estimation-from a theoretical point of view. Lay actuaries hoping to see a 
comparison based on real data of an Empirical Bayes credibility procedure and 
(say) the square root rule must look elsewhere. But Mr. Buck’s paper could 
still have relevance to lay actuaries. If a method can be shown to be theoretically 
incorrect, there is no reason to test it on real data. 

While we applaud further exchange of ideas on credibility, we find parts of 
Mr. Buck’s fundamental approach, and several of his conclusions, problematic. 
Our thoughts regarding his approach can be summarized as follows: 

1. There are three schools of statistical thought: classical, Bayesian, and 
Empirical Bayesian. A case may be made for one school or another on 
philosophical grounds, or possibly on practical grounds. But from a 
mathematical viewpoint, arguing against one school based on the as- 
sumptions underlying another begs the question. This, Mr. Buck has 
done, treating Stein (classical) estimation from a Bayesian viewpoint. 

2. The circle distribution example is interesting but not really relevant to 
actuarial problems. 

More specific criticisms are: 

1. In the normal case, the mean is the Bayes estimator only for a flat prior. 
In that case, the Stein estimator approaches the mean with probability 
one. (The concept of a “flat prior” is an attempt to extend the concept 
of a uniform prior distribution to an infinitely large parameter space. 
This is done by examining a sequence of uniform prior distributions, 
each covering a larger area of the parameter space. Loosely speaking, a 
flat prior gives the Bayes estimate if there is no prior belief.) 



2. The circle distribution example, besides suffering from irrelevance, has 
the same problems as the normal case. 

3. The adapted Morris-Van Slyke procedure, while akin to the Stein esti- 
mator, is based on Empirical Bayes rather than classical ideas. While 
Mr. Buck is correct in pointing out the bias in the procedure, the bias is 
due to the logical constraint that estimates of variances should not be 
negative. Because the bias is non-linear, it cannot be corrected by a 
linear transformation of the estimate. By making distributional assump- 
tions, it might be possible to construct an unbiased estimator. However, 
the procedure would be valid only in situations where the posited distri- 
bution held and would lose its generality. In practice, Empirical Bayes 
credibility procedures have been applied to loss ratios. The distributional 
properties of loss ratios are complicated and it seems unlikely that an 
unbiased Empirical Bayes estimator could be constructed based on a 
realistic loss ratio distribution. 

4. Tests on simulated data show that the 3/k adjustment factor that Mr. 
Buck criticizes should be used whether or not individual classes are 
trending at different rates from one another. 

We explain and elaborate on these comments below. 

COMMENTS ON THE APPROACH 

Currently, there exist at least three schools of statistics: classical, Bayesian, 
and Empirical Bayesian. Each school makes different assumptions. Bayesians 
assume a prior distribution; classicists do not. Empirical Bayesians assume the 
parameters of the prior distribution are unknown; Bayesians do not. 

It is easy to “prove” that one school is wrong by examining it from the 
viewpoint of another school. However, this makes no more sense than “proving” 
non-Euclidean geometry is wrong by making Euclidean assumptions. (“Assum- 
ing the parallel postulate holds, then any geometry where it does not hold has 
a contradiction. Therefore the parallel postulate holds.“) 

One set of assumptions may be more useful than another, because it fits 
reality better. Prior to genera1 relativity, non-Euclidean geometry was an inter- 
esting curiosity. Afterwards, non-Euclidean geometry became rhe geometry. It 
is conceivable that in practice (say) Bayesian estimators will always perform 
best. The data could tell us which school of statistics is right. But it cannot be 
decided a priori. 



The approach we advocate for selecting estimators in practice is: 

(I) Selection of reasonable models; 
(2) Testing of the model assumptions using the data; 
(3) Derivation of estimators based on the models; and 
(4) Testing of the estimators using the data. 

The different schools of statistical thought might select different models, and 
testing of the model assumptions might not eliminate any of the models. This 
seems especially true of (pure) Bayesian models, which incorporate prior belief. 
But the various estimators derived will yield different results when tested on 
the data. Given enough data, one estimator will prove most attractive. 

One of the major themes of Mr. Buck’s paper is an argument that, from a 
certain Bayesian viewpoint, Stein estimators (i.e., classical estimators) do not 
make sense. He presents no empirical data. In our view, this argument is no 
more convincing than the argument against non-Euclidean geometry from a 
Euclidean point of view. 

While you cannot “prove” one school is wrong from the point of view of 
another, it may be that the assumptions underlying one school are self-contra- 
dictory. Mr. Buck hints that the disturbing property of the Stein estimator, that 
it is not translation-invariant (i.e., that for a given data point, the Stein estimator 
could be anywhere, depending on the location of the origin you are shrinking 
toward) is such a contradiction. 

While the non translation-invariance of the Stein estimator is disturbing, 
Mr. Buck has not shown that it is paradoxical. As a footnote, the Morris-Van 
Slyke and Biihlmann-Straub Empirical Bayes credibility procedures are trans- 
lation-invariant. This is accomplished by shrinking towards the group mean, 
rather than the origin. 

Mr. Buck attempts to illustrate the failings of Stein estimation by means of 
a similar estimator derived for the circle distribution. Reasoning by analogy is, 
of course, inappropriate in a mathematical context. The success or failure of 
the illustration must therefore be judged on its effectiveness as a pedagogical 
device. In our case, at least, we were not convinced by the illustration. 
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SPECIFIC COMMENTS 

Inadmissible Estimator is Bayes Only For Flat Prior 

We argue above that it is incorrect to criticize a classical estimator by 
making Bayesian assumptions. You will not find us making the converse mistake 
here. However, we do wish to show that in the normal case the mean is not a 
Bayes estimator except in the case of a flat prior. 

We believe this is an important fact because, strictly speaking, a flat prior 
is not a prior distribution at all. The concept of a flat prior is based on a sequence 
of ever-flatter distributions. For any distribution in the sequence, the mean is 
not the Bayes estimate; this follows from Stein’s result, as we will show below. 
Thus, while it is true that in the limit the mean is the Bayes estimate, it is not 
true for any intermediate point. 

Moreover, in the limit, the Stein estimator approaches the mean with prob- 
ability one. This means that under a flat prior the mean is not better than the 
Stein estimator: it is essentially equal to it. 

Proof 

We are attempting to estimate an (at least) 3-dimensional vector of means, 
8, given a vector of observations, X, distributed normally around 0 with covar- 
iance matrix, 1, the identity: 

X - NW,1). 

For an estimator 6 of 8, the squared error loss is 

Loss = L&0) = 10 - 012 

The risk is the expectation given 8: 

Risk = &(6) = E(L(d,fl)l@ 

The Bayes risk is 

B(O) = Ee(Re(6)) = j-o R46) dF(8) 

where Ee denotes “expectation with respect to 9,” the integral is over all possible 
values of 8 (i.e., the sample space is fi ), and s . ..dF@) denotes Riemann- 
Stieltjes integral where F(8) is the CDF of the prior of 8. 



When Stein proved that the mean is not admissible, he proved it by showing 
that 

ML,“) < RdQMean) 

for all B’s, where &,e,n denotes the Stein estimator, and hMea,, denotes the mean 
(i.e., X). (See “Estimation with Quadratic Loss.” p. 363 121.) 

The size of the difference 

Ma Mean) - Re&d 

depends on the value of 8. It is greatest at the origin (which makes sense, since 
the Stein estimator shrinks the estimate towards the origin). It decreases as tl 
moves away from the origin, but it is always positive. 

How does the Bayes risk of &.;,n compare to the Bayes risk of OS,,,,‘? 

B(OM~~~) - B(Ld = 

I R~(&,can) dF(O) - 
I 

R~(&icm) dF(~l = 
(1 (1 

The expression inside the integral 

Rd~~ean ) - R&stem) 

is greatest at the origin and decreases as 8 moves away from the origin. But it 
is always positive. This is what Stein proved. 

The value of the integral will depend on F(8), the prior distribution. The 
more weight given to B’s away from the origin, the smaller the integral will 
be. But it will always be positive. 

Since the Bayes estimator minimizes Bayes risk. the mean cannot be the 
Bayes estimator for any prior. Only by taking the limit of distributions throwing 
more and more weight away from the origin can the mean be made to approach 
the Bayes estimate. 

Note, however, that in the limit the difference in Bayes risk is zero. The 
mean and the Stein estimator are equal in the limit. In the expression 
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‘; 1 ;Ati;greater than 100 (l,OoO,OOO, 1026, . ..) with probability .99 (.999, 
, . .) in the limit: the Stein estimator reduces to the mean 2. 

A careful re-reading of the above proof should convince the reader that it 
can be made entirely general. An inadmissible estimator cannot be a Bayes 
estimate. In other words, Bayes estimators are admissible. (See (31.) 

Generality of the Circle Distribution Example 

To repeat our main concern, this is not relevant. If normal-distribution Stein 
estimation has faults, they cannot be discerned by examining circle distribution 
Stein-like estimators. 

We showed earlier that Bayes estimators are admissible. Mr. Buck claims 
to “prove” that his Stein-like estimator dominates the mean (in Appendix I). 
He then derives the mean as a Bayes estimator. This is a contradiction due to 
the use of a flat prior. Note that in Appendix I, he claims to show that the 
Stein-like estimator has risk less than one. Then he shows that the risk of the 
mean is one. In the limit, the Stein-like estimator is the mean. 

There is also a mistake in the derivation of the Stein-like estimator in 
Appendix I. The quantity c is treated as a constant in all the integrals-but at 
the end “. . . we chose c 2 (b - Xl + I)’ . . ,” i.e., c depends on X. 

ISO’s Empirical Bayes Credibility Procedure 

Mr. Buck says that the Morris-Van Slyke Empirical Bayes credibility pro- 
cedure is “based on ‘Stein estimation’.” This is not entirely accurate. While the 
Morris-Van Slyke procedure is similar to, and to an extent suggested by, the 
Stein procedure, it is developed in an Empirical Bayes framework. In fact, 
Efron and Morris, in [4], show that the Stein estimator itself can be developed 
as an Empirical Bayes estimator. 

Mr. Buck states that the adapted Morris-Van SIyke procedure with the 3/k 
factor is biased upwards and that, because the tests included groups where the 
expected class loss ratios trended up or down over time, the results were slanted 
in favor of the 3/k factor. While the testing included the “residual trend” case, 
the original testing was done on the no residual trend case. For instance, in (51, 
page 79 ff., among other things, the adapted Morris-Van Slyke procedure is 
tested on simulated data against the same procedure without the 3/k factor where 
no residual trend is in effect. The with-3/k procedure does better than the 
without-3/k procedure in 86 out of 110 cases. 



For instance, Table 1 reproduces the results given in [S] of simulated 
consecutive reviews for six different groups of simulation parameters. The error 
(“premium weighted test statistic,” which is defined as the premium-weighted 
sum over all classes of the squared difference between the class loss ratio after 
the rate change and the expected loss ratio, see [6] p. II-IS) is shown for the 
first through fifth reviews after the implementation of the new credibility pro- 
cedure. Each entry is the average of 21 independent simulations. 

As a footnote, group 4 was constructed with a very low original between- 
variance. This is why the procedure without the 3/k correction did better-lower 
credibilities were called for. 

Mr. Buck says that Empirical Bayes credibility procedures using the 3/k 
correction factor are biased. The adapted Morris-Van Slyke procedure is biased, 
but not due to the 3/k factor. The bias is caused by logical constraints imposed 
on the variance estimators and there are good Empirical Bayesian reasons for 
these constraints. 

The credibility formula depends on using an estimate of between-variance 
(parameter variance) in the denominator. Even though the between-variance 
estimator is unbiased, the credibility is not unbiased, because the credibility is 
not a linear function of the between-variance. To correct this, the indicated 
credibility is adjusted as follows: 

Z ~dpsted _ k - 3 Zlndicated + 3 -- 
k k 

where k is the number of classes. The derivation of this bias correction is given 
in [6]. 

At this point, we have an unbiased estimate of the credibility. Technically, 
the procedure is only unbiased for a highly restrictive set of assumptions. But, 
even without these assumptions, the bias correction is in the right direction. 

Unfortunately, this unbiasedness depends on allowing the estimate of the 
between-variance to be negative. While the explanation of this [6] is compli- 
cated, the reader can see this intuitively by looking at the above equation and 
trying to imagine.what value of Zrndicated is necessary for a class whose “true” 
credibility is less than 3/k. 

A priori, negative between-variances are impossible. Restricting the estimate 
of the between-variance to be non-negative leads to the minimum credibility of 
3/k that Mr. Buck mentions. Unfortunately, restricting the estimate of the 
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COMPARISON OF MORRIS-VAN SLYKE PROCEDURE WITH AND WITHOUT THE 

3/k FACTOR 

(ERRORS x lo-‘) 

2 

3 

4 

5 

6 

Group Review 

1 I 
2 
3 
4 
5 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

Error With 3/k Error Without 3/k 

2.30 2.43 
2.11 2.39 
1.84 2.25 
1.66 1.97 
1.47 1.69 

1.49 1.58 
I .43 1.53 
1.38 I .52 
1.25 1.49 
1.14 1.23 

2.61 2.67 
2.40 2.67 
2.18 2.62 
1.96 2.53 
1.66 2.11 

0.72 0.66 
0.83 0.65 
1.03 0.74 
1.16 0.73 
1.19 0.72 

2.59 2.55 
2.26 2.51 
2.09 2.37 
1.89 2.23 
1.77 2.21 

3.10 3.40 
3.04 3.43 
3.03 3.32 
3.10 3.21 
2.62 2.99 

% Reduction in 
Error With 3/k 

5.3 
11.7 
18.2 
15.7 
13.0 

5.7 
6.5 
9.2 

16.1 
7.3 

2.2 
10.1 
16.8 
22.5 
21.3 

-9.1 
-27.7 
-39.2 
-58.9 
-65.3 

-1.6 
10.0 
11.8 
15.2 
19.9 

8.8 
11.4 
8.7 
3.4 

12.4 



between-variance also biases the procedure. Because the bias is a non-linear 
function of the between-variance, it cannot be corrected for all values of the 
between-variance. The bias is less in cases where there are many classes (k is 
large) and the underlying between-variance is high (so the probability of a 
negative between-variance estimate is low). These two conditions tend to hold 
in ISO’s Products review. 

As a practical matter, we do not recommend applying Empirical Bayes 
procedures if k is less than six. At least for the current generation of Empirical 
Bayes procedures, there simply aren’t enough degrees of freedom to get a good 
estimate of the between-variance when there are five or fewer classes. 

We do not regard current Empirical Bayes credibility procedures as the final 
word. Empirical Bayes procedures are, in general. the best credibility procedures 
we’ve seen thoroughly tested. However, other families of techniques offer hope 
for greater accuracy, particularly when data are classified by more than one 
rating variable (e.g., class and territory). As estimates of loss costs improve, 
insurers, insured, and society as a whole receive benefits. By focusing interest 
on improving credibility procedures, Jim Buck has performed a valuable service. 
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AN ESTIMATE OF STATISTICAL VARIATION 
IN DEVELOPMENT FACTOR METHODS 

ROGER M. HAYNE 

Abstract 

This paper explores some properties of the lognormal distribution. It 
is possible that these properties can provide information not only re- 
garding the variability of age-to-age development factors but also re- 
garding that of age-to-ultimate factors, if the actuary is willing to assume 
that these factors are lognormally distributed. Considered are problems 
of parameter estimation and uncertainty under the assumption of inde- 
pendence of the age-to-age factors. Some results are generalized by 
weakening the independence hypothesis, and a method of parameter 
estimation with missing observations is presented. This paper is intended 
as a starting point, indicating useful results if factors are assumed to be 
lognormally distributed. Still an open question is the specific situations 
where such is the case. 

1. INTRODUCTION 

Development factor techniques have long been in the casualty actuary’s 
repertoire of projection methods and are used extensively in both ratemaking 
and in the estimation of loss reserves. There are, however, numerous sources 
of variability in such results. For this reason an actuary often applies several 
techniques to obtain several estimates of ultimate losses. The actuary then selects 
a “best estimate” which reflects his or her best judgment of the amount of those 
losses. 

The complex interactions in the data and the influence of non-random events 
(such as changes in claims practices) add to the variability inherent in the results 
of any projection technique. This makes it difficult to assess whether random 
fluctuations alone can be responsible for a range of estimates provided by various 
techniques or whether the various methods detect different patterns actually 
present in the data, or whether some combination of the two exists. 

This paper will not present a loss projection technique but rather will explore 
properties of the lognormal distribution which will allow for some estimation 



of the statistical variability inherent in development factor projections if certain 
specific assumptions are satisfied. This can be useful in judging the differences 
among several projection techniques. For example, if wide fluctuations can be 
expected in projections (evidenced by wide confidence intervals), then variations 
in projections using different methods can be expected. If, on the other hand, 
there is little evidence of statistical variability and if the results of two methods 
are “far” apart, there is reason for further investigation to determine the cause 
of such differences. 

Since the objective here is to study variability, the results depend on the 
underlying probability distributions and not on the particular age-to-age factors 
selected in practice. Thus, the resulting estimates of variability can be used as 
a measure of a “range of reasonableness” for various development factor selec- 
tions and projections of other methods. 

There are several useful properties of the lognormal probability distribution 
which motivated its choice as the statistical model here. First, the lognormal is 
defined for positive values of the random variable (development factors, except 
for extreme situations, are positive). Next, the distribution is skewed to the 
right but retains positive probabilities for large factors. This also has intuitive 
appeal for development factors which can be very large and experience anom- 
olous swings. A third, and most useful. property of the lognormal distribution 
which suggested its consideration is its reproductive property. As will be stated 
in more precise form and greater generality below. the product of two lognormal 
random variables is. under certain assumptions. itself lognormal. In addition, 
the parameters of the product distribution can be determined easily from those 
of the two distributions. In terms of development factors this allows inferences 
regarding the age-to-ultimate factors to be made based on assumptions on the 
age-to-age factors. 

The purpose of this paper is to explore the consequences of the assumption 
that the development factors are lognormally distributed. As stated above, the 
lognormal was chosen due to its useful properties and not on the basis of 
empirical data. Just as the normal distribution has been used to derive approx- 
imations in other areas of statistical work, it is possible that the lognormal 
model here may provide useful approximations in practice. 

2. NOTATION AND BASIC TONCEPTS 

This paper will deal with development factor techniques (see, for example, 
[ 11). For this purpose, let L,, , denote data for exposure period i valuedj valuation 
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periods from the start of the exposure period i. Exhibit 1 gives a few of the 
possible choices for each of the parameters. For simplicity, Li,i will generally 
be referred to here as incurred losses for accident year i valued j years from the 
beginning of year i. This is by no means an attempt to limit the results shown 
here. 

Let D, denote the factor to develop losses valued at j years into losses valued 
at j + 1 years (commonly called the age-to-age development factor). Thus, if 
the loss data strictly followed this model, the following relation would hold: 

&,,+I = D,L,, (2.1) 

Let 0: denote the factor to develop losses from age j years to their ultimate 
value (commonly called the age-to-ultimate development factor). From the 
above definition of D, the following formula holds: 

0;” = i D, (2.2) 
k=j 

Extensive use will be made here of the lognormal probability distribution 
which depends on two parameters, denoted here by CL and u*. As used in this 
paper the probability density function is defined as: 

fix) = exp{-[(In(x) - ~)*]/~IJ*}/x~VG (2.3) 

Here In(x) denotes the natural logarithm and exp(x) its inverse. This distribution 
has been used rather extensively in actuarial work especially in the modeling 
of size-of-loss distributions (see, for example, [2], [3] and [4]) and has many 
useful properties. 

In particular, if the random variable X is lognormally distributed with pa- 
rameters p and cr*, then the random variable Y = In(X) is normally distributed 
with mean k and variance a*. This fact, and reference to tables of normal 
probabilities, allows for easy calculation of confidence intervals for this distri- 
bution. 

Probably of greatest use here is the following theorem (see p. 11 of [5]): 

THEOREM 2.1 

If {Xj} is a sequence of independent variables, where Xj is lognormally 
distributed with parameters pj and uf, (bi) a sequence of constants and c = 
exp(a) a positive constant, then provided Cb,/.I,j and Xufbf both converge, the 
product 



is lognormally distributed with parameters u 

(2.4) 

t Eb,F, and Cbfuf 

This theorem thus gives rise to the primary result used in this paper. In 
particular: 

COROLLARY 
If: (1) each age-to-age development factor D, is lognormally distributed with 

parameters p, and a; Cj = I, 2. 3. . ..). 
(2) all age-to-age development factors are independent. and 

74 r 
(3) x l.~, and c a,? both converge; 

]==I ,‘I 

then each age-to-ultimate development factor D,* is lognormally distributed with 
parameters 

z x 
c pk and c at (2.5) 
k=/ k=, 

In most applications the third assumption above is fulfilled. Usually it is assumed 
that loss development stops after some finite point in time so that l.~, = a; = 0 
for j sufficiently large. 

3. SIMPLIFIED EXAMPLE 

As an example of an application of these results assume that there is no 
development after four years (i.e. p,, = a; = 0 for j > 3). that the age-to-age 
development factors DJ, Dr, and Dj are each lognormally distributed with known 
hypothetical parameters given in the top half of Exhibit 2. and that all D,, D2, 
and D, are independent. Then the age-to-ultimate factors DT, DT, and DF are 
all lognormally distributed with parameters as shown in the bottom part of 
Exhibit 2. 

These parameters then allow for the calculation of various percentiles for 
the distributions of the age-to-age and age-to-ultimate development factors. To 
this end, let t denote the p (0 < p < I) quantile of a standard normal random 
variable Z. That is, I satisfies the equation 

P(Z < t) = p (3.1) 

Since D, is assumed to be lognormally distributed with parameters p, and a; 
the following formula holds: 



W, < exph + ta,>) = P. (3.2) 

Formula (3.2) then allows the computation of percentiles for the age-to-age 
factors using )I,, Uj and various percentiles of the normal distribution. Some 
examples are 
.674 x 8 

resented in the top part of Exhibit 3. For example, exp(. 175 + 
.075) = 1.433, and so forth. Similar examples for the age-to-ultimate 

factors are shown on the bottom of that exhibit. 

4. REFINEMENTS 

Under the assumption of lognormality, this procedure provides a means to 
estimate the statistical uncertainty inherent in the development factor method. 
This method assumes the parameters I-L/ and a? are known. Yet to be addressed, 
however, is the uncertainty surrounding p,, and uf. In actual practice k, and 
uf are not known for certain. Most often the only source of knowledge lies in 
the historical development factors themselves. 

Assume here that there are n, accident years of incurred loss data available 
valued at year j and year j + I and that there are k such periods of development 
under consideration. Thus L,, , and Li. ,+ I are defined for i = 1, 2, 3, . . , nj and 
j = 1, 2, 3, . ., k. Assume further that the historical development factors at 
age j, defined by 

4.j = L;,,+I/L~,,, (4.1) 

form a random sample from a lognormal distribution of unknown parameters 
CL/ and a:. Moreover, define the statistics: 

Y, = i $, In(d;.j) (4.2) 
, i- 

(4.3) 

It follows that Y, and Sf are the maximum likelihood estimators of l.~, and a: 
respectively (see 151, p. 39) but, as in the normal analog, $ is biased. However, 
the statistic 

(4.4) 

is an unbiased and minimum variance estimator for u,“, though it is no longer 
a maximum likelihood estimator (see [6], p. 165). Using these statistics, con- 



fidence intervals for I*, and a; can be obtained. This follows from the fact that, 
under these assumptions of lognormality and independence, for each j, 
In (d,,,) form a sample from a normal distribution and thus 

~ has a t distribution with II, - I degrees of freedom, and 
V,lV$ 

(4.5) 

(n, - uv; 
u,z 

has a chi-squared distribution with !I, ~ I degrees 
of freedom. (4.6) 

Exhibit 4 shows a hypothetical development factor triangle which is gener- 
ated using lognormally distributed random numbers. Since it is assumed that 
each column represents a random sample from a lognormal distribution, Y, and 
V;’ provide estimators for /Lj and of. respectively, for each value of j. In addition, 
the above observations regarding the distributions of Y, and V,’ lead to the 
confidence intervals for t-r+, and a; given on the bottom of that exhibit. This 
information is helpful in estimating the degree of parameter uncertainty con- 
tained in the various age-to-age estimates. It cannot, however, be easily extended 
in general to the age-to-ultimate factors without additional assumptions, usually 
made about a,‘. 

Since ln(di,j) are normally distributed with mean CL, and variance u:, the Y, 
values are normally distributed with mean p, and variance ufln,. Moreover, any 
sum, such as Y, + Yz + + YA, is also normally distributed. in this case with 
mean PI + p2 + . . + p,k and variance afin, + &in: + + u$n~. If uI , 
cr2, . ..) uk are all known then the normal distribution can be used IO obtain a 
confidence interval for kl + ~2 + + pi of the form 

Y, + . . . + Ykk tv&l, + + CT% (4.7) 

where t is the selected percentile for the standard normal distribution 

Normal distribution theory also provides results in the case where a: = ai 
= a: = . . . = ai = u2 but all are unknown. The obvious generalizations can 

be made in this case; however, it is quite unlikely that this would occur in 
development factor applications. The author is not aware of further statistics 
which do not need a restrictive assumption such as those on a: through a: 
above and which can be used to obtain estimates of parameter variability. 

Exhibit 5 provides an example of an application of the first of these as- 
sumptions, that the values of uf, a$. . . . . ai are all known. Here they are 



assumed equal to the corresponding estimates V,‘. The second set of assumptions, 
that all the uf are equal, is not applied to this data. The fact that the 90% 
confidence interval for a: does not intersect any of the confidence intervals for 
the remaining ai leaves the validity of this assumption open to serious question 
in this case. 

5. RELAXATION OF INDEPENDENCE CONDITIONS 

In the results presented this far, independence has been a necessary condi- 
tion. The principal result in Theorem 2. I, however, is a special case of a more 
general theorem where the independence assumption can be replaced with one 
of multivariate lognormality. For this, some additional notation is necessary. 

Denote by R”‘“” the set of matrices with m rows and n columns, having 
real entries. Follotiing Aitchison and Brown (see [5], p. 11) a random variable 
iE R”xI IS said to have a multivariate lognormal distribution with parameters 
Is, E R”“’ and 2 E R”“” if the variable ? = In(?) = (ln(Xi), . . . . ln(X,,))’ has a 
multivariate normal distribution with mean vector lLi, and covariance matrix z. 
It is assumed that 2 is symmetric (i.e. u,,, = oj, ,) and positive definite, thus 
assuring that its inverse, z-‘, exists. If A is a matrix, denote its transpose by 
A’. The following result then holds: 

THEOREM 5.1 

If the age-to-age development factors fi = (Di, . ., D,,)’ E R”” ’ have a 
multivariate lognormal distribution with parameters & = (F,, . . , P,?)’ E R”” ’ 
and C = (Vi. ,) E R”“” , symmetric and positive definite, then, each age-to- 
ultimate factor 

0: = fi DI, j = I, 2, . , n (5.1) 
I-J 

is lognormally distributed (with a single variate lognormal distribution) with 
parameters given by: 

(5.2) 

Proof: By definition Y = In(D) is normally distributed with parameters i; and 
Is. 

By a well known result in multivariate normal analysis (see (61, p. 383), 
the sum Y, + Y,+, + + Y,, is normally distributed with mean and variance 



given respectively by the parameters in (5.2). Since Y, + Y,, , + + Y,, = 
In(D,) + In(D,+,) + + In(D,,) = In(D, X D,, , X X D,,) = ln(D,*), it 
follows that ln(D,*) is normally distributed and thus Df is lognormally distrib- 
uted. The parameters for that distribution arc then given by the sums in (5.2). 
This completes the proof. 

From multivariate normal theory (161, p. 3X2). each of the above Y, is 
normally distributed with mean P, and variance u,. ,. Thus, each D, has a 
lognormal distribution with parameters p, and o,.,. Hence, once 6 and z are 
known, confidence intervals for the D, can be determined as in the case when 
independence is assumed. Similarly. confidence intervals for the D,* can be 
determined. 

Parameter estimation, however, is not as simply generalized. The author is 
unaware of any method to estimate the parameters tIi and 2 in the general case 
based on the usual triangular form of historical development factors arrays. 

If d,, , denotes the historical age-to-age factor for accident year i from age j 
to age j + I and the collection of such factors is based on II + I years of 
annual experience, ending in the current year, then ‘I,., is not defined if i + j 
exceeds II + 1. Thus, the usual estimators for @ and z% which would require 
data for all allowable ij values, cannot be applied. If it is assumed that the 
age-to-age factors are independent for j 2 IN for some NI then the previously 
stated results apply to each column for which j 2 tn. 

If, now, m 5 (n + 1)/2 then the array of factors d,, ,, i = I , 2. , n; j = 
1. 2, , m; i + j 5 n + I will have at least m observations in each column. 
In this case the results of Bhargava 171 are applicable. In that paper. Bhargava 
derives maximum likelihood estimators for @ and z for normal distributions 
based on samples with data missing in particular patterns. The available data 
from the first m columns of a development triangle form such an array if m < 
(n + 1)/2. 

Following Bhargava, set 
h-l 

I-Q. = Vh + c f$“‘p, 
,-I 
h -. I 

u,, I = uk.r = J; p;%J,, ,; i = 1, 2. . . . . k - I 

(5.3) 

(5.4) 

uh. k = &, + x c p:“‘p;“‘u!. , 
,=I ,=I 



Given the parameters ti and z, the equations in (5.4) form a set of k - 1 linear 
equations in k - 1 unknowns, B:“‘, pi”, . . . . Pi”1 1. Once these values are 
determined, vk and a&, can be found from (5.3) and (5.5), respectively. 
conversely, given vk, pCk’ and &,, these equations give the parameters @ and 
2. Bhargava then determined maximum likelihood estimates for the parameters 
vk, p(k), and u$~,, and. using (5.3), (5.4) and (5.5), derived maximum likelihood 
estimates for tIi and 2. 

To state those results some further notation is necessary. Suppose that 51, 
4’2, ,V3, . , y,! are n independent observations from a population that has a 
multivariate normal distribution with m variates with m 5 (n + 1)/2. The sample 
will satisfy Bhargava’s definition of a monotone sample if observations for the 
ith variate are available in yI, F2, . . ., m+,-i. Since m 5 (n + 1)/2, there will 
be at least m complete vectors. Note, this merely formalizes the situation that 
exists in a development factor matrix showing annual development for n + I 
accident years if the vector y,, is thought of as the first m elements of the j’” 
row. Though independence of the various age-to-age factors is no longer as- 
sumed, independence of the rows (accident year observations) is. 

Given this sample, define the matrix y(,. kP I) as the matrix composed of a 
column of l’s, followed by the first k - 1 elements of the observations *G,, 4’2, 

?,,+A~,. This is a matrix with a column of I’s followed by the first k - I ..., _ 
columns of the largest matrix containing observations for all of the first k variates 
in the data triangle. Let ,$a, denote the column matrix composed of the 
n + k - 1 observations of the kth variate. 

With this notation, Bhargava presents the following result: 

THEOREM 5.2 

Assume that 6 E RmX’, s E R”“” IS symmetric and positive definite, and 
that -1, $, . . . , ,Vn is an independent, monotone sample from the multivariate 
normal population with mean vector ii and covariance matrix 2. If vk, BCk) and 
crz,e) are defined as in (5.3), (5.4) and (5.5) then the maximum likelihood 
estimators for vk, pCk’ and cr&, are given by: 

A -(kl I 
(vk$ ) = ~~‘,I.k-I,~,,.k-~,~-‘~‘~l.k-l~~~k~ (5.6) 

nil-k k-l 

(n + 1 - k)&,, = x b,. h - +k - ,z fi:“‘y,.;)’ (5.7) 
,=I 

= “,&,(I - j(kdy’Cl. k-l)y(l. k-I))-‘j,k$?kl 
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Though not immediately obvious, the value of irk is the constant coefficient of 
the least squares multiple linear regression of .?,I, against the first k - 1 variates, 
ba;;d on the observations in the first n + I - k rows of the matrix. Similarly 
P are the coefficients of each of the first k - I variates. Finally, &&, is the 
conditional variance of the fit. It denotes the amount of variance which remains 
unexplained by the regression. Thus, estimation of the VL, P(k) and u& can be 
accomplished using multiple regression for k = 2, 3. , nt while 0, and &f,R, 
are the sample mean and variance of the first column of the matrix. 

If, now, it is assumed that the first m columns of the development factor 
matrix have a multivariate lognormal distribution with parameters 6 E R”“’ 
and X E R”““‘, symmetric and positive defnite. then the above procedures, 
applied to .v,. , = In(d,, ,), will produce the maximum likelihood estimates for 
VA, p’k’ and a:,“, and thus @ and x. This result follows since. under this 
assumption, the values of In(d,, ,) form a monotone sample from a multivariate 
normal distribution. 

As an example of these methods, Exhibit 6 shows the estimators tik. fitk) 
and a:,,,, along with estimators for @ and x based on the hypothetical devel- 
opment factors shown in Exhibit 4. In this case, the matrix is 6 X 6 (n = 6). 
Here it is assumed that m = 3, that there is no development after the sixth year, 
that is, & = D7 = DX = = I, and that DJ through D6 are all independent 
and independent of the first three factors. Finally. it is assumed that D, through 
DJ have a multivariate lognormal distribution with parameters li E R3x’ and x 
E Rsx7. symmetric and positive definite. 

If it is assumed that the parameters of the distributions for Dl through D6 
are equal to their maximum likelihood estimates then Exhibit 7 shows the 
resulting conlidence intervals for the resulting age-to-age and age-to-ultimate 
factors. The intervals for D, through D.I are based on the fact that the natural 
logarithm of each is normal with mean pi and variance UL. L. This exhibit also 
compares the intervals with those derived under the assumption of independence, 
assuming that the parameters equal the values of Y, and 1$ in Exhibit 4. 

Correlation among the age-to-age development factors will, of course, im 
pact the marginal variance of any given factor and also the variance of the 
resulting age-to-ultimate factors. If the various age-to-age factors are positively 
correlated then the resulting age-to-ultimate factors will have wider variation 
(and hence wider confdence intervals) when derived using the multivariate 
estimation than those derived using the assumption of independence. Con- 
versely, if there is negative correlation among the age-to-age lactora then the 



resulting estimates of the age-to-ultimate factors derived using the multivariate 
techniques will probably have less variation than those derived assuming inde- 
pendence. This follows from the variance formula given in (5.2). 

Parameter uncertainty is not as straightforward as in the completely inde- 
pendent case. Though the author does not know the distributions of the various 
estimates, Bhargava does provide likelihood ratio tests to test the hypothesis 
HO: & = 0 against H: & E R”” ‘. Those results are sufficiently complex, however, 
that they will not be presented here. One interesting result mentioned by Bhar- 
gava, however, is that the distribution of (n + 1 - k) (r&+&,, given the 
observations in the first n + I - k rows and k columns, has a chi-squared 
distribution with II + 1 - 2k degrees of freedom. 

6. OBSERVATIONS 

The usefulness of any theory lies in the nearness of the hypothesis of that 
theory to reality. In this regard, the first question that comes to mind is that of 
the lognormality of development factors in actual practice. The lognormal 
distribution has the benefit of being defined for only positive values of the 
random variable and does not impose an upper bound on those values. This 
corresponds to development factors which are generally positive and are un- 
bounded. In practice, statistical tests such as the Kolmogorov-Smimov Test as 
presented by Gary Patrik (181, p. 65) may help in assessing the validity of the 
assumption of lognormality. 

The independence of the various columns may also be able to be tested. 
Since ln(d,, ,) are assumed to be normally distributed for i = 1, 2, . . , nj a test 
based on the sample correlation coefficient between the natural logarithms of 
two columns may give some insight as to the validity of this assumption. In 
addition, these results require the independence of the development factors of 
a given age from each other. Again, usual statistical tests, applied to the natural 
logarithms of the development factors, may be helpful in assessing the validity 
of this hypothesis. In any case, in actual applications, actuarial judgment is 
required to detect any patterns which may appear in the data (for example, 
correlation between columns, trend in age-to-age factors over time, etc.). Such 
patterns often add to the variation apparent in the factors. Actuarial judgment 
will thus decrease statistical variability. 

In order to compare the results of various loss projection methods, the age- 
to-ultimate development factors must be multiplied by the appropriate loss 
amount to date. To draw statistical conclusions about the resulting loss projec- 



tions, the age-to-ultimate factors must then be assumed to be independent from 
the amounts recorded to date. 

The methods presented here can only provide estimates of .st&.stic.a/ varia- 
bility under very explicit assumptions. They should be looked on as providing 
a “range of reasonableness” of loss projections, based on such variability, rather 
than as a confidence interval about any specilic ultimate loss estimate. In the 
latter case, the actuary’s judgment is used to narrow a large range of possible 
choices (as presented by the historical dcvclopmcnt factors) in light of his or 
her knowledge of the underlying data. 

7. CONCLUSIONS AND BEGINNINGS 

This paper is presented more as an opening to further investigation than as 
a definitive solution to a problem. The model selected for study. that of devel- 
opment factor projection, is one of the simplest of the projection techniques in 
use by casualty actuaries and any actuary with cxpcrience in applying this 
technique knows its limitations and weaknesses. Hopefully the results presented 
here help in assessing the variability inherent in this method. 

The larger challenge still facing casualty actuaries is to devise estimates of 
the amount of variation to be expected in the more complex projection methods 
used. However. a precise estimate of variability inherent in an actuary’s “best 
estimate” probably is not possible. Actuarial judgment used to interpret diverse 
results of various methods, in light of the actuary’s knowledge of events that 
may impact the patterns to be expected in the data, cannot bc statistically 
quantified. This judgment is usually the most important aspect of the estimation 
of ultimate losses, but any further insight that can he gained from these tech- 
niques can be helpful in forming that judgment. 
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EXHIBIT 2 

SIMPLIFIED EXAMPLE DEVELOPMENT FACTORS 

Parameters for the Age-to-Age Factors 
LI,, Dz, and DJ 

j FJ u/ 2 
- 

1 0. I75 0.075 

7 0.045 0.005 
3 0.005 0.00 I 

Parameters for the Age-tn-Ultimate Factors 
LIT. Dz. and 0: 

.i 
* 

FJ 
:ic2 

(r/ - 

1 0.225 0.081 
2 0.050 0.006 
3 0.005 0.001 

EXHIBIT I 

SOME CHOICES AS TO DATA ARRANCEMENI 

FOR DEVELOPMENT FKroK TECHNIQUES 

Type of Data (L) Aggregation Type 

Paid Losses 
incurred Losses 
Paid (Closed) Claim Counts 
Reported Claim Counts 

Report Period 
Accident Period 
Policy Period 

Exposure Period (i) Valuation Period (j) 

Year Year 
Half-year Half-year 
Quarter Quarter 



EXHIBIT 3 

EXAMPLE PERCENTILES BASED ON 

SIMPLIFIED DEVELOPMENT FACTOR DATA 

Percentile 

10% 25% 50% 75% 
Age (t = - 1.282) (t = - 0.674) (t = 0.000) (t = 0.674) 

Percentiles for Age-to-Age Development Factors 
1 0.839 0.990 1.191 1.433 
2 0.955 0.997 1.046 1.097 
3 0.965 0.984 1.005 1.027 

1 
2 
3 

Percentiles for Age-to-Ultimate Development Factors 
0.869 1.034 1.252 1.517 
0.952 0.998 1.051 1.108 
0.965 0.984 1.005 1.027 

90% 
(t = 1.282) 

1.692 
1.145 
1.047 

1.804 
1.161 
1.047 
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EXHIBIT 4 

HYPOTHETICAL DEVELOPMENT FAC.I.ORS 

Accident Stage of Development (years) 

Year 211 312 

1 1.932 1.036 
2 1.975 1.038 
3 1.809 1.041 
4 1.954 I.043 
5 I .997 1.035 
6 1.932 

Estimators: 
Y 6.59x 3.79x 

lo- ’ 10-I 

V’ 1.21 x 1.05x 
IO-? 10m5 

90% Confidence Intervals for: 
6.30x 3.48~ 

10-l lo- z 
F to to 

6.88X 4.10x 
10-l 10-I 

5.45x 4.41 x 
lo-J 10mh 

cJ* to to 
5.26x 5.89~ 
lomy lO-s 

413 514 

1.009 
1.013 
1 .Ol 1 
1.009 

1.003 
1.006 
1.005 

615 716 

1.002 1.000 
I.001 

1.04x 
10 2 

3.66X 
10 ’ 

3.59x 
10mh 

2.31 x 
lo-” 

I .50x 
IO 1 

4.99x 
IO-’ 

8.20X 2.10x -1.65x 
10 1 10 ’ IOV 
to to to 

1.26x 7.22x 4.65x 
10 2 IO- lo- ’ 

1.3Xx 7.71x 1.30x 
IO ” lo-’ IO 7 
to to to 

3.06x 4.49x 1.25x 
IO 5 10 5 lOmJ 



EXHIBIT 5 

EXAMPLE CONFIDENCE INTERVALS FOR THE PARAMETERS 

OF THE AGE-TO-ULTIMATE DEVELOPMENT FACTORS 

Assumptions: 
of = 1.21 x 1om3 2 u* = 1.05 x lop5 
af = 3.59 x lomh 
a; = 4.99 x lo-’ 

a: = 2.31 x 10mh 

(TJ ‘=p,,=Oforj~6 

Age 

1 
2 
3 
4 
5 

Estimator 90% Confidence Interval for 
for $ for p,* 

0.714 0.690 to 0.737 
0.0554 0.05 I 1 to 0.0578 
0.0166 0.0143 to 0.0189 
0.00616 0.00450 to 0.00782 
0.00150 0.000678 to 0.00232 



Variable: 

Estimators: 

Vh 

‘II) 
P 

6.59 x 10 ’ 6.31 x IO J 

-3.84 x 10 2 

1.01 x 10 1 6.60 x 10 ” 

6.59 x 10 ’ 3.79 x lo-? 

1.01 x 10 1 -3.86 x lo-? 
-3.86 x lo-’ 8.08 x lomh 

3.20 x 10~” -8.42 x IO ' 

1.53 x lo-” 

-1.00 x lo-3 
-1.09 x 10-l 

2.61 x 10mh 

1.05 x 10-I 

3.20 x lomh 
-8.42 x lo-’ 

2.70 x 10 ’ 



EXHIBIT 7 

EXAMPLE 90% CONFIDENCE INTERVALS BASED 

ON MULTIVARIATE PARAMETER ESTIMATION 

Intervals For Age-to-Age Factors: 
D, D2 D.7 D4 DS 

Assuming Independence: 
1.825 1.033 1.007 1.002 1.000 

to to to to to 
2.046 1.044 1.014 1.007 1.003 

Using Multivariate Estimators: 
1 .X34 1.034 1.008 1.002 1.000 

to t0 to to to 
2.036 1.044 1.013 1.007 1.003 

Intervals for Age-to-Ultimate Factors: 
* 

DI DT 
* 

D3 DX 
* 

DS 

Assuming Independence: 
1.926 1.049 1.013 1.003 1.000 

t0 to to to to 
2.161 1.063 1.021 1.009 1.003 

Using Multivariate Estimators: 
1.904 1.050 1.013 1.003 1.000 

to to to to to 
2.147 1.062 1.021 1.009 1.003 



A PRACTICAL GUIDE TO THE 
SINGLE PARAMETER PARETO DISTRIBUTION 

STEPHEN W. PHILBRICK 

The actuarial literature has discussed several candidates for size-of- 
loss distributions-log normal, Weibull. multi-parameter Pareto, 
gamma, as well as others. However. despite the demonstrated success 
of these distributions, there is a dependence on techniques such as 
empirical data, judgment, or at times some unwieldy formulae. This 
suggests that there may be a need for a size-of-loss distribution that is 
relatively easy to apply in practice. 

The one-parameter Pareto is an example of such a distribution. Its 
use may be restricted to the tail of a distribution, but it is easy to apply. 
The formulae for the mean, variance. and the variance of the aggregate 
loss distributions are simple in form and may be used as quick approx- 
imations in many cases. 

I. INTRODUCTION 

“The ultimate goal of model-building is cithcr NS (I ~rwl for c.om,nunic,utirIg 
or fbr predicting urrd muking clrcisions ” 

-William S. Jeweli 

Although model-building is common to many branches of science, there are 
important distinctions among the properties of various models. The laws of 
physics such as Newton’s laws arc attempts at mathematical models of reality. 
These efforts have been particularly successful because the major forces at work 
are few in number and often constant over time and position. Although tech- 
nically there are many forces involved in, say, the movement of the planetar) 
bodies. the dominant force of gravity dwarfs the other forces such as friction. 
Models can be developed based solely on the properties of the gravitational 
force which describe the motion of the planets to a very high degree of precision. 
In these situations, it is common to lind mathematical models with few param- 
eters that are highly accurate models of reality. It is appropriate, even if tech- 
nically incorrect, to speak of the search for the correct mathematical model. 



In the social sciences the situation is quite different. The forces involved in 
economics, for example, are numerous and usually not constant over time. 
Many forces exist that have the same order of magnitude; hence they cannot be 
ignored. Furthermore, in the social sciences it is often more difficult to do 
controlled experiments where one force is allowed to vary while all others are 
held constant. For these reasons, it is less appropriate to think of a search for 
the model in the social sciences than in the physical sciences. Although we 
might talk about such a concept theoretically, the practical reality is that any 
parameter-based model that completely describes an existing situation will re- 
quire so many parameters as to make it unusable. In these situations, model- 
building requires a trade-off between accuracy and practicality. 

Thus, the question “What is the appropriate loss distribution?” does not 
have a unique answer. It depends on the intended use of the distribution and 
the available data. 

The question requires a cost-benefit analysis. Different models will have 
various costs related to: 

* Mathematical complexity, 
* Availability of computer/calculator software routines, 
* Computer processing time requirements, 
* Conceptual simplicity (ease of explanation to others), and 
* Availability and accuracy of data. 

Generally speaking, increasing sophistication of the mode1 produces more 
accurate results. The selection of an appropriate model for a particular problem 
requires deciding whether the increased accuracy of the more complex model 
justifies the increased costs associated with it. Furthermore, in many situations 
the available data may be sparse or subject to inaccuracies. In these instances, 
a simple model may be preferred because the accuracy of results will not be 
materially improved by the use of a more complex model. 

For example, suppose an actuary is trying to solve a typical risk management 
problem: the projection of losses for an individual risk. A common procedure 
in this analysis is to separate the projections of the large or excess losses from 
the projections of the more stable primary portions of the losses. Several 
characteristics of this situation make a simple model particularly appropriate. 

* The projection of the limited losses may be accomplished without the 
need for a specific size-of-loss distribution. The moments of the data, 
using a frequency/severity or total loss approach, may be sufficient for a 



reasonable projection. It will then be necessary to tit a model only above 
a particular loss amount. Fitting a distribution to only a portion of the 
range will reduce the required complexity of the model. 

* Inaccuracy of estimates of expected losses arises from a number of 
sources. Two major ones are: 
-Oversimplified models, and 
-Misestimated parameters. 
In a situation involving an individual risk, the number of large losses used 
to estimate the parameters will typically be less than the number involved 
in an insurance company or industry analysis. The errors arising from the 
sample size may dominate those arising from a less complex model. As 
a consequence, the simplicity of the less complex model may be preferred 
because the possible loss of accuracy is more than offset by the benefits 
of a simpler model. 

* There may be a need to explain the loss projection process to people 
without extensive actuarial or statistical training. Although techniques 
should not, in general, be dictated by the sophistication of the audience. 
if competing models produce almost identical results, the ease of expla- 
nation of one may be an important consideration. 

The remainder of this paper will be organized as follows: 

* Section II-A discussion of the way distributions arc depicted. An alter- 
native to the “standard’ representation will be presented. 

* Section III-A discussion of the basic properties of the single parameter 
Pareto distribution. 

. Section IV-Various methods of parameter estimation using empirical 
data. 

. Section V-The results of trend on losses when a Pareto distribution is 
assumed. 

. Section VI-A method to simulate Parcto losses. 

* Section VII-Specific applications using a Pareto distribution. 
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couragement; and Jerry Jurschak, who contributed some of the concepts em- 
bodied in this paper. 

II. SIZE-OF-LOSS REPRESENTATIONS 

Most texts on probability and statistics portray distributions (as well as 
density functions) using similar conventions. That is, the horizontal axis rep- 
resents the value of the observations and the vertical axis represents the relative 
frequency (for density functions) or the cumulative frequency (for distributions). 
It is clear, from a mathematical point of view, that this choice is arbitrary. The 
axes could be switched without violating or changing any of the statistical 
concepts. 

Despite the almost universal acceptance of this “standard” representation, 
the alternative representation turns out to be a clearer choice for size-of-loss 
distributions in some situations. The reason for this preference is that this 
representation can be developed in a “natural” way and will allow a number of 
concepts, such as loss limitation (truncation and censorship), to be applied in a 
more intuitive fashion. Appendix D contains a more detailed discussion of 
reasons for preferring this orientation. 

In the following discussion, we will develop a size-of-loss representation 
where the y-axis is the horizontal axis and the x-axis is the vertical axis. We 
will refer to this representation as the “alternative” representation. 

Because we have switched the axes rather than redefined them, the defini- 
tions of x and y will remain unchanged; that is, x refers to loss amounts and y 
refers to cumulative frequency. 

Discrete Case 

Consider a set of n losses from some arbitrary size-of-loss distribution where 
each loss has size Si, i = I, 2 ,. . . ,n. Represent each loss by a rectangle with 
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width one and height S,. Arrange these losses from smallest to largest, each 
perpendicular to the y-axis. Figure I displays a typical example of such a 
procedure. 

Define G(J)) to be the curve represented by the tops of each of the rectangles. 
Then, G(y) = Si for i-l < p 5 i. Note that the interpretation of the random 
variable Y is the number of losses less than or equal to G(y) (for integral values 
of y). 

Continuous Case 

When we consider the continuous case, the width of each loss is dy. The 
value of y ranges from 0 to I and represents the percentage of losses less than 
or equal to G(y). A typical example would look like Figure 2. 
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From this point on, the continuous version of the representation will be 
used. However, some of the concepts may be better understood if the original 
motivation of this representation is recalled, namely “stacking” individual losses 
along the y-axis. 

When we work with a set of losses (whether actual or theoretical), we 
generally wish to partition these losses in some way. The most common parti- 
tions are “large” versus “small” and primary versus excess. These partitions can 
be graphically represented by defining areas under the curve X = G(y). I 

Generally, we will indicate the losses of interest by defining one or more 
straight lines on the graph (see Figure 3). When we define an area by a pair of 
lines parallel to the horizontal axis, we will refer to these losses as a “layer” of 
losses. Alternatively, if we use a pair of lines that are parallel to the vertical 

I A third type of partition is described in Hewitt and Lefkowitz [HI]. That partition cannot be 
handled in this way. 
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FIGURE 3 
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axis, these will be referred to as “interval” losses. In this case, we are referring 
to those losses that correspond to an interval specified on the (horizontal) axis. 

We could define the areas we are interested in by directly writing the integral 
over the appropriate limits. However, we can keep the notational complexity to 
a minimum if we adopt symbols for the areas that will be used most often. 

Given loss amount, r, we define? 

Verbal Mathematical 

T(r) - The average claim size of 
all losses less than or I 

r 
x dF(x) 

0 

I 

I 
equal to r; i.e., losses are dF(x) 
truncated at amount r. I, 

2 The reader may note that the notation used here is not entirely consistent with that developed in 
a discussion of LaRose [Ll]. The notation developed by LaRose calculates claim amounts as 
percentages of the average claim. Unfortunately, the average claim size is not always well-defined, 
so a more general notation is required. 
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FIGURE 4 
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C(r) - The average claim size of 
all claims where the 
amount of each claim is 
limited to size r; i.e., s 

r 
x dF(x) + r[ 1 - F(r)] 

0 

losses are censored at 
amount r. 

For example, if r is $100,000, then T($lOO,OOO) represents the average of 
all losses less than or equal to $100,000. In Figure 3, this average would be 
represented by the ratio of the area bounded by ABD divided by the number of 
claims in the interval. The quantity C($lOO,OOO) is the average of all claims 
where amounts greater than $100,000 are capped or limited to $100,000. 

The preceding discussion is applicable to any size-of-loss distribution. Figure 
3 applies to any distribution that is used to model the entire range of losses. In 
the remainder of this paper, we will work with the tail of a loss distribution that 
is applicable to “large” losses. Consequently, we will truncate the loss distri- 
bution at some value and remove each loss less than that value. A typical 
distribution representing the remaining “large” losses is shown in Figure 4. 



Figure 4 is derived from Figure 3 by truncating the loss distribution at loss 
amount r. Physically, we remove the portion of the graph to the left of the 
vertical line BD, then renormalize our axes so that the y-axis is the cumulative 
percentage of the “large” losses, that is. losses greater than or equal to r. It 
should be emphasized that Figure 3 is not drawn to scale for typical loss 
distributions. If we select a lower limit r such as $25,000. the cumulative 
probability that a claim is less than $25,000 (which is represented by point B) 
is typically in excess of 90%. We will work only with the large losses in the 
remainder of this paper, so Figure 4 is the important figure to keep in mind. 

111. BASIC PROPERTIES OF THE S1NGI.E PARAMETER PARETO 

The Pareto distribution as described in Johnson and Kotz IJ I ] has cumulative 
distribution function: 

k > 0: u > 0; .v 2 k 

This is also known as the “Pareto distribution of the tirst kind.” Strictly speaking, 
this distribution has two parameters, k and U. In general, both k and u may be 
estimated from the data. However, the verbal definition of k is the lower bound 
of the data in question. Although there may be situations where this value must 
be estimated, in virtually all insurance applications this value will be selected 
in advance. The typical insurance application will be to model losses whose 
value is in excess of some pre-selected size. such as $25,000 or $100,000. 

Furthermore, if we “normalize” our losses, that is, divide each loss by the 
selected lower bound, then the normalized lower bound is I, and the parameter 
does not need to be stated explicitly. Finally. we will use q as the parameter, 
rather than u, to be consistent with IS0 usage (IS0 [II]. p. 34). The distribution 
can then be written as: 

F(x) = 1 - .x-~ 

and the density function is 

(1) 

f(x) = q,r-“+I’ (2) 

This is the distribution that will be discussed in the remainder of this paper.3 
Typical values for q can range from .7 to 2.0, although values outside this 

’ See Appendix C for a discussion of alternative forms of the Pareto. 



range are possible. A typical value for y of property losses is 1 .O, while a 
typical value for casualty losses is 1.5 (based upon empirical evidence). Note 
that a lonj value of y corresponds to a distribution with high severity. Fire may 
not be thought of as a line with high severity, but that is because there are so 
many very small claims. Considering only larger claims, e.g., claims greater 
than $25,000, fire claims have a fairly “thick” tail. The density function for a 
Pareto with parameter q = 1.5 is shown in Figure 5; the corresponding c.d.f. 
is shown in Figure 6. 

If we “flip” the x- and y-axes of the cumulative distribution, we will produce 
Figure 4. Note that the curve intersects the x-axis at x= 1, because we have 
normalized the losses. The curve is asymptotic to I’= 1. As mentioned earlier, 
we can visualize the area under the curve as being made up of thin vertical 
rectangles whose height corresponds to the size of loss. Thus the total area 
under the curve represents the total losses, and the losses associated with various 
retentions or policy limits can be described by different areas under the curve. 

The distribution as shown in Figure 4 is based upon the assumption that the 
lower limit is 1 and the expected frequency of claims greater than or equal to 
this value is also I. Formulae will be derived under these assumptions. The 
necessary conversions to real problems are simple and straightforward. Exam- 
ples of conversions will be given in most cases. Although it may seem awkward 
at first to work with a normalized distribution, it will soon become very natural. 
The motivation for using the normalized distribution should become clear when 
we analyze the losses contained in different layers. 

Unlimired Claims 

The formula for the average claim size is as follows: 

Unlimited Mean Claim Size = --%- 
q-1 

q’l (3) 

Note that this formula also represents the expected total losses when the expected 
frequency is 1 (assuming independence of frequency and severity). 

If the data being analyzed has a lower limit of $K per claim, then the mean 
size in “real” dollars is: 

(34 
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If we anticipate n claims greater than or equal to $K per claim, then the 
total expected losses are: 

Unlimited Expected Losses = n K --!!-- 
i i 4- 1 

(3b) 

For example, suppose we are analyzing claims where the lower limit is 
$25,000. That is, all claims are greater than or equal to $25,000. After nor- 
malizing our losses (dividing each by $25,000) we conclude that a parameter 
value of q = 1.5 is appropriate. (A later section will discuss parameter esti- 
mation.) Then the normalized gross mean claim size is 1.51( I .5 - 1) = 3. In 
terms of “real” dollars, where K = $25,000. the gross mean claim size is 3 X 
$25,000 = $75,000. 

If we expect 7 claims to exceed $25,000, then our gross expected losses are 
7 X $75,000 = $525,000. (Again, it should be remembered that we are ana- 
lyzing the large claims only. The expected losses arising from claims less than 
$25,000 are assumed to be estimated separately.) 

We may wish to calculate the net losses, for example, if we have a $25,000 
deductible. The formula for the net mean claim size is derived from the gross 
mean claim size simply by subtracting 1: 

Net Mean Claim Size -I=-!- 
q-1 

(4) 

The conversion to “real” dollars and total losses follows the same approach 
as above. For example, with q = 1.5, K = $25,000 and a frequency of 7, the 
net expected losses above $25,000 are 7 X $25,000 x l/( 1.5 - 1) = $350,000. 

Censored Claims 

If we impose an upper limit (such as a policy limit) with value b, then the 
formula for the average loss limited to $h per claim is: 

If q = 1 we can calculate the formula using L’HGpital’s Rule: 

C(b) = I + In b q=l (6) 

In the case where we want net losses, we can simply subtract I from each 
formula. Note especially, when q = 1 the average loss with upper limit b is 
simply In b. 
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Continuing our previous example (with y = 1.5 and lower limit of $25,000), 
if we impose an upper limit of $500,000, then b = 20 X (500,000/25,000). 
The average claim whose value is greater than $25.000 but limited to $500,000 
can be calculated using (5): 

1.5 - 20” 5 = 3 553 
1.5 - 1 -’ 

In “real” dollars. the average claim is 2.553X $25,000 = $63,820 (calculations 
here and subsequently are performed without rounding at intermediate steps). 
If we are pricing reinsurance for the net layer ($475.000 xs $25,000), then 
we would subtract I first to calculate the net claim sire: I.553 X $25,000 = 
$38,820. Assuming we expect 7 claims over $25,OOO, the expected losses in 
the layer are 7 X $38,820 = $27 1,738. 

Truncated Cluims 

The situation described above (with an upper censorship limit) arises natu- 
rally in practice because of the existence of policy limits and the way companies 
commonly write excess of loss reinsurance. Another way to limit losses is to 
truncclfe the losses at some value. This means that losses in excess of the 
truncation point are “thrown away.” rather than simply “capped” at the limit. 
Note that this is different from censorship in two ways: 

1. More dollars are removed when losses are truncated at a value because 
the entire loss above the limit is removed. 

2. Truncation affects the frequency. Censorship removes the excess portion 
of a claim, but does not affect the number of claims. Truncation removes 
the rnlire claim, so the formulae for average values must reflect the 
reduced claim count. 

The concept of truncation arises rarely in property/casualty policy language 
(with the rare exception of franchise deductibles). However. the concept may 
arise in the analysis of experience. For example, it might be appropriate to 
separate losses into large versus small (rather than primary versus excess). In 
this case, the limit chosen to distinguish between large and small losses will be 
a rruncarion point, rather than a c~ensorship point. 

The formula for the average claim siLe with lower value I and truncation 
point b is: 

T(b) = 
q(l - b’-‘) 

(y - l)(l - bpq) 
qfl (7) 
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The comparable formula for the case q = 1 is: 

T(h) = f+ q= 1 (8) 

Continuing our example, suppose we are interested in the losses larger than 
$25,000 but ignoring all losses greater than $500,000 (rather than including the 
first $500,000 of those claims greater than $500,000). With q = 1.5 and h = 
20, the average claim size is calculated with (7): 

1.5 (1 - 20P s, 
,5 (, _ 2o-,.s) = 2.356 

In “real” dollars, the average claim is 2.356 X $25,000 = $58,888. If we 
expect 7 claims over $25,000 we can calculate the total dollars for the interval. 
Given 7 claims over $25,000, we expect 7 X F(20) = 7 X .9888 = 6.922 
claims in the interval between $25,000 and $500,000. We have already calcu- 
lated the average of those claims, so we multiply the frequency by the average 
claim size to yield the total dollars: 6.922 X $58,888 = $407,606. 

The formula for the average truncated size follows directly from the defi- 
nition of truncated claims given earlier. However, we can simplify the formula 
and reduce the amount of calculation by adopting a slightly non-standard con- 
vention. Note that, in our example, one of the terms in the denominator for the 
average truncated claim size is 1 - b -‘. Note also that the number of claims 
in the intervnl is calculated by multiplying the expected frequency (above the 
lower limit) by F(b) which is 1 - KY. Obviously, these terms cancel out when 
the total dollars in the interval are calculated. 

Define T’(b) to be the average claim size, where the denominator is not just 
the claims in the interval, but the number of claims above the lower limit. In 
other words, use the same denominator as in the censored situation. The moti- 
vation is two-fold: 

(1) The formulae will be simpler. 
(2) It is more likely that we will have an estimate of the total number of 

claims above a limit than that we will have an estimate of the number 
of claims in an interval. 

The formula for the revised “average” truncated claims size is: 

T’(b) = dl - b’-y) 
9-l 



When q = 1, the formula simplifies to: 

T’(b) = In b q= 1 (‘0) 

Redoing the example above, the “average” claim size is calculated using: 

1.5 (1 - 20. 3 = 2.329 
.5 

In “real” dollars, the “average” claim size is 2.329 X $25,000 = $58,229. 
Multiplying this by the number of claims expected over $25,000 yields 
7 x $58,229 = $407,606. 

In summary, if we are interested in the true average claim size, we use 
formula (7) or (8). However, if the calculation of the average claim size is 
simply an intermediate step in the calculation of the total dollars, we may prefer 
to use alternative formula (9) or ( 10). 

Next we will look at the excess portion of the distribution. In this case, we 
are interested in the total losses or average claim size of claims greater than 
some limit b. In terms of Figure 4, the area of interest is bounded by HJK. 
Rather than directly calculate the total losses and average losses in this layer, 
we will exploit a powerful property of the Pareto distribution. If we renormalize 
the excess portion by dividing each loss by b and dividing the excess frequency 
by 1 - F(b), the resulting distribution will have a shape identical to that in 
Figure 4. (This renormalization is the result of a scale change to both axes. For 
more discussion of scale changes, see Venter [V 11.) Thus. we may use the 
formulae already calculated, although keeping careful track of the appropriate 
factors to convert back to “real” dollars. 

The average gross claim size is still yl(q - I) and the average net claim 
size is l/(y - I). In terms of our first renormalization, the average gross claim 
size is b (q/(q - 1)) and in “real” dollars, the average is bK (y/(y - I)). The 
total dollars involved in claims greater than b can be calculated by multiplying 
by the frequency of claims greater than b which is I- F(h) = b y. 

In practice this works out easier than the formulae would indicate. Continu- 
ing our example (q = 1.5, K = $25,000, frequency over $25,000 = 7), suppose 
we are interested in the losses in excess of $lOO.OOO per claim. We don’t 
actually perform the renormalization; we simply use the formula for net average 
claim size (l/(y - 1)) and substitute q = I .5 into the formula yielding a net 
claim size of 2. Multiply by $100,000 (it isn’t necessary to multiply first by 
$25.000, then by 4) to produce the average net claim size of $200,000. To 



calculate the total dollars, recall that the ratio of claims exceeding $100,000 is 
calculated by using the cumulative distribution 1 - F(b) = bp4 = 4-1.5 = 
.125. Multiply this by the expected frequency over $25,000 of 7 yielding .875 
claims expected to exceed $100,000. Thus, the expected excess losses are 
,875 x $200,000 = $175,000. 

This concept is important, as it allows us to quickly calculate the total losses 
and average claim sizes for arbitrary layers and intervals. As another example, 
suppose we continue our assumption that losses over $25,000 have a Pareto 
distribution with 4 = 1.5 and the expected frequency of claims over $25,000 
is 7. Suppose we are asked to analyze the layer between $75,000 and $187,500 
(i.e., $112,500 xs $75,000). The first step is to calculate the value of 6, which 
is simply 187,500/75,000 = 2.5. We can use (5) to calculate the gross average 
(censored) claim sizes: 

1.5 - 2.5- ’ 
.5 

= 1.735 

The net average claim size is .735 or .735 x $75,000 = $55,132 in 
“real” dollars. The frequency of claims is 7 X (1 - F(75,000/25,000)) X 

F(l87,500/75,000) = 7 x (3-l.‘) x (1 - 2.5-l’) = 7 x (.192) x (.747) = 
1.006, so the expected losses in the layer are 1.006 X $55,132 = $55,482. 

Next, we will calculate the variance of the individual claim amounts as well 
as the total loss variance. The formulae shown above for expected values are 
sufficient for pricing on an expected value basis or some function of the expected 
value. However, there are methods of pricing that include risk loading based 
upon variance, as well as other risk theoretic analyses that require the calculation 
of variances. (See Gerber [Gl] for a discussion of various pricing approaches.) 

Again, this is one of the motivations for the use of the Pareto. The calculation 
of total loss variance is a fundamental issue in risk theory, yet the procedures 
necessary to calculate the variance generally involve complex formulae or, more 
likely, computerized estimation techniques. The formulae associated with the 
single parameter Pareto are often easy to evaluate and may provide, at the very 
least, a reasonable first approximation. 

Recall that the variance can be calculated as the second moment minus the 
square of the mean. The formula for the nth moment of the Pareto distribution 
with no upper limit is 

nrh moment = - 4 
9+n 

(1’) 



Thus, the second moment is y/(y + 2) and the formula for the variance of a 
single claim is: 

Variance = 15) - (51’ L/>2 (12) 

Again, we have the problem that the variance is undefined for typical values of 
4. But if we restrict ourselves to reasonable upper limits, the variance will 
always be finite. If we impose upper limit h. then the variance of losses within 
the layer is: 

Variance = ’ - 2h2mY y _ 2 - jy,‘, “I2 
The formula simplifies in the cases where C/ = 1 or 2 as follows: 

Variance = 2h - 1 - (1 + In h)’ q = 1 

Variance = 1 + 2 In h - ((2h - 1)/h)’ q=2 

These formulae apply in either the net or unlimited layer cases. 

(1%) 

(12c) 

To convert these results to “real” dollars, multiply by K’ where K is the 
lower bound of the losses. It is important to realize that these formulae reflect 
only the variance associated with the loss severity. The total loss variance also 
reflects the variability of frequency, which will bc covered shortly. 

We will continue the example where the lower limit is $25,000 and y = 
I .5. As we have shown earlier, the gross mean claim size is 3 and the net mean 
claim size is 2 when no upper limit is imposed. However. the variance is not 
defined in this case. With an upper limit of $500,000, h = 20 and the variance 
of a single claim is calculated by substituting into (12a) with y = 1.5 and b = 
20. The result is 8.372. In “real” dollars, the variance is 8.372 X ($25,000)’ = 
5.23 X IO’. This means that the standard deviation is $72.335. 

The claim size variance is rarely useful by itself. The major motivation for 
calculating this formula is because it is needed in the formula for the total loss 
variance. This refers to the variability of total losses, arising either from fre- 
quency or severity. The variance we will calculate is also sometimes called 
“process variance,” because it relates to the possible variations in results arising 
from the loss causing process. This is to be distinguished from “parameter 
variance,” which relates to the variations arising from the possibility that the 
parameters used differ from the “true” parameters. Parameter variance is beyond 
the scope of this paper. 
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Calculation of the total loss variance is necessary if a risk loading will be 
used that is a function of either the total loss variance or standard deviation. In 
addition, the variance can be used to specify percentiles of the total loss 
distribution using the Comish-Fisher expansion [Ml] or other techniques (L3]. 
For example, we may wish to determine the probability that total losses will 
exceed $1 ,OOO,OOO when the expected losses are $600,000. 

The general formula for the total loss variance is given in various sources 
including Mayerson, Jones and Bowers [M3]: 

a2 = Mf at’ + Mt u; (13) 

where M,, cr,?, M.,, and cr? represent the mean and variance of the frequency 
and severity distributions respectively. 

If we make the reasonable assumption that the claim frequency follows a 
Poisson distribution, then Mf = c$ and we can simplify (13): 

(J2 = Mf(Uf + Mf) (14) 

Again, recalling that the variance can be expressed as the second moment less 
the square of the mean, we note that the expression in parentheses above 
simplifies to the second moment of the severity. Thus, the total loss variance 
can be simply calculated as the product of the expected claim frequency and 
the second moment (mean of the squares) of the loss severity. 

We have seen the formula for the second moment of the severity in the case 
of no upper limit earlier (1 I). In this case, the total loss variance is: 

U2 zz M,.L 

Y+* 
q>* (15) 

where M, is the expected claim frequency. 

We have seen earlier that the severity variance is the same in the case of 
the unlimited and net layers. This is not the case for the total loss variance. If 
we have upper censorship point 6, the total loss variance for the unlimited layer 
is: 

u2 = M q - *tP 

f q-2 

In the case of the net layer, the total loss variance is: 

a2 = M/ 9 - 2b2-Y 
1 q _ 2 - 2 (“,“‘J + 1) 

qf2 (16) 

qf2 
Y#l 

(17) 



The expression in the parentheses may be recognized more quickly if we recall 
that E[(X - l)‘] = E[X’] - 2 E[X] + 1. Formula (16) for the case where 
q = 2 is shown in Appendix A. As before, to convert the results to “real” 
dollars. we multiply by K” where K is the lower limit of the losses used to 
normalize the values. 

If we have the truncated case. with truncation point b. the total loss variance 
for the unlimited layer: 

2 = M, 
y(1 - b’-Y) 

(q - 2)(1 - bpy) qf2 (18) 

Note carefully: the definition of M, in this case is the expected number of claims 
greater than the lower limit, not simply the number between the lower limit and 
b. The situation with truncation point b and a net layer is almost never seen in 
practice, so it will not be discussed. 

Continuing our example, suppose we are pricing the losses in excess of 
$25,000 but censored at $500,000. As we have seen earlier, the expected losses 
in this layer are $271,738 (assuming the expected number of claims is 7). 
Suppose we wish to add a risk loading that is a function of the total loss 
variance. We can calculate the total loss variance using (17). Substituting the 
parameters into the formula yields a variance of 75.48. In “real“ terms, this is 
75.48 X $25,0002. The standard deviation of this value is $217,199. We won’t 
go into methods for calculating a factor to multiply by the variance to arrive at 
an appropriate risk load, but, even without such methods, the total loss variance 
can be used to compare the relative risk on different treaties. 

Finally, we note that the formulae derived in this paper are only applicable 
to the portion of losses above the selected lower limit. In practical situations, 
it is necessary to combine the results of the analysis of the large losses with the 
results of the analysis of the small losses. Clearly. the expected losses of the 
two portions of the analysis can simply be added together. The overall average 
claim cost can be calculated as the weighted average of the means of each 
portion, where the weights are the expected number of claims. The variances 
of the severity cannot be combined so easily, although, if one recalls that the 
second moments can be weighted by claim counts. the formula for the combined 
severity variance follows easily. If we assume a Poisson distribution for the 
frequency of the small losses, then the total loss variance of the small losses 
will be of the same form as the large losses, specifically, the mean claim 
frequency multiplied by the second moment of the severity, so the total loss 



variance of the entire distribution is simply the sum of the total loss variance 
of each portion. 

IV. PARAMETER ESTIMATION 

Numerous articles in the actuarial and statistical literature (e.g., Patrik [Pl], 
p. 62.) discuss the attractive properties of the maximum likelihood estimate 
(MLE). However, the MLE is often difficult to calculate in practice. 

One of the attractive properties of the Pareto distribution is the ease of 
calculation of the maximum likelihood estimate of the parameter. Consider a 
set of n losses, each greater than or equal to some value K, which are normalized 
by dividing each loss by K. Denote this set by (Xi),i = I ,2, . . , n. The MLE 
ofqis 

n 

’ = C InX, 

Note that an alternative formula is 

n 
’ = In II X, 

These formulae are equivalent, but the second is easier to calculate. Note also 
that the MLE of q is such that e “’ is the geometric mean of the X,. If we use 
the 25 losses contained in Appendix B, the estimated parameter is q = 251 
26.16 = .955. 

Although the MLE has attractive properties and is easy to calculate, we will 
examine the use of alternative methods. Probably the most common method is 
matching of moments. We have shown that the mean of the unlimited Pareto 
distribution is ql(q - 1). If this is equated to the sample mean of the values in 
Appendix B, we have 

q - = 6.202 
4-l 

q = 1.192 

This value is not particularly close to the true value. The discrepancy arises, 
not because of the relatively small sample, but from the method itself. If the 
formula for the mean is examined, it will be clear that a value of 1.0 could 
never result. If the true value of the parameter of the distribution is I.0 or 



smaller, the method of moments will always produce too high a result. Because 
in many situations the value of the parameter may be close to or even less than 
I .O, the method of moments may not bc an appropriate method. 

Another method of parameter estimation is based on quantiles.’ Using the 
formula for the c.d.f.. 

F(x) = 1 - .t “. (21) 

we can equate the sample values of F(r) to their theoretical values. Although 
this method of estimation is somewhat less efficient’ than MLE, it is much 
faster and may be used as a quick method for approximating the parameter 
when only a rough estimate is needed. In our example the median, or 131h 
largest loss, is $55,843 or 2.234 when normalized. Solving 
.5 = I ~ 2.234-“ for y is straightforward yielding (1 = 0.826. If we look at 
the other two quartiles. which are approximately the 6’” and IY’” largest losses, 
we solve the equations 

25 = I - (1.311)-“ 

.75 = I - (3.Y55) ‘I 

which yield estimates 

y = 1.062 

q = 1.008 

A more important use of this method is when the individual claim sizes are 
not available (or not easily available), and only grouped statistics are available. 
Suppose that the losses in Appendix B had been incurred, but the only infor- 
mation was as follows: 

lnterval (000) Frequency 

25-100 20 
I oo- I ,000 5 
I ,000-r 1 

i Quantiles is the general term which includes the median, quartiles. and percentiles as special 
cases. 

’ For a discussion of efficiency. see Hoe]. Port and Stone [HS]. Iw~~drc~~tron ICJ Srctrisriwl Throrv, 
page 16. 
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Using the information that 80% of the losses are no greater than $100,000, we 
solve the following: 

,8 = ] - 4-” 

yielding 

y = 1.161 

This estimate is remarkably good when one considers the limited information 
available. 

Alternative methods of parameter estimation are discussed in Quandt [Ql]. 

To this point, in this section we have assumed that there is no upper 
limitation on the loss data either by an upper censorship point created by policy 
limits or an upper truncation limit where certain values may be missing. 

There are several reasons for suspecting that actual data has some type of 
limitation. In the case of insurance company data, the losses may be censored 
due to reinsurance agreements. In some cases, gross losses are available, but 
in others only net losses may be available in a usable form. Even if the losses 
are gross to reinsurance, there may be limitations due to policy limits.h Most 
casualty coverages have policy limits.’ 

One of the advantages of working directly on an individual risk is that these 
limitations can be overcome. Although the primary source for data is usually 
insurance company records, it is usually possible to make the appropriate 
adjustments whenever losses have been limited. 

This does not totally remove the problems of limitations. In the case of 
property insurance, there is an upper bound to the amount of loss, namely the 
total value of the property. There seems to be no useful upper bound to liability 
situations, but most actual data suggests that the tail of the Pareto is still 
somewhat too “thick” at extremely high loss amounts. In other words, the 
theoretical density at high loss amounts is larger than empirical experience tends 
to indicate. Rather than discard the Pareto, it is easier to postulate that the 
distribution is censored or truncated at some high, but finite, value. As we have 
seen earlier, any upper limitation (either censorship point or truncation point) 

’ A discussion of the impact of policy limits can be found in Patrik [Pl] 

’ Exceptions include workers’ compensation coverage A and no-fault PIP in some states 
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will produce formulae for the mean claim size that are tinite for all possible 
values of q. 

If we assume a censorship point C. then the density function is unchanged 
between I and c but will have a mass point at C’ and will be zero for all values 
greater than c. LetJ(.\-) be the unlimited Pareto density. that is 

fix) = y .t- “I + ’ 1 

Letj(,r) be the density function censored at C. Then. 

f; (x) = 0 .t- > (’ 

If we wish to consider the distribution truncated (above) at r. then the density 
function at all points less than or equal to t will have to be proportionately 
increased so that the total area under the curve still equals one, and the new 
density function is zero for all values greater than r. Letf;(.r) be the distribution 
truncated above at t. Then, 

.fi(.r) = 0 .t- > t 

Assume that we have n losses, of which m are less than the censorship limit 
c and n - m are equal to C. The maximum likelihood estimate is 

I1 - II1 
9 = ,I m 

2 In X, + (m)ln c 

Suppose we have the loss data in Appendix B except that each loss is 
censored at $100,000. Then, 

20 
’ = 13.104 + 5(1.386) 

= ,998 

Note that the MLE approach produces the parameter of the unlimited dis- 
tribution: censorship is handled through definition of the density function. 



V. EFFECT OF TREND 

One of the practical problems with fitting size-of-loss distributions is the 
proper way to handle adjustments for trend and development. With most distri- 
butions, inflation of losses will change one or more of the parameters. In Hogg 
and Klugman, (H2] page 180, there is a table that shows the parameters of 
various distributions after the application of a trend factor. In each case (in- 
cluding the Pareto and generalized Pareto), the parameters are changed due to 
inflation. 

However, the parameter of the Pareto distribution in this paper is unchanged 
due to trend. This result appears counterintuitive. After all, each of the formulae 
for mean claim size is a function of the parameter. If the parameter is unchanged, 
then the estimated average claim sizes must be unchanged. This appears unrea- 
sonable for several reasons. 

First, it is obvious that, under influence of trend, the overall average claim 
size increases. This is true, but note that the distribution in question does not 
apply to the entire range of losses. It is not simply hetfer suited for modeling 
excess losses, it does not fit small losses well at all. The typical size-of-loss 
distribution starts out with a small frequency of very small losses, growing to 
a larger frequency of intermediate losses, then a decreasing frequency of larger 
losses. The maximum density for the Pareto is always at the leftmost value, 
and the density is always decreasing as we move to larger claim sizes. Thus, 
the fact that the overall average claim increases with trend is simply evidence 
that the single parameter Pareto is not likely to fit the entire range. 

Second, it may be recalled that trend is assumed to have a leveraged effect 
on excess losses, where the Pareto is supposed to lit so well. This is true (see 
Miccolis [Ml]), but the leveraged effect is on the total excess dollars, not 
necessarily on the u\‘erage excess claim size. It may seem ironic, but the major 
effect of trend is to increase the frequency of an excess claim, rather than its 
severity, This may be more obvious if we recall that a size-of-loss distribution 
is, by definition, the distribution of the relative frequencies of various sizes of 
claims. 

Third, and most imporant, a review of empirical excess average claim sizes 
will show that they have been increasing over time for most coverages. This 
point is conceded and is inconsistent with an assumption that a Pareto fits the 
entire excess distribution to infinity. As has been noted earlier, the Pareto has 
“too thick” a tail, and, in most practical applications, an upper bound should 
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be used. If one looks at the average excess claim u,irh a reasonable upper limit, 
the average claim size will NH be materially increasing over time. 

Because this point is important, we will explore it in more detail. Consider 
the losses contained in Appendix B. These have been generated from a Pareto 
distribution with q = I .O. The appendix contains both the normalized values 
and the raw dollars, which indicate that the raw losses represent losses greater 
than or equal to $25.000. If we calculate the MLE of these losses (assuming 
we did not know how they were generated). we would estimate the parameter 
to be ,955. As can be verified. this value will produce average claim sizes for 
various layers of intervals (with reasonable upper bounds) that are reasonably 
close to the theoretical values. Specifically. we can use this parameter to estimate 
the average claim for layers or intervals where the lower limit is $50.000. Thus, 
this parameter can be thought of as the appropriate parameter for the size-of- 
loss distribution for claims greater than $50,0(K). 

Suppose these losses were from year zero. and we wished to project losses 
for year II. Suppose further that the annual trend. 1 + i. is such that ( I + i)” = 
2.00. If we were to trend each of our losses in Appendix B by this trend factor 
and use these losses to calculate a parameter to tit losses in excess of $50,000, 
it should be obvious that the estimated parameter would still be exactly ,955. 

What may be less than obvious is the fact that this parameter can be used 
for losses in excess of $25,000 in year II. This means that the losses between 
$25,000 and $50,000 in year II, which correspond to losses less than $25,000 
in year 0, must be distributed in such a way that the Pareto distribution will 
still tit the distribution above $25,000 (to the upper limit) in year II. 

As may be guessed, the requirement is that the Pareto distribution must fit 
the losses in year 0 as low as $12,500 ($25,000/2.(K)). In general, if we are 
using losses greater than K from year 0 to estimate a parameter to use in year 
II, we must assume that the Pareto distribution (with the same parameter) 
provides a reasonably good tit to losses in year 0 which are as small as K/( I + 
i)“. Experience has shown that this is typically true for casualty losses as low 
as $5,000 to $10,000 (higher for medical malpractice). so values of lower limits 
in the oldest year of experience greater than $25,000 will typically work. Of 
course, it is prudent to check the tit at the lower end of the range if possible. 

We have gone over this point in some detail because it leads to an extraor- 
dinary result: to calculate the MLE of the Pareto parameter, given individual 
losses greater than a single fixed value K arising from several different years, 
it is not necessary to adjust the losses for trend. 
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For example, suppose the following data are available: 

1978 100,000, 150,000, 225,000 
1979 109,000, 140,000, 180,000, 240,000 
1980 105,000, 115,000, 170,000, 290,000 
1981 104,000, 121,000, 160,000, 200,000, 300,000 

Suppose we are interested in projecting losses for 1984 and the annual trend, 
I+ i = 1. I. Under typical methods of analysis, we would trend each of the 
losses to a common date. The trend factor for 1978 would be (l.I)h = 1.77. 
But if we did not have any data on losses less than $100,000 for older years, 
we would have to use a lower limit of $177,000. Several of the losses in more 
recent years would then have to be thrown out, because their trended value is 
less than $177,000. 

With the Pareto distribution, we can use all of the data points, if we have 
reason to believe that the Pareto distribution tits losses as low as $100,000/1.77 
in 1978. But note that if we assume that the Pareto will fit above $100,000 in 
1984, this is equivalent to assuming that it fits equally well above $lOO,OOO/ 
1.77 in 197X (assuming trend affects all claim sizes approximately the same). 

Of course. this will allow us to estimate the parameter of the distribution, 
which will allow us to calculate the averugc severities for 1984. This is only 
half the problem, as we also need to estimate the frequency of claims to arrive 
at estimates of the total loss dollars. We cannot simply use the raw historical 
frequencies of claims greater than $100,000 to estimate our future frequency. 
We can, however, calculate an adjustment factor that will allow us to put each 
of the historical frequencies on a comparable basis. 

The calculation of this factor can be shown most easily with a concrete 
example. Suppose we expect 10 claims greater than $25,000 in year n, where 
q = 1.5. Recall the formula for the distribution is F(x) = 1 - .x-‘. How many 
claims in year n are expected to exceed 1. I X $25,000 = $27,500? We calculate 
this using the distribution function, F( 1. I) = 1 - 1.1-i.’ = ,133. This means 
13.37~ of the claims will be less than $27,500, or 86.7% will be greater than 
$27,500. Thus, we expect 10 X .867 = 8.67 claims greater than $27,500. This 
means that we expect 11.867 = I. 153 claims over $25,000 for every claim 
greater than $27,500. If we now examine year n - 1, the $27,500 claim in 
year n would be $25,000 in year n - 1, and the $25,000 claim would be 
$25,000/l. I = $22,727 in year n - I. Clearly, for every claim greater than 
$25,000 in year 12 - 1, we would expect I. 153 claims greater than $22,727. 



So if we multiply the number of claims greater than $25,000 in year n - 1 by 
I. 153, we have the best estimate of the number of claims greater than $22,727 
in year n - I, which corresponds to the number of claims that, if trended, 
would exceed $25.000 in year II. 

Typically. the frequency of claims in each year will be related to an exposure 
base such as number of beds (hospital malpractice), number of employees 
(workers’ compensation), etc. When using the Pareto distribution, the first step 
is to multiply the raw frequency of claims greater than the underlying limit by 
the adjustment factor. then divide through by the exposure. The resulting values 
may be averaged, or perhaps a regression analysis will be performed. (Note 
that inflation sensitive exposure bases such as sales or payroll must also be put 
on a comparable basis.) The adjustment factor for n years of trend at annual 
inflation rate I + i with parameter y is simply (I + ;)“I’. The following table 
displays the factors for various combinations of i and q. Each value in the table 
is the one-year adjustment factor. 

1 +i 

1.05 
1.08 
1.10 
1.12 
1.15 

VI. SIMULA.TION OF LOSSES 

One type of analysis frequently performed by actuaries involves Monte Carlo 
simulation of results based upon a particular model of the loss process. One 
advantage of this Pareto distribution is the ease with which it can be simulated. 

One method for simulating values for a function involves inverting the 
cumulative distribution. This is not always possible with some functions, but it 
is particularly easy with the Pareto. The cumulative distibution is 

F(X) = ] ~ ,y’ 
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Thus 

F-l(y) = (1 - y)-“Y 

where Y has the uniform distribution 

A moment’s reflection will reveal that (1 - Y) is symmetric when Y has the 
uniform distribution, so we can replace I - Y with Y. Thus, if we can generate 
a uniform random variable Y, then Yp’lq will have a Pareto distribution with 
parameter y. 

Consequently, we find that even hand-held calculators, such as the HP-15, 
can be used to simulate Pareto losses. For example, the following values in the 
first column were generated from a calculator with a random number generator. 
The second column contains the normalized loss when q = 1.5, and the third 
column contains the “real” claim amount if the lower limit is $25,000. 

(1) 
Random Value 

from Uniform Distribution 

(2) 
Normalized 

Pareto Value 

(3) 
“Real” 
Dollars 

.I9875 2.93630 73,407 

.73616 I .22655 30,664 

.52174 1.54298 38,575 

.97358 1.01801 25,450 

.26635 2.41562 60,390 

.54727 I .49462 37,366 

.85879 1.10682 27,670 

.31708 2.15058 53,764 

.38295 1.89630 47,407 

.23006 2.66341 66,585 

VII. APPLICATIONS 

In this section, we will discuss several applications of the Pareto distribution. 
In some of the cases, we will use actual data from published sources for two 
reasons: first, to demonstrate that this distribution works well with “real” data, 
and second, so that this distribution can be compared to those used in the 
original source of the data. 



Applicution I 

Consider the OL&T BI claims for policy year I976 contained in Appendix 
F of Patrik [PI]. We will fit the Pareto to losses greater than $25,000. There 
are 90 losses in this exhibit. Individual losses are not shown, but the ranges are 
quite narrow, as they are $5,ooO ranges up to $100,000, and $10,000 thereafter. 
We can use the average claim size in the range as a reasonable proxy for the 
individual claim amounts (with wider ranges. we might need to make adjust- 
ments). The sum of the normalized logs (dividing each claim by $25,000) is 
81.2; thus. our estimate of y is 1. IOX. Note that there are no claims greater 
than $500.000. We would expect 90 (I F(X))) = 90 x (20 ’ Iox) = 90 X 

.0362 = 3.26 claims greater than $500,(H)O if the Pareto fit all the way to 
infinity. This is evidence that the theoretical tail overstates the actual tail. We 
can calculate the expected average claim s&e with an upper limit of $500,000, 
using (5) with b = 20. This yields an estimate of $25.000 x 3.559 = $88,975. 
The actual average claim size is $89,703. 

Consider the 40 wind-related catastrophes in 1977 listed in Hogg and Klug- 
man IH2] page 64. Only claims of $2.000.000 or more were included. These 
values, recorded in millions, are as follows: 

2. 2, 2, 2. 2. 2, 2. 2. 3. 2. 
2, 2, 3. 3. 3, 3. 4. 4, 4, 5, 
5, 5, 5. 6. 6. 6. 6, 8. 8, 9, 

15, 17, 22. 23, 24. 24. 25. 27. 32. 43 

If we calculate the MLE of the parameter using (19) or (2(J), the result is q = 
,976. This tends to confirm the statement made earlier that a typical parameter 
value for property is 1 .O. In the same reference. on page 68, are 31 wind 
catastrophes over $1 million for 197 I The MLEZ for these losses is y = ,959. 

Suppose we have the following hypothetical information for the professional 
liability experience of a hospital. Assume that the hospital has a $25.000 
retention and that information on claims Icss than the retention is either un- 
available or unreliable. 



Accident 
Year 

# Occupied 
Beds 

Individual 
Claims 
Greater 
than 
$25,000 

1978 I979 1980 1981 

200 200 260 260 

127,000 7 I ,000 34,000 55,000 
28,000 I 19,000 26,000 43,000 
32,000 135,000 38,000 40,000 

103,000 42,000 93,000 42,000 
37,000 40,000 50,000 
55,000 34,000 31,000 

228,000 30,000 
57,000 29,000 
27,000 29,000 
36,000 137,000 

61,000 

Suppose we are interested in projecting the experience for 1984 for the layer 
$225,000 excess of $25,000. Assume that external data leads us to believe that 
the severity trend has been 20% annually between 1978 and 1981, but is 
projected to be I5’% annually between 198 I and 1984. We also estimate 240 
occupied beds in 1984. 

First, as noted earlier. we can use all 31 losses in the analysis. Each loss is 
normalized by dividing by $25,000. The MLE of the parameter is calculated 
using (19) or (20). The sum of the logs is 22.024, so the estimate of the 
parameter is 31/22.024 = I .408. 

We can calculate the average claim size in the layer $225,000 xs $25,000 
using formula (I ) 

XC(b) = qq-pb’;q 

With b = 250125 = IO and q = 1.408, the result is 2.493, which corresponds 
to an average claim size of $25,000 X 2.493 = $62,326. Thus, we expect that 
the average claim, greater than $25,000 but limited to $250,000, will be 
$62,326. The amount within the insured layer will be $62,326 - $25,000 = 
$37,326 per claim. 



To estimate the frequency of claim within the layer, WC tirst calculate the 
frequencies in terms of claims per 100 beds. The resulting ratios are: 

Year # Claims/ 100 Beds 

1978 2.00 
1979 3.00 
1980 3.85 
1981 4.23 

We now have to adjust the frequency for trend, so that each year will be on 
a comparable basis. We will convert each frequency to the frequency that would 
be expected in 1981. using the adjustment factor in the section on trend, 
(I + i)“y where 1 + i = 1.20, y = 1.408, and II is the number of years between 
each year and I98 I. For example. the adjustment factor for 1978 is 
(] .2o)3x I J(Nt = 2.16. This means that for every claim that exceeded $25,000 
in 1978, we would expect 2. I6 claims over $25,000 in 198 1. The adjustment 
factors and the adjusted frequencies are shown in the following: 

Year Raw Frequency 

1978 2.00 
1979 3.00 
1980 3.85 
1981 4.23 

Adjustment Factor 

2.16 
1.67 
1.29 
I .oo 

Adjusted Frequency 

4.32 
5.01 
4.98 
4.23 

We can calculate a simple average of the adjusted frequencies to arrive at 
an estimate of the frequency of claims greater than $25,000 for 1981. This 
value is 4.63. Alternative methods to calculate an overall frequency could be 
used. For example, it might be appropriate to use the number of occupied beds 
as weights. If the adjusted frequencies show a pronounced trend over time, then 
the frequencies are being affected by something other than changes in claim 
sizes and further analysis is indicated. 

We now calculate the frequency appropriate for 1984. Based upon the 
assumption of a 15% annual trend, the adjustment factor is ( 1.15)‘” ’ 40H = 
I .805. Thus, our estimated frequency for 1984 is 1.805 X 4.63 = 8.36 claims 
per 100 occupied beds. Using our assumption that there will be 240 occupied 
beds in 1984, we expect 8.36 X 2.4 = 20.07 claims greater than $25,000 in 
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1984. Thus, our expected losses in the layer $225,000 xs $25,000 are 20.07 X 
$37,326 = $749,301. 

Applicution 4 

Finally, we note that the fact that a typical value of q for property losses is 
1 .O and the formula for the average loss when q = 1 .O is so simple, allows us 
to easily provide a rough estimate of the average claim size for various layers. 
Suppose we are asked to quote a reinsurance cover on a book of property 
business for the layer $2,750,000 xs $250,000. The ratio of the upper limit to 
the lower limit is 3,000/250 = 12, so an estimate of the gross mean claim size 
is I + In 12 = 2.485 or $621,000. The net mean claim size would be $371,000. 
This could be used as a rough estimate for discussion purposes. More refined 
analysis can be performed if both parties to the intended transaction are still 
interested. 
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APPENDIX A 

SUMMARY OF FORMUI.At~ 

This appendix contains a summary of the most commonly used formulae. 
It begins with the formulae used to calculate the maximum likelihood estimates 
of the parameter. Formulae are shown later for the mean and total loss variance 
(under the assumption of a Poisson frequency). The formula for the variance of 
severity alone is not given, because the primary use for this formula is to derive 
the formula for the total loss variance. 

It should be noted that “K” is used to represent the lower bound of the 
distribution in nominal or “real” dollars. This is the value used to normalize the 
distribution. The letter “II” is used in the formula for the MLE to denote the 
actual number of losses used in the calculation. In the calculation of the expected 
losses, “II” is used to denote the expected number of claims in the period of 
interest. The letter “h” is used to denote an upper limit to losses, either a 
censorship or truncation point. 

Density fix, = q- ’ y 

Distribution F(x) = I - .I- I’ 

Maximum Likelihood 
Estimates 

Unlimited 

Censored at h 

Truncated at h 

or 

y = nl i In .r, - (n In b/(b’ - I )) 

Note that y is on both sides of the equation; thus, it must be 
solved using numerical methods 
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Gross Layer 

Mean Claim Size 
q+l 

“Real” Mean Claim 
Size 

“Real” Expected 
Losses 

Total Loss 
Variance 

Total Loss 
Variance in 
“Real” Dollars 
Where Expected 
Number of Claims 
is n 

4 
q-1 

K* 

4 flK- 
q-1 

9 

q-2 

9 
nK2 q - 2 ( ) 

1 

q-1 

K 

q-1 

nK 

q-1 

- ( 1 2q +1 
q-1 

( ) 
2q +1 

q-1 
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Censored Distribution 
(Gross Layer) 

5. 

Mean Claim Size 

qfl 

y= I 

“Real” Mean Claim Size 

Expected Losses 

Total Loss Variance 

Y#2 

q=2 

Total Loss Variance 
in Real Dollars 

q-h+ 

q-1 
I +lnh 

q - 2h2 y 

q-2 
I + 2Inb 

Truncated Distribution 
(Gross Layer) 

q (I - b’-Y) 
(y- I)(1 -b-q 

(In b) / (I - b-l) 

Multiply appropriate 
formula by K 

Multiply appropriate 
formula by nK 

y(l -b”-“) 
(y - 2) (I - KY) 

(2 In b) / (1 - b-2) 

Multiply appropriate 
formula by nK2 

Net Layer-Mean formula can be calculated by observing that E [X - I] = 
E IX] - 1. Variance formulae can be calculated by noting that the 
variance is equivalent to E [X’], and using the relationship 
E((X- l)‘]=E[X=]-2E[X]+ I. 
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APPENDIX B 

SIMULATED PARETO LOSSES 

25 pseudo-random losses from a Pareto distribution with q = 1 
and a lower limit of $25,000. 

Amount of Loss Normalized Amount of Loss 

I 69,976 2.799 
2 62,913 2.517 
3 25,766 1.031 
4 39,800 1.592 
5 97,739 3.910 
6 36,356 1.454 
7 139,665 5.587 
8 34,749 1.390 
9 45,716 1.829 

10 96,353 3.854 
11 1,847,213 73.889 
12 25,231 1.009 
13 48,057 I .922 
I4 3 1,744 I .270 
I5 98,882 3.955 
16 209,03 I 8.361 
17 214,700 8.588 
18 396,323 15.853 
I9 32,772 1.311 
20 45,190 1.808 
21 32,044 I .282 
22 55,843 2.234 
23 99 $0 1 3.984 
24 29,900 1.196 
25 60.463 2.419 

RI 



82 

APPENDIX C 

VARIOUS FORMS OF THE PARETO 

The Pareto distribution is mentioned in a large number of statistical texts 
and technical papers. Although many distributions (e.g., Poisson and normal) 
have a fairly standard notation, there is a wide variety of formulations of the 
Pareto distribution. This appendix will present a brief survey of some of the 
alternatives. 

Johnson and Kotz [J 1 ] contains one of the most thorough treatments of this 
distribution, as it devotes an entire chapter to the Pareto distribution. This 
reference includes a discussion of the history of the distribution, which can be 
traced to the Italian born, Swiss professor of economics, Vilfredo Pareto. Three 
main representations of the cumulative distribution are given: 

K > 0; a > 0; x 2 K 

KI 
Johnson and Kotz F, (x) = 1 - ~ 

(x + c)” 

Kle “’ 
Johnson and Kotz F, (x) = 1 - ~ 

(x + cy 

The first is referred to as the “Pareto distribution of the first kind,” the second 
as the “Pareto distribution of the second kind,” and the third as the “Pareto 
distribution of the third kind.” Johnson and Kotz note that the first two formu- 
lations are Pearson Type VI distributions. 

Patrik [PI] uses a form of the Pareto distribution of the second kind: 

Patrik F (xIf3,6) = I - (&$I” 

Hogg and Klugman [H2] discuss two formulations. The first is referred to 
as the Pareto distribution and has the cumulative distribution: 

a>0 A>0 



The second is referred to as the generalized Pareto distribution and has a 
cumulative distribution as follows (where B (.) refers to the beta distribution): 

Hogg and Klugman F (x) = B K, LX: & 

The density function is as follows: 

Hogg and Klugman f(x) = r (a + K) A” x”-’ 

r (a) I- (K) (A + X)K+a 

They note that the Pareto distribution is a special case of the generalized Pareto 
when K = 1. 

Formulations by authors who work primarily with the cumulative distribution 
include: 

Huang G (X; a, v) = 1 - a” x-” x>a,a>O,v>O 

Benktander F (x) = 1 - xeu x2 1 
” 

Quandt F (x) = I - : 
(> 

K>O, a>O, x?K 

Other authors present this distribution in terms of the density function: 

Malik f(x) = v (g,y-v- a > 0, v > 0, x Z a 

Lwin f(xlX, a) = A aA Y-’ a > 0, A > 0, x > a 

Kendall and Stuart dF=+ O<Ksxsm, cx>l 

Hastings and Peacock f(x) = cxmC-’ l’x, c>o 

Finally, the IS0 uses a Pareto distribution in the “Report of the Increased 
Limits Subcommittee: A Review of Increased Limits Ratemaking” [Ill. In that 
paper, they use “q” as a parameter. For that reason, “q” has been selected as 
the parameter in this paper. 



APPENDIX D 

REASONS FOR PREFERRING “ALTERNATIVE” REPRESENTATION 

Although we typically portray density and distribution functions with the 
loss size along the horizontal axis and the density or cumulative probability 
along the vertical axis, there are a number of logical reasons for preferring the 
“alternative” representation, as portrayed in Figures 1. 2. 3, and 4. 

1. In the standard representation, a loss limit is a vertical line and the excess 
losses lie to the right of the line. In my representation, a loss limit would 
be a horizontal line, and excess losses would lie above the line. It seems 
more intuitive to think of excess losses lying above a line. 

2. In my representation, losses eliminated by a deductible would be below 
the line representing the deductible amount, rather than to the left of a 
line. 

3. If we apply a trend factor to the cumulative distribution of losses, the 
new line is below the old line in the standard representation but above 
it in my representation. It makes more sense to think of inflation as 
producing a new curve above the old one. 

Finally, I would note that this alternative representation is not new. It is 
essentially equivalent to that used in Snader ISI] to depict the insurance charge 
and savings. 
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DISCUSSION BY KURT A. REiCHLE AND JOHN P. YONKUNAS 

Once again, Steve Philbrick has taken a concept which makes many actuaries 
feel uncomfortable and, through lucid writing and clear examples, made it 
available to all who take the time to read him. Prior to Mr. Philbrick’s paper, 
fitting size of loss distributions has been a tool primarily available only to the 
“pure actuary.” This guide to the Pareto distribution provides all actuaries access 
to a powerful means of analysis. The strength of this tool is matched only by 
its simplicity as presented by Mr. Philbrick. 

Using data prepared by the Actuarial Committee of the Insurance Services 
Office (ISO), this review will examine three facets of the single parameter 
Pareto distribution: the impact of development, the impact of trend, and evidence 
that the Pareto may overstate the tail of the distribution function. We also will 
suggest some practical guides for putting the Pareto distribution to use, including 
an analysis of the sensitivity of the parameter estimate to the number of claims 
available, 

WHY THE PARETO? 

Beginning in 1977, the Ad Hoc Increased Limits Subcommittee of IS0 
(subsequently the Increased Limits Committee) searched for the best-fitting 
continuous distribution for liability losses. Because no distribution seemed to 
fit both small and large claims well, the Subcommittee decided instead to look 
for the best-fitting curve for losses above a lower truncation point. After a good 
deal of research, the two parameter Pareto was selected as providing the best 
fit to liability losses. Although many enhancements have been made in the 
methodology used to derive increased limits factors since 1977, the Pareto curve 
remains ISO’s favored distribution. 

Implementation of the two parameter Pareto distribution does require com- 
plex formulas, including a set of Newton-Raphson equations used iteratively to 
solve for the Maximum Likelihood Estimates (MLE) of each parameter. These 
formulas are not solved easily without the use of a computer, and therefore 
require extensive programming and computing costs. While this complexity 
does not pose an insurmountable problem to the “pure actuary,” it may hinder 
the efforts of the “lay actuary” to use models rather than empirical data directly, 

The one parameter Pareto distribution is quite simple to use, as demonstrated 
in Mr. Philbrick’s article. Estimates of various moments of the distribution are 
very simple to calculate, and the formulas are easily remembered. The same is 



true for many estimates of the parameter, including the MLE. However, to our 
knowledge, no extensive research has been published on how appropriate the 
one parameter Pareto is for loss distributions. The two parameter Pareto has a 
proven track record as an acceptable model for excess losses. A simple math- 
ematical transformation will show that the parameter of the one parameter Pareto 
is equivalent to a parameter of the two parameter Pareto (see Appendix A). 
Hence, by using the one parameter version, we obtain much of the power of 
the two parameter Pareto without its accompanying complexity. 

LOSS DEVELOPMEN? 

The change in the cumulative value of losses for a given accident period 
has been discussed extensively in the actuarial literature. But very little has 
been published on how the distribution of individual claims changes as losses 
mature, and in particular how the parameters underlying that distribution change. 
A full discussion of loss development and its effect on the Pareto is beyond the 
scope of this review. We will, however, cite some of our observations from 
examining data provided by ISO. 

An analysis of losses usually begins by segregating the data into various 
time periods (report year, accident year, policy year, etc.). To put these periods 
on a comparable basis, two adjustments are commonly utilized: trend and loss 
development. Although the use of the one parameter Pareto implies that severity 
trend may be ignored (as discussed in a later section), loss development may 
not. An adjustment must be made for loss development prior to combining 
various periods for analysis. 

In casualty lines of insurance, loss development generally has a positive 
impact on losses; i.e., average losses become more severe as the largest losses 
emerge most slowly. Remember that severity and the Pareto parameter are 
inversely related. Therefore, an u priori expectation is that the Pareto parameter 
should decrease as an accident period becomes more mature. 

As will be seen, the value of the Pareto parameter varies substantially from 
one valuation to another. Property losses from several accident periods may be 
combined to derive the parameter with no recognition of the date of loss. 
Applying the same approach to casualty lines may severely overstate the param- 
eter and understate the excess severity. An excellent example of this is inad- 
vertently included in Mr. Philbrick’s paper. In Application 3 in Section VII, 
Mr. Philbrick combines professional liability claims from four accident years 



with no adjustment for development, calculating a MLE of the Pareto parameter 
of 1.408. Deriving the maximum likelihood estimate of each year separately 
produces Pareto parameters of 1.176, 1.002, 1.570 and I.746 for 1978 through 
1981 respectively. The clear upward trend in these values is to be expected and 
most often results in an overstatement of the parameter if the claims are simply 
combined with no adjustment for development. 

Additional evidence that the parameter is inversely related to maturity was 
found when we examined occurrence size distributions (OSD’s) provided by 
ISO. A lower truncation point of $25,000 has been selected. The MLE of the 
Pareto parameter was calculated by policy year, by evaluation month. A table 
of parameters for Owners. Landlords, and Tenants (OL&T) Bodily Injury Lia- 
bility follows. 

Policy Year Evaluation Month 

1975 
1976 
1977 
1978 

27 - 

,313 
.547 
.539 
.644 

39 51 63 - - - 

.51;‘6 1.412 1.377 
,467 1.407 1.309 
.578 1.482 1.389 
,578 1.460 1.364 

75 87 99 - - - 

,308 1.283 1.281 
.258 1.225 
,347 

1979 1.688 1.518 I.443 
1980 1.700 1.590 
1981 1.717 

As expected, the parameter decreases as the policy year matures. Loss 
development must be accounted for prior to analysis. One could use a triangu- 
lation to adjust immature parameters to their ultimate values. 

Note that with the exception of the 27 month evaluation, the parameter is 
relatively stable across policy years within a given evaluation. We found this 
to be true for other values of the truncation point and for Products Bodily Injury 
Liability data. 

Why the parameters calculated at 27 months exhibit an upward trend is not 
clear. It may indicate that data as of 27 months is too immature for analyzing 
excess losses. It may also indicate a change in industry reserving practices. 
Such a change would affect the distribution most at the earliest evaluation and 
least at later maturities. 



We suggest that more research be devoted to determining the impact of loss 
development on the Pareto parameter. We also recommend that the user of the 
one parameter Pareto not blindly combine data without adjusting for loss de- 
velopment 

Of all the implications of the Pareto distribution, the most vexing is that 
trend does not affect excess loss severity. only loss frequency. How can such a 
distribution be appropriate for casualty-property losses? It is “obvious” that 
trend changes severity values. The work of ISO in fitting Pareto distributions 
to excess liability losses provides us with much data to evaluate this property. 

As shown in the section on loss development, the Pareto parameter has 
remained relatively stable across policy periods for a given evaluation, which 
provides solid evidence that the parameter may be unaffected by trend. 

Another empirical test is to examine the value of the average excess claim 
size over time. We again turn to the OSD‘s for OL&T Bodily In.jury as compiled 
by ISO. Note that this raw data has not been adjuhtcd for trend or loss devel- 
opment. 

It is readily apparent that the average claim sizes have remained stable over 
time: both across policy years and within policy year\. Trend does not appear 
to affect the average size of loss within a specific CXCC\\ layer. 

A more direct approach is to examine the form of distribution after making 
a transformation for trend. Assuming uniform trend. the value of the parameter 
is preserved; that is, q remains unchanged. The mathematical details of this 
transformation can be found in Appendix B. 

How does one explain that the avcrugc claim size within a given cxccss 
interval remains unaffected after trend (and development)? At first glance it is 
intuitively unappealing if not totally unacceptable. Is it possible that the Pareto 
simply is not a realistic model for size of loss distributions’! 

The explanation is that the forces of trend and development fall upon the 
frequency side of the equation. As Mr. Philbrick points out. trend and devel- 
opment merely act to shift claims from one layer to another without changing 
the average in the layer. Instead, the frequency by, layer changes as losses 
develop and occur later in time. So we still are stuck with ad.justments for trend 
and development when the objective i\ to forecast aggregate loss dollars. 



Policy Year Evaluation Month 

AVERAGE CLAIM SIZE IN LAYER 

$50,000 TO $100,000 

1975 79,174 
1976 77,039 
1977 77,742 
1978 75,247 
1979 73,067 
1980 73,789 
1981 75,011 

27 - 39 51 63 75 87 99 - - - - - - 

77,135 78,306 78,407 80,263 80.462 80,533 
75,303 76,920 78,484 79,264 79,864 
76,496 76,373 77,540 78,278 
76,994 78,765 79,026 
76,232 77,827 
75,733 
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Policy Year 

AVERAGE CI.AIM SIZE IN LAYER 

$lo().~o TO $2%),000 

Evaluation Month 

1975 
1976 
1977 
1978 
1979 
I’$80 
1981 

27 39 51 63 7s 87 99 - - - - - - 

177.059 165.249 163.967 166.215 167,825 171.715 173.931 
170.587 170,295 170,584 173,939 176.422 179.241 
156.528 159.315 159.453 165.980 167.384 
161.748 163.952 167.25 1 173.905 
156.233 162.447 165.895 
161.820 I hS.275 
lS4.51’) 



In developing increased limits factors or excess loss premium factors, claim 
frequency drops out of the equation. All that remain are ratios of severities. 
Therefore, since the parameter is preserved after trend, an adjustment for trend 
may not be necessary. This could greatly simplify current procedures. 

Data we have examined support the conclusion that trend does not affect 
excess severity. Hence, our preconceptions turned out to be significant stumbling 
blocks to accepting the Pareto. We hope that other readers will note the strength 
of the empirical evidence before accepting what appears to be “common sense.” 

GOODNESS OF FIT 

In its initial consideration of the Pareto, the Increased Limits Subcommittee 
of IS0 expressed doncem that the Pareto may overstate the tail probabilities. 
Mr. Philbrick also refers to the fact that “most actual data suggests that the tail 
of the Pareto is still somewhat too ‘thick’ at extremely high loss amounts.” 
Empirical evidence for casualty lines demonstrates the greater the truncation 
point, the larger the parameter estimate. That is, the indicated excess severity 
declines as one raises the truncation point when fitting the distribution. If excess 
claims were truly Pareto distributed, then one would obtain the same maximum 
likelihood estimate of the parameter independent of the truncation point chosen. 

To demonstrate this overstatement, we look at Pareto parameters derived 
from IS0 data for liability lines. These data are censored above at $500,000. 
The Workers’ Compensation data are from a single insurer and are unlimited. 

PARETO PARAMETERS 

Line of Insurance 

OL&T Bodily Injury 
Products Bodily Injury 
Workers’ Compensation 

Lower Truncation Point (000) 

25 50 100 250 - - - - 

I.281 1.330 1.447 1.508 
.991 1.269 1.714 2.584 

1.454 1.715 2.316 2.086 

It is clear from these data that, depending on the line of insurance, the 
Pareto parameter may be influenced greatly by the truncation point chosen. A 



significant implication of this upward trend is that parameters estimated with a 
low truncation point will generate conservative estimates of severities in the 
higher layers. For example, the estimate of the layer $l.OOO.OOO excess of. 
$l,OOO,OOO may be greatly overstated if’ the truncation point for deriving the 
parameter is $25,000. The impact of this shortcoming is minimal if the excess 
layer estimated has a lower bound close to the truncation point. For instance, 
the estimate of the severity of any layer excess of !Wi,OOO will bc close to the 
actual severity in that layer if the truncation point for deriving the y parameter 
is close to $25,000. This is true even when the parameter increases rapidly with 
the truncation point. 

IS0 data provide evidence to support these conjectures. Displayed in the 
following table are comparisons of actual and fitted average severities for a 
selected group of gross layers. 

OWNERS. LANDLORDS AND TENANTS BODKY INJURY 

GROSS LOSSES IN EXCESS Ok $100,000 
POLICY YEAR 1975 hs OF 99 MONTHS 

Losses Actual 
Limited to Severity 

Difference Between 
Actual and Fitted 

Severities for Truncation 
Point of 

$25,000 %100,ooo 

$125,000 
$150300 
$175,000 
$200,000 
$250,000 
$300,000 
$350,000 
$400.000 
$450,000 
$500,000 

$1 19,486 
$135,162 
$147,818 
$158,426 
$173,93 1 
$184,779 
$190,338 
$195,144 
$199,153 
$202,348 

1.8% 
2.3% 
2.7% 
2.9% 
3.Y% 
5.3% 
8.0% 

10. I% 
1 I .X%’ 
13.4% 

I .S% 
I .4% 
1.1% 
0.7% 
0.7%’ 
1.1% 
2.9% 
4.2% 
5.2% 
6.1% 

Two facts are readily apparent from this exhibit. First, the wider the layer 
being estimated, the greater the potential error. Second, the closer the truncation 



point is to the lower end of the layer, the smaller the error. For those interested, 
Appendix C contains similar data for other truncation points and evaluations. 

In using the Pareto to derive increased limits factors, the magnitude of these 
errors is significantly reduced. Losses in excess of the lower truncation point 
generally represent a small percentage of the total claim count. Since increased 
limits factors incorporate claims of all sizes, the large percentage of losses 
below the truncation point reduces the impact of any error in the excess estimate 
and, therefore, any error in the increased limits factor. 

PRACTICAL CONSIDERATIONS 

The inability to correctly estimate the Pareto parameter will obviously affect 
the accuracy of the excess severity. As is commonly true when modelling, the 
error in the parameters is dependent upon the amount of data available. The 
Pareto is no exception. 

A generally accepted way to express the potential errors in a parameter 
estimate is a classical credibility approach based on claim counts. Confidence 
intervals, although complex in their derivation, can be developed and used to 
indicate the number of claims required to achieve a given level of confidence 
for a given level of tolerance. For example, it can be shown that 310 claims 
are necessary to be 90% confident of being within 10% of the true value of the 
Pareto parameter. Confidence intervals in the following table were generated 
based on the MLE of the parameter. Formulas for the confidence intervals are 
developed in Appendix D. 

Level of 
Tolerance 

2 5% 
210% 
+I?)% 
?25% 
+50% 

97.5% 

2160 
580 
275 
I15 
40 

Level of Confidence 

95% 90% 85% 80% 

1655 II65 890 710 
445 310 240 190 
210 150 115 90 

85 60 45 40 
30 20 15 10 

This table can give the user an indication of the accuracy of the MLE. 
Clearly, a large number of excess claims is required for a high degree of 
accuracy. When sample data lack the credibility required, it is desirable to have 
available a source of parameters based on a larger volume of data. These 



parameters can then be used as the complement of credibility to the parameter 
derived from the data being analyzed. In Appendix E arc Pareto parameters 
from IS0 for various sublines of General Liability. Automobile Liability and 
Professional Liability. When either no data or limited volumes of data are 
available. these factors can provide reasonable estimates of excess severities. 

An important question to answer before determining whether enough claims 
are available or whether to use IS0 factors for credibility weighting is: “How 
sensitive is the estimate of an average net claim size to errors in the parameter 
estimate?” The following charts display the error in the estimate of the average 
net claim size for various layers of loss for a given error in the MLE. 

ERK~R IN AVERAGE CI,AIM Cosr 
PARETO PARAMI: I t.R = 1 .OO 

Error in MLE 

Net Layer IO% 25% 50%’ 

$400,000 excess of $100,000 1.6%’ 17.7%’ 31.3% 
$900,000 excess of $100,000 10.7% 24.0% 40.6% 

$1,900,000 excess of $100.000 I3.6%, 29.6% 48.6% 

ERROR IN AVERAGE CLAIM COSI 

PARETO PARAMETER = I .% 

Error in MLE 

Net Layer 

$400,000 excess of $100.000 
$900,000 excess of $100.000 

$1,900,000 excess of $100,000 

10%’ 2598 50% 

9.7% 21.9% 37.3% 
12.7% 27.6% 44.8% 
15.1% 31.8% 50.0% 
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Two generalizations can be drawn from this example. The percentage error 
varies with both the size of the parameter and the width of the layer being 
estimated. It is also interesting to note that the error in estimating an average 
net claim size for a specific layer can easily exceed the error in the MLE. 

Because of the special properties of the Pareto, the errors for the layers 
shown above are dependent only on the relationship of the endpoints to the 
truncation point. Thus, the error in each of the two layers $400,000 xs $lOO,OOO 
and $4,000,000 xs $I,OOO,OOO, with truncation points of $100,000 and 
$I ,OOO,OOO, respectively, is the same, given an identical error in the underlying 
parameter. 

Even though the percent error in a layer varies with the size of the parameter, 
the absolute dollar error decreases. This may be obvious since severity is 
inversely proportional to the Pareto parameter. Thus we might be more lenient 
with a lower degree of tolerance for a larger value of the parameter. 

The following table displays absolute dollar errors in various net layers for 
a 10% error in the MLE. 

DOLLAR ERROR IN NET LAYER 

Net Layer q= I .oo 

$400,000 excess $100,000 $12,284 
$900,000 excess $100,000 $24,587 

$ I ,900,OOO excess $100,000 $40,708 

q=1.50 

$10,756 
$17,350 
$23,382 

CONCLUSION 

The empirical data we have examined indicate that the implications under- 
lying the use of the one parameter Pareto are satisfied for casualty lines of 
insurance. This is not to say that limitations and restrictions on its use do not 
exist. It would be asking too much of any one parameter distribution to perfectly 
fit excess losses of all property and casualty lines. But the range of applications 
of the Pareto are substantial and, therefore, significant to anyone involved in 



excess pricing. This paper should provide encouragement to those who may 
have felt intimidated by the complexity of most modelling techniques available 
to actuaries. At the same time, it provides a powerful tool for those who regularly 
use more complex models but do not always need ten decimal point accuracy. 

Most of the data referenced in this review is the product of the Increased 
Limits Committee and the staff of the Insurance Services Oftice. We wish to 
thank the IS0 for allowing us the use of their data and analysis. 
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APPENDIX A 

DERIVATION OF THE ONE PARAMETER PARETO 

FROM THE TWO PARAMETER PARETO 

The one parameter Pareto is a special case of the two parameter Pareto. A 
common form of the two parameter Pareto and the one currently used by 
Insurance Services Office is: 

Y x lb)” 
f(x) = (er + b)‘q’l’ for 0 5 x < x 

In this formula, the value of x represents individual claim sizes. Generally, 
this form is fit to losses above some lower truncation point. 

We wish to derive R (y), where 

y = (x + b)lb for I 5 y < x (2) 

and 

cly = dxib (3) 

Substituting (2) and (3) into (I) we have, 

g (Y) = J-0) x W/d?) 

g [,v) = q x y-(y+l) for 1 5 y < x 

which is the general form of the one parameter Pareto. 
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APPENDIX H 

PARETO AND TREND 

This appendix will show that, assumin, (1 uniform trend (i.e., all claims sizes 
trend at the same rate), the value of the parameter y is preserved (remains 
unchanged). We start by restating the Parcto. 

/‘ (.r) = y X x “‘+ I’ for 1 5 .y < x 

Under uniform trend we have the following transformation, 

y = u X .t- for N 5 y < * 

and, 

fly = a x dr 

Here the multiplicative factor (I represents the impact of trend on individual 
claims. 

Making this change of variable and solving for ,q (q) we have, 

g (r) = ( l/cl) X q X (y/(r) ‘y + “for 11 5 y c: x 

Renormalizing this density function by dividing all values of y by N, we 
have, 

2 = y/u; flz = dyltr for I 5 z < x 

The transformation then becomes. 

II (3) = g (g) x (fl!Yfk) 

h (2) = y x = ‘c/+ Ii 

The parameter y in all three density functions is the same and has not been 
affected by the transformation. 
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APPENDIX C 

COMPARISON OF FITS 

Presented in the following exhibits are comparisons of actual severities to 
data fitted by a one parameter Pareto. All data are from OL&T Bodily Injury 
as provided by ISO. 

Exhibit C-l displays fits of gross losses excess of $25,000 using a truncation 
point of $25,000. These tits produce an average absolute error of 1.3% and 
range from 0.0% to 3.8%. 

Exhibit C-2 displays fits of gross losses excess of $100,000 using a truncation 
point of $100,000. The absolute errors in these fits average 2.0% and range 
from 0.0% to 6. I%. 

Exhibit C-3 displays fits of gross losses excess of $lOO.OOO using a truncation 
point of $25,000. The absolute errors are much greater in these fits. They 
average 5.6% and range from I .90/c to 13.4%. 

In general, the wider the interval the greater the divergence. But these 
differences are relatively small when the lower bound of the layer is equal to 
the truncation point. Exhibit C-3 demonstrates that the error in predicting 
average severities can be quite large when the lower bound of a layer is much 
larger than the truncation point. 



too 

Losses 
Limited to 

$50,000 
$75,000 

$100,000 
$l25,000 
$l50,000 
$175,000 
$200,000 
$250,000 
$300,000 
$350,000 
$400,000 
$450,000 
$500,000 

EXHIBIT C-I 
SHEEI 1 

OWNERS. LANDLORDS. ANU TENANTS 

PARETO GOODNESS OF Frr 
GROSS LOSSES IN Excw OF $25,000 

POLICY YEAR 1981 AS 01; 27 MONTHS 

MLE OF THE PARAMJI.JER: I .717? 

Actual 
Severity 

$37,975 
$43.64’) 
$47.087 
$48.962 
$50.527 
$5 1,605 
$52.549 
$53,946 
$54,955 
$55,548 
$56.006 
$56,370 
$56,702 

Fitted 
Severity 

Percent 
Difference 

$38,655 
$44,005 
$46,960 
$48,868 
$50,215 
$5 1.224 
$52,013 
$53,173 
$53,992 
$54.606 
$55.086 
$55,472 
$55.791 

I .8% 
0.8% 

-0.37c 
-0.2% 
-0.6% 
-0.7% 
- I .O% 
-- 1.4% 
-1.8% 
-- I .7% 
-I .6% 
-1.6% 
-1.6% 
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EXHIBIT C- 1 
SHEET 2 

OWNERS, LANDLORDS, AND TENANTS 

PARETO GOODNESS OF FIT 

GROSS LOSSES IN EXCESS OF $25,000 
POLICY YEAR 1980 AS OF 39 MONTHS 

MLE OF THE PARAMETER: I .5899 

Losses 
Limited to 

Actual 
Severity 

Fitted 
Severity 

$50,000 
$75,000 

$100,000 
$125,000 
$150,000 
$175,000 
$200,000 
$250,000 
$300,000 
$350,000 
$400,000 
$450,000 
$500,000 

$38,695 
$44,758 
$48,499 
$50,850 
$52,765 
$54,135 
$55,335 
$57,196 
$58,550 
$59,413 
$60,143 
$60,72 I 
$6 I ,207 

$39,223 
$45,213 
$48,673 
$50,980 
$52,653 
$53,933 
$54,95 I 
$56,484 
$57,595 
$58,446 
$59,123 
$59,677 
$60,141 

Percent 
Difference 

I .4% 
I .O% 
0.4% 
0.3% 

-0.2% 
-0.4% 
-0.7% 
-1.2% 
-1.6% 
- 1.6% 
-I .7% 
-I .7% 
- 1.7% 
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EXHIBIT C-I 
SHEEI 3 

OWNERS, LANDLORDS, AND TENANTS 
PARETO GOODWW OF Frr 

GROSS LOSSES IN EXCESS OF $25.000 
POLKY YEAR 1979 4s OF 5 I MONTHS 

MLE OF ‘THE P~R~IME JFR: I .4427 

Losses Actual 
Limited to Severity 

Fitted 
Severity 

$50,000 
$75,000 

$100,000 
$ 125,000 
$150.000 
$175,000 
$200,000 
$250,000 
$300,000 
$350,000 
$400.000 
$450,000 
$500.000 

$39.55 I 
$46.500 
$51,1 IO 
$53,‘)54 
$56.253 
$58,053 
$59,646 
$61.993 
$63,613 
$64,614 
$65.447 
$66,088 
$66.601 

w9.922 
$46,749 
$50.90 I 
$53.777 
$55.924 
$57,610 
$58,97Y 
$6 I .095 
$62.675 
$63.915 
$64,923 
$65,764 
$66.479 

Percent 
Difference 

0.9% 
0.5% 

-0.4% 
-0.3% 
-0.6% 
-0.8% 
-1.1% 
- 1.4% 
- 1.5% 
-1.1% 
-0.8% 
-0.5% 
-0.2% 
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EXHIBIT C- 1 
SHEET 4 

OWNERS, LANDLORDS, AND TENANTS 
PARETO GOODNESS OF FIT 

GROSS LOSSES IN EXCESS OF $25,000 
POLICY YEAR 1978 AS OF 63 MONTHS 

MLE OF THE PARAMETER: 1.3644 

Losses 
Limited to 

Actual 
Severity 

Fitted Percent 
Severity Difference 

$50,000 
$75,000 

$100,000 
$125,000 
$150,000 
$175,000 
$200,000 
$250,000 
$300,000 
$350,000 
$400,000 
$450,000 
$500,000 

$39,696 
$47,088 
$52,090 
$55,529 
$58,321 
$60,545 
$62,466 
$65,349 
$67,484 
$68,749 
$69,806 
$70,706 
$71,518 

$40,313 
$47,633 
$52,209 
$55,442 
$57,895 
$59,846 
$61,449 
$63,960 
$65,866 
$67,381 
$68,627 
$69,676 
$70,577 

1.6% 
1.2% 
0.2% 

-0.2% 
-0.7% 
-1.2% 
-1.6% 
-2.1% 
-2.4% 
-2.0% 
-1.7% 
- 1.5% 
-1.3% 



Losses 
Limited to 

EXHIBIT C-l 
SHEE-I 5 

OWNERS, LANDLORDS. >AN[) TENANTS 
PARETO GOODNESS OF FI I- 

GROSS LOSSES IN Excxss w $25.000 
POLICY YEAR 1977 AS OF 75 MONTHS 

MLE OF THE PARAMETER: I .3466 

Actual 
Severity 

$50,000 
$75,000 

$100,000 
$125,000 
$150,000 
$175,000 
$200,000 
$250,000 
$300,000 
$350,000 
$400,000 
$450,000 
$500,000 

$39,895 
$47,363 
$52,203 
$55,322 
$57,747 
$59.602 
$61,216 
$63,890 
$66,044 
$67,240 
$68,175 
$68,979 
$69,7 I6 

Fitted 
Severity 

$40.404 
$47.84 I 
$52.519 
$55.839 
$58.367 
$60,384 
$62,046 
$64.657 
$66.646 
$68.232 
$69,539 
$70,642 
$7 1,592 

Percent 
Difference 

I .3% 
1 .O%’ 
0.6% 
0.9% 
1.1% 
1.3% 
I .4% 
1.2% 
0.9% 
I .5% 
2.0%’ 
2.4% 
2.7% 
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EXHIBIT C- 1 
SHEET 6 

OWNERS, LANDLORDS, AND TENANTS 
PARETO GOODNESS OF FIT 

GROSS LOSSES IN EXCESS OF $25,000 
POLICY YEAR 1976 AS OF 87 MONTHS 

MLE OF THE PARAMETER: 1.2254 

Losses Actual 
Limited to Severity 

Fitted 
Severity 

Percent 
Difference 

$50,000 
$75,000 

$100,000 
$125,000 
$150,000 
$175,000 
$200,000 
$250,000 
$300,000 
$350,000 
$400,000 
$450,000 
$500,000 

$40,414 
$48,555 
$53,923 
$57,602 
$60,653 
$63,165 
$65,374 
$68,936 
$71,613 
$73,314 
$74,685 
$75,807 
$76,844 

$4 1,043 
$49,329 
$54,765 
$58,746 
$61,853 
$64,382 
$66,503 
$69,908 
$72,565 
$74,728 
$76,543 
$78,098 
$79,455 

1.6% 
1.6% 
1.6% 
2.0% 
2.0% 
1.9% 
1.7% 
I .4% 
1.3% 
1.9% 
2.5% 
3.0% 
3.4% 
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EXHIBIT C- 1 
SHEE’l‘ 7 

OWNERS. LANDWRIX. AND TENANII 
PARE’I‘O GOODNESS OF‘ FIT 

GROSS LOSSES IN Exe-kss OF $25,000 
POLICY YEAR 1975 AS OF 99 MONTHS 

MLE OF THF. PARAM~;.~~:K: I .2805 

Losses Actual 
Limited to Severity 

Fitted 
Severity 

$50,000 
$75,000 

$100,000 
$125,000 
$150,000 
$175.000 
$200,000 
$250,000 
$300,000 
$350,000 
$400,000 
$450,000 
$500,000 

$40,131 
$48,060 
$53,525 
$57,217 
$60.188 
$62,586 
$64,597 
$67,535 
$69.59 I 
$70,644 
$7 1,555 
$72,315 
$72.920 

$40.748 
$48,637 
$53.714 
$57,379 
$60,208 
$62,490 
$64.388 
$67.406 
$69,735 
$71.614 
$73.177 
$74.508 
$75.661 

Percent 
Difference 

1.5% 
1.27r 
0.4%) 
0.3% 
0.0% 

-0.2% 
-0.3% 
-0.2% 

0.2% 
I .4% 
2.3% 
3.0% 
3.8% 



Losses Actual 
Limited to Severity 

$125,000 
$150,000 
$175,000 
$200,000 
$250,000 
$300,000 
$350,000 
$400,000 
$450,000 
$500,000 

S1NGL.E PARAMETER PARETO DISTRIRUTION 

EXHIBIT C-2 
SHEET 1 

OWNERS, LANDLORDS, AND TENANTS 

PARETO GOODNESS OF FIT 

GROSS LOSSES IN EXCESS OF $100,000 
POLICY YEAR 1981 AS OF 27 MONTHS 

MLE OF THE PARAMETER: 2.0623 

Fitted 
Severity 

Percent 
Difference 

$114,905 
$127,343 
$135,917 
$143,421 
$154,519 
$162,540 
$167,257 
$170,897 
$173,788 
$176,430 

$119,867 
$132,944 
$142,187 
$149,057 
$158,571 
$164,833 
$169,259 
$172,549 
$175,088 
$177,104 

4.3% 
4.4% 
4.6% 
3.9% 
2.6% 
1.4% 
1.2% 
1 .O% 
0.7% 
0.4% 

107 



108 SINCr1.t PARAV1.1-1;R PARI: IO I)lS I KIHllI IOii 

Losses 
Limited to 

EXHIBIT C-2 
SHEET 2 

OWNERS, LANDLORDS, AND TENANTS 

PARETO GOODNESS OF FIT 

GROSS LOSSES IN EXCESS OF $lOO,OOO 

POLICY YEAR 1980 AS OF 39 MON~‘HS 

MLE OF THE PARAMETER: I .6478 

Actual 
Severity 

Fitted 
Severity 

Percent 
Difference 

$125,000 
$150,000 
$175,000 
$200,000 
$250,000 
$300,000 
$350,000 
$400,000 
$450,000 
$500.000 

$117,647 
$132,015 
$142,302 
$151,305 
$165,275 
$175,438 
$181,915 
$187,391 
$191,733 
$195,380 

$120,777 
$135,659 
$146,940 
$155.842 
$169,103 
$178,602 
$185,802 
$191,484 
$196.104 
$199.948 

2.7% 
2.8% 
3.3% 
3.0% 
2.3% 
1.8% 
2.1% 
2.2% 
2.3% 
2.3% 
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Losses 
Limited to 

$125,000 
$150,000 
$175,000 
$200,000 
$250,000 
$300,000 
$350,000 
$400,000 
$450,000 
$500,000 

EXHIBIT C-2 
SHEET 3 

OWNERS, LANDLORDS, AND TENANTS 

PARETO GOODNESS OF FIT 

GROSS LOSSES IN EXCESS OF $100,000 
POLICY YEAR 1979 AS OF 51 MONTHS 

MLE OF THE PARAMETER: 1.741 

Actual 
Severity 

Fitted 
Severity 

$117,217 
$131,141 
$142,041 
$151,681 
$165,895 
$175,709 
$181,765 
$186,812 
$190,693 
$193,797 

$120,567 
$135,022 
$145,809 
$154,207 
$166,513 
$175,162 
$181,616 
$186,641 
$190,679 
$194,004 

Percent 
Difference 

2.9% 
3.0% 
2.7% 
1.7% 
0.4% 

-0.3% 
-0.1% 
-0.1% 

0.0% 
0.1% 
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Losses 
Limited to 

EXHIBIT C-2 
SHEET 4 

OWNERS, LANDL.ORDS. AND TENANTS 

PARETO GOODNESS OF FIT 
GROSS LOSSES IN EXCESS 01; $100,000 
POLICY YEAR 1978 AS OF 63 MONTHS 

MLE OF THE PARAMETER: 1.5282 

Actual 
Severity 

Fitted 
Severity 

$125.000 
$l50,000 
$175.000 
$200.000 
$250,000 
$300.000 
$350,000 
$400,000 
$450,000 
$500,000 

$1 19.167 
$134.728 
$147,124 
$157,831 
$173,905 
$182.802 
$192,851 
$198,746 
$203,759 
$208.289 

$121.049 
$ I 36,499 
$148,44Y 
$158,043 
$172.63Y 
$183,351 
$191.638 
$198,290 
$203,78 1 
$208.432 

Percent 
Difference 

1.6% 
1.37c 
0.90/c 
0.1% 

-0.7% 
0.3% 

-0.6% 
-0.2% 

0.0% 
0. I% 



Losses Actual 
Limited to Severity 

$125,000 
$150,000 
$175,000 
$200,000 
$250,000 
$300,000 
$350,000 
$400,000 
$450,000 
$500,000 

SING1.E PARAMETER PARE40 DISTRIEUTION 

EXHIBIT C-2 
SHEET 5 

OWNERS, LANDLORDS, AND TENANTS 
PARETO GOODNESS OF FIT 

GROSS LOSSES IN EXCESS OF $100,000 
POLICY YEAR 1977 AS OF 75 MONTHS 

MLE OF THE PARAMETER: 1.5706 

Fitted 
Severity 

$117,980 
$131,964 
$142,660 
$151,968 
$167,384 
$179,804 
$186,699 
$192,095 
$196,731 
$200,977 

$120,952 
$136,198 
$147,907 
$157,249 
$171,357 
$181,622 
$189,506 
$195,797 
$200,962 
$205,296 

III 

Percent 
Difference 

2.5% 
3.2% 
3.7% 
3.5% 
2.4% 
1 .O% 
1.5% 
1.9% 
2.2% 
2.1% 
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Losses 
Limited to 

$125,000 
$150,000 
$175,000 
$200,000 
$250,000 
$300,000 
$350,000 
$400,000 
$450,000 
$500,000 

EXHIBIT C-2 
SHEET 6 

OWNERS, LANDLORDS, AND TENANTS 
PARETO GOODNESS OF FYI 

GROSS LOSSES IN EXCESS OF $100,000 
POLICY YEAR 1976 AS OF 87 MONTHS 

MLE OF THE PARAMETER: I .2489 

Actual 
Severity 

$119,416 
$135,523 
$148,781 
$160,440 
$179,341 
$193,369 
$202,346 
$209,584 
$215,508 
$220,98 1 

Fitted 
Severity 

Percent 
Difference 

$121,706 
$138,568 
$152,239 
$163.665 
$181,931 
$196,121 
$207,626 
$217,242 
$225,462 
$232,613 

1.9% 
2.2% 
2.3% 
2.0% 
I .4% 
I .4% 
2.6% 
3.7% 
4.6% 
5.3% 



Losses Actual 
Limited to Severity 

$125,000 
$150,000 
$175,000 
$200,000 
$250,000 
$300,000 
$350,000 
$400,000 
$450,000 
$500,000 

$119,486 
$135,162 
$147,818 
$158,426 
$173,931 
$184,779 
$190,338 
$195,144 
$199,153 
$202,348 

SINGLE PARAMETER PARETO IXiTRIHU~TION 

EXHIBIT C-2 
SHEET 7 

OWNERS, LANDLORDS, AND TENANTS 
PARETO GOODNESS OF FIT 

GROSS LOSSES IN EXCESS OF $100,000 
POLICY YEAR 1975 AS OF 99 MONTHS 

MLE OF THE PARAMETER: 1.4467 

Fitted 
Severity 

$121,238 
$137,087 
$149,515 
$159,61 I 
$175,194 
$186,822 
$195,941 
$203,348 
$209,525 
$214,782 

113 

Percent 
Difference 

1.5% 
1.4% 
1.1% 
0.7% 
0.7% 
1.1% 
2.9% 
4.2% 
5.2% 
6.1% 



114 

Losses 
Limited to 

$125,000 
$150,000 
$175,000 
$200800 
$250,000 
$300,000 
$350,000 
$400,000 
$450,000 
$500,000 

EXHIBIT C-3 
SHEET i 

OWNERS, LANDLORDS, AND TENANTS 
PARETO GOODNESS OF FIT 

GROSS LOSSES IN EXCESS OF $100,000 
POLICY YEAR 1981 AS OF 27 MONTHS 

MLE OF THE PARAMETER: I .7172 

Actual Fitted 
Severity Severity 

$I 14,905 
$127,343 
$135,917 
$143,421 
$154,519 
$162,540 
$167,257 
$170,897 
$173,788 
$176,430 

$120,620 
$135,183 
$146,094 
$154,618 
$167,161 
$ I 76,020 
$182,657 
$187,842 
$192,020 
$195.471 

Percent 
Difference 

5.0% 
6.2% 
7.5% 
7.8% 
8.2% 
8.3% 
9.2% 
9.9% 

10.5% 
10.8% 
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Losses 
Limited to 

$125,000 
$150,000 
$175,000 
$200,000 
$250,000 
$3OO,ooo 
$350,000 
$400,000 
$450,000 
$500,000 

EXHIBIT C-3 
SHEET 2 

OWNERS, LANDLORDS, AND TENANTS 
PARETO GOODNESS OF FIT 

GROSS LOSSES IN EXCESS OF $100,000 
POLICY YEAR 1980 AS OF 39 MONTHS 

MLE OF THE PARAMETER: 1.5899 

Actual 
Severity 

Fitted 
Severity 

$117,647 
$132,015 
$142,302 
$151,305 
$165,275 
$175,438 
$181,915 
$187,391 
$191,733 
$195,380 

$120,908 
$136,062 
$147,662 
$156,893 
$170,784 
$180,852 
$188,559 
$194,692 
$199,714 
$203,921 

Percent 
Difference 

2.8% 
3.1% 
3.8% 
3.7% 
3.3% 
3.1% 
3.7% 
3.9% 
4.2% 
4.4% 
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Losses 
Limited to 

$125,000 
$150,000 
$175,000 
$200,000 
$25O,ooO 
$300,000 
$350,000 
$400,000 
$450,000 
$500,000 

EXHIBIT C-3 
SHEET 3 

OWNERS, LANDLORDS, AND TENANTS 
PARETO GOODNESS OF FIT 

GROSS LOSSES IN EXCESS OF $lOO,ooO 
POLICY YEAR 1979 AS OF 51 MONTHS 

MLE OF THE PARAMETER: 1.4427 

Actual Fitted 
Severity Severity 

$117,217 
$131,141 
$142,041 
$151,681 
$165,895 
$175,709 
$181,765 
$186,812 
$190,693 
$193,797 

$121,248 
$137.116 
$149,568 
$159,689 
$175,322 
$186,997 
$196,159 
$203,606 
$209,818 
$215,108 

Percent 
Difference 

3.4% 
4.6% 
5.3% 
5.3% 
5.7% 
6.4% 
7.9% 
9.0% 

10.0% 
I I .O% 



Losses Actual 
Limited to Severity 

$125,000 
$150,000 
$175,000 
$200,000 
$250,000 
$300,000 
$350,000 
$400,000 
$450,000 
$500,000 

SINtiLE PARAMETER PARETO DlSTRlBUTlON 

EXHIBIT C-3 
SHEET 4 

OWNERS, LANDLORDS, AND TENANTS 
PARETO GOODNESS OF FIT 

GROSS LOSSES IN EXCESS OF $100,000 
POLICY YEAR 1978 AS OF 63 MONTHS 

MLE OF THE PARAMETER: 1.3644 

Fitted 
Severity 

$119,167 
$134,728 
$147,124 
$157,831 
$173,905 
$182,802 
$192,851 
$198,746 
$203,759 
$208,289 

$121,431 
$137,693 
$150,624 
$161,254 
$177,901 
$190,533 
$200,578 
$208,835 
$215,792 
$22 1,767 

117 

Percent 
Difference 

1.9% 
2.2% 
2.4% 
2.2% 
2.3% 
4.2% 
4.0% 
5.1% 
5.9% 
6.5% 



118 

Losses 
Limited to 

$125,000 
$150,000 
$175,000 
$200,000 
$250,000 
$300,000 
$350,000 
$400,000 
$450,000 
$500,000 

EXHIBIT C-3 
SHEET 5 

OWNERS, LANDLORDS, AND TENANTS 

PARETO GOODNESS OF FIT 

GROSS LOSSES IN EXCESS OF $100,000 

POLICY YEAR 1977 AS OF 75 MONTHS 

MLE OF THE PARAMETER: 1.3466 

Actual Fitted 
Severity Severity 

$117,980 
$131.964 
$142,660 
$151,968 
$167,384 
$179,804 
$186,699 
$192,095 
$196,731 
$200,977 

$121,473 
$137,826 
$150,869 
$161,617 
$178,504 
$191,365 
$20 I ,622 
$210,075 
$217,213 
$223,356 

Percent 
Difference 

3.0% 
4.4% 
5.8% 
6.3% 
6.6% 
6.4% 
8.0% 
9.4% 

10.4% 
11.1% 
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Losses 
Limited to 

$125,000 
$150,000 
$175,000 
$200,000 
$250,000 
$300,000 
$350,000 
$400,000 
$450,000 
$500,000 

EXHIBIT C-3 
SHEET 6 

OWNERS, LANDLORDS, AND TENANTS 

PARETO GOODNESS OF FIT 

GROSS LOSSES IN EXCESS OF $100,000 
POLICY YEAR 1976 AS OF 87 MONTHS 

MLE OF THE PARAMETER: 1.2254 

Actual 
Severity 

Fitted 
Severity 

$119,416 
$135,523 
$148,781 
$160,440 
$179,241 
$193,369 
$202,346 
$209,584 
$215,508 
$220,98 I 

$121,762 
$138,749 
$152,576 
$164,171 
$182,786 
$197,315 
$209,143 
$219,061 
$227,565 
$234,983 

Percent 
Difference 

2.0% 
2.4% 
2.6% 
2.3% 
2.0% 
2.0% 
3.4% 
4.5% 
5.6% 
6.3% 
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Losses Actual 
Limited to Severity 

$125,000 
$150,000 
$175,000 
$200,000 
$250,000 
$300,000 
$350.000 
$400,000 
$450,000 
$500,000 

$119,486 
$135,162 
$147,818 
$158,426 
$173,931 
$184,779 
$190,338 
$195,144 
$199,153 
$202.348 

EXHIBIT C-3 
SHEET 7 

OWNERS, LANDLORDS, AND TENANTS 

PARETO GOODNESS OF FII 
GROSS LOSSES IN Exass OF $lOO.OOO 
POLICY YEAR 1975 AS OF 99 MONTHS 

MLE OF THE PARAMETER: I .2805 

Fitted 
Severity 

Percent 
Difference 

$121,630 
$138,326 
$151,790 
$162,993 
$180,801 
$194,546 
$205,632 
$214.855 
$222,708 
$229.5 I7 

1.8% 
2.3% 
2.7% 
2.9% 
3.9% 
5.3% 
8.0% 

10. I% 
11.8% 
13.4% 
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APPENDIX D 

CONFlDENCE INTERVALS FOR THE PARETO PARAMETER 

This appendix derives a formula that can be used to approximate the number 
of claims necessary to achieve a given level of confidence for a given level of 
tolerance in estimating the Pareto parameter. The results of this appendix are 
based upon the work of Jerry Jurschak in an unpublished paper entitled “The 
Pareto Distribution and Excess of Loss Reinsurance.” 

In Mr. Jurschak’s paper he shows that the following formula represents a 
lOO( I - d)%m conlidence interval for the Pareto parameter, 

where 
q’ = MLE of the parameter 
n = number of claims in the sample 

h = ; x (Z&Z + tin - 1 )z 

c = f x (Z,,-,b’?) + %i - 1)2 

Z = standard normal values. 

Using a classical credibility approach, various values of n can be determined 
for a given level of confidence and a given level of tolerance (i.e. being 
within + 10% of the true value of 4). 

Assume that we wish to be within lOO(k - 1)0/c of the true value of the 
parameter lOO(1 - d)% of the time. The number of claims to comply with 
these constraints can be determined by solving the following confidence interval 
for II. 

1 
hxqxk cxqxk 

n ’ n I 

Substituting the above formulas into this confidence interval, 

4 
’ x (Z&2 + v&I - I)” x y-- ’ (4 x 4 _ q 

1 
y 2 4 x c&I -t//Z) + vz-F7)2 x = 

n 



Since the absolute values of the standard normal numbers are equal, nothing 
is lost by dropping the right term. A few algebraic manipulations will produce 

and, 

V&i - (6 - I X fit, 2 Z,, I,2j X Vi 

For large n, we may question the necessity, bearing in mind the search for 
a simpler form, of subtracting the I. In other words. 

VG - tin - 1 

Using this simplifying assumption we have 

v& - (v&i x 4) 2 2,,&<,,2) x X/k 

Solving this equation for II yields 

Zf,-<,a x k 

n z 4 x (I - ti)Z 

This formula is then used to generate the following table. Note that all 
figures have been rounded to the nearest multiple of tive. 

Level of 
Tolerance 

+ 570 
-tlO% 
*15c/c 
k25c70 
k507c 

Level of Confidence 

97.5% 95% YO% 85% 80% 

2160 1655 1165 890 710 
580 445 310 240 190 
275 210 I50 II5 90 
115 85 60 45 40 
40 30 20 15 10 



APPENDIX E 

INDUSTRY VALUESOF THE PARETO PARAMETERS 

AS PRODUCED BY INSURANCE SERVICES OFFICE 

Line of Insurance 

GENERAL LlABILlTY 
-Products 

-Bodily Injury 
-High Severity 
-Low Severity 

-Property Damage 
-Manufacturers and Contractors 

-Bodily Injury 
-All Classes 
-High Severity 
-Low Severity 

-Property Damage 
-Owners, Landlords, and Tenants 

-Bodily Injury 
-All Classes 
-High Severity 
-Low Severity 

PROFESSIONAL LIABILITY 
-Physicians 
-Surgeons 
-Hospitals 
-Dentists 
-Lawyers 

Value of q 
Truncation 

Point 

0.938 $25,000 
0.848 $25,000 
1.144 $ 3,000 

0.945 $40,000 
0.825 $35,000 
I .031 $40,000 
0.987 $ 4,000 

1.245 $25,000 
1.159 $30,000 
1.600 $30,000 

1.141 
1.110 
0.932 
1.527 
2.098 

$22,000 
$22,000 
$ 1,ooo 
$ 7,000 
$ 2,000 

$ 9,000 
$ 9,000 
$ 9,000 
$ 9,000 
$ 9,000 

COMMERCIAL AUTOMOBILE LIABILITY 
-Zone Rated 0.882 
-Light/Medium Trucks 1.061 
-Heavy Trucks 0.941 
-Extra Heavy Trucks 0.949 
-Private Passenger, Publics, and 1.080 

Garages 
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A SIMULATION TEST OF PREDICTION ERRORS OF 
LOSS RESERVE ESTIMATION TECHNIQUES 

JAMES N. STANARD 

Abstract 

This paper uses a computer simulation model to measure the expected 
value and variance of prediction errors of four simple methods of esti- 
mating loss reserves. Two of these methods are new to the Proceedings. 
The simulated data triangles that are tested are meant to represent sample 
sizes typically found in individual risk rating situations. 

The results indicate that the commonly used age-to-age factor ap- 
proach gives biased estimates and is inferior to the three other methods 
tested. Theoretical arguments for the source of this bias and a comparison 
of two of the methods are presented in the Appendices. 

I. INTRODUCTION 

The purpose of this paper is to measure the expected value and variance of 
prediction errors of four simple methods of estimating loss reserves. This is 
done by using a computer simulation model to generate several thousand dif- 
ferent sets of known loss data. applying each estimation method to predict 
ultimate losses, and then calculating the difference between the predicted and 
the actual (simulated) ultimate values.‘,’ 

Various reserve estimation techniques based on accident year data triangles 
are described in [2j, 151, 161. 171, [20], and (2 11. [2 I ] contains a very extensive 
bibliography. However. the only paper to test the efficiency of the technique it 
proposes is [6] (and a sample size of only 50 iterations was used). 

r The expected value of the prediction error is referred to as the “bias”: the bias and variance of 
the prediction error are together referred to a\ the “efticiency” of the estimation technique. 

? Results from a previous version of this simulation model were described in 1191. The new computer 
model is written in Forth and assembly language on an IBM-PC. and is over twenty times faster 
than the old version written in APL on an IBM 51 IO (each iteration now takes I I to 15 seconds). 
This allows many more iterations and. therefore, much higher me&ion m measurements of bias. 
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The simulated data triangles that are tested here are meant to represent an 
amount of data that is typically found in individual risk rating, either self 
insurance programs, or working excess reinsurance treaties (expected values of 
40 claims per year and $10,400 per claim). For projecting loss reserves on 
much larger amounts of data, the statistical variations that are measured with 
this model will obviously be much less important. 

11. AN OVERVIEW OF THE MODEL 

View the loss process as follows: a given insured’s losses during an accident 
year, a, are random variables drawn from some probability distribution deter- 
mined by a vector of parameters, 8,. Let 9 represent a vector (of vectors) 
containing all the parameters fromthe first accident year of the experience 
period through the latest year under consideration (denoted y). So 

8 = (3 ,,..., e,,. 
Let K be a vector representing the insured’s known loss experience during the 
experience period? K is a random sample drawn from the distributions deter- 

- mined by 0. - 

Let the ultimate losses that a particular insured will have for accident year 
a be a random variable L,. The loss reserving and rate making processes both 
seek to find the “best” estimate of E&J. 4.5 E&J is some function of the &,, 
whereas the experience E was drawn from distributions determined by fJ, ,. . . ,O,,. 
In order for K to be useful in estimating E(L,), there must be some relationship 
between the8’s for different accident years. - 

The simplest assumption would be that S, = . . . = &, that is that an insured’s 
loss potential is constant over the experience period. A more refined model 
would be that the severity and frequency components of the !‘s would be 

1 Later in the paper K will be used to denote the familiar loss development triangle matrix, which 
is a particular way of summarizing the information in K. &, denotes the aj element of K, where 
a is the accident year. 

J This paper will only consider estimates of E(L). One might also want to estimate other attributes 
of the distribution of L, such as Var(L) or 957~ percentile of L. 

’ Actually the loss reserving process seeks to find E(L, - A&,~.&~) where K,. is the total known 
dollars of loss fur accident year a (* denoting the latest known column) and B.. is total paid dollars 
of loss. Footnote 7 shows that this distinction does not affect the methodology of this paper. 



influenced by inflationary trends and by changes in a measurable exposure base, 
and that, after proper adjustments for these, the parameters would be stable 
over time. Examples of these type of adjustments are given in [2]. 

Any experience rating or reserving procedure is an estimatop of E(L); it is 
some function R of the insured’s past known loss and exposure information K. 
A perfect reserve estimation procedure for accident year u would be a function 
R,, such that R,,(K) = E(L,,). However, K is also a random variable, so fulfilling 
this condition is not possible, except by chance. We can, however, hope that 
R,,(K) is an unbiased estimator of E(L,,), that is, that E(R,,(K)) = EU.,,). 

We would also like R(K) to be close to E(L). on the average. One common 
way of expressing this is to minimize E((R(K) - E(L))‘), the mean square error, 
which for an unbiased estimator is equivalent to minimizing Var(R(K)). For 
many simple statistical models, the form of estimator R that satisfies these 
criteria can be explicitly calculated. This is referred to as a Uniform Minimum 
Variance Unbiased (UMVU) estimator.7 

For large samples, the Maximum Likelihood Estimator (MLE) usually sat- 
isfies these properties (asymptotically). However, there are reasons why we 
cannot always use the MLE, the main one being that in order to calculate it we 
must explicitly know the forms of the probability distributions that generate L. 
Of course, we can specify a model of the process that we believe is “reasonable” 
(as is done later in this paper). but there still are several problems. First, the 

h An estimator is a function of a random sample and is therefore a random variable; an estimate is 
the result of the estimator function applied to a particular realization of the random variable, and 
is therefore itself a particular number. Thi, paper will use the term prediction as a synonym for 
estimate. Also. note that L denotes the vector (I.,. . I,,); 5 is defined similarly. 

’ In the computer model that follows, the quantities actually being measured are the expected value 
and variance of the prediction error (R(K) - L). Note that: 

1. The error of any prediction R,(K) of ultimate losses L, is identical to the error of using 
R,(K) - & to predict necessary loss reserves L,, - L?,, so the expected values and variances - 
measured in this paper apply equally well to loss reserves. 

2. &R(K) - L) = E(R(K)) - E(L) = Bias of R(K) 
3. Var(R(K) - L) = Var(R(K)) + Var(L) - 2 Cov(R(K),U 

If L pertains to an accidentyear for which there is noknown experience, then Cov (R(K)&) = 
0 and we are measuring Var(R(K)) plus a constant that does not depend on R. Iffhere is 
some known experience for the accident year-as is typical for loss reserving-then we are 
not actually measuring Var(R(K)); however the variance of the prediction error is actually - 
what we are interested in. 

Note that we have dropped the subscript 0 when not referring to a specific accident year. 



MLE can be very difficult to calculate; second, although it is known to have 
good properties for large samples, it may be a bad estimator for smaller samples 
(it is usually biased); third, while it may be a good estimator if the model we 
assume is in fact the true one, it may be a bad estimator for a different model- 
that is, it may not be robust. 

111. COMPUTER MODEL 

The computer generates six accident years of known loss experience (K”’ 
for the ith iteration) from distributions with fixed parameters. It then applies four 
estimation techniques to this set of known losses, arriving at four different 
predictions of 15”‘. The differences between each of the predictions and the 
actual ultimatelosses are stored. This whole process (generating experience, 
then calculating predictions) is repeated several thousand times-using the same 
underlying distributions and parameters. It can then be determined how well 
the estimates R(K”‘) fared as “guesses” of L”’ and which estimator function R - 
does the best. 

Each iteration produced a set of loss experience for six accident years- 
(u = 0,. . . ,5) where five years of development are known for accident year 0, 
four years of development for accident year 1, etc. Not only was the ultimate 
experience generated for each of these years, but also the portion of it that 
would be known at any point in time. 

For a single accident year a, a single iteration was generated as follows:8 

A random number of losses, N, was drawn from a normal9 distribution with 
mean = 40, variance = 60. 
For each of the N claims, the following random variables were drawn 
(i’ 1 ,...,N): 

M, = Month of loss within accident year (uniform with minimum = 0, 
maximum = 11) 

x The forms of the distributions chosen are somewhat arbitrary, but are consistent with actuarial 
literature. For negative binomial frequency see ] I], [8] and (171; for lognormal severity see (41, 
[IOJ, 1131, 1141, 1161 and 1181; for exponential report lags see [IS] and [22]. However, it is important 
to note that, as demonstrated later in the paper, the conclusions are not particularly sensitive to the 
choice of the underlying loss generation model. 

9 The normal distribution was chosen as a good approximation for the negative binomial, which is 
more difficult to simulate. Also, N was restricted to be greater than zero. 



Q, = Report lag in months (waiting time between accident date and 
report date) (exponential with mean = 18 months) 

All experience was viewed as being analyzed as of year-end, so a claim 

would first become known in r (M’ + z’ - ‘) years after the accident 

year. lo 

Pi = Payment lag in months (waiting time between report date and 
payment date) (exponential with mean = 12 months)” 

Then the following dates are calculated: 
m, = accident month = 12~ + M, 
r, = report month = 12a + M, + Q, 
p, = payment month = 12~ + M, + Q, + P, 

Note that mi, r,, and p, are fixed dates (where the first month of the first accident 
year is taken to be 0). M;, Q,, and P, are lags relative to the accident year (a = 
0,...,5) in which the simulated claim occurs, and relative to each other. 

The random untrended payment amount, C,, was drawn from a lognormal 
distribution with mean = $10,400 and variance = ($34,800)‘. 

The final settlement value of the claim is calculated as C,T(m,,p,), where 

T(m.p) is an inflation factor equal to (L++y) OL and Ia is an inflation index 

at month k. This inflation model was suggested ‘by Robert Butsic in [9]. 

So far, the number of claims, and (for each of these claims) the report date, 
the payment date, and the final payment amount have been determined. The 
last thing to do is set the reserve on each open claim. Each reserve was set as 
an unbiased guess of what the claim would settle for, if it closed in the month 
for which the reserve was being set. 

I0 The APL symbol r , referred to as “ceiling,” means “the smallest Integer greater than or equal 
to.” Note that if M, + Q, < 12 the claim is reported during the accident year, “zero” years after 
the accident year. 

11 These parameters for M, P and Q result in the following average age-to-ultimate factors: 

I2-ult 24-1~11 36-1111 48.uit 6Cult 
----- 

Incurred 3.12 I .60 1.24 I.11 I.05 
Paid 14.29 2.94 1.69 1.30 1.15 
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For each claim a random Reserve Error, V,, was drawn from a lognormal 
distribution with mean = 1, and variance = 2. To calculate the reserve amount, 
this was multiplied by C,T(mi,ri) where r, is the month that the claim was first 
reported (and therefore reserved). Two things should be noted about this model 
of case reserving: (1) the reserve error is only chosen once for each claim, 
regardless of how many years it remains open; and, (2) this system, on the 
average, leads to under-reserving-by (/,,/I,), the amount of inflation between 
the report month and the payment month. rz 

The known loss amount at the end of year f on the ilh loss from accident 
year a is 

i 

0 ifr,> 12t-t 11 
ki(a,t) = C,ViT(miJ,) if ri 5 121 + 11 < p; 

CiThpJ ifp, 5 12t + 11 

So the actual ultimate losses are 

f. = iii CThp,) 
,=I 

The full experience matrix known at the end of year four for an insured would 
be 

k,(O,O) . . . 

kd4,4) 

. 

0 . . . 0 

This represents the familiar “loss development triangle.” We will denote such 
an experience matrix by K (for known data). 

I2 The author admits that this is a crude model of the case reserving process; however, it is unlikely 
that a more sophisticated model would significantly affect the results-unless it was one that allowed 
for changes in relative reserve adequacy along the diagonal. A method of setting reserves at V times 
the ultimate payment, which does not lead to under-reserving, was tested in [ 191. and it did not 
make a significant difference in the results. Also, see Section VI on sensitivity tests. 



The matrix K is the statistic that we will use to estimate the vector of 
expected final loss amounts I!?(&). Note that there are many other possible 
statistics we could have chosen (such as a triangle of claim counts, or a triangle 
of losses truncated at some “basic limits” point). Other such statistics would 
probably allow us to construct more efficient estimators-in fact, they definitely 
would unless K happened to be a “sufficient statistic” for E(L). and there is no - 
reason to believe that it is sufficient. 

IV. RATING; METHODS 

Once the experience matrix K is calculated for one iteration, it is used as 
input for four different rating techniques (estimators of E(L)). 

Let K,,, = Losses for accident year (I known through period j (in other 
words, the uj element of matrix K) 

K,,e = Latest known losses for accident year a 
J;, = The age-to-ultimate factor for accident year (1” 
R,, = The estimate of expected ultimate losses, E(L,,) 

I: Age-to-Age Factors 

This is the very common procedure of projecting each accident year to its 
ultimate value by age-to-age factors (also known as the “chain ladder” method). 
SO 

IL = K& (I = 0....,4 
Rs undefined (because KT* = 0) 

2: Modified Bornhuetter-FerRusorl 

This is a modified version of a commonly used method first presented in 
[S].‘” 

41 = 0,...,3 

I’ Age-to-age factors throughout this paper arc calculated hy \ummmp corresponding elements in 
two adjacent columns of the triangle, then dividing the\e two WI,,\ Thi\ i\ usually superior, as 
shown in [I?], to taking a straight average of the Individual ape-to-age factors. which is likely to 
produce substantial additional bias. 

‘-I In 151 Rr was obtained from external sources. rather than a\ sh0v.n here 
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Rs = (l/5) 5 K/,4, 
h=O 

3: Adjustment to Total Known Losses 

This method (also referred to as the “Cape Cod method”)is described in [7] 
and [ 191. Appendix B presents a theoretical comparison of Rs under this method 
with Rs under method 2. It consists of averaging the known losses first, then 
applying an adjustment factor to the sum. 

a = 0,...,4 

4: Additive Model 

Let K’ denote rhe matrix of known loss experience where each cell is the 
losses incurred during a particular period (rather than cumulative losses through 
the period, as the matrix K denotes). The elements of K’ are the differences of 
adjacent columns of K. 

Project the unreported losses for an accident year as the sum of the expected 
unreported losses during each future period. Estimate the expected unreported 
losses by period as the average of the known losses by row. Specifically, 

a = 1,...,5 

Ro = Kc,* 

This additive method is suggested by Hans Biihlmann [7]; he refers to it as the 
complementary loss ratio method. 

V. RESULTS 

Each of the four rating methods was tested under each of the following 
progressively more complex loss generation models. Exhibits I through V dis- 
play the results for each model. These exhibits show the mean and standard 
deviation of the prediction error for each rating method for each accident year. 
The prediction error is R, - L, (the estimated ultimate result minus the actual 



ultimate result). The ‘5% of actual” is the prediction error divided by the true 
expected losses. 

We would expect any rating technique based on known data to (on the 
average) under-predict by the expected amount of development between the 
most mature known data amount and ultimate E(K,,a - L,). Therefore, each of 
the expected prediction errors has been adjusted by this amount, so the exhibits 
actually show E(R,, - L,,) - E(Ku4 - L,,) = E(R,, - Kc,.+). That is, we do not 
expect the estimation techniques to be able to predict beyond the triangle.” 

EXHIBIT I-Claim Counts Only, No Inffation 

In this version of the model, C, was not randomly chosen, but was set at 
$1. The inflation index I, was also held constant. The results show that simple 
age-to-age factors produced biased results and higher standard deviations. Meth- 
ods 2 and 3 have very slight biases while method 4 is unbiased. Methods 3 and 
4 have slightly smaller standard deviations than method 2. 

What is interesting here is not the amount of the bias (which for practical 
purposes is negligible), but the fact that there is a bias. This fact was greeted 
with surprise and skepticism by many actuaries when it was first presented in 
[ 191. Appendix A gives a technical argument to support this result. 

EXHIBIT II-Random Claim Size, No InJation 

In this version, Ci is randomly chosen from a lognormal distribution with 
mean = $10,400 and variance = ($34,800)‘. The inflation index I,,, was held 
constant. Here we see that method 1 is clearly inferior-it is significantly biased 
upward and has very high standard deviations in years 3 and 4. An interesting 
result from the older version of the model is that the median prediction error 
for method 1 was usually negative-that means that in over half of the cases 
method 1 under-predicted the actual (simulated) results, but a few cases of large 
over-predictions made the mean prediction error (the bias) positive. This is 
because the distribution of prediction errors for method I was very positively 
skewed. Method 3 has the lowest standard deviation. Methods 3 and 4 do not 
appear to have significant biases. 

I5 A technique of estimating the parameters of the dktribution of Q, directly, such as described in 
[22], would allow prediction beyond the triangle. 
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EXHIBIT III-Constant 8% lnjlation, cx = 0.5 

In this version, an 8% per year inflation was assumed, with 50% applying 
to date of accident and 50% applying to date of settlement. Here we expect that 
methods 2, 3 and 4 will under-predict, because they all implicitly assume that 
expected losses by accident year are the same, which, with inflation, is not true. 
Method 1 does not rely on such an assumption. 

The addition of inflation accentuates the bias in method 1, making its 
predictions 35% above the actual values (after the “tail adjustment”). Method 
2 does very well on this example because the upward bias inherent in each age- 
to-ultimate prediction is balanced by the fact that the method assumes no 
inflation. Once again methods 3 and 4 do the best in terms of standard deviation, 
but, as expected, they are somewhat biased downward. 

EXHIBIT IV-Constant 8% InJation, cx = 0.5, 
Adjust Rating Methods for 8% /@ation 

This version was run with the same loss parameters and inflation assumptions 
as model III. However, each of the rating methods was modified as follows: 

Each element of each row, where an arbitrary row is row a, was divided by an 
assumed inflation index 1:. The rating method was applied to the resulting 
triangle, then each projected ultimate result was multiplied by its respective 1:. 
In this case I: was set as i .08”, a = 0,. ..,5. This obviously represents perfect 
clairvoyance about the underlying past and future inflation rate.16 

This slightly improves the standard deviation of method 1, but does not improve 
the bias, which is still quite high. However, this adjustment completely removes 
the bias on method 4, and leaves only a slight upward bias in method 3. 

EXHIBlT V-IO% Inflation Dropping to 6%, OL = 0.5, 
Adjust Rating Methods for 10% InJIation 

In this version, the actual inflation rate was 10% for 60 months (which 
covers the entire known claim period), then it drops to 6%. The index assumed 
by the rating methods is (1.10)“. 

I6 Note that a similar adjustment can be made when dealing with a triangle where the exposure 
varies by accident year, i.e.. (I) divide each row by the corresponding exposure, (2) apply the 
rating method, then (3) multiply each estimate by its exposure. This could be further improved by 
using credibility weighted averages in the rating method, where a row’s credibility was a function 
of its exposure; however, developing such a system is beyond the scope of this paper. 



This results in only a slight bias in method 4, and a fairly small one in 
method 3. 

VI. SENSITIVITY I‘ESTING 

As a test of the sensitivity of the results to the specific distributions used to 
generate loss experience, the following additional three scenarios were run. 
Note that these were all run with an assumption of no inflation, so they are 
meant to be compared with the results on Exhibit II (which will be referred to 
as the “standard model”). 

EXHIBIT VI-No Reserve Development 

The standard model was used except that the reserve error, V. was always 
set equal to one. 

The standard model was used except that the frequency, N. was distributed 
discrete uniform (I.791 and severity, C, was distributed continuous uniform 
[0,20800]. This results in an ultimate aggregate loss distribution with about the 
same mean and variance. but much less skewness, than the standard model. 

EXHIBIT VIII-Uniform Report and Puyment Lugs 

The standard model was used except that the report lag, Q. was distributed 
discrete uniform 10.36) and payment lag. P, was distributed discrete uniform 
[0,24]. This results in the same average lags. but with a higher percentage of 
claims being reported and paid within the five columns of the experience triangle 
than the standard model. 

Although the magnitudes of the biases and standard deviations differ in 
Exhibits VI through VIII from Exhibit II. conclusions about the existence of 
bias and about the relative efficiency of the four rating methods remain sub- 
stantially unchanged. 

VII. (‘ON(‘I.I!SIONS 

These results indicate that for data triangles of the size tested: 

1. The common age-to-age factor approach (method 1) is clearly inferior 
to the other three methods. 



LOSS RtSt;RVt I KHNIQCI5 135 

2. The additive method 4 and the average-then-adjust method 3 have sig- 
nificantly lower variances than methods 1 and 2, and small biases (if 
adjusted for inflation). In fact, method 4 may be completely unbiased. 

It is important to emphasize that the bias of the various methods is heavily 
influenced by a few large prediction errors. This means that in practical rate- 
making situations it would usually be wrong to use method 1 and then do a 
judgment “bias adjustment”-doing so in most cases would result in under 
predicting. Instead, the practitioner simply should not put much credibility in 
predictions based on highly leveraged age-to-ultimate factors. 

One may object that allowing accurate knowledge of the underlying inflation 
rate gives an unfair advantage to methods 2 through 4, because it allows all of 
the rows of the triangle to be used in estimating any particular row’s ultimate 
value. However, one will normally have exogenous knowledge of past inflation 
rates and forecasts of future rates, and using this information should improve 
one’s ability to predict. Also, in [ 191 it was shown that attempts to estimate the 
trend rate solely from data samples of this size by fitting lines to projected 
ultimate values produced terrible results-extreme bias, variance, and skewness. 

The above major conclusions concern the relative ranking of techniques and 
the existence in some cases of bias. These conclusions were found to be robust 
to an extreme change in the form of the underlying distributions; this robustness 
was also found in [ 191. Of course, the specific numerical results on Exhibits I 
through VIII should not be considered to be any more than examplesdhanging 
the parameters or the form of the loss generating model will change these in 
unpredictable ways. 

One way in which numerical results from a model such as this would be of 
interest is if the parameters of the loss generation model were estimated from 
an actual data set which had been projected to ultimate by a specific loss 
reserving technique. Simulating the distribution of prediction error would give 
an estimate of the potential variability of the reserve estimate-which could be 
used to calculate confidence intervals (containing both “parameter” and “pro- 
cess” risk) for the loss reserve. 
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Rating Accident 
Method Year 

1 0 
1 
2 
3 
4 
5 

0 
I 
2 
3 
4 
5 

0 
1 
2 
3 
4 
5 

0 
1 
2 
3 
4 
5 

5000 ITE~VTIONS 

Prediction Error: (K,, - L,) minus E(K,,q - L,,) 

Mean Standard Deviation 

Counts ‘% of Actual Counts 5% of Actual 

0 
0.1 
0.2 
0.3 
0.9 
- 

0 
0.1 
0.2 
0.2 
0.3 
0.4 

0 
0.1 
0.2 
0.1 
0. I 
0.2 

0 
0 
0.1 
0 
0 
0.1 

0% 
0 
I 
I 
3 

I.5 4% 
2.6 6 
3.7 9 
5.x 14 

11.6 29 

0% 
0 
I 
I 
1 
1 

0% 
0 
0 
0 
0 
0 

0% 
0 
0 
0 
0 
0 

1.5 4% 
2.5 6 
3.6 9 
5.1 13 
7.2 18 
8.X 22 

1.5 47c 
2.5 6 
3.5 9 
5.0 13 
7. I 18 
X.6 22 

1.5 4% 
2.5 6 
3.5 9 
5.0 13 
7.2 18 
8.6 22 
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EXHIBIT II 

MODEL II-RANDOM CLAIM SIZE.NO INFLATION 

Rating Accident 
Method Year 

I 0 
1 
2 
3 
4 
5 

0 
1 
2 
3 
4 
5 

0 
1 
2 
3 
4 
5 

0 
1 
2 
3 
4 
5 

5000 ITE~RATI~NS 

Prediction Error: (R, - L,) minus E(K,4 - L,,) 

139 

Mean Standard Deviation 

Dollars % of Actual 

$ 0 0% 
9,892 2 

24,680 6 
49,766 12 

113.397 27 
- - 

$ 0 0% 
9,354 2 

16,234 4 
29,183 7 
32,183 8 
36,3 14 9 

$ 0 
5,712 

13,138 
14,501 
4,662 
4,370 

$ 0 
-894 

-4,787 
-3,986 

-11.622 
-7,490 

0% 
1 
3 
3 
1 
1 

0% 
0 

-1 
-1 
-3 
-2 

Dollars % of Actual 

$ 88,600 21% 
182,206 44 
252,95 1 61 
392,435 94 
823,429 198 

- 

$ 88,600 21% 
177,605 43 
412,028 99 
303,322 73 
377,037 90 
372,499 89 

$ 88,600 21% 
163,078 39 
212,171 51 
263,962 63 
320,142 77 
322,794 77 

$ 88,600 21% 
170,483 41 
438,705 105 
290,293 70 
338,545 81 
341,970 82 
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EXHIBIT III 

MODELIE--8% INFLATION, (Y = 0.5 
15,000 ITERATIONS 

Prediction Error: (R, - f.,) minus E(K,d - L,) 

Rating Accident 
Method Year ___ ___ 

I 0 
I 
2 
3 
4 
5 

0 
1 
2 
3 
4 
5 

0 
1 
2 
3 
4 
5 

0 
1 
2 
3 
4 
5 

Mean Standard Deviation 

Dollars % of Actual Dollars % of Actual 

$ 0 0% $132,643 28% 
13,325 3 233,786 45 
40,012 7 528,989 95 
75,972 13 674,655 113 

225,406 35 1.636.846 254 
- - 

$ 0 0% $132,643 28% 
18,162 4 281.171 54 
35,581 6 376,524 68 
37.095 6 498,673 83 
15,500 2 639,790 99 

-62,654 -9 609,556 87 

$ 0 0%’ $132,643 28%’ 
9,766 2 194,158 38 

15,783 3 280,995 51 
-607 0 385,999 65 

-49,904 -8 45 1,253 70 
- 138,589 -20 450.96 I 64 

$ 0 0% $132,643 28% 
-2,462 -1 185,358 36 
-8,613 -2 273,372 49 

-32,982 -6 363,169 61 
-80,318 -13 423,457 66 

- 158,472 -23 44 1.974 63 
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EXHIBIT IV 

MODEL IV-S% INFLATION, OL = 0.5, 8% INDEX USED IN RATING 

12,750 ITERATIONS 

Rating Accident 
Method Year 

I 0 
1 
2 
3 
4 
5 

0 
I 
2 
3 
4 
5 

0 
1 
2 
3 
4 
5 

0 
1 
2 
3 
4 
5 

Prediction Error: (R, - L,) minus E(K,d - L,) 

Mean Standard Deviation 

Dollars % of Actual Dollars % of Actual 

$ 0 0% $108,748 23% 
17,024 3 226,684 44 
41,313 7 368,332 66 
81,257 14 627,023 104 

214,678 33 I ,545,OSS 240 
- - - - 

$ 0 0% $108,748 23% 
17,021 3 242,467 47 
34,663 6 328,942 59 
56,512 9 486,315 81 
75,782 12 597,070 93 
83,162 I2 640,675 92 

$ 0 
12,228 
22,240 
30,927 
27,95 1 
24,978 

$108,748 23% 
209,716 41 
284,919 51 
398,680 66 
45 1,586 70 
49677 1 71 

$ 0 
1,546 
3,571 
6,014 
4,862 
6,569 

0% 
2 
4 
5 
4 
4 

0% 
0 
0 
1 
I 
I 

$108,748 23% 
228,070 44 
289,117 52 
405,582 68 
433,385 67 
492,804 71 
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EXHIBIT V 

MODEL V-IO% INFLATION DROPPING To 6%‘. (Y = 0.5, 10% INDEX USED 

IN RATING 

8000 ITERATIONS 

Prediction Error: (R,, - L,,) minus IY(K,,~ - L,) 

Rating Accident 
Method Year 

1 0 
1 
2 
3 
4 
5 

2 0 
I 
2 
3 
4 
5 

3 0 
I 
2 
3 
4 
5 

4 0 
I 
2 
3 
4 
5 

Mean Standard Deviation 

Dollars c/r of Actual Dollars % of Actual 

$ 0 0%’ $120.91 I 25% 
13,748 3 260,039 48 
34,538 6 397.028 69 
79,547 I3 569,75 I 90 

227.292 33 I .33 1,666 193 
- - 

$ 0 
12,627 
27,992 
54,273 
89,787 

108,456 

$ 0 
- 1,386 

-672 
6. I52 

19,540 
31,185 

0%’ 
3 

5 
9 

13 
IS 

or/r 
2 
3 
5 
6 
7 

0% 
0 
0 
I 
3 
4 

$120,91 I 25% 
243,321 45 
344,x15 60 
446.620 70 
577.77 I 84 
617,252 83 

$ 0 
8,522 

17,345 
30,093 
42,842 
49,802 

5120.91 I 25% 
225.986 42 
3 10,728 54 
393,830 62 
48 1,436 70 
519.365 70 

$120.911 25% 
230,404 43 
320.637 56 
393,860 62 
469,07 1 68 
516.946 69 
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EXHIBIT VI 

SENSITIVITY TEST-PERFECT CASE RESERVING 

6522 ITERATIONS 

Rating Accident 
Method Year 

I 0 
1 
2 
3 
4 
5 

0 
1 
2 
3 
4 
5 

0 
1 
2 
3 
4 
5 

0 
1 
2 
3 
4 
5 

Prediction Error: (R, - t,) minus E(Fh - 15,) 

143 

Mean Standard Deviation 

Dollars % of Actual Dollars % of Actual 

$ 0 0% $ 50,557 12% 
5,092 I 117,095 28 

12,428 3 147,644 35 
19,602 5 231,091 56 
67,650 16 504,934 122 

- - - - 

$ 0 0% $ 50,557 12% 
4,726 1 109,725 26 

10,880 3 130,699 31 
14,206 3 186,497 45 
22,904 6 25 1,845 61 
17,081 4 305,529 73 

$ 0 
2,898 
6,574 
6,057 
8,546 

942 

0% 
1 
2 
1 
2 
0 

0% 
0 
0 
0 
1 

-1 

$ 50,557 12% 
104,576 25 
120,845 29 
172,281 41 
229,368 56 
281,352 67 

$ 0 
-542 

899 
-658 
2,361 

-3,461 

$ 50,557 12% 
101,240 24 
116,160 28 
168,233 41 
225,834 55 
278,649 65 
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EXHIBIT VII 

SENSITIVITY TEST-UNIFORM FREQUENCY AND SEVERITY 

3049 hER~770Ns 

Prediction Error: (R,, - IL.,) minus E(Kd4 - L,) 

Rating Accident 
Method Year 

1 0 
I 
2 
3 
4 
5 

0 
I 
2 
3 
4 
5 

0 
I 
2 
3 
4 
5 

0 
1 
2 
3 
4 
5 

Mean Standard Deviation 

Dollars c%, of Actual Dollars % of Actual 

$ 0 
9,824 
8,593 

14,083 
44,232 

0% 
2 
2 
3 

11 
- 

0% 
2 
2 
2 
4 
5 

0% 
I 
I 
0 
1 
2 

0% 
0 

-I 
-I 
-1 

I 

$ 34,704 8% 
175,539 43 
155.670 37 
195,329 46 
331,371 79 

- 

$ 0 
7,410 
7,579 
8,791 

15,059 
20,915 

$ 34,704 8% 
128,228 31 
143,738 35 
168,244 40 
222,905 53 
287.287 70 

$ 0 
3,690 
2,208 
1,123 
3,353 
7,643 

$ 34.704 8% 
74,962 18 
97,500 23 

130,512 31 
204,09 I 49 
263,368 64 

$ 0 
342 

-2,937 
-4,874 
-2,227 

3,629 

$ 34,704 8% 
65,336 I6 
94,379 23 

133,405 32 
209,730 50 
264,368 65 



2 0 
I 
2 
3 
4 
5 

3 0 
1 
2 
3 
4 
5 

0 
I 
2 
3 
4 
5 
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EXHIBIT VIII 

SENSITIVITYTEST-UNIFORMREPORTANDPAYMENTLAGS 

6000 ITERATIONS 

Prediction Error: (R, - L,) minus ,??(I& - La) 

Rating Accident 
Method Year 

I 0 
I 
2 
3 
4 
5 

Mean Standard Deviation 

Dollars % of Actual Dollars % of Actual 

$ 0 0% $ 33,898 0% 
8,958 2 154,927 38 

40,9l I 10 37 1,052 89 
94,37 I 23 667,695 162 

26 I ,076 63 1,627,441 393 
- - - - 

$ 0 0% $ 33,898 8% 
7,452 2 183,330 45 

39,655 IO 348,887 84 
66,107 I6 447,484 109 
79,065 19 499,807 121 
81,733 20 48 1,770 117 

$ 0 0% $ 33,898 8% 
5,097 1 153,015 37 

21,913 5 279,507 67 
23,616 6 321,873 78 
14,848 4 301,852 73 
13,765 3 297,400 72 

$ 0 0% $ 33,898 8% 
-3,670 -I 195,1 IO 47 

4,794 I 276,092 66 
3,478 1 306,744 75 

- 1,347 0 292,257 71 
1,321 0 293,734 71 
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APPENDIX A 

AN ANALYTICAL ARGUMENT FOR BIAS OF AGE-TO-AGE FACTORS 

Consider Model I, (i.e., claim counts only and no inflation). Each row 
(accident year) of the data triangle K is independently and identically distributed 
with each other row. 

This implies that E[g(X,,+,, X,,)] = E[g(Xkj+ I ,X,Q)] Vi,k for any function g. 
However E[g(X,,+ ,, X,)] # g(E(X,,+ ,],fZ[X,,]) unless R is linear. 

xij+ I 
Let ~(X,,+I ,XiJ = y 

II 

Let J;, be an age-to-age factor estimated from row i. Age to age factors attempt 
to estimate E[Xk,+ IIXk,] with XJ;,. If this estimate were unbiased it would mean 
that 

E[E[Xk,+ 1 (Xk~ll = HXk,fill 

But this becomes 

E[Xk,+ II = E[XkjlUJjl 

E[Xk,+ II = E[Xk,]E 
xk,+ f F-1 & 

or 

E[Xkj+ll E X~,+I -= - 

E&,1 [ 1 xk, 
which is not true in general.” 

I7 A similar derivation was arrived at independently by John Robertson 
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APPENDIX B 

COMPARISON OF “ADJUSTING, THEN AVERAGING” VERSUS “AVERAGING, THEN 

ADJUSTING” 

Let X, be a random variable representing observed losses for accident year i. 

Assume that these losses arise from distributions with expected values that 
are constant over time, except for an adjustment factor. This adjustment factor 
can represent either a loss development factor or a trend factor or both. 

SO Xi = E + e, i = l,... ,n 

where p = underlying expected losses 
ai = non-random adjustment factor 
ci = random error E(eJ = 0, Var(e;) = af 

We wish to estimate p. 

This represents trending (and/or developing) known losses for each year and 
averaging the results. 

Let k2 = f: X 
L, 1) + (2 3 . 

This represents the “adjustment to total known losses method.” 

It is easy to see that both b1 and i2 are unbiased, i.e. .!$I) = Q&Z) = 
p. (It is important to note that this only holds if ai is non-random, which is not 
the case in real estimation problems.) 

Calculate the Best Linear Unbiased Estimate (B.L.U.E.)r8 of p,. That is, 

find weights c,, such that $ i = tc,X, 1 is unbiased and has minimum vari- 
\ i=L I 

ante. So, minimize Var subject to E fzaXi = p [ 1 i=l 

I8 The approach of calculating the B.L.U.E. was suggested by Aaron Tenenbein. 



sac, = I--L- 
a,u’ n I 

c 22 ,=I a,a, 

Now consider various possibilities for UT: 

1. Let Xia, = p + l r where Var@;) = U’ V, 

This means that e, = f, so uf 
I 2 =TU, so c, = u,ln 

u, 

Therefore bl is the BLUE. 

2. Let vN(xf) k V ___ = 
E[X,I ’ 

so $ = $ j ufa, = kk 
I 

This means that c; = 1 
/ 

Therefore &z is the BLUE. 

As was discussed in the results section, & performed better than &, in the 
simulation. 
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DISCUSSION BY JOHN P. ROBERTSON 

Mr. Stanard’s paper offers the reader three things: 
1) reserving techniques; 
2) a methodology for assessing reserving techniques; and 
3) conclusions about the reserving techniques. 

Of these three, the methodology for assessing reserving techniques is the 
most significant. This methodology consists of developing a model of the loss 
emergence process and then simulating this process, applying the various re- 
serving techniques, and keeping score of the results. This methodology is 
important because it is the most scientific system yet presented for assessing 
the validity and the accuracy of alternative reserving techniques. It is a general 
method, as readily applied to other models of the claim emergence process as 
to the model used in the paper. 

The reserving methods Mr. Stanard presents are fundamental to casualty 
actuarial work. He is “tilling out” familiar loss triangles and forecasting the 
next year’s result. This is obviously the basis for most reserving methods and 
is also a key part of most ratemaking. 

Previous literature on reserving techniques generally has concentrated on 
overcoming the effects of changes in the underlying mix of business, changes 
in the individual claim reserving and settling policies, and changes in claims 
reporting systems. Most of this prior literature assumes that once these changes 
are accounted for and the data has been restated so as to have relatively constant 
underlying conditions, then any number of loss development methods can be 
applied to obtain valid forecasts. 

For instance, in Berquist and Sherman [I], examples are given of adjusting 
historical data to eliminate the effects of changes in the relative adequacy of 
case reserves and to eliminate the effects of changes in the rate of settlement 
of claims. Following these adjustments, standard loss development methods are 
applied with no question being raised as to the validity of these methods. Clearly, 
making adjustments for changes in the mix of business, etc., is an important 
part of reserve analysis; but the question of the validity of reserving methods, 
even in the face of completely uniform historical conditions, is also an important 
one. 

Prior to this and Mr. Stanard’s previous paper [2], there have only been a 
handful of attempts at evaluating reserving techniques. In one of these, Professor 



Biihlmann, et al., sharply contrast the bases for development of reserving 
techniques between life and casualty actuaries 131: 

“Since the early days of Life Insurance it has been understood that ‘reserves for 
future payments of claims had to be calculated from the probabilistic model 
describing the process of death within a specified population.‘. . Strangely 
enough when actuaries were asked to put their skill to work in Non Life 
Insurance, they did not feel it necessary ttr have a probabilistic model for the 
setting of claims reserves. The reason for the absence of probabilistic models 
leading to reserving techniques in Casualty Insurance may be explained (to some 
extent) by the common fashion in this field of asburning the individual claim 
amount to ‘occur’ suddenly even if in practice it is delayed portionwise over 
long periods of time. This paper takes exception to this fashion and models the 
individual claim amount as a random process over time.” 

Professor Biihlmann, et al., then proceed to develop a stochastic model of 
the claims process and to test several reserve estimation techniques against this 
model. They draw no conclusion about possible bias of the various methods, 
but do observe that the standard deviations of all the methods they consider 
seem quite high, and offer the opinion that the search for better methods should 
continue. They cite [4] and [5] as papers also exploring the validity of loss 
reserving methods based on stochastic models of the claims process. 

It is easy to criticize Mr. Stanard’s model of the loss development process 
as being too simple to be realistic. He only allows three sources of loss devel- 
opment: 1) late reporting of claims, 2) inflation from the the time a claim reserve 
is opened to the time the claim is settled, and 3) random variation between the 
estimated value of the claim and the final value of the claim. In particular, he 
does not allow for changes in the estimated value of a claim while the claim 
remains open, nor does he allow for any systematic development in the value 
of a claim, except for that due to inflation. 

Does use of such a simple model invalidate Mr. Stanard’s results? I think 
not. Any of the features which would make his model more realistic, i.e., more 
complicated, might just as well add to the biases and variances as they might 
subtract from them. If, for example, standard loss development methods really 
work so well, they should work in artificially simplified situations. The fact that 
Mr. Stanard has presented a situation where the standard loss development 
methods are biased may not quite prove that they fail in other more realistic 
situations, but it does show that they need to be tested and justified in relation 
to possible models of the claims development process they are used to forecast. 



I continue to find the “Adjustment to Total Known Losses” or “Cape Cod” 
technique to be of interest. In addition to the possible advantages pointed out 
as a result of the simulations and in Appendix B, this technique complements 
the Bomhuetter-Ferguson technique in a way no other technique can, as dis- 
cussed below. 

Consider the case where there is no change in real exposure from year to 
year and there is no inflation (or past years’ losses have been adjusted to 
eliminate these effects). Then an obvious estimator for R5 is the average of Ro 
to Rj, or (Ys)(Ro + . . + RJ). In Mr. Stanard’s paper, both the “Modified 
Bornhuetter-Ferguson” method and the “Adjustment to Total Known Losses” 
method start by computing Rs. The former uses the formula: 

The latter computes R5 by: 

In each method, this value of RS is used to calculate RO through RJ. Once 
Ro to R4 are computed, their average can be compared to Rs. Under the 
“Adjustment to Total Known Losses” method, this average will always be 
exactly Rs. A proof of this is given in the Appendix to this discussion. Under 
the “Modified Bornhuetter-Ferguson” method, this average will not necessarily 
equal Rs. The consistency between the original estimate of Rs and the average 
of Rc, to Rs in the “Adjustment to Total Known Losses” method indicates, I 
believe, that this method makes the best use of loss information from all the 
years in order to project any given year. If the average of R,, to RJ is less than 
Rx then one could argue that too high an Rs had been selected, as reported 
development would appear to be occurring at a lower rate than predicted by Rs. 
The converse argument could be made if the average were higher than Rs. This 
inconsistency cannot happen under the “Adjustment to Total Known Losses” 
method. 

It may be that there is reason to choose an Rs from external sources or by 
some other method when the Bornhuetter-Ferguson method is being used. But 
in situations where one is estimating Rs from the loss information, the consis- 
tency discussed above argues strongly for the use of the “Adjustment to Total 
Known Losses” method. 
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In conclusion, I believe Mr. Stanard’s paper offers a valuable method for 
assessing whether common actuarial methods are accurate and reliable. As 
actuaries are called upon to look at smaller and smaller insurance. reinsurance, 
and self-insurance programs, and as determination of confidence levels for 
reserves becomes more important, then the usefulness of the methods in this 
paper should become more apparent. Additionally, the conclusions reached 
should spur development of improved models of the loss development process 
and improved reserving techniques. 
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Purpose 
This table will show that Rs = %s(Ro + . + RJ) for the “Adjustment to 

Total Known Losses” method, as claimed in the review. 

Proof 
Given: 

(2) R,, = Km + Rs 

Then: 

; (Ro + . . + Rj) 

Kc,* + K+ + 5Rs - Rs 

= Rs + ; (K,), + + Kqt - KO* + . ’ + K4* X 
(life) + . . . (ly-4) 

(BY (2)) 

(Rearranging) 

(Rearranging) 

(BY (1)) 

(Cancelling) = R5 
Q.E.D. 



LOSS PORTFOLIOS: FINANCIAL REINSURANCE* 

LEE K, STtENKX 

Ahstruct 

The property-casualty insurance operating environment has changed 
dramatically. Total return is more a function of investment results than 
ever before. Competition has pressured rate levels. And a greater pro- 
portion of total premiums is coming from “long tail” lines, making 
reserving more difficult. 

Reinsurance is becoming somewhat more financially oriented. Loss 
portfolio transfer reinsurance is becoming popular for a variety of rea- 
sons, not the least of which involves poor operating results. This paper 
surveys loss portfolio transfer reinsurancc from a benefit-cost standpoint 
and includes actuarial, tax, accounting and contractual aspects necessary 
to the evaluation process. 

With the advent of high interest rates and cash tlow underwriting. composite 
ratios have skyrocketed to unprecedented high levels. For a variety of reasons, 
insurance executives seeking to improve results are investigating loss portfolio 
transfer reinsurance. 

In the simplest terms, this form of financial rcinsurancc involves the transfer 
of a portfolio of loss liabilities from a cedent to a reinsurer at a price. The 
cedent extinguishes his liability with a favorable cash (or equivalent) outlay. 
The consideration is generally based on a discounted cash flow analysis of loss 
reserves plus a reinsurer loading. The amount by which the extinguished liability 
exceeds the consideration becomes a financial benefit to the cedent. The loss 
liability may be for case reserves only, case reserves plus development, or case 
reserves plus development and IBNR losses. The transfer can include allocated 
and sometimes unallocated loss adjustment expenses. Transferred liabilities may 
belong to a single class of business. a territory. a policyholder, or an accident 
year. The transfer may apply to all net (of other valid reinsurance. collectible 
or not) losses, or depend on an aggregate attachment level (in dollars or days) 
or size per occurrence. 

* Mr. Steeneck’s paper was tirst suhmilted IO the Casualty Actuanal Sowdy in 1983. Keferenceh 
in thi\ paper to future events and to future time pznod\ \h~dd he inierprcted accordmply. 

- Editor 



Understanding financial reinsurance is becoming a top priority among in- 
surance executives, regulators, stock security analysts, and others in the prop- 
erty-casualty insurance field.’ Balance sheets and income statements can become 
less meaningful. And the volume of loss portfolio transfers is increasing. In- 
dustry observers and participants estimate that over $1 billion of such transac- 
tions occurred during 1983. The following example, albeit a dramatic one, 
shows the effect loss portfolio reinsurance can have on a company’s accounting 
position. 

A New York based reinsurance company recently sold a loss portfolio at 
about the same time as a regular triennial examination (12131180) found liabilities 
exceeded assets by $12,400,000. The result of the loss portfolio reinsurance 
transfer left the company with a healthy income statement and a statutory surplus 
of $10,800,000! Although the details are unknown, we can speculate that assets 
could have been $200 million and examined liabilities estimated at $212.4 
million. Suppose $50 million of loss reserves were sold for $26.8 million. The 
net resulting liabilities would be $162.4 million with assets of $173.2 million. 
Statutory surplus would be the difference or $l0,800,000. The $23.2 million 
gain could be reflected in the income statement. 

The following two lists outline business purposes served by loss portfolio 
transfers and the costs the cedent must consider. The paper then treats the 
actuarial, tax, and accounting aspects. Then contractual and pricing considera- 
tions are mentioned. Finally, the uncertain regulatory environment is noted. 

BUSINESS PURPOSES LOSS PORTFOLIO TRANSFERS SERVE 

Depending on the financial position of the insurance company, several but 
not all of the following nine purposes may be attractive. 

I. Improve underwriting results. By converting future investment income 
into current underwriting income, the composite ratio and income state- 
ment are improved. The case of the New York based reinsurance com- 
pany loss portfolio transaction exemplifies these effects. 

2. Increase GAAP earnings. In the case of the New York reinsurer, the loss 
portfolio transaction increased GAAP earnings directly by $23.2 million. 

3. Improve GAAP deferred tax position. By raising GAAP taxable income 
the validity of the tax deduction for other underwriting losses is dem- 
onstrated. 

I Mary Rowland, “Games insurers play with loss reserves, ” Insrirutioncrl In vesfor. November 1983. 



4. Increase surplus. The after-fax benefit goes directly into statutory surplus. 
Later in this paper, examples of the accounting treatment for loss portfolio 
transfers will illustrate the generation of underwriting income which flows 
into the surplus account. 

5. Strengthen loss reserves. A cushion between carried loss reserves and 
possible adversely developing loss reserves will strengthen the cedent’s 
balance sheet implicitly. 

6. Improve NAIC IRIS Test results. This type of reinsurance is not penal- 
ized as are surplus relief treaties. Favorable Best’s ratings may be re- 
tained. 

7. Maintain premium volume. Ceded premium need not be affected but 
could be if controls on premium to surplus ratios are required. 

8. Terminate a segment of business instantly. This was the original purpose 
of loss portfolio transfers.? Certain medical malpractice occurrence form 
writers may be considering a rapid exit from the business. Rather than 
running off the associated liabilities. they may sell their complete books. 

9. Discount reserves. Without setting a prcccdent and changing accounting 
methods, the cedent effectively can discount reserves. Other industries 
have recently received SEC endorsement of accounting treatments termed 
“insubstance defeasance.” The balance sheet is strengthened as a large 
amount of old debt is retired while paying for it with a smaller face 
amount of new debt at a higher rate. The ceding insurer’s large debt 
(loss reserves) is replaced with a smaller debt (loss portfolio transfer 
payment) reflecting a higher interest rate. 

COST CONSIDERATIONS ‘TO LOSS POK I-FOLIO TKANSFERS’ 

I. Decreases future GAAP earnings and surplus increases. The current year 
surge in GAAP earnings (see purpose #2) is at the cost of future 
investment income. Recall that assets are reduced by the transfer payment 
amount. 

2. Adds reinsurance costs not hudgeted. This includes reinsurer expenses, 
profit. and risk charge. 

2 For example. in IS95 “one Roemer Viwher ot Amsterdam t<wh <wer the insurance of certain 
marine risks. hecause the original insurer. Jacob Bruynsen Smallinck, had gone bankrupt.” (Ex- 
cerpted from a speech hy Mr. Michael Felts. CAS Special Intcrcht Semmar on Reinaurance. 198?.) 

’ Some of these business purposes and COG con&ieratwns cotntl from B qxech by Mr. John Murad 
at the American Academy of Actuaries Lo>\ Rewrvc Srmmar. 19x3. 



3. Reduces the liquidity of assets. The purchase may cause a cedent to keep 
taxable bonds (with higher coupons, effectively shielded from taxes if 
in a non-taxable position) and sell tax-exempts (generally considered to 
be more easily marketed at favorable prices). Other liquid assets may 
also be sold, leaving the less liquid ones. 

4. May subject cedent to future taxes. If the cedent gets into a future taxable 
position and has retained less liquid taxable bonds, the after-tax invest- 
ment returns may not be optimized. 

5. Can create a capital loss by the sale of bonds to purchase the reinsurance. 
6. Can lose tax deferred status. If cedent is in a taxable position, actual 

payment of taxes can occur. 
7. Will likely distort schedules 0 and P. The abrupt decrease in loss and 

expense reserves and surge in payments can distort any loss ratio, loss 
development, or triangle projection analysis. 

8. Creates dependence on reinsurer security. The possible non-collectibility 
of the reinsurance (by insolvency or dispute in coverage) has a cost 
which is difficult to quantify. 

9. May create future costs. 
a. The transaction may prove unacceptable to regulators, tax authorities, 

and auditors from a risk transfer perspective. The consideration paid 
by the cedent may overfund the loss transfer especially if payment 
schedules are imposed on recoveries. Open ended retrospective ad- 
justments of the consideration will also fail the risk transfer test. 

b. The company’s accounting may have to be restructured as the ac- 
counting profession and regulators establish stricter guidelines. Be- 
ginning in 1984, the NAIC blank will require disclosure of loss 
reserves ceded. the consideration, the effect on underwriting results 
and statutory surplus, and limiting schedules of actual recovery. In- 
surance departments may require different accounting treatments than 
registered by the companies. 

c. There is a potential loss of company stature in the insurance com- 
munity. On the other hand, the sale may be judicious. 

The predominant statutory and tax accounting requirement of a loss portfolio 
transfer agreement is that it exhibit legitimate risk transfer. Without it, the 
transaction is voided and the accounting and financial effects must be unraveled.4 

1 See AICPA SBAS #5 paragraph 44 and #60 paragraph 40 



The cedent must use an authorized reinsurer to get credit for the reserves 
taken down. If it is using an unauthorized reinsurer, that reinsurer should post 
a letter of credit on the cedent’s behalf or place assets equal to the transfer 
liability in escrow. 

AC’?‘LJARIAI ASPEC‘I‘S 

In order to accelerate the greatest amount of investment income and place 
it in the underwriting account, “long tail” business (from a payment profile 
perspective) is required. If a company has little long tail business to cede, it 
cannot gain much financially from loss portfolio transfer reinsurance. Lines 
generally considered to give maximum effect are medical malpractice, workers’ 
compensation. and products liability or other liability. 

Basic actuarial loss data is required for a quantitative analysis leading to a 
responsible reinsurance offer. Payment and reported loss development triangles 
for the subject business are essential. In this author’s experience. all too often 
data is not supplied with sufficient detail for scrutiny. 

Large loss “outhers” and under represented losses must be normalized. Large 
losses may be over represented or under represented. These may also have loss 
development characteristics camouflaging the underlying loss process. Certain 
hazards may have produced too few losses to date. The actuary must use intuition 
and observed or postulated continuous size of loss distributions to adjust history 
so projections are accurate. 

Allocated loss adjustment expense reserves are analyzed and included where 
necessary. Unallocated loss adjustment expense reserves may be analyzed and 
included as well (but in practice this is seldom done). Certain annual statement 
schedule P expense data may prove useful if both allocated and unallocated loss 
adjustment expense reserves are to be included in the portfolio transfer. 

This author knows of no completely stochastic process in viewing potential 
outcomes regarding ultimate loss and payment protiles. Many reinsurance ac- 
tuaries look at “best case-expected case-worst case” scenarios in determining 
outgoing cash flow. The various present values of those outgoing cash flows 
are calculated. 

It is likely that in costing coverage reinsurers wiil attempt to match bond 
maturities with expected cash requirements. Unlike the single reinsured policy 
where loss payments are totally unpredictable, the loss portfolio has expected 
cash outflows. Coupons and maturing bonds can be matched to expected cash 
requirements. Bonds lock in specific returns (as opposed to many other invest- 
ment vehicles). The reinsurer’s management specities the quality and type of 
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securities acceptable in loss portfolio transfer reinsurance arrangements. De- 
pending on secured rates of return and the reinsurer’s tax position, a variety of 
corporate and government bonds with taxable and tax exempt status are available 
for a dedicated portfolio. Reinvestment risks on coupons can be of staggering 
importance.’ Currently, there are a variety of “felines” on the market to eliminate 
this risk. For example, Merrill-Lynch has TIGR, or Treasury Investment Growth 
Receipts, which repackages T-Bonds to act like zero coupon bonds. Other felines 
include CATS and LIONS. Felines offer somewhat lower yields than non- 
stripped bonds as investment houses require a hedge on reinvestment. 

TAX ASPECTS 

The reinsurer’s tax position is critical in the choice of taxable or tax exempt 
bond purchases and the resulting present value (market value) cost of the bond 
portfolio. Insurers are taxed like other corporations except as noted in Parts 2 
and 3 subchapter L of the Internal Revenue Code. They use a modified accrual 
accounting system and have two classes of income: underwriting and investment. 
If the reinsurer or its consolidating parent has taxable income, the underwriting 
loss it will assume will effectively shield federal income taxes and a higher rate 
than tax exempt interest map be credited in the pricing. If the reinsurer has no 
taxable income and expects none in the foreseeable future, then marginal ex- 
pected results suggest taxable bonds are most advantageous as an investment 
vehicle. 

My understanding is that an over-structured transaction may be viewed by 
the IRS as, in essence, a single premium immediate annuity purchase. In that 
event, the ceding company would include in taxable income a portion of each 
payment recovered from the reinsurer. Over structuring may be hazardous. 

The most competitive quotes combine high risk-adjusted yields with low 
reinsurer margin. Since bond yields vary day to day, today’s quoted consider- 
ation must expire quickly and be subject to requotation. Changes in interest 
rates have a leveraged effect on cost. 

The following exhibit demonstrates the effect tax position has on a reinsur- 
er’s net present value calculation. Suppose, for simplicity, that a portfolio 
consists of two $1,000 liabilities to be paid in 12 and 24 months. The reinsurer 
can purchase taxable bonds with 7% coupons semi-annually or tax exempt 
bonds with 5% coupons payable semi-annually. Tax exempts may prove pref- 
erable if the reinsurer is in a taxable position. 

r Ronald Ferguson. “Duration,” PCAS LXX, 1983, pp. 265-288 
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The challenge facing the pricing actuary is to meet the financial objectives 
of the cedent while at the same time offering a risk product which has the 
expectation of reinsurer profit. This is frequently difficult since potential pay- 
ment profiles. possible runoff liabilities. and unanticipated “shock” disturbances 
play havoc. The following scenarios dcmonstratc the effect payment profile and 
quality of carried reserves have on the present value (at 10%) of potential 
outcomes. 

Scenario (A) describes the present value of the complete 4 and 7 year 
possible payouts of possible runoff liabilities. Cessions under scenario (A) have 
large cash How consequences. With slightly less benefit (reserve less present 
value). the portfolio ceded may be structured more effectively in scenarios (B) 
and (C). 

Also notice that. if the cedent believes the likely outcome to be 2a and the 
reinsurer believes the likely outcome to be 3b. a deal may be struck. They may 
agree to cede/accept company paid losses after 24 months but with an overall 
limitation in recoveries of $3.5 million. This ccdent releases $3.4 million ot 
carried reserves. The reinsurer’s net present value is $2.0 million/l. IO’ + $1 .S 
million/l IOJ or $2,527,150. If the reinsurer prices this at $2.7 million the 
ccdcnt will generate $700,000 of income. 

AKOUNTING ASPECTS 

At this point. there is no standard accounting treatment for these transactions. 
The simplest accounting treatment, however, from the cedent’s perspective is 
to note, following the last example, that $3.4 million of loss reserves is offset 
by a negative $3.4 million reinsurance recoverable. Further, $2.7 million of 
paid losses are registered and the gain flows through the balance sheet, income 
statement. and schedule 0 or P (as appropriate). This accounting treatment can 
be called the “loss method”. 

There is also a “premium method.” The treatment calls for premium reduc- 
tion of $2.7 million. Paid losses remain unchanged. Reserves are reduced by 
$3.4 million. Implied by this treatment. the cedent’s loss ratio goes down and 
his expense ratio goes up. If the reinsurer offers a 10% commission ($300,000). 
ceded premium goes up by $300,000 and the net loss ratio increases. But the 
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commission will offset insurer operatin g cxpcnses and. thcrcfore. the expense 
ratio will decline. To illustrate (statutory accounting): 

Ceding Compaq 
Marginal Effects 

Premium Method 

Loss Method No C’ommixsion Commission - 

Earned Premium ( + ) s 0 % 2.700.000 s- 3.000.000 
Operating Expenses (v) $ 0 $ 0 pd - 300.000 
Paid Losses ( -) $ ~.700.000 s 0 s 0 
Change in O/S Losses (-) $-3.400.000 4; 3.400 .ooo $--3.400.000 
Underwriting Gain $ 700,000 s 700.000 $ 700,000 

The reinsurer could mirror these accounting entries b> merely changing 
signs and penalizing surplus. As yet it is not necchsary. but regulators. auditors, 
etc. and advise it. 

As an aside. for GAAP accounting purposes. the reinsurer might book the 
present value ($2.7 million) of expected puyment\ to escape this “surplus hit”. 
He could do this il‘ he nnrmall~ discounts for GAAP purposes. and he makes 
adequate disclosure. The same is not true for statutory accounting purposes. 
Full reserves must be established. otherwise generul interrogatories 16 and 2X 
of the convention blank must be answered so as to invite criticism. 

“Another (reinsurer) statutory alternative is to consider the transaction as 
other income as opposed to underwriting income. A ration& here is that the 
investment income to be earned to oNset f’uture loss payments does not flou 
through underwriting income either. and the cl’fect of the transactions still 
impacts statutory results. This treatment has not received broad acceptance.“” 

There are other considerations to be made in the pricing 01‘ loss portfolios. 
Some are contructual. Others deal uith rcinsurcr margin requirements. 

Extm contractual obligations (EC01 can be defined as punitive and/or con- 
pensatory damages assessed against an Insurer as ;I consequence of his tortious 
acts. ECO’s do not fall under the auspices ol‘ the original subject insurance 



policy. Historic data is not generally available nor projectahle so cedent pay- 
ments from this hazard should be excluded. 

The reinsurer will also insist on some verbal, if not written, understanding 
on the use of structured settlements. The commutation of a claim by the purchase 
of a life annuity changes both the expected liability transfer amount and the 
payment timing. Special treatment is required such as substituting an actuarial 
equivalent payment stream for the commuted value. 

The insurance industry now faces more “common cause” losses than ever 
before. These are the “asbestos type”, unpredictable from one exposure over 
time. But when they occur, they create a flood of individual claimants demanding 
tremendous aggregate sums of money. For certain classes of insurance. the 
reinsurer will consider the likelihood of common cause events, charge for it. 
limit it in some way contractually, or both. 

Claims handling is also important. Loss portfolio transfers are frequently 
sought by self-insureds wishing to extricate themselves from their developing 
insurance experience or arc being acquired and, therefore, in need of a fully 
insured program. It is difficult to properly run off liabilities without continuity 
in claims handling. 

A front company may be necessary to issue a primary insurance policy 
which is then rcinsurcd. 

EXPENSE/PROFIT ASPECTS 

Having considered all of the above, the reinsurer now must decide how 
much to charge in excess of the bond portfolio cost. The reinsurer will have 
expenses, both current in the marketing and initial set up of administration, as 
well as on going administrative costs. In addition. it will desire a profit and risk 
charge dependent on the following: 

I. Predictability of results-Investment risk and underwriting risk can be 
significant. Actual runoff could be heavier and/or faster than expected. 
To the extent a structure of reimbursements exists as to timing and 
amount, this lessens risk. 

2. The surplus rent-The reinsurer’s charge against surplus will restrict its 
writings for potentially 5-30 years. This requires substantial profit load- 
ing. It can be measured as a percentage of the tirst year charge against 
surplus, or the present value of the annual charges. 



3. The contractual risk--Structured settlements. common cause losses. and 
claims handling features have ~mtz bearing on the value the reinsurer 
places on the proposed transaction. Other Icaturcs such as a contingent 
commission or an expcrienoz rating scheme will cause the reinsurer tcl 
change profit and risk charge expectations. 

It should be evident loss portfolios invc)l\c more than “shelf technology.” 
Only the educated professional can and will be successful. But what does the 
future hold? 

The ultimate destiny of loss porttolio tranxfcr rcinsurancc rna~~ be in the 
hands of the taxing authorities and accountants. 

The AICPA is studying the issue of lo\\ rc\t’rvc discounting. II sees four 
types of claims: 

1 Short term claims closing in one or at most two years. Discounting may 
not be economically justiticd here. 

’ Long term uncertain claim\ like medical malpractice and auto bodily *. 
injury having rescrvcx which cart1 invcstmcnt income hut are not subject 
to rigorous loss payment schedule. It ic possibly impractical to discount 
here since conservative interc‘st rates arc indicated. 

3. Long lcrm reasonably ccrtatn L~laim\ lihe periodiC mcdi4 payments for 
life under wot&zt-‘4 cotiipcnsatioti pension ca\c’\. 

4. Long term claims with fix4 payment like some workers’ compensation 
fixed periodic indemnity for lit.2 claims. The\c annuities or near annuitie\ 
arc subject to accurate disc~ounting proccdurcs. 

Discounting has some negative connotations including the publication of 
unstable and pc!tcntially unreadahlc insurer results. These could confuse regu- 
lators, analysts . and the public. Lo\s t-chc’r\‘c ecaluatictns and tests would prove 
difficult. Somo nctuarics obscrvc that in recent \‘cat-s. reserve shortfalls are 
generally offs3 t-11 investment earnings. As Ihe crutch i\ removed. the latne 
patient must fall. The pressure on cornpanics to set adequate reserves would 
intensify if the investment crutch wcrc removed. 

To more closely monitor the tinancial ct’fccts (11. lo\\ portfolio transfers, 
many states arc requiring disclosure. The NAK‘ i\ adopting ;I disclosure note 
to first appear on the 19X-l Blank. The SEC is also concerned about the ability 
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of investors to evaluate the financial condition and results of companies with 
P/C operations.’ 

Finally, the government has a large stake in the loss reserve discounting 
arena. There are current attempts to restructure life and health and property- 
casualty insurance company taxation regulations in order to generate substan- 
tially greater tax revenues. It is quite conceivable that the 1983 proposal to 
discount liabilities for schedule P lines at a 5% rate of interest could be even- 
tually adopted. This would generate taxable income. Accountants would likely 
endorse this, I believe. 

Some companies discount loss reserves on a GAAP basis already (but these 
are largely offshore companies). If the definition of taxable income changes to 
embrace discounted loss reserves. can a change in statutory accounting principles 
be far behind’? The market for loss portfolio financial reinsurance would largely 
evaporate. There are some very unhealthy implications currently under inves- 
tigation and discussion. Until the final outcome is known, loss portfolio transfer 
reinsurance will continue to be a valuable tool for insurance and self-insured 
company managements. 

1 See “SEC Seek Loss-Reserve Disclosure Rule To Awst Invesrors in Property Insurera,” 2% Wull 
Srrw Jow,rtr/. March 12. 19X4. p. 10. 
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1)ISCUSSI0N BY or\Kl.t-.\l I. L’AN SI.\l’KI 

Mr. Strcneck has presented the haric principles of applying utility theory in 
rcinsurance pricing in an admirahlc fahion. Hi\ article is straightforward and 
comprehensive. The footnotes pro\,idc an cxccllcnt bibliography of the current 
literature on the subject. 

The interested reader ix particularI> dircctcd to the monograph by Leonard 
Freifelder (Frcifclder ( 1976)). Thcac two worh\ complement each other well. 

Utility theory has been useful to this reviewer as a means of achieving ;i 
fresh viewpoint on a problem. rather than as ;I simplidic dution to the problem 
of finding numerical results (e.g.. rates) that adequately rutlect one‘s risk av- 
ersion. If the user avoids the pursuit of Gmple answers through abstract for- 
mulas. hc can find much of practical \;dut’ in the methods discus& by Mr. 
Steeneck. This is especially true t’or cuponential utility functions. 

Several of Mr. Stecneck’h point\ merit di$cuh\ion. Thi\ rc\ icu, also provides 
an opportunity to show two minor results of the rc\ icwer‘\ investigations into 
utility theory. 

Utility theory is practical. We arc all familiar with the inadequacy of the 
simple calculation of expected value. Using utilit! theory only requires that we 
shift our mental framework from calculating the I< 1x1 and l< (X - II)’ to include 
the calculation of E (U (X)). 

This mental shift will be clear if ;I train of thought developed by Steeneck 
on page 2.57 is followed. together with a change in taminology. L,et the utility 
function be 

RAC(X.c,) = c( I ~ exp (.I;(‘)). 



RAC(X,c) is the “risk adjusted cost” of outflow X with utility scale C. 

Then for an aggregate loss distribution 

F(X) = Pr(.x < X) 
RAC).-(c) = c In E, (exp (.r/~)) 

In other words, the risk adjusted cost of an aggregate loss distribution is a 
scale adjustment in c of the calculation of the expected value of the aggregate 
loss distribution. The adjustment in c scales down each possible loss to its 
multiple of C, inflates it using the exponential function, takes an average, and 
then backs out the scale adjustments by taking the log and multiplying by C. 

In the example given by Steeneck on page 259, c was $4,000,000. 

The use of c instead of l/r makes sense. It puts the constant in real units, 
dollars, instead of imaginary ones, (dollars) ‘. 

RAG(c) is a simple concept which includes a great deal of information about 
F(X). (As we shall see. it includes all of the information about F(X).) We expect 
to see the day when RAG(c) will be computed as routinely as Vat- (X) is today, 
particularly when it can be expressed in closed form. 

ES-I‘IMATlNG RISK CAPACITY 

It is easy to estimate the risk capacity, c, well enough for practical appli- 
cations. Reinsurance exists because all insurance companies have a limited 
capacity to bear risk. In some cases, risk aversion is so high that the firm will 
do whatever possible to ensure that a catastrophic loss will not bankrupt the 
hrm. In practical applications, however, the level of loss at which management 
begins to get really concerned is quite a bit less than the level of loss that would 
bankrupt the firm. In insurance jargon. we call this level of loss the firm’s “risk 
capacity.” 

Exhibit 1 shows an example of the risk capacity of a particular tirm. In this 
example, the height of the line shows the surcharge the reinsured would be 
willing to pay to avoid a 0. IO/ chance of losing a sum of money. The reinsured 
would be willing to pay only about 0.1% of the sum of money if this sum, X, 
were not very great. It would not pay a significant surcharge to avoid a 0.1% 
chance of losing $10,000. If the amount were much greater than the reinsured’s 
risk capacity, however, then the firm would be willing to pay much more than 
0.1% of the possible loss. 



$0.1 $0.2 $0.5 $1 $2 $5 $10 $20 $50 

Loss x 

(Millions) 

Move the bottom scale left or right until it is in the right place for your decision. 
Your risk capacity. c. will be below the vertical arrow. 



Because of the reinsured’s limited capacity to bear risk, management is 
willing to pay a surcharge (risk charge) to avoid financial fluctuations. To avoid 
a 0.1% chance of paying out $ I ,OOO,OOO, for example, management is willing 
to pay something in excess of 0. I % of $ I ,000,OOO. The additional amount is 
called a “risk charge.” The total amount management is willing to pay, perhaps 
$I ,100 in this example, is called the “risk adjusted cost” (RAC) of the risk’s 
probability distribution. 

As Cozzolino (1979) has pointed out, the selection of risk capacity c is not 
even necessary to make a decision. All that it is generally necessary is that 
one’s risk capacity is known to be in a certain range. 

The technique suggested by Cozzolino is to show the risk adjusted cost for 
one’s own aggregate loss distribution with and without the inclusion of the 
reinsurance contract being evaluated. Each net aggregate loss distribution leads 
to a unique risk adjusted cost profile. Exhibit 2 shows the profile for a reinsur- 
ante decision about a possible cession that involves a considerable amount of 
risk. In this example, if the reinsurer’s risk capacity is less than about 
$2,000,000, he will not accept the retrocession. 

The success of this technique hinges on the fact that more risky alternatives 
will always have curves that slope downward more steeply than less risky 
alternatives. As a result, different options will produce risk profile curves that 
intersect one another if there are significant differences in the uncertainty of 
results for the options. Obviously, if the risk profile curve for one option is 
lower than the risk profile curve for another option regardless of one’s risk 
capacity, it is the more attractive alternative. 

REINSURANCE NEGOTIATIONS 

Reinsurance makes sense even when the reinsurer is more risk averse than 
the reinsured. Steeneck’s statement, “If the reinsurer has the same utility func- 
tion or is less risk averse, a deal can be struck” is unnecessarily restrictive. This 
is seen in practice as small reinsurers take small pieces of treaties reinsuring 
large primary companies. 

The reason is simple: The reinsured losses are not correlated with the 
reinsurer’s losses; they are correlated with the reinsured’s losses. 
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EXHIBIT 2 

RISK PROFILE CLIRVES FOR THE REINSURANCE DECISION 

Risk-Adjusted 
cost 

(Thousands) 

$1000 

Risk profile if cession is accepted 

$ 500 

if cession is 

$-500 
$500 $1000 $2000 $5000 $10000 $20000 

Risk Capacity flhousamls) 

A risk profile is a display of RAC(X,c) for a range of C. A risk profile is a 
unique mapping of an aggregate loss distribution F(X). 
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To the excess writer of, say, $l,OOO,OOO xs $l,OOO,OOO, the risk looks like 

Max(O,X** - $1 million) 
C, 

where X** is limited to $2,000,000, and the excess writer’s risk capacity is cP. 

To the primary writer, the cession is worth 

where X* is limited to $1 ,OOO,OOO, and the primary writer’s risk capacity is c,,. 

Reinsurance makes sense when 

RAC,, > RAC, 
This leads to two thoughts: 

- One’s own risk profile and estimates of the risk profiles of the potential 
players in a reinsurance deal can help one create a negotiating strategy. 
Changes in the terms of the reinsurance arrangement can be reflected in 
changes in the risk profiles. This will identify ways to change the deal 
to improve it for all parties. 

- This analysis makes it clear why new entries always appear in the 
reinsurance market. Reinsurers have portfolios of losses that are corre- 
lated with the potential cession. In workers’ compensation, for example, 
losses in various contracts may be correlated through inflation, benefit 
level changes, or loss of statutory immunities or defenses. The new 
entries have risk capacity arising from their own cash flow, but do not 
have existing portfolios of losses that are correlated with the new cession. 
(Of course, presumably, they do not have the underwriting expertise of 
the experienced writer, either.) 



EXPONENTIAL UTILITY VS. THE VARIANCE PRINCIPLE 

Two advantages of using exponential utility instead of the popular variance 
principle are: 

- Exponential utility provides the correct asymptotic behavior as the loss 
being considered gets large and its probability gets small. This is illus- 
trated in Exhibit 3. 

In contrast. the variance principle lcads to premiums greater than the 
loss itself. 

- Exponential utility leads to a more distinct concept of risk capacity. 
Exhibit 4 shows that the disutility associated with a loss in excess of 
one’s capacity (as defined above) reflects a marked aversion to losses 
greater than one’s risk capacity. This agrees with our intuitive under- 
standing of how we accept and cede risks. The variance principle, in 
contrast, does not show such a distinct “flinch point.” 

ESTIMATION 

New methods of estimating aggregate loss distributions make practical ap- 
plication much easier. Monte Carlo simulation is readily available, although 
somewhat costly in terms of computer time. Monte Carlo simulation handles 
virtually all practical problems including multiline contracts. Monte Carlo sim- 
ulation also gives the flexibility to break apart workers’ compensation losses by 
type of injury, distinguish various sublines of liability coverage, and so on. 

Aggregate distributions are receiving more attention recently. Heckman and 
Meyers (1983) describe a method of calculating aggregate loss distributions by 
a method of characteristic functions. Venter (1983a) shows an application of a 
method of numerical estimation developed by Panjer. Jewel1 (1983) extends 
Panjer’s work to a dynamic risk portfolio. Each of these authors shows how to 
calculate the expected value of an excess premium as well as tirst dollar losses. 
We can expand Venter’s conclusion (from page 69) to read: 

“By approximating the severity distribution with discrete probabili- 
ties, the aggregate distribution and excess premium functions and the 
risk adjusted cost can thus be estimated recursively.” 

Venter (1983~) has dicussed the advantages of modeling aggregate loss 
distributions with transformed Gamma distributions. Distributional models may 
lead directly to general formulas for the risk adjusted cost. 



EXHIBIT 3 

ASYMPTOTIC BEHAVIOR 

Surcharge to avoid l/1000 chance of losing x units 
of risk capacity, expressed as a multiple of X. 

S = (In (.999 + 401 exp (x/c)) + ,001 x/c) - 1 
(exponential utility principle) 

or 

s = .999x/c 
(variance principle) 

Surcharge 
for risk 
of loss 

1000 

800 

600 

400 

0 

This line is at the point you would 
pay 99% of the cost of the loss to 
avoid a 0.1% chance of the loss. 

J 

t 
The flinch point 

.I 1 10 100 1000 

X/C d 
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EXHIBIT4 

THE FI.INCH POINI 

Surcharge 
for Risk 

600% 

500% 

Exponential Utility 
?Principle 

400% 

300% 

200% 

100% 

.I .2 .3 .5 1 23 5 10 

x/c 
1‘ 

“flinch point” 



RtINSURANCt 177 

DECREASING AVERSION TO RISK 

Venter (I 983b) has pointed out the theoretical advantages of 

RAC (X,c,p) = c (1 - exp (- 5)) 

or some other utility function with decreasing aversion to risk. 

This may be a valuable point, but in practice a reinsurer is not likely to 
vary its risk capacity significantly in response to a loss under a single treaty. It 
is more realistic to expect a reinsurer to become more or less aggressive in 
response to a series of losses, a change in the competitive marketplace, or some 
other factor affecting many treaties. In short, the refinement will not matter in 
most practical applications. 

Indeed, as we have seen, it is easy to explain the search for one’s risk 
aversion if risk aversion is taken to be constant. It is difficult to develop such 
a procedure if one’s risk aversion is supposed to be expressed as a function of 
the surplus left after the loss. 

Most importantly, using an exponential utility function does not necessarily 
result in a misstatement of our utility function. We can be correct if we can 
correctly see the utility of (a - X) from our vantage point at a. We can be as 
averse to (a - X) as we wish. 

DISTRIBUTIONAL STATISTICS 

Characteristic functions and moment generating functions (m.g.f.‘s) can be 
used in tandem to derive simple results for frequently used models. As Heckman 
and Meyers (1983) showed, 

I 

r 

C$F (I’) = E [exp(ifx)] = exp (itx) C(x). 
0 

where & is the characteristic function of F(x). 

This leads directly to 

I 

m 
RACF(c) = c In EF [exp (x/c)] = c In exp (x/c) C%(X) 

0 

1 
= c In 4b z 0 

where the subscript F refers to the aggregate loss distribution. 
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They also showed that 

b*df) = q+(t) @c(t) 

and that the characteristic function for an aggregate loss distribution F (with 
claim severity distribution S) is: 

This leads directly to 
I 

RACE(c) = c In c p(n) exp In . (RAC,(c)Ic)] ,I = 0 
where RAC, is the risk adjusted cost of a single claim 

The RAC, (c) is also closely related to the moment generating function of 
the severity distribution 

RAG.,(c) = c In M., i 
(> 

We mentioned earlier that the RACp(c) contained all the information in F(X). 
This is now clear because the m.g.f. of a probability distribution is unique 
(Hogg and Klugman (1984), page 19). Hogg and Klugman have shown (page 
50) that if the moment generating function of the severity distribution, M,(t), 
is known, and the claim frequency distribution is Poisson, the moment gen- 
erating function of the aggregate loss distribution is 

MM = expNM&) - I)1 

The risk adjusted cost is therefore 

RACF(c) = c In (M&l/c)] 
= c In [M,(IIc) - 11. 

For example, if the claim size distribution is exponential 

p(x) = 2 exp (- +) 

then 

exp (W 
MS(t) = 1 
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The roles of u, 8 and c as scale adjustments are clear. This leads to the 
following risk adjusted costs: 

RACF(C) = CA ] _ u,c - 1 
[ 

exp (WC) 1 
CA =- 

1 - a/c [ 
a + exp (WC) - 1 
c 1 

If8 = 0, 

RACF(C) = CA 2 

If B/c is close to 0, 

CT+0 
RACF(c) + CA c. 

This development suggests several obvious extensions to be pursued: 

-To determine the risk adjusted cost if the claim frequency distribution is 
negative binomial. 

-To determine the risk adjusted costs for other severity distributions for 
which the m.g.f. is known in closed form. 

-To determine the risk adjusted costs for truncated versions of distributions 
for which the m.g.f. is infinite. 

-Numerical approximations based on m.g.f.‘s, characteristic functions, or 
recursive methods. 

PROBABILITY, UTILITY, AND PRESENT VALUE 

The time value of money is important in many practical problems. In these 
problems a present value factor v(i) can be associated with each event that 
produces a loss X(i). The functions v and X may be continuous or discrete. 

Interest should be handled in such a way that the distributive property applies 
to the function MC. That is, the risk adjusted cost of a possible set of events 
should be independent of how fine a description one makes of the set of possible 
events. 



The function 

/UC(c) = c In ); p(i) r(i) exp (X,/c,) 

meets this criterion. So does its continuous counterpart 

&K(c) = c In 
I 

x 
v(x) exp (X/c) dF(X). 

0 

With this definition, the total risk adjusted cost &AC of a set of possible 
events with risk adjusted costs RAC(i) is the risk adjusted cost of all possible 
events, with each taken at its present value: 

RACo = c In c p(i) v(i) exp (RAC(i)/c) 

zz c In C p(i) v(i) x p(x) IO) exp (x/c) 
I wtrh,,, I 

= c In x x (p(i)p(x))(\li)v(x)) exp (-r/c) 
I wirhin 

In practice. then, probability and present value are almost interchangeable 
concepts. Present value and utility are not interchangeable concepts. This sur- 
prising result follows from the distributive property.’ 

CONCLUSION 

The reader is encouraged to try the utility-user’s viewpoint in practical 
problems. Starting perhaps with a discrete decision (such as whether or not to 
underwrite a particular risk or block of risks), decide on your risk capacity using 
Exhibit 1 or Exhibit 4. Sketch the risk profile curves for the decision by 
calculating a few points on each. Think about the interplay between your risk 
capacity and the decision you prefer (yes or no). Are you being consistent? 
Have you learned anything about the decision you didn’t know before? With 
use, this additional viewpoint may begin to feel as natural as considering both 
probability and time in the decision. 

I It would be reasonable to postulate that the multiplicative associativity of p(i) with plx) and v(i) 

with V(X) follows directly from a distributive property on RAC. I have not been able :o prove this, 
nor find an exception. A friend of mine says he proved it on a popcorn box at an Oilers game. but 
lost the proof. I would like a demonstration of whether or not “Oilers postulate” is true. 
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DISCUSSION OF PAPER PUBLISHED IN VOLUME LXX1 

EXTRAPOLATING, SMOOTHING, AND INTERPOLATING 
DEVELOPMENT FACTORS 

RICHARD E. SHERMAN 

VOLUME LXX1 

DISCUSSION BY STEPHEN P. LOWE AND DAVID F. MOHRMAN 

Mr. Sherman’s paper presents a potpourri of practical applications involving 
the fitting of a parametric equation to loss development factor data. The partic- 
ular equation utilized is called the inverse power curve, the form of which is 

where a, b and c are parameters to be estimated, and f represents time as it 
relates to the maturity of the body of claims. 

It should be readily seen that the parameter c provides a linear transformation 
of the time variable I, and is therefore somewhat extraneous to the formulation. 
The definition of f is arbitrary; f (t) can be the development factor from t to 
t + I, or alternatively f(t) can be the development factor from t - 1 to t. 
Similarly, the beginning of the accident year can be t = 0 or t = I (or even 
r = -I or t = 1.7275). 

The above comment is not intended to suggest that the selection of the time 
scale embodied in the variable I is trivial; a different result will be obtained for 
each scale chosen. However, to simplify discussion, we can express Mr. Sher- 
man’s equation as 

where we are searching for the best a, b, and scale f that Iits the data. - 

Like the author, these reviewers have found it useful in many circumstances 
to fit parametric equations to incomplete, erratic or irregular loss development 
data. This review will expand slightly on Mr. Sherman’s paper by offering some 
alternative equations, and discussing some desirable characteristics for loss 



development models of this kind. In addition, we will offer some specific 
comments and point out some pitfalls associated with Mr. Sherman’s approach. 

ALTERNATIVE MODELS 

The parametric equation in (2) above is referred to by the author as the 
inverse power curve. We refer to this equation as the polynomial decay model. 
As the author points out in Section II, this equation has the property that the 
initial development, a, decays at a rate of 

(3) 

over the interval from (t - 1) to t. For example, if b = 1, then the following 
decay rates would apply. 

Rate 
t Development from t - 1 to f of Decay 

1 1+Cl 
2 I + a x ‘12 50% 

3 I + a x ‘h x % 33% 
4 1 + a x % x % x 3/4 25% 
5 I + a x % x Y3 x 34 x ?4 20% 

An alternative model to the polynomial decay is one involving exponential 
decay: 

f(t) = 1 +; (4) 

In this model the initial development, a, decays at a constant rate, I - 6, over 
each interval. 

Viewing loss development as a decay process is intuitively appealing. It is 
certainly reasonable that, as an ever increasing proportion of losses are paid, 
their propensity to develop must decline. 

Both the polynomial and the exponential decay models can be expanded by 
the addition of a third parameter involving a squared term. 

f(t) = 1 + ; + $ (5) 



f(t)= 1 +g++ b- 

There are also a variety of mixed models that might prove useful. 

f(t) = 1 + 9 (8) 

All of these six models have been used by the reviewers to tit emergence data 
of one form or another. 

Equations (5) and (6) are interesting as they can be conceptualized as 
modelling two different kinds of development taking place simultaneously, but 
decaying at different rates. For example, if the data were accident year reported 
losses. the (I term might represent development caused by newly reported claims, 
while the c term might represent development on existing claims. 

A specific instance where this approach is very useful is in the case of 
subrogation and salvage. The following table compares actual loss development 
factors for Auto Physical Damage to those obtained using the three parameter 
polynomial decay model. presented in equation (5). 

Year of Actual 
Development Development 

2:1 I ,240 
3:2 .Y93 
4:3 ,996 
514 ,998 
6:5 .Y99 
7:6 1 .ooo 

Model 
Development 

1 .240 
,992 
,997 
,994, 
,999 

I .oocl 

In this instance the parameters of the model are u = - .07, h = 3 and c‘ = .31. 
In this instance the model has a nice intuitive appeal. The positive development 
of losses embodied by the c term decays very quickly, leaving the slower 
negative development of subrogation and salvage embodied by the a term. 
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CHOOSING A MODEL 

As we have noted, all of the models described previously have proven useful 
in fitting various kinds of emergence data. We suspect that the reader could 
easily conjure up other models that would also prove useful. 

Each of the models that we have described is “well-behaved”, but only over 
a limited range of parameter values. It is worthwhile to consider what kinds of 
constraints on the parameters are necessary for a model to be reasonable. 

In traditional applications, we want the development factors to be positive, 
decreasing, and approaching one. These can be expressed mathematically as 

1. f(t) 2 1 lim f(t) = I 
,-CC 

2. f’(t) < 0 lim f’(t) = 0 
r--r= 

3. f”(t) > 0 lim f”(t) = 0 
I-x 

While the constraints on the limits are probably necessary in all situations, 
special circumstances may require the relaxing of one or more of the constraints 
on values off(r), f’(t) or f”(t). For example, to produce the auto physical 
damage factors cited earlier, it was necessary to violate the first constraint, 
Similarly, the third constraint restricts us to curves that are concave upward 
over the entire domain of t. In some instances a curve that starts out concave 
downward may be desired. 

For Sherman’s two parameter polynomial decay model 

f’(t) = -ba 
[h+’ 

f”(t) = b(b + 1)~ 
t h-t2 

We see that all conditions are satisfied when a > 0 and b > 0 (and t > 0). 

For the two parameter exponential decay model 

f’(t) = 3 In r c J h 



f”(t) = z (ln $)’ 

Here all conditions are satisfied when (I > 0 and b > I 

Similar calculations to these should be performed on any proposed model 
before its use, so that a clear understanding of the properties and limitations of 
the model is obtained. 

A much more critical property of any model used to estimate report-to- 
report development factors is whether the product of the infinite series con- 
verges. While arbitrary truncation of the series at some point (such as 80 years) 
may be acceptable from a practical standpoint, it would be more desirable to 
restrict the model by requiring that it produces a less-than-infinite development 
factor to ultimate. 

Unfortunately, testing for convergence of the product of an infinite series is 
often difficult, as it usually involves intractable series of logarithms. 

Such is the case with Mr. Sherman’s equation. Several quick attempts failed 
to produce an algebraic solution to the question of whether the product series 
converges for all values of a and h, or some limited set. The reviewers are. 
however, convinced that with further effort (perhaps by someone more adept at 
real variable analysis) a solution to this question is obtainable. 

Our investigations did lead us to the following conclusion, however. Con- 
sider the following hypothetical loss development data. 

Maturity(r) 
Reported Report-to-Report 
Losses Development Factor 

2 
3 
4 
5 
6 
7 
8 
9 

10 

$ loo 
200 
300 
400 
300 
600 
700 
800 
900 

1,000 

2 000 
I.500 
1.333 
1.250 
I.200 
I.167 
I. 143 
1.125 
1.111 



The reader should readily recognize that if the loss development continues at 
its present rate of $100 per interval, losses will be infinite. It follows that the 
loss development factor product series must not converge. 

However, it is also true that the development factors above can be produced 
identically using Mr. Sherman’s equation by setting both LI and h equal to one. 
This strongly suggests that the parameter b should be restricted to values greater 
than one in order to guarantee convergence. 

We were led to raise the question of convergence by the discussion in 
Section II of Mr. Sherman’s paper. In that section he derives the rate of 
decay for his model and points out that the rate of decay (as we have defined 
it) declines towards zero as t increases. (His “decay ratio” approaches unity.) 
This is in strong contrast to the exponential decay model, under which the 
rate of decay is constant for all values of t. 

Upon initial reading of this section of the paper we were concerned that a 
declining rate of decay implied non-convergence of the ultimate development 
factor. However. upon reflection this does not appear to be the case, 

It seems reasonable that there should be a relationship between the rate of 
decay of the development and the convergence or non-convergence of the 
development factor to ultimate. Clearly this question should be resolved before 
any model gains widespread use. 

FITTING THE FUNCTION TO ACTUAL. DATA 

In Section I of his paper, Mr. Sherman suggests a simple procedure for 
fitting his equation to loss development factor data. The technique uses only 
natural logarithms, exponentials and linear regression, and therefore has the 
distinct advantage of requiring only a (reasonably sophisticated) pocket calcu- 
lator to perform the calculations. 

While the technique is handy, any prospective user should be aware that it 
dots suffer from several problems. First, under the proposed transformation, an 
actual loss development factor of 1.000 is inadmissable because the natural 
logarithm of zero is undefined. What does one do under such circumstances? 
One possibility is to substitute a factor “sufficiently” close to 1.000. 

A similar problem exists with observed development factors less than I .OOO. 
These must be ignored or somehow smoothed out of the data. 



Another problem is that the fitting technique minimizes the errors of 
In(f(t) - 1) and not the errors of ,j(r). The result is that. in the fitting process. 
differences between actual and fitted values arc more signifcant when the 
development factors are close to 1.000 than when the development factors are 
significantly greater than 1.000. This bias in the errors is not necessarily bad; 
it simply needs to be understood as a part of the fitting process. 

A related problem is that. since the measured errors are of the logs of the 
factors rather than the factors themselves. the coefficient of determination that 
results directly from the computation is inaccurate. and usually overstates the 
goodness of the tit. 

For example, the coefficient of determination of the tit presented in Exhibit 
I is described as .99887. This is the coefficient of determination of a straight 
line through coiumn (4) and not the coefticient of determination of the inverse 
power curve through column (2). This latter coefticient of determination is .97 I. 
which is still good, but less favorable than the author suggests (especially 
considering that there are only three data points being fit). 

Obviously, the proper measurement of errors. and the decision as to what 
errors to minimize is key to any curve fitting procedure. 

A particular problem with fitting Mr. Sherman’s inverse power curve (or 
any of the other alternative curves that WC have proposed) to the report-to-report 
development factors is that the resulting titted factors will be multiplied together, 
compounding the errors. This can be a particular problem when the errors are 
not random. In such cases a signiticant error in the development factors to 
ultimate can accllmulate. 

For example, in Section II of his paper, Mr. Sherman uses his model to 
extrapolate general liability report-to-report development factors, using only the 
first few development factors to obtain the equation’s parameters. While ex- 
pressing some caution about the reliability of the resulting factors. the author 
does suggest that the extrapolated report-to-report development factors compare 
relatively favorably when compared to the actual factors over each interval. 

The comparison is considerably less favorable if one compares the com- 
pounded, rather than the report-to-report, development factors. The errors 
in the IBNR reserve that would result from using the extrapolated factors 
range from 16% (1.667 vs. 1.575). to I l2O+ (1.495 versus 1.234). 
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Year of 
Development 

Extrapolated Development 
Factors Based On 

First 2 First 3 First 4 
Factors Factors Factors 

Actual 
Factors 

3 to I5 1.667 I .575 
4 to I5 1.455 1.670 I.329 
5 to I5 I.331 I.495 1.322 I .234 

An alternative fitting approach that avoids the compounding of errors would 
be to fit the curve that results from compounding the factors to the actual loss 
emergence data, measuring the errors between actual and fitted losses reported 
at each valuation point. In essence, this alternative approach “dollar weights” 
the titted factors. 

An outline of this approach can be stated as follows. Minimize 

Where L,,,,,, is a valid point in the loss triangle, with p representing the exposure 
period of the losses (accident year, for example) and I representing the valuation 
point; and 

where L&*, is some base value for the accident year in question at some time 
f* (e.g., the latest valuation point), and f is the chosen decay model. 

The problem so stated can be solved using partial derivatives and non-linear 
programming techniques. 

CONCLUSION 

Mr. Sherman’s paper provides an excellent introduction to a timely topic. 
The paper presents practical ideas and approaches for the solution of problems 
encountered with increasing regularity in reserve analysis: incomplete, immature 
or fluctuating loss development data. We wholeheartedly agree with the author 
that the fitting of loss development data to curves such as the inverse power 
function often provides a practical solution to these problems. 
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AUTHOR’S REPLY ‘I‘0 DISCUSSION 

One of my hopes in writing a paper on development factor analysis was 
that it would help to stimulate others in their research in this area. The subject 
is so important that if Charles Darwin were alive today. hi> contribution to link 
ratio analysis might be the discovery of the long-awaited missing link. In the 
absence of a re-vitalized Darwin. we are fortunate to have the review of Stephen 
P. Lowe and David F. Mohrman and the ideas and models they present. 

Why is this subject so timely? Let us consider a commonly encountered 
situation. As we head out toward the more mature parts of our development 
triangles, and our data transition from the credible to the less credible, we are 
presented with several alternatives (presented in ascending order of preference): 

I. Satisfy the actuarial craving to deploy a complex model which fits the 
given data points perfectly and wildly diverges as woe attempt to use it 
to extrapolate beyond the historical experience. 

2. Close your eyes. swallow hard. make an undocumentablc selection. smile 
like a Cheshire cat, turn to the world at large and exclaim, “Trust me.” 

3. Rely on the indications of only two or three f’actors, each of which is 
often heavily impacted by large claims. The dictum. “When in doubt, 
throw it out,” is often invoked here. 

4. Use models which closely fit related data to extrapolate factors for later 
development factors based on earlier factors from more credible data. 
Some of the Lowe-Mohrman models could be very useful here. 

It would have been helpful if the reviewers had provided some comparative 
tests of how well their models fit actual data, such as was provided for equation 
(5) and the salvage and subrogation data. I suspect that equation (5) often would 
represent a better fitting model than the basic inverse power function because 
each term behaves in the same manner as the inverse power curve and an extra 
parameter should increase accuracy. However, equations (6) through (8) present 
models which add complexity and may or may not increase accuracy. It is often 
true that more complex models improve accuracy within the range of historical 
data points. But, it is also true that they may tend to diverge from expected 
patterns when used for the purpose of extrapoiation. The advantage of a simpler 
model is that its behavior for extrapolation purposes tends to bc more reliable. 
This suggests that an important criterion in assessing different models is their 
ability to predict known factors for later periods of development based solely 
on earlier factors. 
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The reviewers’ presentation of the hypothetical results obtained when u and 
h are set equal to unity in the two-parameter inverse power curve is quite 
interesting. It clearly illustrates the necessity of an eventual decline in the 
incremental amounts of development if convergence is to occur. This is generally 
not a problem as long as the historical data include later periods when the 
incremental amounts of development decline. If the incremental amounts are 
constant (as in Lowe’s example) or increasing, the product series will diverge. 

Lowe and Mohrman observe that the fitting method in the paper minimizes 
the errors in In (f(t) - I) and not the errors off’(t). They further observe that 
differences between actual and fitted values are more significant when the 
development factors are close to 1.000 than when the development factors are 
significantly greater than 1.000. Thus, the fitting method puts more emphasis 
on factors for the more mature periods than for the earlier periods. This is 
usually a desirable result, since the estimated factors of consequence are those 
of the later development periods. For applications where greater accuracy is 
required for the earlier periods, the errors off(t) should be minimized instead 
of In (f‘(t) -1). 

With regard to estimating a tail factor by multiplying together the extrapo- 
lated factors, the reviewers correctly note that this procedure results in a com- 
pounding of the errors. It should be noted, however, that a compounding of 
errors as the extrapolating proceeds further into the Suture is probably unavoid- 
able as it would appear to be inherent in the process of foreseeing the distant 
future. The degree of uncertainty in our estimates will, in all likelihood, increase 
progressively as we forecast events occurring further away from the immediate 
present. Even if we are using the best possible model, the extrapolation is based 
on data of limited credibility and the results are very sensitive to statistical 
fluctuations in the historical experience. 

In closing, it may be noted that the inverse power curve can easily be used 
for estimating the number of IBNR claims as an alternate method to that 
presented by Edward Weissner in his paper, “Estimation of the Distribution of 
Report Lags by the Method of Maximum Likelihood” (PCAS LXV, 1978). The 
procedure is much easier to apply and chi-square tests for goodness of fit indicate 
that a closer lit is obtained using the inverse power curve rather than maximum 
likelihood. A comparison of actual and fitted development factors for cumulative 
reported claims is included here as Exhibit 1. 



COMPARISON OF ACTUAL AND FWI-ho REPORTHI COUNT DEVELOPMENT 

FACTORS USING AN INVERSE POWEK FUNCTION 

Year of Medical Other Bodily 

Develop- Malpractice Injury Liability 

ment Actual Fitted Actual Fitted - - ___ __ 

2:l 2.094 2.162 I.274 I .29s 
3:2 
4:3 
5:4 
6:5 
7:6 
8:7 

,179 
,099 
,032 
,021 
,010 
,008 

199 
1071 
.034 
,019 
,012 
,008 

.062 

.027 
,014 
,006 
,005 
,003 

,060 
,024 
.o I2 
,007 
,005 
‘004 

9:8 I.007 1.006 I.003 1.003 
IO:9 I .004 I.004 I.001 I.002 
I?? .98759 .99038 
I2 = I.16241 0.29501 
h= 2.54727 2.20051 
(‘= -1.ooooO -1 .sMNOO 

Auto Bodily 
injury Liability 

Actual Fitted ___ - 

I.160 1.163 
,013 1.014 
.004 I .003 
,001 I .OOl 
.ooo I.001 
,000 1.000 
.OOO I .ooo I 

I ,000 1.000 
1.000 1.000 

.99483 
0. I6288 
3.56889 

-1.ooOoO 
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ADDRESS TO NEW MEMBERS-MAY 9, 1985 

THOMAS E.MURRIN 

Twenty years ago last November in New York City, at the Fiftieth Anni- 
versary meeting of the Casualty Actuarial Society, one of my duties as President 
of the Society was to admit the new members. At that time there were six 
Fellows admitted and Stan was one of the ten new Associates. To put our 
Society’s growth in perspective, the membership today is more than two-and- 
one-half times the number at the time of that meeting. Since then, society and 
business have changed greatly; in the future they will change even more. Our 
challenge is to be prepared. 

The warm applause of welcome you just heard was well-deserved, genuine, 
and not perfunctory. It has been so for the 71 years of our Society’s history 
because the audience members know and remember well the effort, the diffi- 
culty, and the obstacles encountered along the way, as well as the sense of 
achievement, pride. and satisfaction that one feels toward having completed 
one of the two milestones that we note here this morning. Equally deserving of 
the applause of recognition and welcome are the spouses, the families, and the 
friends who shared the sacrifice and encouraged your endeavors. For Associates, 
it is the first major step and for Fellows a second, not a final one. While 
Associateship does confer membership, I urge all Associates not to slacken their 
efforts but to achieve Fellowship by concentrating on the remaining exams in 
the next few years. Incidentally, the proportion of Fellows and Associates is 
about the same as it was for 1984. Successful completion of these exams will 
significantly enhance your actuarial knowledge and effectiveness, as well as 
broaden your horizons of your dynamic business and the role the actuary plays 
in it. Additional experience gained in your employment between the Associate- 
ship and the Fellowship designations will also help improve your understanding 
of the profession, the business of insurance, and the society it serves. 

I would equally urge the new Fellows to consider continuing education as 
part of their career development. Increased knowledge can be gained in many 
ways-through formal educational programs; actuarial, insurance, and financial 
literature; broader and new experiences that impart additional knowledge; as 
well as private study. Increasingly, seminars sponsored by different organiza- 
tions, including the Casualty Actuarial Society and the Academy, offer oppor- 
tunities for continuing education. On a related subject, 1 would urge the Fellows 
to use some of the time previously allocated to exam preparation to serving on 



our Society’s committees+jr bq m,riting papers for the Society’s P roccwfin~~,s 

on topics where your expericncc. knowlcdgc . and/or research has provided you 
with insights that are worthy of sharin g with the members. This is particularly 
true if the topical area is one whcrc a previous paper has opened up a new area 
for exploration. or one wherein the literature is thin. 

To sum up before turning to another subject: Associates and Fellows. take 
pride and satisfaction in the achievement\ gained thus far. and in your own wa) 
enhance your knowledge and value to the profession and to the Society. Each 
of you probably has thirty or more ?ear\ of your career ahead of you. It will 
pass quickly. more quickly than you think. and the enjoyment and satisfaction 
you receive from it will bc in proportion to your efforts to make it so. 

Now to a topic which is part of every profession. In a word, I am talking 
about professionalism. It is a subject which must bc uppermost in your mind 
throughout your career because. in my opinion, no professional person+,r even 
one whose occupation is not so dcsignatcd<an bc internally satisfied. content. 
or proud of perceived accomplishments or ~ccc~s (no matter how great in 
monetary terms) if they have hccn gained by compromising personal integrity. 
ethical principles. or truthfulness. 

The introductory sentences of the “Guides to Professional Conduct” arc 
worth repeating: 

These guides have been developed over many years and revised from time 
to time. but with great care and dclibcration always to avoid inlringement upon 
the personal nature of the actuary’s work and to keep in mind the overriding 
importance of his or her professional duty and relationship to a client and to 
employers, as well as to collcaguc~. The guides arc worth) of careful reading 
from time to time-several times a year-to keep them fresh in mind. as are 
the more detailed supporting interprctivc opinions. 

In the introduction to “Interpretive Opinion I .” Francis Bacon is quoted as 
follows: 



Each of our members should be a help and ornament to our profession and the 
Society, and reciprocally so to each member colleague. 

For the tirst time, in my memory. we are having a panel discussion on 
actuarial malpractice. I am confident that through familiarity, understanding, 
and application of the “Guides to Professional Conduct” in at1 our endeavors 
we can avoid or minimize any exposure to allegations of actuarial malpractice. 
I urge all of you to attend and participate in the discussion. 

In conclusion, I want to wish each of the new Fellows and Associates long. 
healthy. successful, and happy careers in the true meaning of each word. I also 
thank President Stan Khury for affording me this unique privilege of welcoming 
you. 
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KEYNOTE ADDRESS-MAY 9, 1085 
ADAPTING TO AN ERA OF CHANGE 

DR. .MICHAEI. J KA.LII 

Today I am going to discuss the future. 1 read the Casualty Actuarial Society 
booklet about all your accomplishments and all the exams you have to take; 
obviously you know all about the past. The future, as you know from looking 
at the record of insurance companies. is a little bit more confusing. 

There is nothing permanent except change. That observation was made some 
500 years before Christ. An early papyrus dated 4000 B.C.. the first written 
piece of information, started: “Alas, things are not what they used to be.” 

We live today in a new era. For tive thousand years we were an agricultural 
society: the major source of power was human strength and a few animals. Our 
industrial revolution started only 250 years ago. Since the invention of the steam 
and then, of course, the combustion ttngine and nuclear power, we multiplied 
our force by a hundred. a thousand. a million. a trillion timeh. 

And then we left the industrial society and entered the era of service. The 
exact date was 1956. That was then the proportion of employees in the service 
industry in the United States passed the SO percent mark. And today, in 1985, 
76 percent of workers are in the service industry; only 24 percent are in industries 
such as construction or manufacturing. The service era also was an evolutionary 
era. 

1 would like to suggest that we entered. in 1980, only five years ago, a 
brand new era of our society: the era of knowledge. I believe that is a very 
important transition for the future, and that a ma.jor psychological adaptation is 
required to really understand that future. 

You probably took a lot of courses in economics. Forget them all. All the 
Nobel prizes for analysis of the economics of modern society are based on a 
premise that the standard of living of a country depends on the proportion and 
growth of energy consumption in that country. For 250 years economies could 
be modelled by the approximation that the consumption of energy and the GNP 
moved in parallel: the more energy consumed, the higher the standard of living. 

However, energy consumption per dollar of GNP since 1973, which was 
the time of the OPEC oil embargo, has declined gradually. The real GNP since 



then has increased by 43 percent, while the energy consumption in the United 
States has decreased by 23 percent. Something new has been added to the entire 
structure of our society. 

Furthermore, we are facing a brand new economy because of microminia- 
turization. This is not just an empty word. For example, if ten million cars built 
in 1974 and ten million cars built in 1985 are compared, the average difference 
is two thousand pounds less weight per car. Multiply this weight difference by 
ten million cars and you have how much? Twenty billion pound less of 
what? Of steel, of aluminum, of tires. of rubber, of everything. Yet, the product 
performs the same function. 

Another example is even more dramatic. Fifteen years ago, a telephone 
conversation to London relied on a transatlantic cable. That transatlantic cable 
weighed 275,000 tons, and required ships made out of steel to lay the cable. 
Today, the same communication, or better, uses a one-quarter ton satellite. This 
represents a difference of many magnitudes in materials needed, with the same 
results produced. 

This is a revolutionary new world, with changes in economics, changes in 
perception, and a new ingredient-knowledge-that differs from energy, which 
always ruled us as a consumable commodity. Knowledge is a self-regenerative 
cumulative commodity and we really have to understand the change that has 
occurred. 

Psychological adaptation to this new society is critical. Yet it is not accom- 
plished easily. I deal with presidents of large corporations and small corpora- 
tions, with members of the power structure. The power structure, in my opinion 
is like an ostrich with its head in the sand. And this ostrich does not look up. 

How does one adapt‘? How does one change? How does one plan, establish 
strategies, and think of everything that is uncertain about this new revolutionary 
future, but in practical terms. Why don’t corporations adapt? Corporations fail 
and new ones replace them. For example, Penn Square, which didn’t understand 
that the oil boom was not forever. AM International: the company that still used 
electromechanical technology when everybody else was using electronics. Bran- 
iff, whose megalomaniac president decided to paint planes multi-color, thinking 
that people would Ay Braniff because the plane was pink and yellow. And 
Lionel: who plays with trains today’? Your kids play with electronic games like 
Atari. Atari started with seven people and in eighteen months grew to a $ I .3 
billion company with thousands of employees. And today, guess what Atari is: 



seven people in South Korea. l‘oda) UC have it compression of time: things 
don’t last as long. 

Now, why do corporations and institutiona go through ;I long, wonderful 
period of growth and then decline very. very fast’! There is an unlimited potential 
for losses. Let me offer a few cxamplcs. Beatrice Foods was voted in 1977 by 
Dunn’s Review as one of the best managed companirx. Today they are struggling 
to create an identity with sumc questionsblc advcrti\ins programs. Caterpillar 
was voted the best managed company in 197X. Today. in 1985. half ot’ Cater- 
pillar’s employment in Peoria is gone. and Komatlu is beating Caterpillar 
throughout the world. In 197X, the banh voted the bat managed bank in the 
United States was Continental 01‘ Illinois. In 19X3. it wa voted by pcsr banks 
as the most hated. least admired in the Fortune 500. Pan Am wit great in the 
1960s and is almost bankrupt today,. 

You probably have read the book by Thorna\ Peters and Kobcrt Waterman. 
In Setrrch c!f’~..~\-(~~~Ii~,t~~~~,. And then 1 ou probably read the HM~M,M ~MX- article 
“00~s.” What was “Oops”? The hook wa\ rexcarchcd four yc;u-\ ago; a current 
revitzw of the companies selected as the most ciccllcnt companies is quite 
enlightening. Here then. is “exccllcncc” rc\,isted. 

Texas Instruments: major f’aitures in markctin, $1 consumer clcctronics and 
quality failures. Caterpillar: losing it\ market position in the world. 

Fleur: a good example of corporate f’orccasting. This ~‘a a construction 
company that spent Pj2.S hillion to buy St. Johns minerals to have a supply of 
copper; six montha lutcr. the price of copper dcclinal to the lowest level since 
1932. That’s a decision. 

Levi-Strauss: rcmembcr denims and jcun5’.) Ia-Strauss became arrogant 
and started trying to dictate the market. 

Kodak is a company married to an obsolctc technology of silver nitrate. In 
a few years cameras won’t have tilm, they uill have little chips. After taking 
300 pictures, remove the chip, and play it through a tclcvision screen. You can 
buy it, by the way. next year. This is an excellent example of change. 

Some companies-by which we really mean the companyx‘ management. 
people. and talent-lose. while others succeed. IBM. Merrill-Lynch. Lincoln 
Electric, Cannon. American Express-xcept for the casualt) insurance opera- 
tion, Federal Express, and Delta arc con&tent winners. We also have consistent 
losers, Why’? 



6l.YNOll; AI~I)HI~SS 199 

One answer lies in a simple but complex observation: the economic life of 
a decision, whether it’s a decision to build a plant. to pay a compensation plan, 
to establish a risk factor, to promote someone or to retire someone, or to get a 
product on the market, has shortened. It has shortened from ten years to seven 
years to four years to two or three years. 

Changes are occurring faster. Technological breakthroughs arc faster. Com- 
puters are now changing at the rate of every four years. Combined with two- 
and-a-half year delivery time, this means that your machine already is obsolete 
by the time it comes into your office. 

In response to the shortened economic life of decisions, we must make 
decisions faster. Doing so tends to increase risk. But management doesn’t want 
to increase risk; therefore we need faster decisions with the same risk factor. 
There is the simple-but complex-formula for the strategy of planning. 

Let us examine this a little bit. I want to make decisions today and in the 
future twice as quickly as ever before. Therefore, I need better data twice as 
fast. I want better information about the external environment and the internal 
operation of the company organization. Twice as fast; twice as good. I need 
better communications. It’s no use just having the data. I want twice-as-fast 
communications between people. between customers, between entities. There- 
fore, I want a flat organization, and I want a fast feedback of communications 
from the grassroots. 

But there is no use having fantastic communications and fantastic data if 
you have people incapable of making the decisions. I also want faster decision- 
making. 

In short, what I am saying is that we have entered an era of unpredictability 
in an era of knowledge; this is a paradox in itself. And that unpredictability has 
created fluctuations. We have entered an era where the fluctuations are going 
to be twice as big and occur in one-half the time. This is my formula for 
fluctuations. 

What are some examples of these fluctuations? 

In the past five or six years interest rates have been 6 percent. IO percent, 
20 percent, 24 percent, IO percent, 20 percent, and then IO percent. Inflation 
has been 6 percent, I8 percent, 2 percent. How about the U.S. dollar versus 
other currencies? In 1980 and 1981, it was 65 percent of parity; at the beginning 
of this year, it was 165 percent of parity. These figures were never predicted, 



predictable. or used. If you knew how to do so, you wouldn’t be here: you 
would be on your lOO-foot yacht in the Mediterranean with a crew of nine, 

Remember that in 1980 our President-at that time slightly younger-was 
running on the promise of a balanced budget. And today we have a $200 billion 
a year unbalanced budget. I don’t blame him: I’m just saying that’s life. 

When you talk about the Iran-Iraq War. you talk about a h-day war that 
changed to a &month war that changed to a h-year war. Every expert in the 
world said that if we experienced a b-year war between Iran and Iraq the supply 
of oil would be curtailed and there would be Y shortage of oil in the world, 
Today we have the biggest glut of oil in history Those are the predictions. This 
is the type of forecasting that is common. 

Therefore. I say that the era of unpredictability, because of our known 
adaptation to knowledge. will continue. That’s my assumption. Assuming you 
share this assumption, then what can we do? The first thing is psychological 
adaptation, learning to expect the unexpected. For instance. a very interesting 
unexpected that just happened is that there is not a single country in the world- 
whether it’s an oil exporting country. industrial country or non-developing 
country-that doesn’t have a federal dchcit. 

The world, and I wish I had coined the phrase. is not going to be good or 
bad. better or worse; it’s going to be different. We have to understand this. 

Let me describe one major difference that is going to affect our planning, 
our understanding. The population of the whole world is only growing now 
at 1.7 percent per year. The population of the key industrial countries is 
growing at 0.3 percent: 0.9 in the United States but 0.0 in West Germany, 
0.1 in France, and 0.2 in England. When the world population stops growing, 
particularly in the industrial countries, there will be fewer consumers to buy 
things. Fewer consumers to buy things does not necessarily imply a worse 
economy, but it will be a different economy. We have entered a period of 
replacement and substitution instead of growth and addition. For everything 
that goes up something has to go down. That is substitution. For every market 
or telecommunication or computer or electronics segment that grows at a 
rate of forty percent, some other other sector of the economy is going to 
shrink at a rate of forty percent. 

When this happens in a slow growth world economy. the companies must 
compete. For every company that grows at a rate of IS or 20 percent, one must 
decline at I5 to 20 percent. Therefore. this situation creates a very competitive 
environment. This is apparent even today in the manufacturing sector, particu- 



larly with regard to the imports that are coming to United States. So one of the 
very important considerations for the future, in addition to the fast fluctuations 
I described earlier, will be an extremely competitive situation between compa- 
mes. 

There are two generic strategies that sellers must consider along with all the 
risks and all the various events in this world. A seller dealing with commodities 
that only depend on price must be one of two things. That seller must be a low- 
cost producer worldwide, because worldwide the price comparisons are being 
made, and it doesn’t matter whether it’s a service or a product. Or, if not the 
low-cost producer, the seller must have a deep pocket, A deep pocket is very 
important because a larger company that doesn’t have the low-cost production 
can reduce prices for quite a while to put the small company out of the business, 
at least for a while. The winning combination for a commodity product with 
no differentiation is worldwide low-cost with a deep pocket. 

Such a combination forces competitors to seek specialty products or try for 
uniqueness. Service becomes very important because here you can charge more 
in that service provides a dimension of uniqueness in addition to the price. 

Another approach to consider is the niche strategy. This is sometimes illus- 
trated by the difference between a very small company and a large company. 
The large companies fight for an additional one percent market share. That one 
percent for Coca-Cola is worth $250 million; that one percent for a cigarette 
manufacturer is worth $300 million. The little companies fight for the one 
percent that the large competitor doesn’t want. A company must decide whether 
it wants 90 percent of the one percent specialty market or one percent of the 
overall market. Only the company can decide where it tits. 

You may say that I am exaggerating; I am not. For years I made a comment 
that it is useless to fight against Pepsi-Cola and Coca-Cola: they fight against 
each other and the little competitors lose. So I suggested a possible specialty- 
a cola for dogs. After all. that’s a small market; I am sure Coca-Cola will not 
want it. However, ladies and gentlemen, as of two months ago, Canine Cola 
has been introduced in Phoenix and its sells for $4.99 a six-pack. I tasted it; it 
isn’t bad. 

The next thing you have to consider in this changing environment is the 
present tremendous merger-mania. And merger-mania will continue because as 
big corporations get bigger they want to consolidate their hold on the market. 
This is not nefarious; it’s good business, at least if you are smart enough to do 
it right. Every merger is intended to combine two plus two and yield five. 



That’s synergy. The reality is that in X0 percent 01. the casts two plus two yields 
three. 

Let me suggest something else that is c truing to happen. Because of the 
compression of time, because of the desire to bc in the market fast. I recommend 
joint ventures. Very difficult to accomplish. but the) alloy, “instant vertical 
integration.” And you see this approach with increasing l‘rcqucncy. Companies 
iake someone who has the marketing ability. someone who hax the production 
ability. someone who has the money. and somconc who has manufacturing or 
distribution capability: instant joint venture. instant entry into the market, instant 
everything. It’s necessary because the current environment allows only four 
months or six months, not two and ;I halt’ years. 

Procter and Gamble. which was the paragon ot marketing, ix changing its 
entire marketing and merchandising approach. They USC’ market forecasters. 
Why‘? You can’t go to Squeedunk and teat-market a product for two and a half 
years and then go national because by the time you gn national. everybody else 
and their brother is already there. So even Procter and Gamble is trying to learn 
how to introduce new products. new ideas. and new expansions of their existing 
products. This applies to the insurance business. too. Decide on extension of 
products. or new products. by sampling in three months time. 

Coca-Cola. which in seventy years introduced three new products, has a 
new management that I really admire. Coca-Cola introduced more than a dozen 
new products in three years and latel:, has made a ma.jor risk decision by 
changing a formula that was okay for seventy years. 

“Speed” is the message that I’m trying to gi1.c \‘ou To LLt data fast WC _ ~1 
must understand information management. We really have to manage the man- 
agement of information. not the information itself. We are up to our ears in 
information. How do we manage information better’! 

1 do believe that in a few years companies that don’t have the executive 
communication station are going to bc passe. Hut what do I mean by that? 1 
mean an executive, president of a company, chairman of the hoard. who sits at 
his terminal and really uses it: not one who gives it to a secretary for word 
processing. 1 mean a manager who actually ~ t’ets fast information. fast data. 
from distributive shared data bases and ix able to make intelligent decisions. 
Meetings are no longer occasions to present the data t’or hours: instead the data 
are available ahead of time and the meeting is to discuss strategy and make 
decisions. Virtually no presidents of corporations have reached thih stage. 



Some companies pioneer. Flextime to flexplace. I don’t know why actuaries 
have to be in an office in Hartford. They just as well could live in Colorado 
and have a nice computer and communications facilities and never see anybody. 
I know of four insurance companies that have saved a great amount of money 
by not having people commute but having them work at home. But that’s 
breaking a mold, breaking tradition. 

Uniqueness and innovation are important characteristics for success. The 
key ingredient to profitability is for a company to have uniqueness. The future 
depends on the creativity in the present. The mind has tremendous potential; 
creativity is something that really must be cultivated. 

Coleco, for instance, lost $500 million on a computer, but they made it up. 
They made it up on what‘? On this strange Cabbage Patch doll. $500 million. 
Why‘? Not because of the doll but because someone said that the kids would 
like to sign the adoption papers. What I admire most is not the Cabbage Patch 
doll, but is the fact that someone at Coleco saw the doll somewhere in Arkansas 
or Georgia and said, “Yes, that is going to sell,” and bought it. 

Now, think of yourself, your management, your operation. How many 
managements really are that innovative to try something new? That’s what is 
needed. And that newness is important because of the fast obsolescence of 
products. 

However, there is a clever way of being unique and a stupid way. For 
example, a principle that was used by airlines was to fly passengers through a 
hub city: Atlanta for Delta; Chicago for United; Dallas for American. But 
remember the gentleman who said five years ago, “I’m going to ship a package 
from Los Angeles to San Francisco by taking it from Los Angeles to Memphis 
and then from there to San Francisco.” The world’s greatest planner said; “That’s 
a stupid idea!” As you know, Federal Express has become an extremely inno- 
vative. multi-billion dollar corporation. 

But you see that innovation is only possible through people. No machine 
can innovate. And therefore I say, take a talent inventory in your company. 
This is how to do it. Think of four people, other than yourself, who are so 
indispensable to the company that it would be a major catastrophe if they left. 
Now write down their names. If you can’t visualize only four peole who are so 
fantastic that it would make a difference, your company is in trouble. We need 
talented, unusual people and they don’t have to be president of the company. 
Actually, it sometimes is a disadvantage for the president of the company to be 
innovative because then everything depends on him. 



A good president of the company, a CEO. should have only one character- 
istic: the ability to find, motivate, nurture. and encourage talent. That’s all there 
is to it. Management must try to be receptive because new ideas, new ways of 
approaching things. faster ways, define entrepreneurs. Don’t expect anything 
original from an echo. 

The best of all worlds is to find individuals who combine several unique 
characteristics. Some people are detectors of change, they can see things chang- 
ing. Other people, having been told of changes become the architects of change: 
they plan and they calculate. Then the agents of change take that plan and run 
with it. Successful companies need people who are detectors of change, archi- 
tects of change. and agents of change, all combined in one person. Those are 
the talented. unique. indispensible people that arc needed in a company. 

Another important consideration is internal organization. For faster and 
better communication, eliminate the middle management of a company, seek a 
horizontal organization. An organization must be fast, fluid, and flexible. 

Look for a lean, highly-paid, intelligent staff. Strive for an organized chaos. 
An organized chaos has the ability to change fast. Seek a company that has a 
chairman of the board or chief executive officer and eighty division managers 
reporting to him. Does that sound ridiculous’! The eighty managers must be 
very smart because if they are not the boss is going to spend all his life talking 
to them. But if they’re smart, they can work independently. There really are 
companies with eighty people reporting to one president that are doing very, 
very well. 

Think about why we need a foreman on the factory Hoor. The foreman 
serves only two purposes: first, to tell the worker what to do: and second, to 
maintain discipline. If the worker is trained to read a cathode ray tube or 
terminal and knows what to do, he does not need the foreman. And if the 
worker is motivated by incentive, he does not need the discipline. And com- 
panies are taking this approach to eliminate middle management. Decentralized 
authority is effective not because it’s nice but becau\c the speed of communi- 
cation and decision-making requires it. Fight bureaucracy. 

Another thing that is very important. and that is a part of the knowledge 01 
the external environment, is the urgent need tar customer orientation and for 
understanding the present and future behavior ol people. What do I mean by 
that? We live today in an era where the homogeneous mass market no longer 
exists, There is no homogeneous market because ~‘c are in an era of pluralism. 



When I came to this country 45 years ago, I wanted to be assimilated. 1 
wanted to be part of the masses. Today, in 1985, I see a set of subcultures in 
which the young don’t want to be like the old, and the old don’t want to be 
like the young. Women don’t want to be like men; men don’t want to be like 
women. The blacks don’t want to be like whites; and vice versa. These are all 
niches. Why do you think that big companies no longer have one advertising 
agency’? They have an Hispanic advertising agency, a black advertising agency, 
a West advertising agency, and an East advertising agency, et cetera. They 
understand the pluralism. 

Today’s consumer, lovable but irrational, may be more affluent because of 
two family members working. The consumer may be less loyal to a brand or a 
company or an insurance product or anything else. Today’s consumer is more 
mature, as you know. The consumer is older, more impatient, and less gullible. 
There is a new female role. All these factors must be understood by a company, 
and incorporated into a company’s changes. 

We have a trend that is very interesting: a trend toward extremes, which I 
call polarization. That polarization stems from the fact that we now have a 
bimodal society. The bimodal society has fewer of the blue-collar $30-an-hour 
workers; but more of the service workers at $9,000 to $10,000 per year, and 
more of the technical, managerial, talent workers at $30,000, with few workers 
in the middle of these extremes. 

I see a trend to extremes: we now need either no service or excellent service; 
we need cheap products or expensive products. The strategies of companies are 
going to be aimed at the extremes. The companies hedging in the middle are 
not going to succeed. 

The principles of mass merchandising, specialized boutiques, and bargain 
basements (for example, Sears. Gucchi, and K-Mart, respectively) apply to 
financial services, too. At one extreme, the customer is provided with insurance, 
mortgages, financial accounts, and stock brokerage services. For example, 
American Express and Merrill-Lynch take this approach. On a bargain basement 
level, Schwab or the Bank of America offer no service, but discount prices. 
Then there’s the specialized boutique, a salesman in East Cleveland sitting with 
an old lady discussing five shares of stock for three hours. Where does your 
company fit‘? What is your marketing, your merchandising, your understanding? 

From what I have said already you know that strategic planning is becoming 
tougher all the time. But I would like to eliminate the word “strategic planning” 
from your vocabulary. I don’t want planning: I want management. Planning is 
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filling books; planning is making learned studies; planning is preparing pres- 
entations; planning is not action. Management is action. Therefore, let’s 
combine planning with action. And I want you to put into your planning 
more thinking: not just extrapolation, calculation, regression, and so forth. I 
want you to put your imagination to work, to imagine future new concepts, 
to understand unpredictability. 

One simple planning principle is to identil’j an important change you can 
make tomorrow. I want an action proposal to be cl’l2ctcd nc~t Monday morning. 
If you prcscnt to me a plan for the future that sa) s in 1989 you are going to 
change something. I will not he interested because you have four years to 
change your mind. But I will be intercstcd it’ you say that. towards that change 
in I YXC), you arc going to spend money on energy ant! people. Monday morning. 
then you arc doing long-range planning and impleinentalion. Vcq ICw con- 
panics actually do it well. 

Avoid paralysis through an;tlq\is. f%ecausc (~I‘ the compression of time. I 
need smarter pcoplc. better tools. and hctter data. Hut it’s not absolute. All I 
want is to be live percent better than the other guy. Bccausc I‘m not using 
absolute planning. I only want he a little hit hotter than the competition and I 
want to compare myself to the leatlinC (7 cdee. Who dots the host calculations’! c 
Who does the best planning? Who has lltc hc\t pcr\onncI dcpartmcnt’! Who has 
the best data processing dcpartmcnt in the \+orld’.’ How do I compare? And if 
I‘m the lcadcr: how J&t arc they catching up to mc’.) 

A hey clcmcnt of your planning should occur each morning: idcntil’y live 
issues that are absolutely urgent- in jour opinion- -for your company, your 
profession. or your operations. l-3i.c i\suc\ only, in order of priority. You may 

have a hundred issues: select only live. ‘l‘hcn for each issue idontil’y the action 
you will take today. Let me make it ;I Iittlc bit more difficult for you by insisting 
that the action be innovative and imaginative. Bernard Shaw, said many years 
ago. “For every complex problem thcrc i\ ;I \irnple solution.” Hc was wrong. 
Ladies and gentlemen. thcrc arc no simplistic 4utions: there arc complex. 
imaginative. good solutions to very complex problems. 

Don’t believe in forecasting. Bcliove in assumptions ahout the future. When 
we talk of tomorrow, the gods laugh. And Lvhcn ~OLI thinh that ~OLI really know 
hoM. to forecast. and you bclievc in your ow’n magic. hc careful. 

Let me tell you one little story. One ot. the grcatcst miscalculatio~1\ in IBM 
history was in 1057. when I predictelI for IBM that there u~~ld he only 52 



large computers in the world. And now there are hundreds of thousands. How 
did I make that famous forecast? There were 52 experts in IBM, one for 
wholesaling, one for electrical. one for insurance, one for banking, and so on. 
I went to each one of them and showed them something new, a set of plans 
they didn’t understand. Every one of the 52 was afraid to say, “I can’t sell any,” 
and didn’t want to commit themselves to sell two, so they each said they could 
sell one. Those experts provided the basis for my famous forecast, but that is 
not an illustration of how forecasts should be made. 

I really believe that you have in the current environment a tremendous 
opportunity to work with the two sides of your brain, left and right. You have 
tremendous mathematical, analytical, technological abilities. And you also have 
the ability, hopefully, to look at the world that is changing, to understand that 
change, and to introduce this compression of time, technology, psychology, 
action, and reaction into your mathematical formulas through intuition or guess- 
timate. You can provide an unforgettable and extremely valuable combination. 

I would like to close with my favorite prayer, by Niebuhr: “God give me 
serenity to accept things I cannot change, courage to change things I can change; 
and the wisdom to know the difference between the two.” 
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MINUTES OF THE 1985 SPRING MEETING 

May 8-11, 1985 

BOCA RATON HOTEL AND CLUB. BOC‘A RATON. FLORIDA 

Wednesday, May 8. 1985 

The Board of Directors held their regular quarterly meeting from 1:00 p.m. 
to 4:OO p.m. 

Registration was held from 4:00 p.m. to 600 p.m. 

The Officers held a reception for the new Fellows and their spouses from 
5:30 p.m. to 6:30 p.m. 

A general reception for all members and guests was held from 6:30 p.m. to 
7:30 p.m. 

Thursday, May 9, I985 

Registration continued from 7: 15 a.m. to X:00 a.m. 

President C. K. Khury opening the meeting at X:00 a.m. The first order of 
business was the admission of members. 

Mr. Khury recognized the sixty-eight new Associates and presented diplomas 
to the nineteen new Fellows, who were introduced by Mr. Wayne Fisher, Vice 
President-Membership. The names of these individuals follow. 

FELLOWS 

Francois Bertrand John R. Fomey, Jr. 
Raja R. Bhagavatula Loyd L. Fueston, Jr. 
William P. Biegaj Alan J. Hapke 
Terry J. Biscoglia Heidi E. Hutter 
Jeffrey R. Carlson Michael J. McSally 
Stephan L. Christiansen Robert E. Meyer 
Warren S. Ehrlich 

Allan R. Neis 
Donald W. Palmer 
Lois A. Ross 
James Surrago 
Diane M. Symnoski 
David L. White 



Mark S. Allaben 
Leonard A. Bellafiore 
David M. Bellusci 
Joseph A. Boor 
Brian Y. Brown 
George R. Busche 
William M. Carpenter 
Andrew R. Cartmell 
Daniel B. Clark 
Frederick F. Cripe 
Kathleen F. Curran 
Janice Z. Cutler 
Todd H. Dashoff 
Thomas J. DeFalco 
Robert V. DeLiberato 
Jacques Dufresne 
Bruce G. Earwaker 
Kenneth Easlon 
Kirk G. Fleming 
Robert W. Gardner 
Daniel F. Gogol 
Kevin M. Greaney 
Christy H. Gunn 

ASSOCIATES 

Gregory L. Hayward 
Wayne D. Holdredge 
Jeanne M. Hollister 
Ruth A. Howald 
Charles D. Kline, Jr. 
Frederick L. Klinker 
Robert H. Lee 
Martin A. Lewis 
Barry C. Lipton 
Mark W. Littmann 
Rebecca B. Lyons 
Brian P. Maguire 
Eugene McGovern 
David L. Menning 
William J. Miller 
Warren D. Montgomery 
Robert V. Mucci 
Robert G. Muller 
Thomas G. Myers 
James W. Noyce 
Arthur C. Placek 
Jeffrey H. Post 
Richard A. Quintano 
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Daniel A. Reppert 
Richard D. Robinson 
Jeffrey C. Salton 
Joseph F. Sarosi 
Jeffrey R. Scheuing 
Timothy L. Schilling 
David C. Scholl 
Roger A. Schultz 
Arlyn G. Shapiro 
John Slusarski 
Michael B. Smith 
Edward C. Somers 
Kathleen W. Terrill 
Joseph P. Theisen 
Nancy R. Treitel 
Jean Vaillancourt 
Gerald R. Visintine 
Joseph L. Volponi 
Stacy J. Weinman 
Robert G. Whitlock, Jr. 
Robert L. Willsey 
Susan K. Woerner 

Mr. Khury then introduced Mr. Thomas Murrin, a past President of the 
Society, who addressed the new members concerning their professional respon- 
sibilities. 

Mr. Khury announced the first winner of the Harold W. Schloss Scholarship: 
Steven Book at the University of Iowa. 

Mr. Charles A. Bryan described the recent activities of the Committee on 
Review of Papers, and summarized the five new Proceedings papers. 

Oakley E. Van Slyke presented a discussion of Lee Steeneck’s paper, 
“Reinsuring the Captive/Specialty Company.” Richard E. Sherman, author of 
“Extrapolating, Smoothing, and Interpolating Development Factors,” responded 
to a discussion of that paper by Stephen Lowe and David Mohrman. 



Mr. Michael Walters summarized the activities of the Discussion Paper 
Program Committee, which had led to the current set of Discussion Papers 
related to “Analysis of Results, Forecasting and Corporate Planning.” and 
introduced the Discussion Paper topic for 1986. “Rcinsurance .” 

Mr. Khury concluded the business session at 900 a.m. and introduced Dr. 
Michael J. Kami, President. Corporate Planning, Inc. who delivered a very 
stimulating Keynote Address. Dr. Kami stressed that change is the single greatest 
force with which managers must deal. and highlighted that point with a discus- 
sion of the progress. in the most recent four years, of those corporations singled 
out for their excellence in 198 1. 

A panel presentation, “Managing the Insurance Industry into the 1990’s,” 
followed. The panel was moderated by Dr. Edwin S. Overman, President of 
the Insurance Institute of America. The panel members were Mr. John E. Fisher. 
Chairman, Nationwide Insurance Company: and Mr. Peter B. Walker. Director, 
McKinsey and Company, Inc. 

A buffet luncheon followed from noon to I:30 p.m 

The afternoon was devoted to presentations of the sixteen Discussion Papers, 
five new Procceclitzgs papers, and a workshop presentation by the Membership 
Committees. 

The Discussion Papers were presented in eight sessions. listed below. 

Session I. Moderaror: James E. Biller 
Chubb Group 

“Corporate Planning: An Approach for an Emerging Company” 
Aurhors: Irene K. Bass and Larry D. Carr 

Crum & Forster Personal Insurance 

“Budget Variances in lnsurancc Company Operations” 
Author: George M. Levine 

National Council on Compensation Insurance 

Session 2. Moderutnr: Eric F. Gottheim 
GEICO 

“Branch Office Profit Measurement for Property-Liability Insurers” 
Author: Robert P. Butsic 

Fireman’s Fund Insurance Company 
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“Measuring Division Operating Profit” 
Aurhor: David Skumick 

Argonaut Insurance Company 

Session 3. Moderator: Stephen W. Philbrick 
Tillinghast, Nelson & Warren, Inc. 

“A Formal Approach to Catastrophe Risk Assessment and Management” 
Author: Karen M. Clark 

Commercial Union Insurance Companies 

“An Econometric Model of Private Passenger Liability Underwriting 
Results” 

Authors: Richard M. Jaeger and Christopher J. Wachter 
Insurance Services Office 

Session 4. Moderutor: Bruce C. Anderson 
General Reinsurance 

“Measuring the Impact of Unreported Premiums on a Reinsurer’s Finan- 
cial Results” 

Aurhor: Douglas J. Collins 
Tillinghast, Nelson & Warren, Inc. 

“Projecting Calender Period IBNR and Known Loss Using Reserve Study 
Results” 

Authors: Edward W. Weissner and Arthur Beaudoin 
Prudential Reinsurance Company 

Session 5. Moderutor: Richard I. Fein 
Insurance Technical & Actuarial Consulting Corp. 

“Pricing, Planning and Monitoring of Results: an Integrated View” 
Author: Stephen P. Lowe 

Tillinghast, Nelson & Warren, Inc. 

“Application of Principles, Philosophies and Procedures of Corporate 
Planning to Insurance Companies” 

Aufhor: Mary Lou O’Neil 
Department of Insurance-New Jersey 



Session 6. Moderator: Frank Harwayne 
National Council on 
Compensation Insurance 

“The Cash Flow of a Retrospective Rating Plan” 
Author: Glenn G. Meyers 

The University of Iowa 

“Bank Accounts as a Tool for Retrospective Analysis of Experience on 
Long-Tail Coverages” 

Authors: Claudia S. Forde and W. James MacGinnitie, Jr. 
Tillinghast, Nelson & Warren. Inc. 

Session 7. Moderator: Sanford R. Squires 
Commercial Union Insurance Companies 

“Actuarial Aspects of Financial Reporting” 
Author: Lee M. Smith 

Ernst & Whinney 

“Contingency Margins in Rate Calculations” 
Author: Steven G. Lehmann 

State Farm Mutual Automobile Insurance 
Company 

Session 8. Moderator: Leroy A. Boison. Jr. 
Insurance Services Office 

“Interaction of Total Return Pricing and Asset Management in a Property/ 
Casualty Company” 

Author: Owen M. Gleeson 
General Reinsurance Corporation 

“Projections of Surplus for Underwriting Strategy” 
Aurhor: William R. Gillam 

North American Reinsurance Corporation 

The five new Proceedings Papers are listed below. 

“An Estimate of Statistical Variation in Development Factors Methods” 
Author: Roger M. Hayne 

Milliman & Robertson, Inc. 
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“A Simulation of the Efficiency of Loss Reserve Estimation Techniques” 
Aurhov: James N. Stanard 

F & G Reinsurance, Inc. 

“On Stein Estimators: Inadmissibility of Admissibility as a Criterion for 
Selecting Estimators” 

Aurhor: James E. Buck, Jr. 
Prudential Insurance Company 

“Loss Portfolios: Financial Reinsurance” 
Author: Lee R. Steeneck 

General Reinsurance Corporation 

“A Practical Guide to the Single Parameter Pareto Distribution”’ 
Author: Stephen W. Philbrick 

Tillinghast, Nelson & Warren, Inc. 

The CAS Membership Committees Workshop was presented in an effort to 
give Society members a better understanding of the structure and responsibilities 
of these committees. The Chair of each Committee described the committee’s 
functions, reporting hierarchy and goals. The participants were: 

Wayne H. Fisher Vice President-Membership 
Linda L. Bell Chairman-Education Policy Committee 
Allan Kaufman Chairman-Examination Committee 
David L. Miller Chairman-Syllabus Committee 

The President’s Reception was held from 6:30 p.m. to J:30 p.m. 

Friday, May 10, 1985 

Friday was devoted to a continuation of the Thursday afternoon sessions. 

A reception was held from 6:30 p.m. to J:30 p.m. 

Saturday, May 11, 1985 

A panel entitled “Actuarial Malpractice: How Can It Be Avoided?” was held 
from 8:30 a.m. to IO:15 a.m. The panelists were: 

Moderator: Philip N. Ben Zvi 
Senior Vice President 
Continental Insurance Cos. 



Pmali.sts: William Hager 
Principal 
Hager & Associates 

M. Stanley Hughey 
Consulting Actuary 
Tillinghast. Nelson & Warren. Inc. 

A film from Peat. Marwick. Mitchell & Co. concerning accountants’ negligence 
was shown, followed by a presentation by Mr. Hager on current case law, and 
a presentation by Mr. Hughey on professional standards. 

At IO:45 a.m., Mr. Khury reconvened the business session. The Michel- 
bather Prize was jointly awarded to Kobert Butsic and David Skurnick. 

At I I :OO a.m.. Mr. F. Lee Bailey addressed the membership concerning his 
career as a lawyer. with particular emphasis upon negligence suits in which he 
has been invol\;ed. This discussion included the Union Carbide plant in Bhopal, 
Johns-Manville asbestos litigation. and the DC-IO crash at O’Hare Airport. 

Mr. Khury adjourned the meeting at 17: IS p.m. 

In attendance by registration records were 261 Fellows; I46 Associates; and 
32 guests and subscribers. The list follows. 

Addie, B. J. 
Adler, M. 
Aldorisio. R. P. 
Alfuth, T. J. 
Anna, D. A. 
Asch, N. E. 
Bartlett, W. N. 
Bashline, D. T. 
Bass. I. K. 
Bassman. B. C. 
Baum. E. J. 
Beer. A. J. 
Belden. S. A. 
Bell. L. L. 
Ben-Zvi. P. N. 

Bercns. R. M. 
Bertrand. F. 
Bhapavatula. R. R 
Biega,j, W. P. 
Bill. R. A. 
Biller. J. E. 
Biacoglia. T. J. 
Bland, W. H. 
Blivess. M. P. 
Boccitto, B. L. 
Boison, L. A.. Jr. 
Bornhuetter. R. L. 
Bothwell. P. 1‘. 
Bouska, A. S. 
Bowen. D. S. 

Brooks. D. L. 
Brown, N. M.. Jr. 
Brown. W. W.. Jr. 
Brubakcr, R. E. 
Bryan. C. A. 
Buck. J. E.. Jr. 
Burger, G. 
Byrne. H. T. 
Carlson. J. R. 
ChanLit. L. G. 
Chcng. L. W. 
Chcrnick. D. R. 
Childx. 1). M. 
Christianscn, S. L. 
Clinton. R. K. 
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Cohen, H. L. 
Collins, D. J. 
Conger, R. F. 
Connell, E. C. 
Conners. J. B. 
Covney, M. D. 
Crowe. P. J. 
Cundy. R. M. 
Curry, A. C. 
Curry, H. E. 
Daino, R. A. 
Dawson, J. 
Dean, C. Cl. 
Demers, D. 
Dempster, H. V. 
Doepke, M. A. 
Dolan, M. C. 
Donaldson, J. P. 
Drennan, J. P. 
Easton, R. D. 
Eddy, J. H. 
Ehlert, D. W. 
Ehrlich, W. S. 
Engles, D. 
Eyers. R. G. 
Faber, J.A. 
Fagan, J. L. 
Fein, R. I. 
Fiebrink, M. E. 
Finger, R. J. 
Fisher, R. S. 
Fisher, W. H. 
Flynn, D. P. 
Foote, J. M. 
Forney, J. R., Jr. 
Foster, R. B. 
Fresch, G. T. 
Fueston, L. L.. Jr. 

Furst, P. A. 
Fusco, M. 
Gallagher, T. L. 
Garand, C. P. 
Ghezzi, T. L. 
Gillespie, J. E. 
Gleeson, 0. M. 
Gluck, S. M. 
Goddard, D. C. 
Goldberg, S. F. 
Goldfarb, 1. H. 
Gottlieb, L. R. 
Gorvett, K. P. 
Gottheim, E. F. 
Grady, D. J. 
Graham, T. L. 
Grippa, A. J. 
Hachemeister, C. A. 
HaRing, D. N. 
Hall, J. A., III 
Haner, W. J. 
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THE ACTUARIAL METHOD 

I would like to preface my comments on the actuarial method by quoting 
from the July-August, 1981 Harvard Business Review. In his “letter from the 
editor” column, Mr. Kenneth Andrews writes: 

“Many teachers and students find quantitative techniques and theoretical models 
easier to teach, intellectually fascinating, beguilingly self-contained, rigorous, 
and capable of being memorized and quickly applied, widely if not wisely. They 
forget to insist that for the most part only trivial management problems are 
neatly structured and quantifiable. All modeling and quantitative analysis directed 
at a decision are only preludes to subjective judgment. Vision then must transcend 
technique.” 

This quote neatly sums up the problem of those who look to canned methods 
for the solution of their business problems. 

We’re all familiar with the scientific method. One of the key aspects of the 
scientific method is that it can be applied with predictable outcomes. For 
example, two parts of hydrogen combined with one part oxygen, under certain 
conditions, will yield water plus some amount of heat. This process can be 
repeated at will, by anyone, with identical results. Today I’d like to explore the 
actuarial method in an attempt to obtain a perspective on the nature of actuarial 
practice: how much art and how much science. 



Broadly speaking, given a specific actuarial question. the actuary goes 
through a number of steps in formulating an answer. For example. the actuary: 

- determines the universe of available data that may be relevant. 
* selects the types of data to be used, 
* makes a number of assumptions, 
* adjusts the data to recognize the special conditions associated with the 

specitic problem (deseasonalizing historical data. projecting to recognize 
future cost changes, etc.). 

* synthesizes the data with the aid of mathematical methods and judgment 
to produce a mathematical response to the question. and 

* interprets the numerical result in the context of‘ the original problem. 

This sequence of activities, measured strictly against the criteria of the 
scientific method. would clearly render the actuarial method not a scientific 
method. If not a scientific method. then what is it’! 

A close examination of the steps listed ahovc reveals two key points: 

* Within the actuarial method. there are several applications of the scientific 
method. For example, all the mathematical computations. trend methods, 
deseasonalizations of data. etc. . are 100% scientific exercises. 

* The various applications of the scicntitic method are preceded by. con- 
nected together with. and follow~ed by a host of applications of judgment. 

At the risk of greatly oversimplifying. I could describe the actuarial method 
as (I procrss which wnsists of II nwnhrr of‘ scirt~tific trppliwtiot~s cmhafdrd it1 
(I collecfion of‘judgments. In this sense. the actuarial method is neither pure art 
nor pure science; it is a synthesis. And different actuarial problems require 
different proportions of art and science. If the art-science mix is placed on a 
continuum where pure art is set at 0 and pure science is set at 100. then 
estimating next year’s pure premium for the auto collision coverage would be 
closer to 100; but estimating next year’s medical malpractice pure premium 
would be closer to 0. 

Not infrequently two actuaries have produced vastly different answers to the 
same actuarial problem. For example. at a public hearing on medical malpractice 
rates, the rate level indications as calculated by two actuaries were more than 
200 points apart (an ittcrease of 210 percent vs. a &crease of S percent). If one 
assumes that the scientitic methods used were correctly applied, then the entire 
difference is attributable to the judgmental aspects of the actuaries’ work. 



A corollary question is, “To what should the buyer of actuarial services be 
entitled in terms of the standards that govern the selection and application of 
those judgments‘?” Not an easy question to answer; but answer it we must. 

FULL DISCLOSUKE 

My view is that the buyer of actuarial services is entitled to,firl/ disclosure 
of the judgments made by the actuary in arriving at a solution to an actuarial 
problem. Although the precise meaning of full disclosure remains to be worked 
out, my idea of full disclosure consists of two aspects: 

* disclosure of assumptions, judgments, interim conclusions, and whatever 
else influences the outcome by more than some preselected tolerance, and 

* sensitivity analyses sufficient to illustrate the operation of these judgments. 

In this manner, the buyer should be able to observe the pressure points 
governing the process and appreciate their relative impacts on the final outcome. 
If the buyer has a (rational or irrational) basis for differing with the actuary on 
any of the disclosed items, then the buyer would be free to make alterations to 
those judgments and accept the consequences. 

One example might illustrate what I have in mind. Suppose an actuary. 
enroute to a conclusion, needed to select a trend line to be fitted to historical 
data. The disclosure and sensitivity analyses might include the following: 

* Number of points actually used in deriving the line of best fit. Outline the 
rationale for this choice and demonstrate the effect of selecting fewer or 
more points on the final answer. 

* Historical points omitted from the historical data. Outline the rationale for 
this choice and demonstrate the effect of restoring those points on the 
final answer. 

+ Seasonal adjustments. Outline the rationale for any seasonal adjustments 
and demonstrate the effect of “no seasonal adjustment” on the final answer. 

* Tempering the projection of the line of best fit. Outline the rationale for 
tempering and demonstrate the effects of “no tempering,” or other mag- 
nitudes of tempering, on the final answer. 

And there are several others: type of line used (straight, exponential), length of 
period used (month, quarter, year), type of observations used (I2 months moving 
averages, discrete time measurements), and so on. 

One of the key ingredients of a profession is the existence of observed 
standards of practice. The actuarial profession needs rigorous standards of 



practice in order to accelerate the effort to obtain legal recognition. Also one 
can hear the footsteps of actuarial malpractice (to a few actuaries, it has already 
arrived). Adopting a universal standard of full disclosure accompanied by rel- 
evant sensitivity analyses can only strengthen the profession by separating fact 
from opinion in presenting the actuarial work product. 

I should also note that all actuaries are included within the scope of my 
comments: actuaries who sell their skills to one client (employees) as well as 
actuaries who sell their skills to many clients (consultants). 

Whenever I think of standards of practice, my mental rctlcxes tend to deal 
in terms of what is permitted and what is prohibited. And that reminds me of 
a wonderful quote from former FCC chairman. Newton Minow, on the results 
of his study of the legal systems of European countries: 

“In Germany. under the law everything is prohibited except that which is per- 
mitted. In France, under the law everything is permitted except that which is 
prohibited. In the Soviet Union, everything is prohibited, including that which 
is permitted. And in Italy, under the lau everything is pcrmittrd. qccially that 
which is prohibited.” 

It is important to be aware not only of the need for full disclosure, but of 
the implication of its absence. 

The buyer of the actuarial product, a priori, does not know how to separate 
actuarial art from science, actuarial fact from opinion, and mathematical wiz- 
ardry from pedantic applications of formulas. All of these ingredients may be 
mixed well. carefully packaged, and eloquently presented; without full disclo- 
sure, the buyer of the actuarial product is completely at the mercy of the actuary. 
This is an unnecessary jeopardy for both the actuary and the buyer of the work 
product. The actuary, if operating with professional integrity. has absolutely 
nothing to fear from exposing the assumptions and judgments that went into the 
final work product. The worst possible outcome is that the buyer can exercise 
his or her own judgment (instead of the actuary’s) if he or she so desires. The 
point here is that failure to disclose the assumptions and judgments along with 
appropriate sensitivity analyses renders the actuarial work product incomplete. 

ACTUARIAL CHALI.ENGES 

Over the years a number of questions have lingered in my mind that, I 
believe, the actuary is particularly well suited to answer. Let me share some of 
these problems with you. 



Functions of surplus. 

What are the functions that surplus serves’? Some functions are readily 
apparent: to provide a cushion for absorbing adverse investment fluctuations, to 
provide a cushion for absorbing the collective risk assumed by the insurer, to 
provide a cushion for absorbing adverse reserve fluctuations. And I can think 
of several others. The challenge is to define an exhaustive set of the functions 
of surplus. 

HON- much surpluses 

Having defined the functions of surplus, the next question is how much 
surplus is needed to support each function and how much surplus is needed to 
support all the functions combined? Interestingly enough, the only rule that has 
emerged over the years that is remotely related to this question has been the 
Kenney rule. Can we do better‘? I believe we can. The challenge is to devise a 
general model that uses a number of insurer measures as input and yields a 
range for required surplus as output. 

Risk cla.ssij%ation index. 

We all know the extremes of risk classification for rating purposes. On one 
extreme we have the individual risk rate and on the other we have the average 
rate for the total subject risk population. Classification plans attempt to group 
risks somewhere in between. Is there an index that describes exactly where a 
risk classification plan falls between the two extremes? I believe there is. The 
challenge is to define such an index-to be used for management purposes as 
well as an aid to enlightened regulation of business. 

Conjdence intervals for loss reserves 

Loss reserves are stated as point estimates. This fact, we all recognize, is 
only part of the story. Every reserve estimate has a corresponding confidence 
interval, albeit one that is usually not known or, if known, not stated. The 
challenge is to define a general model for determining loss reserves confidence 
intervals so that a reserve is always stated as a point estimate together with a 
corresponding confidence interval. 

Present value ratemaking. 

With very few exceptions, ratemaking formulas generally use calendar/ 
accident year loss ratio methods. The propriety and elegance of present value 
ratemaking can hardly be overstated. The challenge is to come up with a 
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generalized model for making rates using present value methods that recognizes 
the peculiar characteristics of casualty insurance. 

Sumpling 

Much of our industry manages its affairs by using 100% samples. With few 
exceptions, sampling has not found its way onto center stage of actuarial science. 
The challenge here is to develop small sample models to derive answers to the 
two classic actuarial problems: ratemaking and reserving. 

sol\‘etlcv tests. 

The current NAIC tests are. at best. pragmatic tcstx. lacking a sound theo- 
retical basis. The challenge is to develop a set of actuarial tests of solvency that 
have a sound theoretical basis, not just empirical observation. There can be no 
overestimation of the value such a set of tests would have on a number of 
different fronts. 

With inflation already very much a part of the world economic fabric, the 
need for int-tation sensitive exposure bases grows more acute on a daily basis. 
The problem has been substantially solved for property exposures. But for 
liability exposures the problem lingers. The result is a constantly recurring gap 
between the true rate and the rate actually in rffcct, causing insurers to engage 
in an endless game of catch-up. The challenge is to tind a set of inflation 
sensitive exposure bases for liability exposure\. 

I invite each of you to reflect on these questions. to pick out a small part 
of anyone of them and adopt it. Let your mind engulf it. understand it, feel it. 
stalk it. own it, and then, ultimately, subdue it. And when you have thus solved 
it, write a paper and share it with us. Writing a paper is precisely the single 
most powerful method we have to expand the horizons of actuarial science. 
And I extend this invitation to each of you. w,hethcr an Ax\ociatc. a new Fellow, 
or a thirty-year Fellow. 

I am sure you have observed that all of the questions I have posed lie within 
a traditional insurance framework. The applicability of the actuarial method to 
areas outside the traditional insurance framework has been expanding. I will 
cite two examples. One is the rapidly growing involvement of actuaries in the 
field of risk management. Another is that one of our members has made it his 
life’s work to extend actuarial applications to any question involving a contin- 
gency and a consequent transfer of money. My judgment i\ that these applica- 



tions will continue to grow and will occupy a larger and larger proportion of 
our membership. My invitation to you in this regard is be alert to such oppor- 
tunities to expand our horizons. Eventually we will likely have to amend and 
broaden the statement of objectives of the Casualty Actuarial Society. 

PROFESSIONALISM 

In The FountLtittkectd, Ayn Rand writes: “Throughout the centuries there 
were men who took first steps down new roads armed with nothing but their 
own vision.” 

Our founders had a vision in 1914. They saw a need. And they formed 
(what later became) the Casualty Actuarial Society for the purpose of meeting 
that need. 

Over the years the CAS has grown in both numbers and stature. It continues 
to serve a useful purpose; and incidentally, that purpose has grown over time 
(as evidenced by the expansion in 1961 of the statement of objectives of the 
CAS). And, as I suggested earlier, our purpose will grow even more in the 
future. 

The CAS today enjoys a very fine reputation. We are known as a learned 
association of professionals with rigorous entry requirements. The value of the 
education our members receive enroute to Fellowship is continually demon- 
strated by the incredible variety of functions actuaries are called upon to per- 
form-as employees and as consultants. 

I submit to you that the life force of our reputation derives from two sources, 
one from within and one from without: 

* The contributions from within derive from those who write papers, develop 
the .S~/lahu.s, construct and grade examinations, put our programs together, 
serve on our program panels and workshops, publish our periodicals, 
question and challenge conventional wisdom, and otherwise conduct the 
business of the CAS. 

. The contributions from without are accomplished by making sure that all 
the work we do is of uniformly high quality and by making sure that we 
conduct our business lives with impeccable professional integrity. 

History gives us many accounts of great organizations that faltered because 
of complacency. They looked too much to past success and too little to current 
opportunities. The CAS, in order to continue to thrive and meet its objectives, 
requires each of us to contribute to each of the sources of its life force. 



Every talent we have. every ability we possess. every skill we have acquired 
is a gift. It is a gift entrusted to us to put to good use. Also, it is well to 
remember, whether we are consciously aware of it or not, that in the course of 
achieving every success we have experienced, sorneone helped us. 

Today you belong to a healthy. vibrant. and forward looking organization. 
In a very direct way. it has helped you. I’d like to ask you to ask yourselves 
the following question: 

“Is the Casualty Actuarial Society better and stronger for having me as a 
member’?” 

If we are the fulfillment of the vision of our founders and if we are to 
continue to keep the torch lit, your answer to this question must be a resounding 
yes. Your mission is to make sure the answer to this question will always be 
yes. 
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THE VALUATION OF AN INSURANCE COMPANY 
FOR AN ACQUISITION INVOLVING A 

SECTION 338 TAX ELECTION 

JAMES A. HALL. 111, ORIN M. LINDEN, STEPHEN GERARD. MICHAEL HEITZ 

One method of treating the acquisition of a stock company is a 
Section 338 election. This paper discusses such an election in the ac- 
quisition of a stock insurance company. The tax aspects are explored 
and the role of the casualty actuary in such an election is discussed. 

INTRODUCTION 

This paper discusses one possible tax treatment of an insurance company 
acquisition and the role of the casualty actuary in this process. 

Traditionally, the casualty actuary has played a significant role in the ac- 
counting practices of the insurance industry through his work in analyzing loss 
reserves. However, actuarial input to other accounting areas has been more 
theoretical than applied. While casualty actuaries have written important papers 
and made valuable contributions to statutory accounting and annual statement 
accounting, most actuaries do not work closely with accountants. 

The average company actuary is probably reasonably familiar with statutory 
accounting principles and has some idea of adjustments that must be made for 
purposes of generally accepted accounting principles (GAAP). Purchase ac- 
counting and tax accounting are probably much more foreign to most casualty 
actuaries working for insurance companies. 

The purchase of an insurance company is a challenging opportunity for the 
casualty actuary, the insurance tax and valuation specialist, and the insurance 
accountant to cooperate in a multi-disciplinary team. The Section 338 election 
described herein is only one approach to the acquisition of an insurance com- 
pany. 



O~w~~inr~ cff Sectiott 338 

A signiticant provision of the Tax Equity and Fiscal Responsibility Act of 
1981 (“TEFRA”) concerns acquisitions of corporations and continues to afford 
an opportunity to partially “tinancc” such acquisitions through tax amortization 
of certain nonstatement asxcts. Under prior law-, certain acquisitions of target 
corporations generally took the form of either an asset acquisition or a stock 
purchase. If the buyer acquired the axacts from the target corporation, the buyer’s 
basis in each purchased asset was that aasct‘s share of the purchase price. The 
selling corporation would not recognize a gain on :rsxet appreciation under 
Section 337 if it liquidated within a time trame provided by statute. The buyer 
who acquired stock instead of assets could allocate the purchase price to the 
underlying asbets and liquidate the acquired corporation. If. instead, the buyer 
did not liyuidatc the acquired company. the target’s tax attributes (e.g. net 
operating loss curryovcrs) continued and its assets retained their historical basis. 

Congress, in what it perceived to he a correction of several arcas of abuse 
as well as a simplification of existing law. repealed the stock purchase-liqui- 
dations of Section 334(h)(2) and added new Section 33X. Among the ahuses 
which Congress corrected was the buyer’s ability to “pick and choose” in 
determining which assets received I favorable “step-up in basis” and which 
assets avoided a recapture tax. (A “xtep-up in basis” occurs when the buyer is 
allowed to increase the tax basis of the target company’~ assets (generally cost) 
to an amount equal to its cost (the current fair market value) of purchasing the 
target’s stock). Further. under prior law a huycr was permitted to continue the 
target corporation’s tax attributes for a period up to fiv,c years after the initial 
stock purchase while also treating the transaction as though assets had hcen 
purchased. This cxtcndcd “survival” period Icd both to significant opportunities 
to comhinc the target corporation’s tax attrihutcs with those of the purchasing 
corporation 3s wII as major complcxitics in dcterminin g the basis to be assigned 
to the target’s asxets on liquidation. Finally. if consolidated returns were filed 
by the acquiring corporation, the recapture tax liability could hc deferred and 
in certain situations avoided. 

In general, new Section 338 provides that with respect to certain stock 
acquisitions. the purchasing corporation may elect to treat the target corporation 
as having sold all of its assets on the stock purchase date and as having purchased 
those assets. acting as a new corporation. on the next day. This “sale” is 
generally considered tax free to the target corporation to the extent it would 



have been a sale under Section 337. Finally, the tax attributes of the target 
corporation, including net operating losses, are not carried over to the new 
successor corporation. 

Under the new rules, it is no longer necessary to form a new company and 
liquidate the target corporation to get a stepped-up basis; the buyer merely needs 
to elect to have the stock purchase treated as a direct asset purchase. Thus, 
unlike certain instances under the prior law where a legal liquidation of the 
acquired corporation was required, outstanding contracts need not be amended, 
and permission from state insurance authorities to treat the stock purchase as 
an asset acquisition generally should not he needed. Under Section 338. the 
election applies only for tax purposes. 

The election generally applies to “qualified stock purchases” (I.R.C. Section 
338(d) (3)), of the target corporation’s stock occurring after September 1, 1982. 
The term “qualified stock purchase” contains the same requirements previously 
provided in the prior law. i.e., a purchase within a 12-month period of 80%’ or 
more of the voting power and 80% or more of the nonvoting stock (except 
nonvoting, nonparticipating preferred stock) of the target corporation. For qual- 
ified stock purchases made after August 3 I. 1982, the purchasing corporation’s 
affirmative election of Section 338 must be filed by the later of (I) the 15th day 
of the 9th month after the month in which the acquisition date occurs or (2) 
December 3 I, 1985. This means that decisions generally must be made more 
quickly now than in the past where, under a prior law, a buyer could wait up 
to two years before deciding whether a stepped-up basis was desirable. Once 
made. the election is irrevocable. 

A Section 338 election is particularly beneficial where the purchase price 
exceeds the hook value of the target. Under this election, where the purchase 
price of the stock includes a “premium” over book value of the underlying 
assets, the basis in the acquired stock, including unsecured liabilities assumed. 
may he apportioned to ail the acquired assets based on their relative net fair 
market values. As we discuss below. the actuary can be instrumental in helping 
to determine the fair market value of certain insurance-related intangible assets 
and their amortizable lives. In this process, appreciated property obtains a 
stepped-up basis, thereby providing an opportunity to obtain higher cost recovery 
and amortization deductions. The step-up also serves to reduce potential taxable 
gains on future dispositions of such assets. It should be noted that assets that 
have depreciated in value will be written down thereby producing the opposite 



results. Further. transactions between the purchasing corporation and the target 
or target affiliate for a period of one year both before and after the acquisition 
date must be treated as if included as part of the stock acquisition unless the 
sale by the target corporation is in the ordinary course of its trade or business, 
or one of several other limited exceptions arc met. 

The assets of the target corporation will bc treated as sold (and purchased) 
for an amount equal to the grossed-up basis of the acquiring corporation in the 
stock of the target corporation on the acquisition date. “Grossed-up basis” is a 
tax concept and was devised for situations where leas than 100 percent of the 
target’s stock is purchased. If the purchasing corporation owns all of the target 
corporation’s outstanding stock. the grtrsscd-up basis of the target corporation’s 
stock is its cost basis. I!‘ the purchasing corporation acquires less than 100 
percent of the target corporation’s stock, an adjustment must be made to the 
basis of assets acquired to reflect the continued interest of minority shareholders. 
The formula used to determine the grossed-up basis provides that this amount 
is to be adjusted under the regulations to bc issued for liabilities of the target 
and other relevant items such as recapture tax liability. 

Significant tax benetits are achieved where identifiable amorti~ablc intangible 
assets are acquired. An intangible asset can hc generally defined as a property 
or property right which does not have physical euistcncc. but which can be 
expected to produce income in future years. 

Intangible assets can be more narrowly categorized as idcntihable and uni- 
dentifiable (e.g. see Rcvcnue Ruling No. 73-456). To bc considered an identi- 
hablc intangible asset for fcdcral income tax purposes. the intangible asset 
should be “identitiablc” with specilic rights. propertics. relationships, contracts, 
or other detinable source of income potential. Common examples of identifiable 
intangible assets are patents. trademarks. franchises. equity in favorable con- 
tracts, and certain types of customer relationships. 

Unidentitiable intangible assets. as the name implies. arc valuable properties 
whose source of income potential cannot bc pinpointed to a specific source. 
These assets are often referred to for tax purposes as goodwill (defined more 
narrowly as the propensity of satisfied customers to return to the old place of 
business resulting in an “excess earnings” potcntiat) and going concern value 
(defined as a “turn key” premium for an established enterprise which can be 
expected to conduct a continuous and rcasonably profitable business despite a 
change of ownership). 
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To justify that an intangible asset is amortizable, a taxpayer, moreover, must 
demonstrate that the asset has a life of limited duration and that this life can be 
estimated (see Rev. Rule 74-456). Examples of amortizable intangible assets 
may include customers and service lists, subscription lists, leaseholds, data- 
bases, future profits in existing company contracts, and the sales force. 

With respect to property and liability insurance companies, amortizable 
intangible assets which the target corporation may possess include the following: 

Value of future profits in the loss reserves, This asset may exist because, for 
statutory purposes, companies are required to establish loss reserves at undis- 
counted values. It appears that the acquirer could take into consideration antic- 
ipated future investment income as an amortizable intangible asset. 

V&e of future prqfits in the unearned premium reserve. This asset represents 
the potential future investment income and underwriting profits on the unearned 
portions of policies already written. 

Future profts on rene~vul business. Often referred to as either Book of Business. 
Expirations, or Dailies. this asset is the present value of the future profit stream 
associated with renewals of the current book. If the target company can accurately 
project its renewal business, underwriting profits on renewals, and future in- 
vestment income associated with related reserves, then this may represent an 
amortizable intangible asset. 

In the case of a life insurance company, identifiable amortizable intangible 
assets may include the following: 

Future projhs on business in force. This represents the present value of future 
profits on current business. The determination of the value of this asset requires 
actuarial analysis of such key items as investment income, assumed rates of 
interest, lapse rate and mortality experience. 

Policy loons. Life insurance companies are required to make loans to policy- 
holders at rates well below the current market rate. No rulings or decisions have 
dealt with the values to be assigned to this category of asset, but assigning a 
face value with an offset of an equivalent amount of reserves appears to be in 
accord with the statute rather than discounting the value of the loan with a 
possible increase in income when the loans are repaid. 

In the case of both life and property and liability companies, the agency 
farce may be an identifiable amortizable intangible asset. The value of the 
agency force is akin to the present value of future profits produced from new 
policyholder premiums. Profit margins from future sales may be based on 



actuarial assumptions similar to those made in valuing current husincss in force. 
However, an additional assumption must be made on the volume and product 
mix of future sales. Whether this asset is susceptible of being separately valued 
and amortized for tax purposes can be addressed only on a case-by-case basis. 

Unrr.sohd i.ss~e.s. In Rev. Proc. 83-57. the Service announced that it is 
extensively studying the consequences of an acquisition of a life insurer followed 
by a Section 338 election. Accordingly. the Service assumed (among other 
issues) a no ruling position regarding: 

-whether life insurance reserves may be treated as unsecured liabilities for 
purposes of determining allocable basis, and 

-whether a portion of the purchase price is properly allocable to inaurance- 
in-force. 

When the results of the Service study will be made known cannot be 
predicted at this time (November. 1985). However. suffce it to say that reso- 
lution of these issues may not occur in the foreseeable future. 

Moreover, numerous issues as to the manner of making the election, allo- 
cation of the purchase price among others. remain unresolved. This is evidenced 
by the language of Section 33X that contains many references where Congress 
specifically authorizes the Treasury to promulgate regulations to amplify or 
implement this provision. 

E~~~luc~itzg [he Trurk-Qjfi. While an election pursuant to Section 338 may 
produce fairly significant tax advantages through the amortization of intangibles. 
the election is not without tax and economic costs. The extent to which net 
operating loss carryovers may be terminated should be included. Depreciation 
and investment tax credits claimed by a target corporation prior to the acquisition 
may be recaptured as of the date of the acquisition. Depreciation recapture is a 
limitation of the amount of long term capital gain arising on the sale of certain 
depreciable assets. Gain on the sale of such property is treated under recapture 
as ordinary income to the extent of depreciation taken as a deduction in prior 
years. 

The assets with respect to which such recapture would arise would be valued 
at their fair market values as of the date of acquisition and such value would 
be used prospectively over several years in calculating depreciation and invest- 
ment tax credit. 

Recapture income and investment tax credit recapture from a Section 338 
election cannot, except for limited exceptions. be included in a consolidated 
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return of either the seller or the purchasing corporation. If the target corporation 
was not a member of an affiliated group, the recapture income is included in a 
short period return (i.e. a return for less than one year) which would also include 
the target corporation’s income up through the date of acquisition. If the target 
corporation is a member of an affiliated group. a separate return, which reflects 
the recapture tax liabilities, is required. 

Tar Platznit~g. It is clear that opportunities exist to ascribe values to the 
amortizable intangibles not found on the statutory statement. Proper tax planning 
dictates that early consideration of these issues be incorporated into the nego- 
tiations. This planning must be done by a team of qualified tax professionals. 
As we shall see. there is ample opportunity for a casualty actuary to participate 
on this team. 

THE ACTUARY’S ROLE 

In order to comply with a Section 338 election one must value all assets as 
of the acquisition date. At first this does not seem to be an actuarial problem 
since most assets may be valued by auditors and appraisers. There are various 
methods based on cost, depreciation and market value that can be used. Actu- 
aries, on the other hand, are typically concerned with future events. How many 
losses will occur next year? How will the reserves run off’? But, as we’ll see 
shortly. the same issues and techniques that an actuary deals with in resolving 
“standard actuarial problems” must be dealt with in valuing certain intangible 
assets not found on an insurance company’s annual statement. 

For purposes of this discussion we will consider two broad categories of 
assets. The first category consists of the assets usually found on the asset page 
of any company’s annual statement. These include stocks, bonds. cash on hand, 
computers. accounts receivable, etc. They are reflected in policyholders’ sur- 
plus. In addition, the annual statement discloses elsewhere certain non-admitted 
assets excluded from surplus. Considered together, we will refer to these assets 
as statement assets. Most of these assets the company or its auditor can value. 

Since the annual statement is the basis for calculating taxable income, asset 
valuation for a Section 338 election logically should begin here. Of course, 
there are complications since the annual statement was not designed for this 
purpose. Statutory accounting requires certain types of valuations. In valuing 
the statement assets for tax purposes, adjustments must be made. Bonds at 
amortized values should reflect market values as of the acquisition date. (A 
word to the wise: The market value shown in Schedule D is often not a true 



market value.) Non-admitted assets also must bc added back to the balance 
sheet at market values. Stocks and real estate must be set at market value as of 
the valuation date. All these adjustments are typically performed by auditors 
and appraisers. 

The other category of assets is not displayed on the annual statement. These 
are the intangible assets where actuarial issues such 3s the run-off of past. 
present, or future business are a critical ingredient in the valuation process and 
have significant ramifications in regard to future tax treatment. Identifiable and 
unidentifiable intangible assets typically exist in any insurance company for 
three reasons: 

-Companies sell insurance. 
-Statutory accounting requires that insurance companies keep large sums 

of money, or liquid assets, available to pay claims. 
-Funds held can earn money. 

Consideration of intangible assets is critical for the buyer and seller in negoti- 
ating a purchase price. 

For a Section 338 election. all assets whether tangible or intangible, amor- 
tizable or non-amortizable. should be valued. Furthermore. the IRS has ac- 
knowledged in numerous private rulings that certain intangible assets may be 
amortizable where the taxpayer meets his burden of proof’ of three critical 
requirements: 

I. The asset must be severable from unidentifiable goodwill; that is, the 
specific source(s) of future income potential must be identifiable and 
capable of being separately valued; 

2. The asset must be a “wasting asset”; that is, the economic viability of 
the identilied asset must be of limited duration. such that its value 
declines over time; and 

3. The remaining period of economic viability must be capable of being 
estimated within reasonable business accuracy. 

It is here that an actuary can play a major role. Working closely with the tax 
specialist, actuarial expertise can be used in several ways. He can provide 
formulas to evaluate. He can review historical data to project runoff of current 
or future premiums and losses. He can analyze historical cash flows and project 
future contingencies. 



EXAMPLES OF INTANGIBLE ASSETS OF A TYPICAL INSURANCE COMPANY 

As mentioned, there are at least three potentially amortizable intangible 
assets common to every insurance company. The first of these deals with the 
loss reserves. We refer to it as “Future Profits in the Loss Reserves.” Most loss 
reserves are carried at the full amount needed to settle all losses, reported or 
not, that have occurred to date. To the extent that the actuary can assist his 
client sustain the burden of proof that the reserves are identifiable with a specific 
group of insurance exposures; that the life of the reserves is of limited duration; 
that the runoff (or consumption) rate of the reserves can be estimated with 
reasonable accuracy and that appropriate projections of anticipated investment 
income can be allocated to the reserves in question, “Future Profits in the Loss 
Reserves” may be valued and amortized for tax purposes. 

The second of these deals with the “Future Profits in the Unearned Premium 
Reserve. ” The unearned premium reserves will earn interest while they are 
being held by the insurance company. In addition, as the unearned premium 
reserve expires, the losses and expenses incurred may be less than the premium 
earned and produce an underwriting profit. The ability to earn investment income 
and underwriting profit form a valuable identifiable intangible asset. Again, to 
the extent that the actuary can assist with valuing this asset, and demonstrating 
that it is a wasting asset. where remaining life can be reasonably estimated, it 
may be amortized for tax purposes. 

The third identifiable and potentially amortizable intangible asset is the 
“Future Profits on Renewals.” A company can reasonably expect to renew 
a certain portion of its current book each year. These renewals will generate 
reserves and these reserves will possess the intangible assets described above. 
To see that this asset exists one need only note that often an insurance company 
will be bought solely to acquire its book of business. 

The techniques applied in valuing these intangibles is beyond the scope of 
this paper. The literature abounds with such. Also, most companies need tailored 
methods. A clear understanding is necessary for evaluating the above assets as 
well as the unidentifiable intangible assets. Rather than try to give recipes we’ll 
discuss concepts underlying these valuations. 

The actuary is very familiar with the main tool needed to evaluate many 
intangible assets-projection of cash flow. Whether we are dealing with losses 
that have already occurred, or losses that will occur in the future, premium, or 



expenses, one must project not only the amount that a company will receive or 
pay but also the rate of payment. The next step is to determine an appropriate 
investment rate. This investment rate need not be based on a company’s in- 
vestment portfolio. Since stocks and bonds reflect market value for a Section 
338 election, the historical interest rate is already removed. U.S. Government 
bonds give a reliable indicator of the available interest rate. A mix of U.S. 
Government securities, with appropriate durations, can be used for an average 
return. It is also possible to incorporate a mix of tax-free municipals. Other 
sources are available. 

A different discount rate may be needed for projected profits. If projected 
investment income is to be used to make future payments. then the discount 
rate should equal the investment rate. However, protits available for stockholders 
should be discounted with an appropriate rate for the company. 

Often the discount rate applied to future profits is greater than the projected 
investment yield, reflecting risk considerations. One choice of risk-related dis- 
count rate is given by the Capital Asset Pricing Model (CAPM). It’s easy to 
use, it’s objective, it can be tailored to a specific company, it’s consistent with 
the government bond rate. and it is often used for tax valuation purposes. 
However. this choice is not without controversy. Other choices also exist. 

To project the above cash flows a large amount of data is needed. Federal 
income taxes are based on the annual statement. so this is the place to start. 
Schedules 0 and P offer information on the loss payment rates. The five-year 
history is a good source of calendar year premiums. earnings, and expenses. 
The other exhibits are also useful. The amount of additional detailed data 
necessary is an important consideration for the actuwy and the tax specialist. 

Knowledge of company operations ix critical. As with any other actuarial 
area. changes in company operations may inhibit the usefulness of historical 
data. Here interviews arc important. Senior company management will be 
helpful in pointing out problem areas. Annual reports. IO-K’s. and even special 
data requests may also be helpful. The information developed may suggest 
adjustments be made to historical data to reflect neu circumstances prior to 
making any projections. However. no such adjustment should be made unless 
evidence (e.g. new reinsurance contracts. etc.) ih available to support the ad- 
justment 
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Valuing the future projects on renewals requires special care. The main 
problem here is to estimate the portion of business that will be renewed year to 
year. For this purpose, most companies rely on runs that start with a fixed block 
of business. The portions of this block renewed in succeeding years should be 
shown on a “dollar” and a “number of policies” basis. From these runs, future 
renewals of current business are predictable. There is, however, a pitfall. Due 
to intense competition in recent years, may companies have been canceling 
policies and rewriting them on different terms. Often a company will show this 
transaction as a cancellation, and a new writing. However, this is in effect a 
renewal and it is important to count it as such. 

ADDITIONAL ANALYSIS 

Before starting to evaluate intangibles some preliminary considerations 
should be addressed. It is important that current loss reserves be adequate and 
not redundant, so a reserve study may be necessary. The actuary must consider 
the effects of any restatements in choosing his parameters. For example, a 
severe reserve deficiency will not only require an increase in reserves. It will 
also be necessary to adjust historical loss ratios and earnings for this deficiency. 
If this isn’t done projected loss ratios will probably be too low, and projected 
earnings will probably be too high. A redundancy has the opposite effect. 

Once the valuation of the intangible asset is complete, an amortization 
schedule of the asset should be prepared. Usually amortization formulas, from 
compound interest theory, are sufficient. However, due to certain statutory 
accounting principles, straight amortization formulas may distort the deprecia- 
tion schedule. For example, since statutory accounting requires an immediate 
writeoff of deferred expenses, a projected profit stream may start off negative 
in the early years and turn positive later on. In this case, use of a present value 
type of amortization would lead to results that aren’t useful for balance sheet 
purposes. In these cases it might be better to choose a straight line depreciation 
schedule. Another alternative is to combine two or more profit streams from 
different intangible assets, so that the net profit stream is positive. Ongoing 
consultations between the actuary and the tax specialist may be necessary to 
select the most appropriate method. 

Since projections of the future are used, and since insurance is a risky 
business, some sensitivity analysis may be required. Often an actuary estimates 
probabilities of different parameters in order to arrive at expected values. For 



documentation purposes it is probably better to work with an expected scenario 
and choose a discount rate that suitably adjusts for the risk involved. 

OTHER ACTUARIAL. CONSIDERA [‘IONS 

There are other factors to consider in a Section 338 election. Other intangible 
assets may exist. A company-owned agency force. relationships with indepen- 
dent agents. or the right to participate in a pool might generate future proms. 
In addition, some assets are hard to classify as either tangible or intangible but 
still should be valued. Computer software is a good example. One must also 
estimate the effect of income tax on projected future profits. Subsidiaries offer 
another complication. A similar analysis of each subsidiary may be needed. 

FINAL ACTUARIAL RtPOKI 

When all the analysis is completed a final report is a must. All computations 
should be carefully documented along with the selected methods and parameters. 
Documentation of data sources and parameter estimation must be included. If 
historical data has been adjusted this must also be cited. Schedules of amorti- 
zation of intangible assets should also be included. 

This documentation should be kept on tile should the need for it arise. 
Again, consultation with the tax specialist is mandatory. 

One cannot overemphasize the importance of this final actuarial report. 
Accountants and valuation specialists must have an explanation of all the factors 
contributing to the analysis in order to proceed with the Section 338 election. 
Equally important, in the event of an IRS audit. documentation of results is 
crucial to sustaining the taxpayer’s burden of proof. Remember, what’s obvious 
today will probably be incomprehensible three years from now. It is better to 
overdocument today than to not be able to reconstruct your thinking at an IRS 
audit. 

CONCLUSION 

In summary. the actuary can play a vital role in helping to quantify and 
support significant tax benefits in connection with the purchase of an insurance 
business. Working closely with tax professionals, he can use his traditional 
actuarial tools and professional expertise to help resolve complicated tax and 
valuation issues. 
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AN INTRODUCTION TO UNDERWRITING PROFIT MODELS 

HOWARD C. MAHLER 

Abstract 

This paper will provide an introduction to the subject of underwriting 
profit models in order to provide actuaries with a basic framework for 
further study. This paper starts with the premise that the subject of 
underwriting profit provisions is an area in which actuaries can be of 
assistance in advancing knowledge and developing methods. While this 
paper will concentrate on the theoretical aspects, this subject has many 
potential practical applications. 

The basic structure of the paper is to start off with an extremely 
simple model, and then add additional considerations. For clarity, this 
paper has focused on one basic method of calculating a provision for 
underwriting profits. 

There are three basic ingredients used in these models. First, via a 
“cashflow” analysis, one estimates the length of time an insurer will 
have premium dollars on hand, prior to paying losses and expenses. 
Second, one estimates how much investment income an insurer will earn 
on this cashflow and the necessary equity backing up the policies. 
Finally, one sets the expected return on equity equal to a target return 
on equity. One can then solve this equation for the underwriting profit 
provision. 

INTRODUCTION 

The question of what provision for underwriting profits (or losses) to use 
has become a topic of increasing discussion over the last decade. Rather than 
use traditional numbers found in the actuarial literature, such as 5%, there have 
been attempts made to calculate profit provisions. These calculations have 
involved making certain assumptions and algebraic derivations. Thus they are 
commonly called underwriting profit “models.” This paper will provide an 
introduction to the subject, in order to give actuaries a basic framework for 
further study. 
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In spite of the use in the title of the term underwriting profit, this paper 
concentrates on the total return on equity concept. In each particular case, one 
can calculate an underwriting margin (positive or negative) that can be expected 
to produce the desired or required total return on equity. From this point of 
view there is no fundamental difference between a positive and negative under- 
writing margin. Equivalently, there is no fundamental difference between a 
target combined ratio which is greater than 100% and one that is less than 
100%. Rather, they are different points along the same continuum. 

The basic structure of the paper will be to start off with an extremely simple 
model, and then add additional considerations. (Those readers already familiar 
with the subject may want to go directly to the third model or even the summary 
of that model.) Care has been taken to list all the assumptions made in each 
model. If, in a particular application, one or more of the assumptions are not 
reasonable, one can then make the appropriate change in the list of assumptions 
and derive modified equations. As with most actuarial calculations, the results 
produced by the models are dependent on the assumptions made and input 
values used. In actual applications, choosing the appropriate input values is 
usually a difficult task. (Examples of this are given in the numerical examples 
using model three and in Appendix II.) 

For the reader’s convenience, Appendix I contains the definitions of the 
various symbols used in this paper. 

DEFINITION OF AN UNDERWRITING PROFIT PROVISION 

Let P* be the premiums loaded for profits. (The asterisk indicates that P 
has been loaded for profit. The author has found that this use of the asterisk to 
denote quantities that are loaded for profit avoids much confusion when working 
with underwriting profit models.) 

In general, ignoring uncollected premium, the underwriting profit provision, 
u, is defined so that: 

P* = P*u + losses + expenses. 

This is the fundamental definition of an underwriting profit provision which 
will be used throughout this paper. 

Let f. be the losses paid by the insurer. 

The expenses are made up of T*, those expenses which are proportional to 
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the premium, and E, the remaining expenses. We define F/P* = t. (The use 
of the letter T comes from premium taxes, which vary with premiums.) 

Thus: 

P* (l-u) = f. + E + T* = f. + E + rP* 

u = 1 - (t + (L+E)IP*) 

In this paper we will usually solve for P *, the premium loaded for profits, 
and then use the above equation to get the underwriting provision u. 

THE FIRST MODEL 

We make the following assumptions: 

(0) An insurer writes a set of similar policies. Each policy is expected to be 
in effect for one year. (This assumption is labeled zero, since it is so basic that 
it is often left unstated.) 

(I) The insurer receives premiums P*. All premiums are received exactly 
at policy inception. 

(2) The insurer pays losses L. All losses are paid exactly one year after 
policy inception. 

(3) The insurer earns income on its investments at a rate r. 

(4) The insurer wishes to break even. (We ignore any investment income 
the insurer may earn on its equity.) 

For this very simple model, we have ignored expenses, equity, income 
taxes, and all the other complications that exist in the real world. Also, we 
have assumed that the insurer merely wishes to break even on average. (Under 
certain circumstances this might be true of a non-profit organization, such as 
Blue Cross or a Medical Malpractice Joint Underwriting Association.) 

We will calculate the premium, P *, the insurer should charge, so that it can 
be expected to break even. (Elsewhere in the paper, the insurer will desire a 
return on its equity.) Assumptions (1) and (2) imply that the insurer can invest 
a sum P* for one year, During that time, rP* investment income will be earned, 
due to assumption number (3). So the insurer will have P* + rP* available at 
the end of the policy year. It will have to pay out L at that time, due to 
assumption (2). Assumption (4) is that the insurer wishes to break even. There- 
fore: 



0 = P* + P*r - L 

P* = Li( I +r) 

In our special case, t = E = 0. Thus: 

u = 1 - LIP* = I - (ISr) = --I 

So even this very simple example demonstrates a basic feature. One can 
have a negative provision for underwriting “profit”. This will occur when 
the target return is relatively small and/or when you can earn a large amount 
of investment income (either due to a high rate of return r, or due to a long 
period of time between when the premiums are received and losses are paid 
out.) In that case, you can achieve the desired total return, even though you 
have an underwriting loss. This basic feature has been noted by others, among 
them Ferrari [l]. 

THE SECOND MODEL 

Until now, we have dealt with a very simple timing of transactions. The 
value of receiving one dollar depends on when one expects to receive it. See, 
for example, Kellison [2]. The further in the future one receives it, the less the 
dollar is worth to you now. In general, we wish to take the present value of the 
income received. (In taking present values in this paper, we will for convenience 
always discount to the end of the policy year. Why this is a convenient choice 
is explained below. In present value equations using a single discount rate, the 
choice of the point in time to which one discounts should not affect the answer, 
provided that all terms in the equation are discounted to the same point in time.) 

If a dollar is to be received rz years hence, and we discount to the end of 
the first year, using an interest rate i, then the present value is (I +i)” ~‘I’. 

We modify the assumptions of the first model, ( 1) and (2), in order to allow 
a general timing of the payment of premiums and losses. 

(I ‘) The insurer receives premiums P*. (The expected pattern of the timing 
of payments is known or can be estimated.) 

(2’) The insurer pays losses f.. (The expected pattern of the timing of 
payments is known or can be estimated.) 

We modify or add the following assumptions: 

(4)The insurer desires a target rate of return of R on the funds it supplies. 
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(5a) The insurer supplies funds, S, of its own. These funds exist throughout 
the entire policy year in a constant amount. 

(5b) The required equity S is proportional to the premium P*, with propor- 
tionality constant s = P*IS. 

We have assumed the insurer supplies S at the beginning of the policy year, 
and desires (1 + R)S back at the end of the policy year. 

For the purposes of this paper, these insurer-supplied funds are stockholder- 
supplied equity. However, the reader may find it helpful to think of them as 
surplus. These funds in some sense back up a group of policies so that even in 
the case of unexpected occurrences the insurer will be able to meet its obligation 
of paying claims. 

We have yet to include expenses in the model. Examples of categories of 
expenses are loss adjustment expense, commissions, other acquisition expenses, 
general expenses, and premium taxes. (Investment expenses are presumably 
taken into account by subtracting them from the investment rate of return.) 
Generally, these expenses can be divided into three types: those that are fixed, 
those that vary with premium, and those that vary with losses. In this paper, 
the method by which the specific assignments were made will not be explored. 
One example of such an assignment is given in Snader [3]. 

In this paper we will make a slightly different division. First, we include in 
L those expenses that are assumed to have the same timing as the loss payments. 
(Alternatively they may have been included in the data from which we made 
our estimate of the timing of the loss payments.) Next, we separate out those 
expenses that vary with premiums, and call them T*. (This almost always 
includes premium taxes, usually includes commissions, and sometimes includes 
all or part of other acquisition or general expenses.) Whatever expenses are left 
are called E. (See Appendix II for an example of such assignments. Although 
the calculations are not shown there, the expense-to-loss ratios depend on a 
determination of the relative amount of each type of expense. This depends in 
turn on a determination of which expenses are fixed, and which vary with 
losses. ) 

In order to include expenses, we make a minor revision to one of the prior 
five assumptions; otherwise, we retain them. 

(2”) The insurer pays L, losses including those expenses whose timing is 
the same as the losses. (The expected pattern of the timing of such payments 
is known or can be estimated.) 
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We also add two additional assumptions 

(6) The insurer pays T*. expenses that vary with premiums. (The expected 
pattern of the timing of such payments is known or can be estimated.) 

(7) The insurer pays expenses E, other than those included in f. and r*. 
(The expected pattern of the timing of such payments is known or can be 
estimated.) 

The insurer earns income from two sources. First. it earns r.S investment 
income on the equity. Second, it earns income on the cashtlow (premiums in, 
losses and expenses out.) The present value of the total income earned on the 
cashflow is P*’ - (L’+E’+T*‘). (The primes denote discounting by the rate 
of return on investments r.) This is a special case of a more general result. The 
present value of the total income on a cashflow is the present value of the 
intlows minus the present values of the outtlows. 

For this second model we have 

present value of return on equity = 
(present value of income earned on equity) 
+ (present value of income earned on cashflow) 

Setting the target return on equity equal to the present value of the return 
on equity, we get 

RS = rS + P*’ - (L’+E’+T*‘) 

Note that RS and r.9 are assumed to be received at the end of the policy 
year, and thus they are already equal to their present values, since we are 
discounting to the end of the policy year. (If one had discounted to some other 
point in time, then this convenient relationship would no longer hold. This is 
why this point in time was chosen for use in these models.) 

Let g = P*‘IP* = P’IP 

h = T*‘/T* = T’IT 

It should be noted that g and h depend only on the timing of the premium 
flow and the premium tax flow, and not on their overall magnitudes. Thus they 
can each be computed from quantities assuming a prolit loading of zero for 
convenience. This is why we introduce R, h and other similar ratios into the 
model equations. 
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Then we have 

RS = rS + P*’ - (L’ + E’ + T*‘) 

P* = (L’ + E’)/(r/s + g - th - R/s) 

We use the definition of the underwriting provision, u, when there are 
expenses 

u = I- t - (E+L)/P* = 1 - t - (r/s + g -rh - RIs)I((L’+E’)I(L+E)) 

Two points are worth making. First, we have not carefully distinguished 
here between surplus and equity. R is meant to represent the target return on 
equity, i.e., stockholder-supplied funds. Statutory surplus as defined in the 
Annual Statement is numerically different from the concept of equity used here, 
which can be thought of as net worth in accordance with Generally Accepted 
Accounting Principles (GAAP). It is important that the target return on equity 
R and the concept of equity S match each other. Adjustments might be appro- 
priate for certain applications of the model. Among areas where adjustments 
might be appropriate are the treatment of prepaid expenses and the equity in 
the unearned premium reserves, estimated federal income taxes and policyholder 
dividends. The details would depend on the source of and the exact meaning 
attached to R and S. Unfortunately, the details are beyond the scope of this 
paper. See, for example, Section 1 of Appendix I to the Report of the Advisory 
Committee to the NAIC Task Force on Profitability and Investment Income [4], 
Measurement of Profitability and Treatment of Investment Income in Property 
Liability Insurance, pp. 783-799 [.5], and Report of the NAIC Investment 
Income Task Force, p. 43 [6). 

Also, the reader should notice that we have not distinguished between the 
rate of return on investments earned on equity and that assigned to the cashflows. 
Such a distinction may be appropriate in certain circumstances. For example, 
you may allocate different types of investments, different maturities of invest- 
ments, etc., to the equity. Also some of the equity may be in fixed assets which 
can not be invested. These and other refinements could be reflected in the 
model. 

This model reduces to the previous model if we take the special case where 
E=T*=O, L’=L, P’=(l+r)P, and either R=r or S=O. 



FEDERAL INCOME TAXES 

For the moment, let us assume that the insurer will pay income taxes at a 
rate FIT, one rate for all types of income. Also for the moment, let us ignore 
the question of the timing of the payment of these income taxes. Then simpl- 
istically our former equations would be changed, by multiplying all the income 
terms by (I -FIT). The target rate of return. R. is the desired rate of return 
after the insurer pays Federal Income Taxes. 

RS = (1 -F/T)(rS + P*’ - L’ - E’ - T*‘) 

P* = (L’ + E’)( 1 -F/Ty((ris + g - th)( I -F/T) - R/s) 

There is no inherent reason to divide the income into different types. How- 
ever, different types of income are treated differently by the federal income tax 
system, as is explained in Beckman 171. Income generally is divided into two 
types, underwriting income (or loss) and investment income. We will assume 
that the former is taxed at a rate FITCI. In the case of an underwriting loss 
rather than a profit, FITU should be the rate at which the income that is offset 
by the underwriting loss would have been taxed. (One can usually assume, for 
modelling purposes, that the insurer will offset that income which is taxed at 
the maximum rate first. before using any remainder to offset income taxed at a 
lower rate. ) 

We will assume that the investment income is taxed at a rate FITI. (In many 
implementations, F/T1 will be some sort of weighted average of the tax rate on 
the different types of investment income. In a later section, an example of such 
a calculation is given.) 

MODEI. THKEE 

We make the following assumptions in addition to those in model two. 

(8a) Underwriting income is taxed at a rate F/TU. Underwriting income 
equals premiums minus losses and expenses = P* ~ L ~ E - T*. 

@a) Investment income is taxed at a rate FIT/. Investment income is defned 
as the total income minus underwriting income. 

The following assumptions concerning the timing of the payment of taxes 
have been found useful. 

(8b) Federal income taxes on underwriting are paid at the end of the quarter 
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in which the underwriting profit or loss is incurred.’ (Ignoring any development 
of incurred losses, this leads to four equal payments at times l/4, 2/4, G and 1 
year after policy inception.) 

(9b) Federal taxes on investment income on the cashflow are paid at the 
time losses and expenses are paid. 

It is common to make the following assumption, when one has made 
assumption (5) concerning the equity. 

(SC) The Federal income taxes on the investment income earned on the 
equity are paid at the end of the policy year. 

e= 
present value of federal income taxes on underwriting 

federal income taxes on underwriting 

The ratio e is dependent only on the timing of the payment of the federal 
income taxes on underwriting. 

Assumption (8b) leads’ to 

e = ((1+r)“4 + (1+r)2’4 + (l+r)“4 + (l+r)“)/4 

Thus, e is approximately (1 tr)“‘. 

Define a ratio d, similar to the previously defined e. 
Let d = (present value of FIT1 on cashflows)l(FITI on cashflows). 

The present value of the total return after taxes can be broken up into five 
pieces. We have, where PV stands for present value, 

PV(tota1 return after taxes) = 
PV(investment income on equity) 
- PV(taxes on investment income on equity) 
+ PV(total income on the cashflows) 
- PV(taxes on underwriting incomej 
- PV(taxes on investment income on the cashflow) 

’ The timing of tax payments does not actually conform to this simplifying assumption. Expenses 
are deducted from income in accordance with Statutory Accounting Principles (SAP). This advances 
the recognition of expenses to an earlier time and makes the resulting tax credit more valuable than 
indicated by assumption (8b). On the other hand, incurred losses (including IBNR) generally develop 
upwards for long-tailed lines of insurance. This postpones the recognition of losses to a later time 
and generally makes the tax credit less valuable than indicated by assumption (8b). 

’ In a particular application, calculation of a more exact value of e may be appropriate. 



We now need to write down expressions for each of these five pieces 

PV(investment income on equity) = t-S 

Due to assumptions (9a) and (SC), 

PV(tax on investment income on equity) = rSFfTl 

Also, we have the general result that 

PV(tota1 income on the cashflows) = P*’ - L’ ~ E’ - T*’ 

By definition, 

tax on underwriting income = (P” - L ~ E - T*)F/TU 

By the definition of c we have 

PV(tax on underwriting income) = (P* - I, - E - T*) FlTUe 

We have four out of the five pieces we need. In order to get the fifth piece, 
first we will derive an expression for the investment income on the cashflow. 
From this will follow the taxes paid on this income and then the present value 
of these taxes. Unfortunately. this first step will bc a little complicated. We 
know that 

investment income on cashflow = 
(total income on cashflow) - (underwriting income on cashflow). 

We know that the present value of the total income on the cashRows is 
P*’ - (L’ + E’ + T*‘). In Appendix 111 it is demonstrated, given some not 
unreasonable assumptions. that we can remove the present value by dividing by 
a factor F, where .v = (L’ + E’ + T*‘)I(L + E + T*). (Lt is useful to think of 
this as follows. Multiplying by y would adjust the timing to when the losses 
and expenses are paid, which is the timing of the total income on the cashflow. 
Dividing by y backs that timing out.) Therefore 

investment income on the cashflows = 
(P*’ - L’ - E’ - T*‘)& _ (p* - L E ~ T*, 

income tax on investment income on the cashflow = 
FITI((P*’ - L’ - E’ -T*‘)/y ~ (P* ~~ L .~ E -T*)) 

Then we have from the definition of rf 

PV(income tax on investment income on the cashflow) = 
FITld(( P* ’ - L’ - E’ -T*‘)/? - (I’” L ~ E -T*)) 
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Assumption (9b) leads to 

d = (L’ + E’ + T*‘)I(L + E + T*) = y 

Then we have 

PV(income tax on investment income on cashflow) 
= FITly((P*’ -L’ - E’ -r:‘)/y + (L SE +r: - P*)) 
= FITl(P*’ - L’ - E’ - T*’ + L’ + E’ + T*’ - P*y) 
= FITI(P”’ - P*y) 

This same result can be arrived at starting with a different approach. See 
Appendix VI for this approach, using a so-called investment balance for taxes. 

Thus, the basic equation becomes 

RS = rS -rSFITl +P*‘-L’-El-T*’ -FITUe(P*-L-E-T) 
- FITI(P*‘-P*y) 

We can solve for P* 

p* = L’ + E’ - FITUe(L +E) 
(r/s i- g)( 1 -FITl) - th - R/s + FITiy - (I -t)FITUe 

However, y depends in turn on P*, i.e., on the profit loading 

y = (L’ + E’ + htP*)i(L + E + tP*) 

Fortunately, y is usually relatively insensitive to the profit loading, since it 
is a weighted average of (L’+E’)/(L+E) and h, wiih weights LIE and tP*. 

One can solve numerically via iteration on P* and I’. (For the usual range 
of input values, the iteration converges very quickly.) 

As usual one now uses the defining equation toget the underwriting provision u 

u = 1 - (t + (L+E)IP*) 

With this third model, we have reached a level of refinement which can be 
used for real world applications. We will later show how a few more refinements 
can be added, but of course at the cost of further complexity in the model. (As 
with any actuarial subject, the question of whether a particular technical reline- 
ment is worthwhile for a particular application is a matter of judgment. One 
has to compare the benefits of the extra precision with the extra complications 
introduced to the model and the cost of obtaining the additional data required.) 



SUMMARY OF MODEL THREE 

One can solve numerically via iteration on P* and J 

p* = L’ + E’ - FITUr(L +E) 

(rfs + g)( 1 -FITI) -th - Rls + FITI! - (I -tjF/TUe 

y = (L’ + E’ + htP*)l(L + E + tP*) 

Then the underwriting provision is given by 

u = 1 - (t + (L+E)lP*) 

The following assumptions were used 

(0) An insurer writes a set of similar policies. Each policy is expected to be 
in effect for one year. 

( 1) The insurer receives premiums P*. (The expected pattern of the timing 
of payments is known or can be estimated.) 

(2) The insurer p”ys losses L, including those expenses whose timing is the 
same as the losses. (The expected pattern of the timing of such payments is 
known or can be estimated.) 

(3) The insurer earns income on its investments at a rate r. 

(4) The insurer desires a target rate of return on equity of R. 

(5) The insurer supplies funds, S, of its own. This equity is around through- 
out the entire policy year in a constant amount. The required equity is propor- 
tional to the premium, with proportionality constant .s =P*/S. 

(6) The insurer pays T*, expenses that vary with premiums. (The expected 
pattern of the timing of such payments is known or can be estimated.) 

(7) The insurer pays expenses E, other than those included in L and T*. 
(The expected pattern of the timing of such payments is known or can be 
estimated.) 

(8) Underwriting income is taxed at a rate FlTU. Underwriting income 
equals premiums minus losses and expenses = P* -- L - E - T*. Federal 
income taxes on underwriting are paid at the end of the quarter in which the 
underwriting profit or loss is incurred. (Ignoring any development of incurred 
losses, this leads to four equal payments at times %. ?/J, % and 1 year after 
policy inception.) 



(9) Investment income is taxed at a rate FITI. Investment income is defined 
as the total income minus underwriting income. Federal income taxes on the 
investment income earned on the equity, are paid at the end of the policy year. 
Federal income taxes on investment income earned on the cashflow are paid at 
the time losses and expenses are paid. 

NUMERICAL EXAMPLES USING THE THIRD MODEL 

We will use all of the assumptions of this third model, including (8b), (9b), 
and (SC). We will choose input values which are not unreasonable for a real 
world insurer. However, these values are for illustrative purposes only. In any 
application it is very important to choose a consistent set of inputs. If the 
different input values are chosen independently of each other, one can get 
unusual results to say the least. Just as in ratemaking, the answer is only as 
valid as the assumptions of the method and the input values chosen. 

For the target rate of return on equity after taxes, R, we will use 17%. This 
may have been given to the actuary by the president of the insurer, the com- 
missioner of insurance, etc. It may have been estimated by looking at the rates 
of return earned by similar firms or industries. It may have been estimated by 
using an economic model such as the Capital Asset Pricing Model (CAPM), 
together with the observed “risk free” rate of return available on U.S. Treasury 
securities of the appropriate maturities. It may have been estimated by looking 
at the past results for that line of insurance in competitive markets. Of course, 
another method or combination of methods may have been used. 

There are a number of questions of interest concerning the rate of return on 
equity. Should rates of return be measured with respect to book or market value 
of equity? Should the target rate of return differ by line of insurance? How does 
the target rate of return depend on the other inputs, among them the types of 
investments and the premium-to-equity ratio? 

For the premium-to-equity ratio, s, we will use a value of 2. In the model, 
we are really interested in stockholder equity, rather than statutory surplus. 
Therefore, as stated previously, if one is trying to estimate s from data, various 
adjustments may have to be made to switch from the Annual Statement to 
Generally Accepted Accounting Principles (GAAP). As stated above, an im- 
portant consideration is whether one should use the book or market value of 
equity. Another important consideration would be whether to adjust the equity 
for the effect of the discounting of loss reserves. Another question of interest 



is whether different lines of insurance have different acceptable or desirable 
premium-to-equity ratios. 

For the rate of return on investments before taxes, I’. we will use 10%. The 
rate of return, as well as the tax rate. depend on what types of investment the 
insurer will hold. Also, an insurer who takes more investment risk will generally 
expect a higher target rate of return, R. One of the questions of interest is 
whether to use the “imbedded” yields an insurer can be expected to earn on his 
current portfolio, or whether to use the current yields one could obtain by 
investing fresh funds. Generally. the rate of return on investments should be 
measured after taking into account necessary investment expense. 

For the federal income tax rate on investment income, F/T/, we will use 
28%. As stated previously, the value of FITI would depend on the proportion 
of each type of asset held, and the rate of return cxpectcd on each type of asset. 

For the federal income tax rate on underwriting income, F/RI, we will use 
46%. This is the current maximum corporate rate. In the event of an underwriting 
loss, the 46% tax rate would only be appropriate if there was sufficient income 
that would be taxed at the 46% rate, so as to be offset by the underwriting loss. 
As pointed out in Beckman [7]. interest from tax-exempt bonds is not taxed 
and long term capital gains are taxed at less than the corporate rate. (While 
858 of dividends on stocks can be deducted from net taxable income, the 
remaining 1.5% is taxable at the full corporate rate.) 

We will use a ratio of variable expenses to premium. 1, of 20%. 

For simplicity, we will assume here that all the premium is collected at 
policy inception. and that all the variable expenses are paid out at policy 
inception. Also, we will assume that fixed expenses and losses are all paid 
precisely N years after policy inception. (These are unrealistic simplifications, 
but in Appendix II is a numerical example for private passenger automobile 
property damage liability. with more realistic timing assumptions.) 

Assuming an arbitrary $800 for losses plus fixed expenses, we get 

N(years) P* 

.5 $1,044 
1.0 980 
1.5 916 
2.0 853 

v 2 

I.059 
1.020 
,981 
.943 

Underwriting Profit Provisions 

3.4% 
-1.6%~ 
-7.3% 

- 13.8% 
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Note: as we shall see later, the profit provision calculated above for N=2 
assumes that there is income taxable at 46%, available from other than the 
investment income on this line of insurance and the equity backing it up, that 
can be offset by a portion of the projected underwriting loss. 

We notice that all other things being equal, the larger N, i.e., the longer 
tailed the line of insurance, the more negative the profit provision. As has been 
mentioned above, there is no fundamental difference between positive and 
negative underwriting margins. We can see here that they are merely different 
points along the same continuum. 

SENSITIVITY TO VARIOUS INPUTS 

It is of interest to see how the underwriting profit provision changes as we 
vary one input at a time. Above we have already seen how the profit provision 
varies as the length of the cashflow changes. Let’s now hold the length of the 
cashflow constant at N= I. For the set of inputs used above this gave a profit 
provision of - 1.6%. 

As expected, if you desire a higher target rate of return, you must have a 
more positive underwriting profit provision, all other things being equal. If you 
can earn a higher return on investments, you can afford a less positive under- 
writing profit provision. When you have a higher premium-to-equity ratio, you 
can afford a less positive profit provision. When you have a projected under- 
writing loss, the higher the federal income tax rate on underwriting, the more 
negative the profit provision, since the “tax shield” is worth more. The situation 
is reversed when you project an underwriting gain. The profit provision gets 
more sensitive to FITU as the profit provision gets further from zero. Finally, 
the higher the rate of federal income taxes on investments, the more positive 
the profit provision. The profit provision gets more sensitive to the value of 
FITI as the cashflow gets longer, and thus more investment income can be 
earned. 

We have varied the different inputs one at a time. In actual practice, many 
of the inputs will depend on one another. Thus, one can not just vary them 
independently of each other. However, it is still enlightening to see how the 
profit provision varies, all other things being equal. 

One could perform a similar analysis using differentiation. This is outlined 
in Appendix V. 



SENSITIVI I’\ ‘I‘0 VARIOUS INPUTS 

Assumptions 

target return on equity 
R= 16% 
R= 17% 
R=l8% 

rate of return on investments 
r=97+ 
r= 10% 
r=Il% 

premium-to-equity ratio 
s= I .5 
s=2.0 
s=2.5 

federal income tax rate on underwriting 
FITU = 30% 
FITU=46% 

federal income tax rate on investments 
FITI= 18% 
FITI=28% 
FlTl=38% 

Underwriting 
Profit 

Provision 

-2.6% 
-1.6% 
-0.7%’ 

0.1% 
- I .6% 
-3.45% 

I .5%’ 
- 1.6% 
-3.5% 

~ I .2% 
-- I .6% 

-4.1% 
-1.6% 

0.8% 



A COMPUTATION OF THE AVERAGE INCOME TAX RATE ON INVESTMENTS 

In the previous numerical examples, a 10% rate of return and a 28% tax 
rate on investment income were used. Here is one possible source for these 
values. 

Make the following specific assumptions as to the source of the projected 
invested income. Assume that the insurer will have his assets invested solely 
in bonds, one half taxable, and one half tax-exempt. Further, assume that 
the taxable bonds will return 12% before taxes, while the tax-exempts will 
earn 8%. Then the rate of return, r, and the federal income tax rate on 
investment income, FITI, can be computed as follows. 

Type of Asset Amount Rate of Return Income Tax rate Tax ___ - 

Taxable Bond .5 12% .06 46% .0276 
Tax-Exempt Bond .5 8% .04 0% 0 

- - - 

Combined 1.0 .I0 .0276 

Thus the combined rate of return is IO/l .O = 10%. The combined tax rate 
is .0276/. IO = 27.6%, or 28% to the nearest percent. This matches the choices 
of r= 10% and FfTI=28%. which were made for the numerical models above. 

TAX SHIELD, UNDERWRITING LOSSES 

We have seen that underwriting losses can be used to offset otherwise taxable 
income. As such they have a potential value, which can be only realized if there 
is taxable income available to be offset. In general, when one has a negative 
provision for underwriting profits, one should check whether income is available 
to be offset that would have been taxed at the value of FITU chosen. 

Here we will check our numerical examples from above to see whether there 
is enough income taxed at 46%, so as to be offset by our projected underwriting 
loss. We will use the distribution of assets and rates of return on assets from 
the previous section. 

How much taxable income is available to be offset by an underwriting loss? 
From the previous section, .06/. IO = 60% of the pre-tax investment income is 
taxable (at 46%). 
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We have for model three 

investment income on the cashflows 
= (p*’ - L’ - E’ - T*‘)& -(P* ~ I, ~ E - T*) 
= P*‘iy - p* - (L’ + E’ + T”‘)(L + E + T”)/(L’ + E’ 

(L + E + T*) 
= P*‘iy - P* = P*(g!\’ - I) 

However. we also have 

investment income on the equity = P*ris 

Therefore, adding the two sources of investment income gives 

investment income = P*(ris + g/x - I) 

In this case, 60% of the investment income is taxable (at 46% 

taxable investment income = .6P*(r,‘.r + ,qly ~ I) 

+ T”‘) + 

If our projected underwriting loss exceeded our projected income taxable at 
46%. it might no longer be appropriate to take F/TV = 46%. It might still be 
appropriate if there is taxable income somewhere else which may be offset. For 
example. the use of Tax-Loss Carry-Overs allows interactions between separate 
calendar years. as explained in Beckman 171. Also there may be taxable income 
generated elsewhere in the corporation. However, this gets into a complicated 
question of possible subsidies across lines of incurance or states, or even the 
question of the insurer being part of a larger corporate structure. While this 
subject is beyond the scope of this paper, the value of being able to use these 
tax credits available due to underwriting losses is far from merely theoretical. 
In part, it may explain some of the takeovers of property casualty insurers by 
firms outside the industry, as well as attempts at diversification by property 
casualty insurers. 

Here we will assume that there is no taxable income available from other 
sources. Then the expected underwriting loss will exceed the income taxable at 
46% if 

L + E + T* - P* > .6 P*(ri.s + gly - I) 

(L + E + T*)/P* - I > .6(r/s + <q/!’ - Ii 

-u > .6(r/s + g/y - I) 



Note that, more generally, .6 would be that portion of investment income 
that is taxable at 46%. 

In our numerical examples, the expected underwriting loss will exceed the 
income taxable at 46% if 

-.6(.10/2 + 1.1/y -I) > u 

or, since .v is approximately one for all our numerical examples, 

-9% > u 

This is the case for our numerical example with N = 2. The calculated 
underwriting loss exceeds the taxable income available to offset it. (Here, for 
simplicity, we have assumed that we have income which is either taxed at 46% 
or is tax-exempt. In general there are other types of income. In certain cases 
the use of statutory tax rates may not be appropriate. See, for example, Report 
of the NAIC Investment Income Task Force, p. 23 [6].) 

So unless one assumes that taxable income is available from somewhere 
else, the calculated underwriting provision for N = 2 is incorrect. In this case, 
a solution is to set FITI = FITU = 0%. When we recalculate the profit provision 
it increases from - 13.8% to - 13.0%. This difference becomes more pro- 
nounced as N gets larger. 

In general, a good check of any calculated profit provision is to rerun the 
calculation with FfTI = FITU = 0. The profit provision in the former case 
should not be more negative than the latter case. However, even if this test is 
passed, you may still have a value for FfTlJ which is too large, if some of the 
income to be offset is taxed at a lower rate, e.g., long term capital gains. 

NON-ITERATIVE APPROXIMATIONS TO MODEL THREE 

Instead of the above iterative solution, one could solve for P* in closed 
form, but the solution of the quadratic equation is less than illuminating. Except 
when dealing with long-tailed lines of insurance, (e.g. one in which loss pay- 
ments take as long as for workers’ compensation or longer), one can approximate 
the iterative solution fairly closely in either of two ways. One can either just 
set r = I in the above equation for P*, or one can do so in the previous equation 
for the rate of return. In the latter case, we would get: 

(L’ + E’)(l - FITI) - (E + L)(FZTUe - FITI) 
‘* = (rls + ,g - th)( I - FITI) - Rls - (1 - t)(FITUe - FLU) 



THE TIMING OF INVESrMENT TAXES ON THE CASHFLOWS 

One can get slightly different equations from those in the third model 
depending on what timing assumptions you make concerning the timing of the 
federal income taxes on investment income earned on the cashflows. In Appen- 
dix IV a result is developed for a slightly different assumption than (9b). 

When using these models for a specific case, it may be possible to more 
carefully determine when these taxes will be paid. Generally, interest income 
is taxed as accrued, but capital gains are only taxed as realized. While different 
assumptions about the timing of the payments of these taxes can have a large 
effect for a long tailed line of insurance. a further exploration of this subject is 
beyond the scope of this paper. 

FOURTH MODEI. 

FINANCE CHARGE INCOME AND UNCOLLEC‘IED PREMIUM 

In calculating underwriting profit provisions two additional refinements have 
been found useful for certain applications. These will be presented as good 
examples of how additional refinements can be incorporated into the basic 
model. (In one actual application. finance charge income lowered the profit 
provision by about I r/r, while earned but uncollected premium raised it by about 
li27r.) 

Many insurers have finance plans under which the premium is paid in 
installments. The insured is often charged for this privilege. It seems appropriate 
to include separate consideration of this finance charge income. if it has not 
somehow already been included elsewhere. when such financing is responsible 
for a significant delay in the premium inflow. and the expenses relating to 
hnancing are included in the expenses used elscwherc in the ratemaking process. 

Insurers usually do not collect all the premium that is “carned.” Therefore, 
it seems appropriate to make the manual rate larger than otherwise determined, 
in order to end up collecting the desired premium. (This effect of the earned 
but uncollected premium can be incorporated somewhere else in the ratemaking 
process instead. However, it can be conveniently incorporated here.) 

For this fourth model, we add the following two assumptions. 

(10) The insurer receives finance charge income F*. (The expected pattern 
of the timing of such payments is known or can be estimated.) Define v = 
F/P = F*IP*. the ratio of finance charge income to premium Let ./‘ = F’IF = 
F*‘fF*. 



(11) The insurer will collect only a portion of the premiums which are 
earned. Define c = ratio of earned but uncollected premium to earned premium. 
(In the case of a cancelled policy, one should distinguish between any uncol- 
lected portion of the original written premium that was never earned and the 
uncollected portion of the earned premium.) 

To include finance charge income in the equations from model three, one 
merely includes it as another inflow, similar to premium. The basic equation 
becomes 

RS = rS - rSFlTI + (P*’ + F*’ - L’ - E’ - T*‘) 
- FITUe(P* + F* - L - E - T*) - FITI(P*’ + F*’ - P”y - F*y) 

When we divide by P* and solve for P* we get 

p* = L’ + E’ - FITUe(L + E) 

(r/s + g + vf )( 1 - FlTI) - th - R/s 
+ FlT@( 1 + v) - ( I + v -t)FITUe I 

where as before this can be solved by iteration on P* and y, where v is 

v = (L’ + E’ + T*‘)/(L + E + T*) = (L’ + E’ + htP*)l(L + E + tp*) i 

Now we wish to calculate the underwriting profit provision, taking into 
account earned but uncollected premium. The usual manner in which u would 
be used to construct manual rates is 

(earned manual premium)( 1 - u) = losses + expenses. 

The proper collected premium is by definition P*. By the definition of c, 
P*l( 1 - c) is the proper earned manual premium, since c = (earned manual 
premium - P*)leamed manual premium. The variable expenses are assumed 
to be t times the collected premium P*, rather than the earned manual premium. 
(This is true for the premium taxes, and is not an unreasonable asumption for 
other expense items which might be treated as variable, such as commissions.) 

Then we would have 

P*( 1 - u)l( 1 - c) = L + E + rP* 

u = 1 - (1 - c)(t + (L + E)IP*) 

This differs from the equation in model three, by the addition of a factor of 
1 - c. It reduces to the prior case when c = 0. 



FIFTH MODEL 

EQUITY AS A FLOW 

Starting with the second model. we have assumed in assumption (5) that 
the equity exists throughout the policy year in a constant amount. This simple 
assumption can be generalized, by thinking of equity as a flow. 

(5’) The insurer supplies funds of its own, which we will call equity. The 
amount of equity backing up the policy varies over time. (It is zero in the distant 
past as well as in the far future.) Let W be the equity intlow and outflow, by 
quarter. Then the cumulative sum by quarter of W is the desired equity How by 
quarter. 

When treating equity as a flow. it has been found useful to introduce two 
new terms, the “cumulative premium-to-equity ratio” and the “initial premium- 
to-equity ratio.” Depending on the equity flow chosen, one or the other 
concept is usually more readily applicable. 

The cumulative premium-to-equity ratio is the usual concept of premium to 
equity as used elsewhere in insurance. Conceptually, it is the ratio one would 
observe if one looked at the insurer, or perhaps more abstractly, looked at just 
that portion of the insurer writing this line of business. Given a particular equity 
flow, the cumulative premium-to-equity ratio observed would usually depend 
on what growth rate one assumed for premium. Sometimes it is calculated using 
a zero growth rate, the so-called steady state case. 

The initial premium-to-equity ratio is the ratio of premiums to equity at the 
inception of the policy. 

We now assume 

(5b’) Let S be either the cumulative equity or the initial equity. whichever 
concept is applicable. Then the required equity S is proportional to the premium 
P*. with proportionality constant s = P*/.S. 

For the basic equation we need the present value of the total return we wish 
to earn after taxes. As before, when dealing with the cashtlows, this is just the 
present value of the inflows of equity minus the present value of the outflows 
of equity, at the target rate of return K.’ The present value of the investment 

’ This assumes that the target return on equity i\ received at the time(s) the surplus tlows out. 
While other assumptions could he made as to when the return on equity i\ rcceivrd and/or paid 
out. a t’urther diacusatcln of thi, wbject i\ beyond the wryx of this paper. 



income on the equity is similar, but instead uses the rate of return r. (There is 
nothing analogous to underwriting income as on the cashflows, since the sum 
of W is zero.) 

Let’s define W’ = W discounted by r 
W” = W discounted by R 

Then, the desired present value of the total return is W”. PV(investment income 
on equity) = W’. 

If we assume 

(9b’) The federal income taxes on the investment income earned on the 
equity are paid as the equity flows out. 

Then we have an analogy to the cashflow case 

PV(tax on investment income on equity) = FIT1 W’ 

Thus the basic equation from model four becomes 

W” = W’ - W’FITI + (P* + F*’ - L’ - E’ -T*‘) 
- FITUe(P* + F* - L - E - T*) -FITI(P*’ + F*’ - P*y - F”p) 

Let w = W/S, then when we divide by P* and solve for P* we get 

p* = L’ + E’ - FITUe(L + E) 

(~‘1s + g + vf )( 1 - FITI) -th - w”/s 

+ FlTIy(1 + v) - (1 + v - t)FITUe 1 
As before this can be solved by iteration on P* and y, where 4’ is 

y = (L’ + E’ + T*‘)/(L + E + T”) = (L’ + E’ + hrP*)l(L + E + tP*) 

Our previous models are just special cases of this one. There we had the 
equity flow in at policy inception, and flow out one year later. This is sometimes 
referred to as the “block equity” assumption. In this case, MI is a vector with 
value 1 at time = 0 and value - 1 at time = 1 year. Thus 

M” = (1 + r) -1 = r. 

Similarly 

++‘)’ = (1 + R) -I = R. 

If one makes those substitutions in the equations here, and one uses the 
cumulative equity concept, the equations reduce to those in the fourth model. 



For illustrative purposes, hcrc is an example of an equity flow that varies 
over time. Set the equity backing up the policy at an initial value, and then 
have a decreasing balance as losses and expenses arc paid. When the last 
payment is made, there is no longer any equity backing up this policy or 
group of similar policies. Let 

11% = I,O,O,O ,.,. - (L + E + T*)/sum(L + E + T*) 

where 1 ,O,O.O.. . is a vector by quarters, and represents an inflow of 1 at time 
equals 0. Here L + E + T* is also a vector of payments by quarter. (In the 
rest of the paper, this expression has represented their sum, which is a scalar 
rather than a vector quantity.) As we perform an iterative solution, T* will vary 
with each iteration, and thus so will M*. The sum of u‘ = I - I = 0 as expected, 
since equity that flows in eventually flows out. 

In this case, s represents the initial premium-to-equity ratio. If one used the 
same s. this flow would assign more cumulative equity to longer tailed lines 
than shorter tailed lines. 

As an alternative, one could construct a now based on when losses are 
incurred. One could of course come up with other timings of equity. One could 
have the desired amount of equity be determined in some manner other than as 
a proportion to premium. 

In any case, it is important to remember that an insurer’s entire equity is in 
theory available to back up each policy. So while the assignment of equity to a 
particular line or state may be a necessary assumption for the running of these 
profit models, one should not take it too literally. One must remember that an 
insurer who writes more than one line of insurance. in more than one state, 
would generally need less equity per dollar of premium. than one which wrote 
only a single line in a single state. When assigning equity for the purposes of 
these models, one should not ignore the spreading of risk available in multi- 
state and multi-line operations. since this goes to the verv heart of the insurance 
process 

MISCEI I ANEOUS 

Unless one thinks about it carefully, it is easy to misinterpret a negative 
underwriting profit provision, particularly a very negative one such as -50%. 
Since P* = (L + E + T*)l( I - II), if 14 = -5O%, the premium is two-thirds 
of the losses and expenses. Presumably. in this extreme case, one can earn 



CNDi:RWRIIING PROI~Il MOI)I,I.S 263 

enough investment income during the long time prior to paying the losses so 
that one will have the money available to pay the losses, as well as enough left 
over to earn the target return. For example, this might be the case for lifetime 
escalating benefits to widows under workers’ compensation. An underwriting 
profit provision of -100% would mean that the premium was one half of the 
losses and expenses, something far from unheard of for annuities. 

In this paper, the concept of return on equity has been used. This concept 
may not be appropriate for a mutual rather than stock insurer. One can adapt 
the methods presented here to deal with some other concept more appropriate 
for a mutual insurer. One example might be to substitute a target return on 
policyholder’s surplus. This would relate to a desired growth rate in surplus. 
Another example might be to substitute a desired return on premiums, so as to 
cover “contingencies.” 

Dividends to policyholders have not been dealt with in this paper. However, 
anticipated or desired dividends could be incorporated into the models, as 
another outflow. If used in a ratemaking context, one must take care to be 
consistent with whatever ratemaking methodology has been used, i.e., one must 
not double count anticipated dividends. 

Throughout this paper, we have assumed that one knows, or can make an 
unbiased estimate of, the input values to be used. Specifically, it is assumed, 
when using these methods in a ratemaking context, that some ratemaking method 
has been used in order to make an unbiased estimate of the expected value of 
losses and expenses. (If the estimation method is biased, the method should be 
changed so as to remove the bias. Methods of estimating future losses and 
expenses are dealt with extensively in the actuarial literature, and specifically 
on the Casualty Actuarial Society syllabus of the examination on the principles 
of ratemaking.) The fact that actual losses will vary around the prediction is an 
inherent feature of the insurance business. Such uncertainty should be taken 
into account either explicitly or implicitly when choosing a target rate of return 
for an insurer. 

CONCLUDING REMARKS 

There are a number of methods of reflecting the total return needs of an 
insurer. There is no single best procedure or method. However, for the sake of 
clarity, this paper has focused on one basic method of calculating a provision 
for underwriting profits. As with most actuarial questions, the choice of what 



method to use will depend on the peculiarities of the situation and the purpose 
for which it is to be used. One should carefully examine the assumptions 
underlying any model, as well as the choice of inputs, in order to see whether 
they are reasonable for the given situation. 

In this paper, the author has been very careful to state all the assumptions 
used. The author feels that such a careful axiomatic approach is necessary, since 
it is very easy to get absurd results by mixing inconsistent assumptions or using 
input values which do not match the assumptions. Also. this approach allows 
one to examine the underlying assumptions and change those which may not 
hold for a particular application. For a particular application, it may be useful 
to modify a particular assumption in order to test the sensitivity of the result to 
this assumption. 

This paper is not meant to address such controversial issues as whether 
investment income should be explicitly reflected when rate filings are submitted 
to state insurance departments. Rather this paper starts with the premise that 
the subject of underwriting profit provisions is an arca in which actuaries can 
be of assistance in advancing knowledge and developing methods. 

While this paper has concentrated on the theoretical aspects, this subject has 
many practical applications. A company actuary might use it to help price a 
product. or to estimate what rate of return on equity has been earned on a 
certain book of business. In regulated lines of insurance, these methods could 
be used by an actuary in regulation either to set rates or to examine the 
reasonableness of filed rates. 

If one wants to employ these methods for some practical application, one 
runs into the usual problem with most actuarial methods: one must choose or 
determine the input values to use. In most cases the input values chosen will 
have an extremely large effect on the resulting answer. It is important to choose 
a consistent set of input values. 

The input values should reflect the economic climate one expects during the 
relevant period of time. For example, as we have seen. the underwriting profit 
provision depends on the rate of return available from investments. A model 
allows one to adjust the profit provision for changing economic conditions. 
What may have been a proper claim cost trend in the 1950’s. may no longer 
be appropriate for the 1980’s. Similarly. a proper underwriting provision then 
may no longer be appropriate now. 



ACKNOWLEDGEMENTS 

Some of the ideas in this paper originated in work done jointly with Michael 
Kooken and Stefan Peters on the SRB Profit Model, which is listed below under 
unpublished material. The author wishes to thank Stefan Peters and Richard 
Derrig for reading an earlier version of this paper and providing helpful com- 
ments. 



REFERENCES 

[I] J. Robert Ferrari, “The Relationship of Underwriting, Investments, Lever- 
age, and Exposure to Total Return On Owners Equity,” PCAS LV, 1968. 

(21 S. G. Kellison, The Theory Of‘In~uresf, Richard D. Irwin. Inc., pp. 8-10, 
pp. 36-38. 

(31 R. H. Snader, “Fundamentals of Individual Risk Rating and Related Top- 
ics,” A Study Note published by the Casualty Actuarial Society, pp. 6l- 
62. 

[4] Report of the Advisory Committee to the NAIC Task Force on Profitability 
and Investment Income. January, 1983. 

[5] National Association of Insurance Commissioners. “Measurement of Prof- 
itability and Treatment of Investment Income in Property and Liability 
Insurance,” June, 1970. 1970 Procreding.s of the NAIC, Vol. Ila. 

[6] National Association of Insurance Commissioners. Report of the Investment 
Income Task Force. June, 1984. 

[7] R. W. Beckman, “Federal Income Taxes,” PCAS LVIII, 1971. 

SOME FURTHER READING 

Arthur D. Little, Inc., “Prices and Profits in the Property and Liability 
Insurance Industry,” Report to the American Insurance Association, November 
1967. 

Robert A. Bailey, “Underwriting Prom from Investments,” PCAS LIV, 
1967. 

Casualty Actuarial Society, “Total Return Due a Property-Casualty Insurance 
Company,” 1979 Call Paper Program, May 1979. 

Robert W. Cooper, Investment Return und Property-Liability Insurance 
Ratemaking, Richard D. Irwin, Inc., 1974. 

J. D. Cummins and S. E. Harrington, eds., Fuir Rate ofReturn on Property- 
Liability Insurance, Hingham, Massachusetts. Kluwer-Nijhoff Publishing Co., 
1986. (This source contains, among other materials, papers on the Fairley 
model, the Myers-Cohn model, the Hill-Modigliani model, and a history of the 
use of profit models in Massachusetts.) 



UNIJkRWRITING PROFIT MO1Jtl.S 267 

William B. Fairley, “Investment Income and Profit Margins in Property- 
Liability Insurance: Theory and Empirical Results,” Bell Journal 10, No. 1 
(Spring 1979). 

J. D. Hammond, Arnold F. Shapiro, and N. Shilling, “The Regulation of 
Insurer Solidity Through Capital and Surplus Requirements,” The Pennsylvania 
State University, University Park, Pennsylvania, 1978. 

Paul Joskow, “Cartels, Competition and Regulation in the Property-Liability 
Insurance Industry,” Bell Journal 4, No. 2 (Autumn 1973). 

C. Arthur Williams, Jr., “Regulating Property and Liability Insurance Rates 
Through Excess Profits Statutes,” Journul of Risk und insurance 50, No. 3 
(September 1983). 

UNPUBLISHED MATERIAL OF INTEREST 

While the reader may have difficulty obtaining copies of this material, those 
who can obtain copies should find them of interest. 

Massachusetts Automobile Rating and Accident Prevention Bureau, Boston. 
Filing for 1984 Private Passenger Automobile Rates, Section IOOH. Fall 1983. 

Massachusetts Automobile Rating and Accident Prevention Bureau, Boston. 
Richard Derrig and Acheson Callaghan. “Position Paper on the Risk and Reward 
of Underwriting” and “Position Paper on Surplus.” June 1982. 

Massachusetts Automobile Rating and Accident Prevention Bureau, Boston. 
Richard Derrig, “The Effect of Federal Income Taxes on Investment Income in 
Property-Liability Ratemaking.” February 1982. 

State Rating Bureau, Massachusetts Division of Insurance, Boston. Filing 
for 1984 Private Passenger Automobile Rates, Section IOOH. Fall 1983. 

State Rating Bureau, Massachusetts Division of Insurance, Boston. Michael 
Kooken, Howard Mahler, and Stefan Peters. “A Profit Model Based on a 
Company’s Actual Portfolio” and “A Profit Model Using a Statutory/Regulatory 
Company.” Spring 198 1. 

James M. Stone, Decision on 1976 Automobile Rates. (Actually two sepa- 
rate decisions, one for B1 and one for PD.) Fall 1975. Massachusetts Division 
of Insurance, Boston. 



APPENDIX I 

NOTATION AND VARIABLE NAMES 

All discounting is to the end of the policy year. 

The present value using the rate of return r is denoted by a single prime 

The present value using the rate of return R is denoted by a double prime 

An asterisk indicates that a quantity is loaded for profits. 

u = provision for underwritng profit 
r = rate of return on insurers investments (before taxes) 
R = target rate of return on equity (after taxes) 
FIT/ = federal income tax rate on investments 
FITU = federal income tax rate on underwriting 
S = stockholders’ equity or insurer’s net worth (although it is useful to think 

of this as surplus, the two concepts are not numerically equivalent) 
P = premiums (based on 0%’ profit loading) 
P* = premiums loaded for profit. 
s = P*Is 
L = losses, including those expenses whose timing is the same as losses 
E = expenses which are not included in either L or T 
T = expenses which are proportional to premium (based on premium with 0% 

profit loading) 
F = finance charge income (based on premium with 0% profit loading) 
t = TIP = T*IP* 
v = FIP = F*IP* 
g = P’IP = P*‘IP” 
h = T’IT = T*‘lT* 
J’ = F’/F z F*‘jF* 

e = (present value of federal income taxes on underwriting)i(federal income 
taxes on underwriting) 

d = (present value of federal income taxes on investment)/(federal income taxes 
on investment) 

T = (L’ + E’ + T*‘)/(f. + E + T*) = (present value of the outflows)/(out- 
flows) 

c = (earned but uncollected premium)/(earned premium) 
W = surplus inflow and outflow 
N’ = wis 



APPENDIX I1 

PRIVATE PASSENGER AUTO PDL 

Here we will present, for illustrative purposes only, a numerical example 
using the third model. The timing of the cashflows presented here is similar to 
that which one might find for a real insurer. Many of the inputs are the same 
as the previous numerical examples we have presented for model three. 

This example is for property damage liability coverage for private passenger 
automobile insurance. In practice it is not unreasonable to calculate separate 
profit provisions for different sublines of automobile insurance. One reasonable 
division is into bodily injury coverages, property damage liability, and physical 
damage coverages. The profit provision and the length of the loss flow for 
property damage liability is generally between the other two. Bodily injury 
coverages generally have the longest loss flow, and thus the smallest (least 
positive or most negative) profit provision of the three. 

The timing of premium and loss payments used here is based on the timing 
of payments observed in one state in the recent past. 

It is also necessary to estimate the magnitude and timing of the different 
expense payments. In the numerical example given here, certain assumptions 
have been made concerning expenses. (These particular assumptions are of little 
importance in and of themselves. However, they do serve to illustrate one 
method of estimating the timing of expense payments for modelling purposes.) 

The allocated loss adjustment expense and one half of the unallocated loss 
adjustment expense have been assumed to be expended with the losses and are 
included in the loss flow. The remaining half of the unallocated loss adjustment 
expense is assumed to be expended evenly throughout the policy year. Other 
acquisition expense is assumed to be expended evenly over the five month 
period beginning with the first month prior to the policy effective date. General 
expenses are used here to mean expenses other than loss adjustment expense, 
commissions, other acquisition, and premium taxes. General expenses are as- 
sumed to be expended 30% in the three months prior to the policy effective 
date, while 70% is expended evenly during the policy year. We assume that 
general expenses and unallocated loss adjustment expense are equal in size, and 
other acquisition expense is half of these. (This assumption is a fair approxi- 
mation for a typical agency company writing private passenger automobile 
insurance.) Also, let company expense be defined as general expense, plus other 
acquisition expense, plus one half of unallocated claims expense. Then our 



assumptions lead to a payment pattern for company expense of 20%, 30%, 
20%, 15%, 15%, starting in the 0th quarter. (The policy effective date is the 
end of the 0th quarter and the beginning of the 1 st quarter.) Commission expense 
is assumed to be paid as premiums arc received. Premium taxes are assumed 
to be paid quarterly. 

In general, the assignment of expenses to either the fixed category or the 
group that varies with premium should match the assumptions used elsewhere 
in the ratemaking methodology. This assignment has an important numerical 
impact on the calculated profit provision when the profit provision is far from 
zero, e.g., - 10% or less. In the numerical example given here, only premium 
taxes are assumed to vary with premium\. This ih why the ratio of variable 
expenses to premium, 1. is only 2.3%. 

Answers und inputs 

u = provision for underwriting profits = 3.7% 
P* = 1039.7 
P = 1000.000 
T = 23.000 
t = TIP = ,023 
g = P’IP = I .0668 
h = T’IT = I .0492 
E = 367.594 
L = 609.406 
E’ = 392.373 
L’ = 610.700 
e = I .0368 
R = 17% 
r= IO% 
FITU = 46% 
FITI = 28% 
s = 2 
y = (L’ + E’ + htP*)/(L + E + tP*) = 1.0272 

PriLvate Passenger Auto PDL Cushjkot~s 

Based on a company expense-to-loss ratio of .X45. Based on a commission 
expense-to-loss ratio of .3487. (Assume 0% profit loading for determining the 
weights of the various cashflows.) 



Quarter Premium 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Premium 
Tax 

5.750 
5.750 
5.750 
5.750 

Company Commission 
Expense Expense 

31.019 6.609 
46.528 70.975 
31.019 99.429 
23.264 30.430 
23.264 5.057 

Loss 

31.100 
334.000 
467.900 
143.200 
23.800 

29.046 
92.869 

110.577 
125.722 
111.860 
56.510 
27.011 
16.311 
9.562 
7.676 
4.630 
3.447 
3.928 
3.235 
1.928 
1.692 
1.455 
0.851 
0.669 
0.427 

Sum 1000.000 23.000 155.094 212.500 609.406 

Note: one half of the unallocated loss adjustment expense is contained in 
“company expenses” and “losses.” All the allocated loss adjustment expense is 
contained in the “losses.” 

All discounting of cashflows is to the end of the policy year. Cashflows are 
assumed to occur in the middle of the relevant quarter. For example 

P' = (31.1)(1.1)9’s + (334)(1.1)7’8 + (467.9)(1.1)5’8 + 
(143.2)(1.1)“8 + (23.8)(1.1)“’ 
= 1066.8 
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APPENDIX III 

PRESENT VALUE OF INCOME ON THE CASHFLOW 

In developing model three, we used a relationship between the total income 
on the cashflow and its present value. In this appendix we will show that, given 
certain assumptions, the present value of the income on the cashflow divided 
by the income on the cashflow is given by y. a similar quantity for the outflows. 

Assume we have an outflow 0, divided into payments O(k) by quarter. 
Assume we have an inflow I, divided into payments by quarter 1(j). We wish 
to find out how much total income is earned on the cashflows. This depends on 
how long the inflow is invested. 

This requires some assumptions. A not unreasonable assumption is to assume 
that the inflow is invested until the time of the outflow. With inflows and 
outflows occurring at various times, it is necessary to make a more precise 
assumption. 

We assume that the inflow is divided up in proportion to the present values 
of the outflows. (This is neither a first-in first-out assumption, nor a last-in first- 
out assumption.) In other words, we assume I, or more precisely each I(j) is 
divided up into pieces using weights O(k)‘iO’. (We divide by 0’ so that the 
weights add up to one.) The kth piece of f(j) is invested until O(k) is paid. 
During the time it is invested each piece of I grows by a factor 
(O(k)/O(k)‘)l(fg’)l~(j)‘)‘). That this is the increase becomes clearer if one just puts 
each of the two ratios in terms of powers of 1 + r. If f(j) occurs at time a and 
O(k) occurs at time 6, then the ratio is just ( 1 + r)“-” divided by (1 + r)(‘-“), 
or (1 + r)tu-h). 

Thus we have that after growth, the kth piece of IO’). which was 
I(i)O(k)‘lO’ has grown to: 

(I(i}O(k)‘/O’)(O(k)/O(k)‘)/(l(j)/lO’)’) = O(k) fO’)’ / 0’ 

Then the total income is 

Cj (~~(O(k)f(j)‘/O’)) - 0 
= 1’ 01 0’ - 0 
= (I’ - O’)(O/O’) 

Now I’ -0’ is the present value of the total income on the cashflow. So 
we have that 

income on cashflow = (present value of income on cashflow) / y 

where y = (present value of outflows)/ outflows = 0’10 
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APPENDIX IV 

ALTERNATIVE TIMING OF NTf ON CASHFLOWS 

In this appendix we will develop further the work done in the previous 
appendix. We will use the same notation. We will see how an alternate as- 
sumption concerning the timing of federal income taxes on the investment 
income on the cashflows yields a different result than in model three. 

We saw how the krh piece of I@, which was t(i) O(k)‘lO’, grew to 
O(k)~(i)‘/O’. Thus the investment income is their difference 

(O(k)lO’)’ - 1(j)O(k)‘)/O’ 

Let’s assume that the income taxes on this investment income are paid at 
time k. Then one gets this piece of the federal income taxes on investment by 
multiplying by FITI. Since the tax payment has been assumed to be made at 
time k, we get the present value by multiplying by a factor O(k)‘lO(k). Thus 
the present value of the federal income taxes on this piece of the investment 
income is 

FfTl(O(k)‘lO(k))(O(k}l(i)’ - I(j)O(k)‘)/O’ 
= FITf(O(k)‘Io’)‘IO’ - Ig’)O(k)‘O(k)‘lO(k)O’) 

When we sum over all i and j we get 

PV(FITf on cashflows)lFlTt = 
I’ - (I/O’)(& O(k)‘O(k}‘lO(k)) 

This differs from model three where we had 

PV(FlT1 on cashflows)lFlTI = y(I’y - I) = I’ - yi 

If we define 

z = (Ck O(k)‘O(k)‘lO(k))lO’ 

Then the result here can be rewritten as 

PV(FITI on cashllows)lFITI = I’ - zl 

This is of the exact same form as the result used in model three, except we 
have z in place of y. Thus the equation for P* would be the same, except we 
would replace y by z. 



The resulting profit provisions are similar. For example, below are the results 
for the same numerical examples we calculated for model three, using the same 
inputs. 

As Per This Appendix As Per Model Three 

N(years) P* 2 Profit Prov. P* \ Profit Prov. - - L 

.5 $1.044 I .060 3.4% $1.044 1.059 3.4% 
1.0 979 1,021 - 1.7% 980 1.020 -1.6% 
1.5 914 ,984 -7.5% 916 ,981 -7.3% 
2.0 850 .948 - 14.2% 853 ,943 - 13.8% 
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APPENDIX V 

DlFFERENTlATlON OF THE FORMULA FOR PROFIT PROVISION 

In this appendix will be shown the manner in which the underwriting profit 
provision varies with various important inputs. This will be done by differen- 
tiating the formula for the underwriting profit provision. (In the main text were 
shown some actual numerical results of varying inputs.) We will use the third 
model. 

u = 1 - t - (E + L)IP* = 1 - t - N/D 

where N = (Y/S + g)( 1 - FIT!) - th - R/s + FlTly - (1 - t)FITUe 
and D = (L’ + E’)I(L + E) - FtTUe 
(N and D have been used for numerator and denominator, only in this appendix.) 

Then we have 

duidR = I/SD 

Thus, duldR is greater than zero, and is approximately 1 for the values used 
here. 

dulds = (r(l - FITI) - R)lDs2 

Thus, duids is less than zero and is approximately -.05 for the values used 
here. 

duldFITU = (1 - t)elD - eNID 
= e( 1 - t)/D - e( 1 - u - t)/D 
= eulD 

Thus, duldFITU has the same sign as u, and is approximately equal to 2~4. 

duldFITI = (r/s + g - y)lD 

Thus, duldFIT1 is generally greater than zero. It is significantly larger the longer 
the cashflows. 

The reason we don’t give an algebraic result for duldr is that the result of 
differentiating u by r would be quite a complex expression. Remember that 
variables which involve present values, such as g, h, y, E’, and L’, involve r, 
in a rather complicated manner. 



APPENDIX VI 

INVESTMENT BALANCE FOR TAXES 

In this appendix we will explore an alternate way to get the expression 
for the present value of the taxes on investment income on the cashflow, which 
was used in the third model. We will set up something called the investment 
balance for taxes, IBT for short. 

Assume there is an inflow I(j) and outflow O(j), each by quarter. Call the 
sums I and 0. Deal with I(i> and O(i>I/O, so that both vectors sum to the same 
value I. (Think of I as the premiums loaded for profits. Intuitively this manner 
of doing things prevents counting the underwriting profit or loss twice, since it 
is dealt with separately elsewhere in the model.) 

Let No) = IQ) - Olj)IlO. N is the net cashflow by quarter, but adjusted so 
that the outflows are loaded for profit. 

Then the IBT is set up as follows. Take the cumulative sum by quarter of 
N. (Since we have set them up so that both vectors have the same sum, for 
large enough values of time IBT is 0.) lBT(j) = Ck-1 ,,> j N(k), Then in each 
quarter this amount is available to earn investment income. So we multiply it 
by y = (I + r).” - 1, the quarterly rate of investment return. Assume the 
income taxes are paid on this investment income the following quarter. Assume 
for convenience that the first element of the vectors has a discount factor of 1. 
(One can discount to any point in time. If another point in time is taken, an 
additional discount factor will appear. but make no difference in the result.) 

PV(qIBT)FITI( 1 + r)-.2s 
= FITIq (E, &= 1 to, (N(k) (1 + r)- “‘)) 

Now collect all the terms involving a given NO’). Each NO’) appears starting 
with a term in which it is multiplied by a factor of (1 + r)-“*. Then it appears 
in all the subsequent terms, except in the next term it is multiplied by 
(I + r)-(J+i)‘4, in the one after that by (I + r) ~oc2)‘4, etc. Thus, 

= FITIq (2, (N(j) C,=, I,, r (I + r))“‘)) 

Now take the sum of the infinite geometric series. 

= FITIq 2, NO’)( I + r)-J’4/( I - ( 1 + r) “) 
= FITI EJ N(j)q( I + r)-J’4/q( I + r)- 2s 
= FITI 2, NG)(l + r)plrp’)‘4 
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But we have assumed for convenience that the N(1) term has its present 
value given by a discount factor of 1. Each subsequent term of N(j) has an 
additional factor of (1 + r)“4 in order to get its present value, since it is one 
quarter later. Thus, 

= FITI Cj PV(N(j)) = FITI (I’ - O’IIO) 

What we use in model three is 

FITI (P*’ - L’ -E’ -p’ - #* _ L’ - E’ -7-e’)) 

= FITI(I’ - 0’ -y(l - 0)) 
= FITI(I’ - 0’ -(O’lO)(I - 0)) = FITI(I’ - O’IIO) 

This is the same result as we got using the ZBT method here. 
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AN ANALYSIS OF EXPERIENCE RATING 

GLENNG MEYLRS 

Ahttwt 

Experience rating formulas that are currently in use have features 
that have no counterpart in the literature on Bayesian credibility. These 
features include the limiting of individual losses that go into the expe- 
rience rating, separate treatment of primary and excess losses, and the 
gradual transition to self-rating. This paper analyzes the effect of these 
features using the collective risk model. 

Most developments in Bayesian credibility assume that the variance 
of an individual insured’s experience is inversely proportional to the size 
of the insured. This will not be the case if the parameters of the insured’s 
loss distribution are changing over time. This paper analyzes the effect 
of this parameter uncertainty on the Baycsian credibility formulas. 

Finally, Paul Dorweiler’s method of testing experience rating for- 
mulas is updated using modem statistical methodology. The result is a 
very general method of evaluating the parameters of an experience rating 
formula. 

1. INTRODUCTION 

The passage of open competition laws for Workers’ Compensation has 
indeed sparked a high degree of competition. Much of the competition is taking 
place on the individual insured level in the form of schedule and experience 
rating. In this new competitive environment the performance of these rating 
plans becomes crucial. The purpose of this paper is to examine the performance 
of some experience rating plans that are currently being used. 

The predominant experience rating plan for Workers’ Compensation is pro- 
mulgated by the National Council On Compensation Insurance (NCCI). This 
plan is widely adhered to. In addition, the National Council performs the service 
of maintaining the experience and calculating the experience modification for 
each insured. These services relieve the insurance companies of considerable 
administrative expense. 

For lines other than Workers’ Compensation. an experience rating plan is 
promulgated by the Insurance Services Office (ISO). Variations from this plan 



by individual insurance companies are common. Also, IS0 does not maintain 
experience for individual insureds. Getting reliable experience for new insureds 
is a real problem. 

When designing experience rating plans, there are some administrative con- 
siderations that cannot be overlooked. The first is that experience ratings are 
done frequently and so simplicity is of paramount importance 

A second consideration is that experience rating, as opposed to class rating, 
is very visible to the individual insured. A consequence of this is that the 
experience rating plans must give due consideration to what the insured perceives 
to be fair. Historically, see Snader [ 11, these considerations have included the 
following: 

I. A single claim should change the experience modification by no more 
than a predetermined amount. This predetermined amount is known as 
the swing of the experience rating plan. 

2. All insureds above a certain predetermined size are self-rated, that is 
they are rated entirely on the basis of their own experience. 

In addition to the administrative considerations mentioned above, there are 
some mathematical considerations that should be made. The mathematical foun- 
dations of experience rating come from Bayesian estimation and credibility 
theory. As is the case with many other mathematical theories, a simplified 
mathematical model is proposed, and the optimal method of rating the insured 
is derived. The success of Bayesian estimation and credibility theory depend 
upon how closely the model represents reality. 

The experience rating formulas derived from administrative considerations, 
hereafter referred to as “practical” formulas, may be different from those derived 
from the mathematical considerations, hereafter referred to as “theoretical” 
formulas. This paper investigates the compatibility of these two kinds of rating 
formulas. We would judge the formulas to be compatible if the accuracy of the 
“practical” formula is near that of the “theoretical” formula on the simplified 
models. While it is by no means certain that accuracy on simplified models 
implies accuracy in real life situations, inaccuracy on a simplified model should 
imply that something is wrong with the formula being tested. 

Our first goal is to find “practical” formulas that perform well on simplified 
models. These formulas will depend upon unknown parameters which must be 
estimated from data. Our second goal is to show how these unknown parameters 
can be estimated. An example will be provided. 



2. CURRENT EXPERIENCE RATING FORMULAS 

We begin by briefly describing two experience rating plans that are currently 
in use. We will concentrate on the structure of the plans. The methods currently 
being used to derive the parameters of the plan are not really an issue at this 
time. In what follows, an experience moditication will refer to the ratio of the 
premium after experience rating to the premium before experience rating. 

2. I The Workers’ Compensdon Experience Ruling Plum 

The Workers’ Compensation Experience Rating Plan [2] has a long and rich 
history. Its development is described in detail by Perryman 13). Uhthoff [4] and 
Snader 11 J. It is very much a “practical” experience rating plan and it has a 
strong appeal to common sense. 

A feature of this plan is the partitioning of’ the actual losses into primary 
losses, denoted by A,,, and excess losses. denoted by A,.. In most states, the 
primary part, X,,, of a claim of amount X is given by the following formula: 

if X 5 2000 

x = 1ooooxx 
I’ x+8ooo 

if X > 2000 

The excess part of a claim, X,,. is equal to X X,,. A,, is the total of the 
primary parts of all claims, and A,. is the total of the excess parts. 

Let: E,, = expected primary loss; 
E,. = expected excess loss; and 
E = E,, + E,. 

Then the experience modification, Mod, is given by the following formula: 

Mod = 
A,, + W X A,. + ( 1 - W) x E,. + ( I - W) x K 

E+(l-W)xK 

W is equal to zero for E less than some number Q, typically 25,ooO. and 
increases linearly to one as E increases to the self rating point S, which is 
usually around 500,000. K is generally set equal to 20,000. 

E,] and E,. are products of expected loss rates and the amount of exposure 
for the insured. These expected loss rates are in the Workers’ Compensation 
rating manual and are updated whenever there is a rate change. 



f:XPt:.RIIINCt; Hi, I‘ING 281 

This formula has some very appealing properties: 

1. If E 5 Q, the formula simplifies to the following: 

Mod = 41 + Ee + K 
E+K 

(Equation 2.1) 

This simplifies experience rating for small insureds. 

2. Since X,, is always less than 10,000, the impact of a single large claim 
on the modification is limited. 

3. The insured is self-rated for E 2 S. Also, the transition to self-rating is 
gradual. 

4. It is generally believed that claim frequency rather than claim severity 
differentiates the good insured from the poor insured. The relatively 
greater impact of small claims is consistent with this belief. 

2.2 The General Liabilit4, Experience Rating Plan 

The General Liability Experience Rating Plan [5], like the Workers’ Com- 
pensation plan, is very much a “practical” experience rating plan. 

Let: ALR = adjusted actual loss ratio; 
AELR = adjusted expected loss ratio; and 

2 = credibility factor. 

Then the experience modification, Mod, is given by the following formula: 

Mod = 1 + 
ALR - AELR x z, 

AELR 

The term “adjusted” refers to the fact that individual claim amounts are 
limited before entering the experience rating calculation. This limit increases 
with premium size. It is chosen so that a single large claim can change the 
experience modification by no more than .3. 

Let: P = premium associated with the loss period; and 
K = credibility constant (currently lOO,OOO). 

Then the credibility is given by the following formula: 

p-!-L 
P+K’ 



If this formula were to apply for all values of P, no insured would ever be 
self-rated. Since self-rating is desired for very large insureds. the credibility 
formula changes to a linear function between a selected point. Q, and a selected 
self-rating point, S. 

For E > Q: 

Z=Q2+KxE 

(Q + K)’ 
(Equation 2.2) 

In the current General Liability cxperiencc rating plan. K = 100,000, 
(2 = 483,333 and S = 1,049,654. 

Currently, the premium used is collected basic limits premium. However, 
this is slated to be revised in 1985. The premium used in the adjusted expected 
loss ratio will be based on estimated prospective premium and adjusted for 
inflation and average exposure growth. Ideally, the premium should be based 
on the actual exposures of the experience period. but administrative considera- 
tions led to using estimated prospective premium. It should be noted that the 
plan contains optional provisions to use actual exposures if they are available. 

When comparing the two experience rating plans. it should bc noted that 
the Workers’ Compensation plan is mandatory in most states. This includes 
many open competition states! The National Council can enf’orce the standards 
of their plan on all companies. They do this. of course, with the consent of the 
member companies. 

3. MATHEMATICAL M0DEI.S WK FXPI'RIENCb RAIING 

Let X be a random variable which represents the total loss incurred by the 
insured. Let E be a measure of the size of the insured. E could be either the 
expected loss for the average insured or the premium of the insured which has 
been determined by a rating manual. Let R = X/E and p = E[R], where E[ ] 
denotes expected value. R and f~ are called the loss ratio and the expected loss 
ratio. 

Experience rating is based on the premise that the expected loss ratio. p, is 
different for each insured in a given classification. To model this. we assume 
that an insured has a loss ratio distribution, d, which is selected at random from 
a class of distributions, D. Each distribution tf has its own mean, k, and 
variance. V’. Let M = E[ p.1, T’ = Var[ p]. and (J' = E[ “‘1. where these statis- 
tics are calculated over all distributions (1 in D. 
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This process is described by the following algorithm: 

Algorithm 3. / 

1. Select the distribution, d, along with p and v2, at random from the class 
of distributions D. 

2. Select the loss ratio, R, at random from the distribution d. 

The goal of experience rating is to estimate the expected loss ratio, )J, given 
the loss ratio, R. 

Two solutions to this problem are described by Biihlmann (61. The first 
solution is the Bayesian solution: 

B(R) = W-#l 

Biihlmann shows that the solution is optimal in the sense that 

EIUW - t-d 

is minimized. 

A drawback to the Bayesian solution is that it requires knowledge of all the 
distributions d in D. The second solution, called the credibility solution, only 
requires knowledge of the quantities M, 7* and 02. It can be written in the form: 

C(R)=ZxR+(l -z)xM. 

Z is called the credibility factor. We want to choose Z so that 

El(CW) - 14~1 

is minimized. The solution, given by Btihlmann, is 

(Equation 3.1) 

Biihlmann goes on to show that the same choice of Z minimizes 

El(W) - BUW21. 

Thus the credibility solution can be characterized as the best linear approxi- 
mation to the Bayesian solution. As Hewitt [7] and Mayerson [8] demonstrate, 
the Bayesian solution can be linear, and thus the credibility solution is identical 
to the Bayesian solution. However, Hewitt also gives an example where the 
Bayesian solution is different from the credibility solution. As we shall see 
below, the distinction can be important. 



We shall use the collective risk model to describe the distribution of the 
losses. This model describes the total losses of an insured in terms of its claim 
count and claim severity distributions. This model has been described exten- 
sively by Meyers and Schenker [Y ]. Heckman and Meyers [ IO], and Panjer 
1111. 

Let N and S be random variables denoting the claim count and the claim 
severity for an insured, respectively. In its simplest form. the collective rihk 
model can be described by the following algorithm: 

1 Select the claim count, N, at random from a Poisson distribution. 

2. Do the following N times: 
2. I Select the claim severity. S, at random 

3. Set the total loss, X. equal to the sum of the claim amounts, S, selected 
in step 2.1. 

Since credibility formulas are applied over a wide range of premium sizes, 
we need to be concerned with how the quantity (r2 varies with premium. The 
usual assumption made is to let o7 vary inversely with premium This is done 
mathematically by setting a’ = X’I’/<. where x’ is the constant of proportion- 
ality. 

This assumption agrees with the intuition of many actuaries. One would 
certainly expect the variance of the loss ratio to decrease as E increases. This 
assumption can also be justified using collective risk theory. If we assume that 
the claim count distribution is Poisson for each insured and that the claim 
severity distribution is the same for all insureds. then it is demonstrated in 
Appendix A that u’ is inversely proportional to E. 

Substituting C.‘/E for CT’ in Equation 3. I yields the following expression for 
the credibility: 

Z=E 
E+K 

(Equation 3.2) 

where K = c’lr’ 

This formula for credibility is almost universally used in the actuarial liter- 
ature on Bayesian credibility. An exception to this is in a paper by Robert A. 
Bailey and LeRoy J. Simon [ 121. This exception is important and their dcm- 
onstration is worth discussing in detail. 



Using experience from the Canadian Merit Rating Plan, they were able to 
calculate empirical credibilities for the experience of a single private passenger 
car for one, two and three years of experience. These credibilities are given in 
the following table. 

TABLE 3.1 

EMPIRICAL CREDIRILITIES 

Class 1 Year 2 Years 3 Years 

1 ,046 .068 ,080 
2 ,045 ,060 ,068 
3 .051 .068 ,080 
4 ,071 ,085 ,099 
5 ,038 .050 ,059 

Let E denote the number of years in the merit rating period. Using the 
credibilities based on one year, the constant K in the credibility formula 
2 = E/(E + K) is calculated. The credibilities for two and three years are then 
calculated using this value of K. The results are in the following table. 

TABLE 3.2 

DERIVED CREDIBILITIES Z = E/(E + K) 

Class K 2 Years 3 Years 

1 20.7 ,088 .126 
2 21.2 .086 .I24 
3 18.6 .097 ,139 
4 13.1 ,133 .187 
5 25.3 .073 ,106 

We see, as Bailey and Simon observed, that the usual assumptions suggest 
that credibility should increase roughly in proportion to the number of years in 
the experience rating period. When comparing Tables 3.1 and 3.2 we see that 



the empirical credibilities are signiticantly less than what the usual assumptions 
would suggest! 

Bailey and Simon attribute the failure of the usual assumptions to match the 
empirical credibilities, in part, to an “individual insured’s chance for an accident 
changes from time to time within a year and from one year to the next.” This 
phenomenon is very similar to that of parameter uncertainty. which is described 
by Meyers and Schenker 191. In Appendix A it is demonstrated that the collective 
risk model with parameter uncertainty implies that a2 is of the form z’/E + p, 
where B > 0. Substituting X’iE + B for CT’ in Equation 3. I yields the following 
expression for the credibility: 

z= E 
ExJ+K 

(Equation 3.3) 

where J = I + B/-r’ and K = 2’1~~ 

Using Equation 3.3, it is possible to take the credibilities for one and two 
years and solve for J and K. One can then calculate the credibility implied for 
three years. The results of these calculations are in the following table: 

TABLE 3.3 

DERIVED CREDIBILITIES Z = EI(E x J + K) 

Class 

1 
2 
3 
4 
5 

J 

7.7 
11.1 
9.8 
9.4 

13.7 

K 

14.1 
11.1 
9.8 
4.4 

12.6 

3 Years 

.0x I 
,068 
,077 
,091 
.0X) 

By comparing the above tables we see that the credibilities derived using 
Equation 3.3 come much closer to the empirical credibilitics than those derived 
using Equation 3.2. 

It should be noted that the maximum credibility obtainable in Equation 3.3 
is l/J. Recall J 1 1. Low maximum credibilities could be interpreted by saying 
that the insured is changing over time and that change is of a significant size 
when compared to differences between insureds. 
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Besides parameter uncertainty, there are other reasons why the usual as- 
sumptions may not be appropriate. The variable loss limit that is in the IS0 
experience rating plans is one such case. In Appendix A, it is demonstrated 
that the constant of proportionality, x2, depends upon the second moment of 
the claim severity distribution. Since the effect of changing the loss limit is to 
change the claim severity distribution, one should not expect x2 to be the same 
for all loss limits. 

Since the loss limit increases with premium size, we would expect a2 to 
decrease slower than l/E (See Appendix A.) Thus an attempt to impose a 
credibility formula of the form Z = EI(E + K) will result in credibilities which 
are too small for the small insureds, and too large for the large insureds. 

The formula a2 = x*/E + B also has the property that CJ’ decreases slower 
than l/E. Thus Equation 3.3 should provide a better estimate of the credibility. 
But the derivation of Equation 3.3 did not anticipate an increasing loss limit, 
and so one should not expect the estimated credibility to be perfect. 

4. THE EFFICIENCY OF AN EXPERIENCE RATING PLAN 

In the previous section we discussed optimal (for specific assumptions) 
experience rating plans. There are a number of reasons why an optimal plan 
might not be used. As discussed above, there may be several practical reasons 
for using some alternative plan. Another reason is that one must estimate the 
parameters M, -r2 and cr’. Estimation error will occur. The purpose of this 
section is to present a yardstick for comparing the performances of alternative 
experience rating plans. 

The purpose of experience rating is to estimate the expected loss ratio, CL. 
If experience rating were not used, our estimate of p would be M, which would 
be subject to error. A good measure, with historical precedent, would be to 
calculate the amount the expected error is reduced by a given experience rating 
formula. 

Let F be an estimator of f.~ which results from an experience rating formula. 
F can be a function of any kind of loss experience of the insured such as total 
losses, claim count or limited losses. We then define the efficiency of F by the 
expression: 

EI(p. - W21 - E[(P - F)*l 
Ei(p - W’l 



If F is a perfect estimator for p, its efficiency will be equal to I. If F = M, its 
efficiency will be equal to 0. It is possible, a\ WC shall soon see. for the 
efficiency to be negative for a poorly chosen F. 

One should note the similarity of this measure of cfticiency with the statistic 
R’ that is used in regression analysis. It is different from K’ in that it does not 
automatically assume that F was chosen in some optimal manner. 

If F is a credibility estimator of the form Z X R + (I - 2) X M. it is 
shown in Appendix B that the efficiency of F is given by the expression 2 X 
Z - Z’/Z,,,. where Z,,, is the optimal credibility given by Equation 3. I. A graph 
of the efficiency as a function of S is shown in Figure I. This expression has 
the following properties: 

i 
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1. The efficiency is maximized when Z = Z,,. This is Buhlmann’s [6J 
result. 

2. As a function of Z, the efficiency starts at 0 when Z = 0, raises to a 
maximum of Z,,, when Z = Z,,, and falls to 0 when Z = 2 X Z,,,. The 
efficiency is negative for Z > 2 X Z,?,. 

It is not difficult to see why credibility , even the non-scientific version, has 
been so popular. If Z < 2 X Z, then a credibility estimate using Z will be more 
accurate than no experience rating. If Z,,, > 0.5 then any choice of Z 5 1 will 
guarantee an improvement in accuracy. 

It should be noted that Z,,, is not the maximum efficiency obtainable by any 
experience rating formula. As noted above, a Bayesian formula could be more 
accurate. As we shall soon see, it is also possible that an experience rating 
formula that uses detailed information such as claim count and claim severity 
can be even more accurate than the Bayesian formula. 

5. THE GENERAL LIABILITY EXPERIENCE RATING PLAN 

We now use the concepts developed above to analyze the General Liability 
experience rating plan. In particular, we will discuss the effect of self-rating 
and loss limits. Also, credibility and Bayesian estimation will be compared. 

Let us suppose, for the sake of discussion, that the credibility formula Z,,, = 
EI(E + K), with K = 100,000 is the “correct” formula. Now suppose that 
instead of using Z,,, for credibility we use Z = (Q2 + K X E)/(Q + K)‘, where 
Q = 483,333. Then the following table shows the efficiency of the formula for 
Z. 

TABLE 5.1 

E Z Efficiency of Z ZlTl 

500,000 .8335 .8333 .8333 
600,000 .8629 .8571 .8571 
700,000 .8922 .8748 .8750 
800,000 .9216 .8877 .8889 
900,000 .9510 .8971 .9000 

1 ,ooo,ooo .9804 .9035 .9091 



Examination of this table shows that there is minimal loss of effciency when 
using Z instead of Z,,,. If one accepts the crcdihiliq formula Z = E/(E + K), 
the gradual shift to self-rating should also be acccptablc. 

We now turn to loss limits. The collective risk model will be used to describe 
the loss distributions. The mathematics will be less cumbersome if there is a 
finite number of loss amounts. For this reason. the claim count distribution will 
be binomial with N trials and the probability of a claim equal to p, The claim 
severity distribution will be a discrete version of the shifted Pareto, which is 
used to describe claim severity in many lines of casualty insurance. The prob- 
ability, F(x), that a claim will be less than or cyual to .\ is given by: 

F(.r) = I - (h/(x + h))’ .\- = I. 2. , 30 

The remaining probability will bc at the basic limit. 50. 

The parameter y will be set equal to I .15 for all prior distributions. The 
parameter h. in the claim severity distribution and JJ. in the claim count distri- 
bution may be different for each prior. N will retlcct the size of the insured. 

For a selected loss limit, L. the total losses can vary anywhere from 0 to 
L X N. Using Panjer’s algorithm [ 1 I] one can calculate the probability of each 
total loss for each prior distribution. One then calculates credibility and Bayes 
estimates of the experience modification for basic limits losses. as well as the 
efficiency of each estimate. Detailed calculations arc given for one case in 
Exhibit 5.1. Efliciencies for several cases arc given in Tables 5.2-5.4. 

We first consider the case where only the claim count distributions vary. 
The efficiency is at a maximum for both the credibility estimator and the Bayes 
estimator when the loss limit is equal to 1, and &creases as the loss limit 
increases. This should come as no surprise. When the loss limit is I. there is 
no random element due to claim severity. As wc increase the loss limit. we 
increase the randomness in our measurements. 

As expected, the Bayes estimator is more accurate than the credibility 
estimator. It is worth noting that the Bayes cstimatur is less affected by the 
increasing loss limit. The accuracy of the credibility approximation to the Bayes 
estimator gets worse as the loss limit increases. 

We now turn to the case where only the claim severity distributions are 
varying. In this case, information about the distribution, as well as the random 
element. increases as the loss limit increases. The efficiency of both the crcdi- 
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bility and the Bayes estimators is near maximum at a loss limit of 8. After that 
point the increase in efficiency is, at best, marginal. In fact it can decrease. 

When both the claim severity and claim count distributions vary, the effi- 
ciency first increases and then decreases as the loss limit increases. The best 
loss limit is 4 for this example. 

Attempting to draw conclusions about real life experience rating plans from 
models can be a risky undertaking. But accuracy is important, and not attempting 
to draw conclusions can also be risky. With this in mind, we proceed. 

The first conclusion is that limiting the loss for an individual claim is a good 
idea. A well chosen loss limit will be large enough to capture differences in 
claim severity distributions. If the loss limit is too large? increased randomness 
will wipe out any extra information gained by the higher loss limit. This has 
been the traditional argument in favor of loss limits. It is gratifying to see it 
verified on a mathematical model. 

While the Bayes estimator is more accurate, in practice we do not have 
enough information to use it. An alternative is to create conditions where the 
credibility estimator is a good approximation to the Bayes estimator. A loss 
limit serves this purpose. 

The negative effects of high loss limits appear to be less pronounced for 
larger insureds. Perhaps this could be taken as justification for varying the loss 
limit. However one should not raise the loss limit indefinitely. Once the loss 
limit reaches a sufficient level to capture enough information on the claim 
severity, it should go no higher. 
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Prior# 

X - 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
I4 
15 
16 

EXHIBIT 5.1 

C~t~lk31t.113. ANI) HAk,kS I31 Ihli\ I ts 

N=4 Loss limit = 4 

Limited Limited Basic Limits 
Weight p h y SW. Mean Std. Dev. SW. Mean ___ __ __ __ 

0.25 0.20 0.25 1.25 1.24 0.69 
0.25 0.30 0.50 
0.25 0.40 0.75 
0.25 0.50 I .oo 

1 

I 

1.48 
.2s I .47 O.Y3 2.03 
.‘S I .6X I .O7 3.57 
.2s 1.x5 I. 16 3 OY 

Aggregate Probabilities 

Prior# 1 Prior#2 

0.40960000 0.240 10000 
0.35481700 0.30735000 
0.14376800 0. lY673800 
0.04484430 O.OY76 12x0 
0.02853980 0.0757 IO90 
0.0 I326000 0.04735030 
0.00364740 0.0202 1520 
0.0009094 1 O.(J077 I Y6X 

0.00044414 0.00442423 
0.00013752 0.001X62X3 
0.00002474 0.0005387’3 
0.00000535 0.000 1666X 
0.00000245 O.OOOOXW7 
0.00000042 0.0000207X 
o.OOOOOO04 0.0OoOO341 
0.00000001 0.00000l01 
o.oooooooo 0.00000048 

Limited Grand Mean = 7.2X643 

Prior#3 

0. 1’960000 
0.‘?576000 -- 
0. lY920200 
0. 13228600 
0. I I665700 
O.OYO4 1290 
0.0s 102 120 
0.02505340 
0.016124SO 
0.00844632 
0.003239 I3 
0.0013292x 
0.0006x I 5 I 
0.0002 1562 
0.00004769 
0.0000 1s 5 2 
0.000008 1 Y 

Prior#4 

0.06250000 
0.14488800 
0. I6774800 
0.14045300 
0.13708900 
0. I’598400 
0.0884 I X80 
0.05248 160 
0.03707380 
0.023 15500 
0.01092810 
0.004x 155x 
0.00287956 
0.001 11993 
0.0002Y946 
0.00010565 
0.00006104 

Credibility = .216312 



X - Prob(X) 

0 0.21045000 
1 0.25820400 
2 0.17686400 
3 0.1037’)900 
4 0.08949920 
5 0.06927680 
6 0.04082570 
7 0.02154100 
8 0.01451670 
9 0.00840042 

IO 0.00368269 
II 0.00155422 
12 0.0009 1200 
13 0.00033919 
14 0.00008765 
15 0.00003055 
16 0.00001743 

Credibility Mod Bayes Mod 

0.7837 0.7325 
0.8783 0.8629 
0.9729 I .0177 
I .0675 1.1504 
1.1621 1.2006 
1.2567 I. 2722 
1.3513 I .3487 
1.4459 I .4012 
1.5405 1.4218 
I .6352 I .4552 
I .7298 1.4880 
1.8244 1.5071 
1.9190 1.5152 
2.0136 1 .s347 
2.1082 I .5498 
2.2028 I .5551 
2.2974 1.5605 

Difference 

0.0512 
0.0154 

-0.0448 
-0.0829 
-0.0385 
-0.0155 

0.0026 
0.0447 
0.1188 
0.1799 
0.2417 
0.3173 
0.4037 
0.4789 
0.5584 
0.6477 
0.7369 

Expected Error Bayes = .226192 Credibility = .230147 
Efficiency: Bayes = .222546 Credibility = .208954 

EXHIBIT 5.1 (continued) 
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TABLE 5.7 

Loss Credibility 

Limit N=4 N=X N= 16 N = 4 N = x N= 16 ___ ___ ___ 

I 1x9 
4 1123 

,317 .4X7 .IYO 3’3 ._ -_ ,496 
.71x .3SY .IS2 .237 ,377 

X ,087 ,160 ,275 ,147 ,714 ,309 
12 ,069 ,130 ,230 .I46 ,210 .2XX 
16 ,059 I12 ,201 .I45 .2OY .2x1 
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TABLE 5.3 

SEVERITY DISTRIB~JTIONS VARY 

Prior P b Y 

#I 0.4 0.25 1.25 
#2 0.4 0.50 1.25 
#3 0.4 0.75 1.25 
#4 0.4 1.00 1.25 
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Loss Credibility Bayes 

Limit N=4 N=8 N= 16 N=4 N=% N= 16 - ___ - - ___ 

4 .026 .051 ,096 ,038 ,059 ,101 
8 .035 ,068 ,127 .046 ,077 ,134 

12 ,035 ,068 .I27 .048 ,079 .I37 
16 .034 ,065 .I22 ,048 ,080 ,137 



TABLE 5.4 

COUNT AND sEVb.Rll Y t)lSl RIB\’ I IONS VARY 

Prior 

#I 
#2 
#3 
#4 

I’ 1’ ‘1 

0.2 0.25 1.75 
0. 3 0.50 I .2s 
0.4 0.75 1.25 
0.5 I ,oo 1.25 

LOSS Credibility Bayes 

Limit N=4 N=X N= 16 N = 4 N=X N= 16 

I ,189 .317 .4X’ .190 ,323 ,496 
4 ,209 ,344 ,507 ,223 ,365 ,536 
8 ,178 ,301 ,461 ,223 .354 .I510 

12 ,154 ,267 ,421 ,223 .351 ,495 
16 .I38 ,242 .3x9 ,223 .3so ,488 



6. THE WORKERS’ COMPENSATION EXPERIENCE RATING PLAN 

It was demonstrated in the last section that a loss limit can increase the 
accuracy of an experience rating plan. However, the Workers’ Compensation 
Experience Rating Plan gradually introduces excess losses as the size of the 
insured increases. We now analyze this treatment of excess losses using the- 
collective risk model. 

We shall use the Weibull distribution to model claim severity. The proba- 
bility, F(x), that a claim will be less than or equal to x is given by: 

F@) zz ] - e-(t’h’c, 

The Poisson distribution will be used to model claim count. The probability of 
n claims, P(n), is given by: 

P(n) = emA x X”ln! 

The parameter c’ will be set equal to .25 for all prior distributions. The 
parameter h for the claim severity distribution and the parameter A for the claim 
count distribution will be independently chosen at random from the following 
table. Each parameter value is equally likely to be chosen. 

TABLE 6.1 

h A - - 

30 40 
40 70 
50 100 
60 130 
70 160 

It was necessary to resort to Monte Carlo methods in order to properly treat 
primary and excess losses. The following algorithm was repeated 10,000 times. 

Algorihn 6. I 

1. Select the Poisson parameter, A, at random from Table 6. I. 

2. Select the number of claims, n, at random from a Poisson distribution 
with parameter A. 
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3. Select the Weibull parameter. A. at random from Table 6. I. 

4. Do the following tz times. 
4.1 Select a claim value. .r, at random from a Weibull distribution with 

parameter h and c( = .25). 
4.2 From x, calculate the primary loss. x,~, and the excess loss, x,,. 

5. A,) is the sum of all the x,,‘s and A,. is the sum of all the .T?‘s. 

It can be demonstrated by numerical integration of the severity distribution that 
E,, = 48,000 and E, = 72,000. 

In addition to the standard Workers’ Compensation experience modification 
formula, we want to consider a modification formula in which the excess losses 
are ignored. This formula will take the following form: 

M=A*+K 
Ep + K 

(Equation 6. I) 

One should note the difference between this formula and formula 2.1. Using 
Hewitt’s formulas [7], it can be demonstrated that the optimal value for K in 
this formula is 22.900. 

For each trial in the simulation it is possible to calculate the modification 
for various formulas involving primary and excess losses. By comparing the 
calculated modification with the “true” modification one can estimate the effi- 
ciency of each formula. The results are in the following table. 

TABLE 6.2 

EFFICIF.NCY 

W K = 18,0(K) K = 23,000 K = 28,000 

Formula 6.1 0.68 0.68 0.66 
Standard Formula 0.0 0.48 0.46 0.45 

I, II 0. I 0.51 0.50 0.49 
I, ,, 0.2 0.50 0.50 0.49 
v, ,I 0.3 0.44 0.44 0.44 
II !, 0.4 0.32 0.33 0.34 
I! !I 0.5 0.13 0.15 0. I7 
I, l, 0.6 -0.12 -0.09 -0.07 
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Formula 6.1 is a clear winner in this case. There are two possible reasons 
for this. First, as demonstrated in the previous section, the primary losses seem 
to capture most of the information about the severity distribution. Second, the 
structure of the experience rating formula may very well be wrong! The Bayesian 
and credibility formulas described above are optimal under certain specified 
conditions. This author does not know of any conditions where the standard 
formula is optimal. At the very least, a proposal to retain the present formula 
should include a plausible model in which the present formula outperforms the 
competing formulas. 

7. CHOOSING AN EXPERIENCE RATING FORMULA 

So far, we have seen how modeling can give some good hints for the right 
form of an experience rating formula. Since we rarely, if ever, have the distri- 
butional information to do a pure Bayesian analysis, it appears that a good 
choice of an experience rating formula would be a credibility formula. The 
credibility could be given by either Equation 3.2 or Equation 3.3. A loss limit 
of some kind should definitely be used. 

As of this writing, there is no nice clean way to pick an optimal loss limit. 
This author has had good luck with the Weibull distribution for severity in 
Workers’ Compensation and the shifted Pareto distribution, see Patrik [ 131, for 
the severity in other lines of insurance. By trial and error on various models, 
as was done in the previous sections, one might come up with a reasonable loss 
limit, or loss limit formula. There is room for improvement here. 

Once a loss limit has been selected one then gathers the limited losses and 
the expected limited losses for individual insureds over a period of years. This 
information is absolutely essential. Experience rating depends upon how well 
the experience of one year predicts that of another. With data such as this one 
can use the empirical Bayesian credibility procedure as described originally by 
Biihlmann and Straub [ 141, and later by the IS0 Credibility Subcommittee 1151 
and Meyers [ 161. 

A problem with these procedures is that they all assume that the u2 is 
inversely proportional to the expected losses, which results in using Equation 
3.2 for the credibility. While these procedures might well be modified to handle 
more general assumptions about u’, the author would like to propose a different 
approach. This approach has the advantage that: (1) it is easy to modify the 



parameter estimation to accommodate alternative assumptions about a’; and (2) 
one can test the assumption made about u’. This approach has its origins in a 
study done by Paul Dorweiler ] 171. 

In what follows we shall take the term “loss ratio” to mean current losses 
divided by the modified premium. where the experience modification is calcu- 
lated from prior years’ loss experience. We assume that the expected losses 
used in the experience rating formula are correct. If the loss ratio is positively 
correlated with the experience modification. then the credibility factors used are 
too low. Conversely, if the loss ratio is negatively correlated with the experience 
modification. then the credibility factors used arc too high. 

This can be justified by the following. Suppose an insured had a low 
experience modification and tends to have a lower than average loss ratio. Then 
to raise his loss ratio, one can give the insured a lower experience modification 
by giving more credibility to the experience. A similar argument applies when 
the insured tends to have a higher than average loss ratio. 

Dorweiler tested the performance of an experience rating plan by partitioning 
insureds by manual premium size and modification sil-o. For each premium size 
group he calculated the trend in loss ratio as the modification increased. The 
idea was to compare the number of times a positive trend occurred with the 
number of times a negative trend occurred. This method of testing credibility 
formulas is very general. No assumptions about the nature of the experience 
rating formula are required. 

During the past fifty years, our understanding 01‘ statistics has vastly im- 
proved. Our computing capability today was unthinkable in Dorweiier’s time. 
Today, Dorweiler’s method might well be similar to the following. 

Assume we have the correct form of the experience rating formula and we 
want to know if we have selected the right parameters. That is. we want to test 
the hypothesis 

Ho: The parameters of the experience rating I‘ormula arc correct 

against the alternative hypothesis 

HI: At least one of the parameters of the experience rating formula is 
incorrect. 

To test this hypothesis, we proceed as follows. 
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I. Partition the insureds into groups with similar modified premium size. 
Modified premium is used rather than manual premium because we want 
all insureds in the group to have the same loss ratio distribution. It is 
felt that expected losses rather than exposure is a better indicator of the 
loss ratio distribution. 

2. Calculate the correlation coefficient between the loss ratio and the ex- 
perience modification for each group. 

Kendall’s T, see Conover [IS], is the preferred measure in this case. 
This correlation coefficient compares the number of pairwise increases 
with the number of pairwise decreases. Let 7, denote Kendall’s cor- 
relation coefficient for group i and let ni be the number of insureds in 
group i. Under the null hypothesis, 7, = 0 for each group, the distribu- 
tion of 7, is approximately normal with mean 0 and variance 
%(a - I) (2n, + 5)/l 8. This is a nonparametric result. 

3. Calculate the normalized correlation coefficient, for each group, and a 
combined normalized correlation coefficient. These terms are defined as 
follows. 

For each group i, set T, equal to T, divided by its standard deviation. 
Under the null hypothesis T, is approximately normal with mean 0 and 
variance I. We call T, the normalized correlation coefficient for group i. 
Let rn be the number of groups. Set T equal to the sum of all the T,‘s 
divided by the square root of m. T also has mean 0 and variance 1 under 
the null hypothesis. We will call T the combined normalized correlation 
coefficient. 

4. Reject Ho at significance level 01 if the percentile of T is outside the 
interval (o/2, 1 - a/2). The percentile of T can be determined from the 
standard normal distribution. 

By noting that the confidence region of the parameters is the set of all 
parameters for which one fails to reject HO, one can find a confidence 
region of the parameters by testing several sets of parameters. Acceptable 
parameters are those for which the percentile of T falls within the interval 
(a/2, I - a/2). A best estimate of the parameters is one for which the 
percentile of T is equal to .5. 

Let’s see how this test works on live data. During the late seventies, the 
Individual Risk Rating Plan Committee at IS0 issued a special call for individual 
insured data from actual experience ratings. IS0 supplied the author with the 



following data elements from this call. For each of three years there was given 
the basic limits premium and the basic limits losses (adjusted for the loss limit). 
In addition, the adjusted expected loss ratio (AELR) was given. Ideally, one 
would like to have the losses that resulted from the policy that was actually 
experience rated, but we did the next best thing. The first two years of data 
were used to predict the third year. 

Before doing the analysis, two adjustments to the IS0 data were made. 
First, all insureds which did not have a full three years of experience were 
deleted. Second, the AELR was adjusted so that the total expected losses were 
equal to the total actual losses for the tirst two years. In all, there were 1,980 
insureds which form 33 groups of 60 insureds. 

Let us first assume that the credibility formula given by Z = Pl(P + K) is 
correct. Hypothesis tests were performed for a set of K values, with the following 
results. 

TABLE 7.1 

K T 

16,000 -2.9442 
18,000 -2.1870 
20,000 ~ I. 1476 
22,000 -0.2060 
24,000 0.2449 
26,000 0.5558 
28,000 I .0665 
30,000 I .6194 
32,000 2.1078 
34,000 2.5697 
36.000 2.9850 

Percentile 

.0016 

.0144 

.I256 

.4184 

.5967 

.7108 

.8569 

.9473 

.9825 

.9949 

The best estimate for K will be between 22,000 and 24,000. The 95 percent 
confidence interval for K will range from slightly over 18,000 to slightly less 
than 32.000. Table 7.2 shows the T,‘s for each group when K = 22,000. 

Close examination of Table 7.2 reveals that the correlations are predomi- 
nantly positive for the smaller insureds and very definitely negative for the 
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larger insureds. This indicates that the credibility is too low for the smaller 
insureds and too high for the larger insureds. Thus the formula Z = Pl(P + F-J 
is not the correct form of the credibility formula. This can be explained in terms 
of the changing loss limit and parameter uncertainty as described in Section 3 
above. If we have the correct form of the credibility formula, the hypothesis 
test described above should apply equally well for any subset of groups. 

Let us now examine the credibility formula Z = Pl(P X J + K). In addition 
to calculating the combined normalized correlation coefficient for all insureds, 
we calculate the combined normalized correlation coefficient for the five differ- 
ent subsets of groups. The rationale for selecting the subsets will be discussed 
below. 

Before discussing the above tables one should note that there are some small 
reversals in what might seem to be a clear pattern. These are random fluctuations 
caused by the insureds shifting groups with each set of parameters. Recall that 
the groups were based on modified premium. 

Let us first examine the subsets consisting of Groups 1 to 5, Groups 6 to 
19 and Groups 20 to 33. It can be observed that when J = 1.0, no value of K 
is in the 9.5 percent confidence region for each subset. The following pairs (JJQ 
are in the 95 percent confidence region for each subset. 

(3.0, 5ooo) 
(3.0, 6000) 
(3.0, 7000) 
(3.0, 8000) 
(3.0, 9000) 
(3.0, 10000) 
(3.0, 12000) 

(2.0, 14000) (3.0, 14000) 
(2.0, 16000) 

(4.0, 1000) 
(4.0, 2000) 
(4.0, 3000) 
(4.0, 4000) 
(4.0, moo) 
(4.0, 6000) 
(4.0, 7000) 
(4.0, 8000) 
(4.0, 9000) 

The details of the calculations for J = 4.0 and K = 2,000 are given in Table 
7.3. As mentioned above, the derivation of the credibility formula Z = Pl(P X 

J + K) does not anticipate a loss limit which increases as the size of the insured 
increases. Thus we should not expect this credibility formula to be exactly right 



TABLE 7.2 

Headings 

MINMBLP -Minimum modified basic limits premium 
MAXMBLP -Maximum modified basic limits premium 
N -Number of insureds 
TAU -Kendall’s tau correlation coefficient between the loss ratio and the experience modification 
MODPCTIO -lOLh percentile of experience modifications 
MODPCTSO -50th percentile of experience modifications 
MODPCT90 -90Lh percentile of experience modifications 
T -Normalized correlation coefficient 

EXPERIENCE RATING ANALYSIS-GENERAL LIABIL.II.Y: K = 22,000 J = 1.00 

OBS 

1 10.0 ‘50 60 0.10031 0.962409 
2 25 1.5 418 60 -0.01243 0.962809 
3 422.4 604 60 0.10056 0.929858 
4 606.5 754, 60 0.02147 0.908815 
5 762.8 884 60 0.01469 0.892809 
6 887. I 1032 60 -0.05537 0.879143 
7 1036.8 1151 60 -0.041XI 0.864093 
8 1151.7 1279 60 0. 10345 0.862320 
9 1286.5 1447 60 0.023 I8 0.824655 

10 1452.0 1603 60 -0.02373 0.839008 
11 1609. I 1747 60 -0.05537 0.845583 

MINMBLP MAXMBLP N 
- TAU MODPCT 10 MODPCTSO MODPCT90 

0.98257 0.99638 
0.97386 0.98161 
0.95987 1.01518 
0.94638 0.97613 
0.93845 0.97723 
O.Y3260 I .01479 
0.92675 I .Ol257 
0.92053 1.18874 
0.91Y98 1.10541 
0.90577 I .06497 
0.90363 l.lS102 

7 

T x 
r 
= 

I.1324 I ? 
-0. 1303 

I.1353 
0.2424 
0.1658 

-0.6350 
-0.4720 

1.1678 
0.2616 

-0.2679 
-0.6250 



TABLE 7.2 (continued) 

OBS MINMBLP MAXMBLP N TAU - MODPCTlO MODPCTSO MODPCT90 T 

12 1747.7 1910 60 0.20339 0.818599 0.89558 
13 1913.8 2020 60 0.02938 0.803793 0.89252 
14 2024.6 2169 60 0.14237 0.798667 0.90054 
15 2169.8 2316 60 -0.02712 0.785614 0.86615 
16 2318.4 2495 60 0.14463 0.786776 0.86784 
17 2498.1 2680 60 0.08475 0.743469 0.86263 
18 2681.3 2885 60 0.08927 0.766698 0.85704 
19 2885.0 3064 60 -0.00452 0.743238 0.84386 
20 3067.4 3346 60 0.07006 0.723105 0.84160 
21 3352.6 3629 60 0.25085 0.717498 0.85007 
22 3632.1 3880 60 0.02147 0.667270 0.85448 
23 3883.3 4209 60 0.10734 0.713127 0.81707 
24 4215.7 4580 60 0.01243 0.675236 0.80978 
25 4581.6 5023 60 -0.04859 0.684537 0.82988 
26 5040.9 5529 60 0.0531 I 0.634504 0.77695 
27 5533.5 6302 60 -0.08701 0.590834 0.83498 
28 6316.8 7390 60 -0.08023 0.641002 0.86242 
29 7405.5 8645 60 -0.35593 0.522315 0.80239 
30 8702.0 10808 60 -0.19955 0.468991 0.78968 
31 10847.9 15885 60 -0.20000 0.447977 1.06263 
32 16077.5 26102 60 -0.21695 0.622667 1.36827 
33 26118.2 297046 60 -0.26893 0.652677 1.52027 

1 .OOY20 2.2961 
1.17428 0.3317 
1.20914 1.6072 
1 .Oll41 -0.3061 
1.16782 1.6327 
1.23809 0.9567 ; 
1.06101 1.0077 ; 
1.18246 -0.0510 g 
1.20551 0.7909 5 
1.24072 2.8318 T: 
1.33079 0.2424 ; 
1.26421 I.2118 c 

1.91797 0.1403 
1.90822 -0.5485 
I .28748 0.5995 
1.91602 -0.9822 
1 .Y5935 -0.9057 
1.89673 -4.0181 
1.9743 1 -2.2527 
2.48548 -2.2578 
2.34570 -2.4491 
2.96620 z -3.0359 ‘a 



TABLE 7.3 

Headings 

MINMBLP -Minimum modified basic limits premium 
MAXMBLP -Maximum modified basic limits premium 
N -Number of insureds 
TAU -Kendall’s tau correlation coefficient between the loss ratio and the experience modification 
MODPCTlO -lOth percentile of experience modifications 
MODPCTSO -50th percentile of experience modifications 
MODPCT90 -90th percentile of experience modifications 
T -Normalized correlation coefficient 

EXPERKNCE RATING ANA~YSIS-GENERAL LIABILITY: K = 2000 J = 4.00 

OBS MINMBLP MAXMBLP 

I 9.9 230 60 0.07764 0.870207 O.YO3XY 0,96442 
2 232.9 382 60 0.07910 0.862833 0.88592 0.90232 
3 389.4 572 60 0.01582 0.834214 0.86588 0.91637 
4 572.3 70s 60 -0.07910 0.X22935 0.85410 0.96478 
5 709.2 821 60 -0. I1073 0.81215X 0.84499 0.89705 
6 823.7 961 60 -0.26328 0.80X248 0.83594 0.88607 
7 971.3 1085 60 -0.02712 0.8 10787 0.83640 0.98953 
8 1086.9 1232 60 ~0.05483 0.8 10880 0.X4006 I .03652 
9 1243.2 1390 60 -0.11815 0.7945 I I 0.83726 1.19594 

10 1394.3 1553 60 -0.07910 0.799560 0.83418 1.06445 
II 1555.2 1701 60 0.03277 0.80305 1 0.83198 1.09454 

.v - TAU MODPCTIO MODPCTSO MODPCT90 
i 

7 x 
L 

0.8765 r 
0.8929 
0.1786 

-0.8929 
- I.2501 
-2.9721 
-0.3061 
-0.6190 
- I .3337 
-0.8929 

0.3699 



TABLE 7.3 (continued) 

OBS MINMBLP MAXMBLP N TAU - MODPCTlO MODPCTSO MODPCT90 T 

12 1701.3 1830 60 -0.00339 0.799704 0.83866 1.35855 
13 1833.6 1996 60 0.06893 0.795396 0.83288 1.33904 
14 1996.4 2142 60 0.11186 0.794848 0.82466 1.02667 
15 2146.2 2326 60 0.07797 0.788719 0.82349 1.01559 
16 2340.1 2518 60 0.10508 0.796236 0.82021 I. 20622 
17 2518.6 2717 60 0.23616 0.792849 0.82674 1.27064 
18 2719.5 2924 60 -0.02486 0.787838 0.80931 1.04337 
19 2927.5 3174 60 0.07232 0.785318 0.81290 1.21608 
20 3174.8 3446 60 0.13672 0.789134 0.82195 1.80638 
21 3450.3 3767 60 -0.06441 0.798985 0.85378 1.35756 
22 3782.2 4143 60 0.15254 0.789817 0.90983 1.81165 
23 4147.5 4535 60 0.19096 0.782837 0.82072 1.32675 
24 4541.2 5042 60 -0.20791 0.790398 0.89006 2.10844 
2.5 5043.4 5426 60 0.00452 0.783358 0.82616 1.84692 
26 5439.8 6073 60 0.05198 0.791312 0.84412 1.74888 
27 6084.6 6997 60 0.00339 0.788521 0.87782 2.34622 
28 7011.6 8064 60 -0.00339 0.785978 0.88043 2.35557 
29 8115.5 9887 60 -0.11751 0.791988 0.98504 2.35900 
30 9899.0 12103 60 -0.17467 0.783483 0.90444 2.02998 
31 12344.9 17413 60 -0.04746 0.779974 0.90431 2.50209 
32 17495.2 26177 60 -0.03164 0.810414 1.12274 1.73464 
33 26221.3 20694 1 60 -0.00565 0.808315 1.05283 2.17655 

-0.0383 
0.778 1 
1.2628 
0.8802 
1.1863 
2.6660 7 

-0.2806 i 
0.8164 s 
1.5435 = 

-0.7271 F 
1.7220 ; 
2.1557 ’ 

-2.3471 
0.0510 
0.5868 
0.0383 

-0.0383 
- 1.3266 
-1.9719 
-0.5357 
-0.3572 
-0.0638 5 
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TABLE 7.4 

J = I .o 

K Groups I:33 Groups 6:33 Groups I:5 Groups 6:lY Croups XI:33 

18000 .OI44 

20000 .I256 
32000 .41x4 
24000 .SY67 
26000 .710x 
‘8000 .X569 
30000 .Y473 
32000 .YX24 
34OOO .YY3Y 
36000 .YYXh 

.oos I 

,066 1 
,241 I 
.3YSY 
.SlY7 
.7050 
.X665 
.Y4YX 
.Y7YS 
.YY33 

,679s 
.7306 
.X716 

.XYSO 
YOSO 

.YXS 

.Y374 

.Y367 

.Y6OY 

.Y6SS 

.X646 

YT) h... 

.Y677 

.YXhl 

.YX75 

.903X 

.YY76 

.YYY I 

.YYY4 

.YYY7 

.oooo 

.0002 

.00x 

.004Y 

.()I49 

.0412 
1063 

.2lSY 

.3SY4 
,534s 

J = 2.0 

K Groups I:33 Groups 6:33 Groups I :S Group5 6: I Y Groups X:33 

8000 .Ol 18 
10000 .0x43 

I2000 .238X 

14OcO .5767 

16000 .79(x) 

I8000 .X964 

20000 .9727 

22000 .9X93 

24000 .9979 

.()I32 

.0X63 

.2336 

.Sl86 

.7016 

.835X 

.YdlO 

.9754 

.YY43 

.2x75 

.37X5 

.45X6 

.6SOS 
.7940 

.X235 

.x919 
x951 

.Ylhl 

.6563 

.x020 

.XY77 

.9662 

.Y604 

.9x00 

.YYl2 

.YYS4 

.YYXO 

.OOo2 

.0027 

.OlO8 

.0391 

.I568 

.2449 

.4356 

.S696 

.7624 
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TABLE 7.4 (continued) 

PERCENTILES OF T’s 

J = 3.0 

K Groups I :33 Groups 6:33 Groups I:5 Groups 6: 19 Groups 20:33 

3000 .Ol36 .OlS2 .2913 .2652 .0075 
4000 .0535 .05X7 .3316 .4202 .0220 
5000 .I626 .I677 .4024 .S796 .0590 
6000 .30x0 .2940 .4972 .7576 .0715 
7000 .4104 .3x37 .5471 .7x54 .I134 
x000 ,564s .5234 .6096 .‘)I 1.5 .I026 
9000 .7601 .738X .61X3 .9435 .24X1 

I0000 .8223 .808X .6205 .9469 .3519 
12000 .9430 .Y229 .7546 .9597 .6054 
14000 .9X27 .9715 .X235 .9750 .7677 
16000 .9Y63 .Y93S .X421 .993l .X535 

J = 4.0 

K 

1000 

2000 
3000 
4000 
5000 
6000 
7000 
8000 
9000 

10000 

Groups I :33 Groups 6:33 

.s953 .4443 
,503s .51x5 
.6lll .6415 
.7106 .7164 
.X044 .810X 
.X676 .X405 
,921s .9317 
.9596 .9592 
.987X .98X6 
.994l .9929 

Groups I :5 Groups 6: I9 Groups 20:33 

.X293 .6717 .2602 

.4653 .6574 .3672 

.447 I .7501 .4356 

.52X9 .8901 .33x0 

.5472 .8704 .5467 

.6938 .7904 .7262 

.5450 .8689 .X373 

.6421 .90X7 .X707 

.6526 .9732 .9014 

.7510 .9771 .928X 
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over the entire range of premium sizes. Examination of Table 7.3 reveals this 
to be the case. However, the results are superior to any that could be obtained 
with the credibility formula Z = PI(P + K). 

If loss limit increases with the size of the insured the credibility will increase 
more slowly than the formula Z = P/(P X J + K) would suggest. This is 
verified in Table 7.4 where the formula tends to assign too low a credibility to 
the medium size insureds in Groups 6 to 19 and too high a credibility to the 
large sized insureds in Groups 20 to 33. However, the formula tends to assign 
too high a credibility to the smaller sized insureds in Groups I to 5, and too 
low a credibility to the medium sized insureds in Groups 6 to 19. This is the 
opposite of what is expected. 

We attempt to explain this reversal. We first note that there is a minimum 
premium size that qualifies an insured for experience rating. It is possible for 
an insured to have a sizeable decrease in exposure which will result in premiums 
which are below the minimum in the year being rated. But this happens rather 
infrequently. A far more common cause of inxureds having a smaller size is for 
the insured to have low modification. This can be verified in Table 7.3 where 
over ninety percent of the insureds in Groups I to 5 have experience modifi- 
cations which are less than 1 .OO. 

Two possible explanations for the reversal can be given. First, since most 
insureds are those with good experience, the groups arc more homogeneous 
(i.e. T’ is lower) and lower credibility is called for. Second. since the loss limit 
is assigned according to unmodified premium. (Y’ is not necessarily smaller for 
the smaller insureds. This would also have a tendency to lower credibility for 
the smaller insureds. If these explanations are correct, one should separate the 
very smallest insureds from the main part of the analysis. This is why the 
subsets were grouped in the above manner. 

In summary. a very general way of analyzing data for experience rating has 
been proposed. Not only can it be used to detennine parameters of an experience 
rating formula, but one can also test to see if the assumptions made in deriving 
the form of the credibility formula are valid. 



8. SUMMARY AND CONCLUSIONS 

This paper has attempted to use collective risk theory to analyze experience 
rating. Particular attention was paid to experience rating formulas used by the 
National Council on Compensation Insurance and Insurance Services Office. 
The first goal of this paper was to find an experience rating formula that worked 
well on mathematical models and would be easy to administer. An examination 
of the performance of experience rating plans on mathematical models led to 
the following conclusions. 

I. A loss limit can be an effective tool for increasing the accuracy of an 
experience rating formula. Loss limits are particularly helpful when there 
are differences in claim frequency. Even if the only differences among 
the insureds are in claim severity, little accuracy will be lost with a loss 
limit. 

2. The current formula in the Workers’ Compensation Experience Rating 
Plan, which has a separate treatment of primary and excess losses. is 
less accurate than a formula which uses only primary losses. 

3. There are some very plausible situations when the standard credibility 
formula 2 = E/(E + K) is not appropriate. These include parameter 
uncertainty over time and a loss limit which increases with the size of 
the insured. Failure to recognize this will result in overstating credibilities 
for larger insureds. 

The author would recommend an experience rating formula based on the 
credibility formula Z = E/(E X J + K). A loss limit that does not vary by size 
of insured should be a part of the plan. Excess losses should not be a part of 
the plan. This formula is less complicated than current formulas and should be 
easier to administer. 

It should be noted that the service performed by the NCCI in calculating 
the experience modification is probably more important than the choice of 
experience rating formulas. IS0 would do well to perform a similar service, or 
at the very minimum, provide experience in a standard format so that individual 
insureds could calculate their own experience modifications. 

A second goal was to show how the parameters of an experience rating plan 
could be estimated from data. This paper demonstrates, with live data, a very 



general procedure for testing the parameters of a proposed credibility formula. 
Systematic testing of various alternative parameters should enable one to derive 
a reasonably accurate formula. This method requires data with which one can 
compare actual losses with losses predicted by the proposed formula. The author 
considers this kind of data absolutely essential for accurate experience rating. 

Experience rating has always been a combination of scientifc and intuitive 
reasoning. While the intent of this paper is to put experience rating on a more 
scientific basis, it is hoped that the reader now has a hetter intuitive understand- 
ing of this very important subject. 
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APPENDIX A 

WITHIN VARlANCE AND THE SIZE OF THE INSURED 

In this appendix we discuss how the expected within variance, u*, depends 
upon the size of the insured. 

Let: N be a random variable denoting the claim count; 
A be the expected number of claims; 
x be a random variable with E[x] = I and Var[ x] = c; 
S be a random variable denoting the claim severity; and 
p be a random variable with E[ I@] = 1 and Var[ l/p] = h. 

The collective risk model with parameter uncertainty can be described by the 
following algorithm. 

Algorithm A. 1 

I. Select x at random. 

2. Select the number of claims, N, at random from a Poisson distribution 
with parameter x X A. 

3. Select p at random. 

4. Do the following N times. 
4.1 Select the claim severity, S, at random. 

5. Set the total loss, X, equal to the sum of the claim amounts, S, divided 
by P. 

b and L‘ measure uncertainty in the scale of the claim severity distribution and 
the mean of the claim count distribution, respectively. 

Let RI = XlE[X]. Meyers and Schenker [9] show that 

Var[R,] = (I + b) X E[S’]/(A x E’(S]) + b + c + b X c. 

The size of the risk E is proportional to E(X] and can be written as C X E[Xl. 
Thus we can then write: 

Var[R] = C$E + ~YI (Equation A. I) 
where 2.: = (1 + b) X C X E[S’]IE[S] and 

aI =b+c+bxc. 

In keeping with the notation of Section 3, let d denote a distribution gen- 
erated by the process described above. The linear relationship of Equation A.1 



is preserved when taking expected values over all distributions. rl. Thus we 
have 

cr2 = X’IE + ci (Equation A.2) 
where r’ = E[z;f] and 

a = E[a,]. 

Equation A.2 is used to derive the credibility formula 3.3. If’ 17 and c are 
equal to zero for each distribution 11. then U’ = f’li?‘. In this cast the credibility 
formula 3.2 applies. 

We see from Equation A. 1 that 2;‘. and thus x’, depend upon the severity 
distribution. An increase in the loss limit will increase 1’. 



APPENDIX B 

A FORMULA FOR THE EFFICIENCY 

We prove that the efficiency is equal to 2 x Z - Z’iZ,,,. The proof is simply 
a rearmngement of concepts originated by Biihlmann [6] and discussed by IS0 
1151. 

Lemma I: CovlX,kj = 7’ 

Proof: Cov[X,p] = E[(X - M) x (p - M)] 
= E,[E[(X - hi’) x C/J+ - M,/pll 
= E,I(F - Ml’1 
zr 72 

Lemmu 2: Var[XI = u’ + G 

Proof: Vat-lx] = E,[Var[Xlp]] + Var,[E[X\p]] 
z & + 7 

Theorem: Efficiency = 2 x Z - Z’IZ,,, 

Proof: Let F be an estimator for p. By the definition of efficiency given 
Section 4 we have: 
Efficiency = I - E[(F - p)2]/r’ 
Inourcase:F=ZXX+(I -Z)xM.Thuswehave: 
Efficiency = I - E[(Z X (X - M) - (p - A4))2]/r2 
= I - (Z’ X Var(X) + r2 - 2 X Z X Cov(X,fk))/r’ 
= 1 -- (Z2 x (a2 + 72) + T2 - 2 x z x T2)/T2 
= 2 x z - z?z,,, 

Corollury: The efficiency is maximized when Z = Z,,, 

Proof: d(Efhciency)ldZ = 0 when Z = Z,,,. 

This corollary is simply a restatement of Biihlmann’s result. 

in 
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ADDRESS TO NEW MEMBERS--NOVEMBER I I. 1985 

GEORGE 0 RIOKISON 

First I would like to extend to all members of the Class of November 1985 
congratulations on achieving the milestone which has just been acknowledged 
by this asscmblape. While those of us who have cxpcrienced the thrill of such 
public recognition in the past can share with you the joy of this occasion. you 
alone know the particulars of the effort and sacrifice required to reach this stage 
of your professional careers. For that dedication to the accomplishment of the 
objective you have earned the respect of all of us. 

Those largely unheralded supporters, such as spousc~. relatives, and friends 
who have helped in their inimitahle ways should not he overlooked in this 
celebration. The long hours of drudgery would no doubt have been even more 
intolerable without such loyal. interested backers. 

In the belief that any comments in the nature of advice proffered today 
ought to be limited to matters that arc substantially achievable. I would begin 
by suggesting that those who have just been admitted into the CAS as Associates 
unstintingly pursue their Fellowship designations. Among the less diabolical 
objectives of the ten-year old restructuring of the syllabus of examinations was 
that of enhancing new Associates’ motivation to go the extra mile to achieve 
Fellowship. It was thought that a maximum of three more examinations to pass 
would be viewed as a rather modest hurdle. I therefore urge, in particular, the 
new Associates admitted today to bend every effort to clear that last hurdle that 
stands in the way of total involvement in the Casualty Actuarial Society. In 
today’s argot. you ought to “go for it!” Experience has shown that sustained 
effort is more successful than is succumbing to the allure of even a brief hiatus 
which, all too often, becomes permanent. 

The new Fellows. on the other hand, might devote some of their newly 
acquired free time to Society activities. One of the most rewarding experiences, 
I believe. comes from helping with vital education and examination work which 
has earned for us that valued designation as a learned society. The new Fellow’s 
recent experience with the examining process can be used to keep the system 
responsive to the needs of the students. Here is offered that long-sought oppor- 
tunity to introduce into the system those improvements which are best identified 
by recent exam-takers. Certainly the present size of the Education and Exami- 
nation Committee. together with the ever-growing demands on its members, 
leaves room for all new Fellows willing to serve 



And it is precisely such a “willingness to serve” that is the key ingredient 
in the voluntarism which has enabled the Casualty Actuarial Society to continue 
to attract bright, dedicated members into its ranks. In addition to the service 
rendered the organization and the camaraderie that attends joint efforts, the 
personal sense of fultillment that results from voluntarily helping to achieve the 
objectives of a professional society is seldom found elsewhere. This reward is 
described as “inwardly satisfying” in an article by John Tierney in the May 
1985 Actuurid Rprieu*-an article which I commend to your attention for some 
elaboration on the joys and benefts of voluntarism. 

As new Fellows are volunteering their assistance with CAS activities and 
new Associates are pursuing their Fellowship status, like all members of the 
Society. today’s graduates should also keep abreast of developments in the 
profession. One such development that is advancing toward fruition is the 
preparation of formal Standards of Actuarial Practice, not to be confused with 
the more general Guides to Professional Conduct. Those standards designed to 
govern the practice of casualty actuaries should be reviewed critically when 
exposed for comments and then observed with care when promulgated in final 
form. Guides to Professional Conduct and related Opinions should be reviewed 
frequently, not only for their substance, but also because of the tone they set 
for our dealings with others as well as their importance in setting us off as 
professionals. The remarkable level of acceptance we enjoy as members of the 
CAS depends on a continuing commitment to standards of professionalism. 

On an occasion such as this it is not inappropriate to ponder also some 
longer range possibilities. If we actuaries weren’t such a practical-minded lot, 
we might even describe this exercise as dreaming a bit about the future-a 
future which suddenly offers enhanced opportunities thanks to the professional 
designations conferred here this morning. 

Whether the objectives of the individual members of the Class of November 
1985 be to render service to the public at large, to their professional clients, 
employers or confreres is largely a personal decision. But success in achieving 
the selected goal will require creativity, tlexibility and continuing analysis of 
the best available information. Only then can the actuary’s unique contribution 
be brought to bear on those problems which cry out for solution in the years to 
come. 

May you all find as much joy in the challenging interface of dreams and 
reality as has your grateful and honored speaker. 
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KEYNOTE ADDRESS-NOVEMBER I I, IYX5 
THE SEARCH FOR COMPETITIVE ADVANTAGE 

N’lLLIAM ,\ SHhKl)t:N 

It is a pleasure to be here today to talk about competitive advantage. a 
subject of widespread interest throughout all industries and one that dominates 
current business literature. Why the sudden burst of interest in competitive 
advantage? History tells us much. After World War II. the U.S. economy was 
the only game around. We had an established industrial base that wax undamaged 
by the war and fueled by the consumer demand pent up \incc the Great Deprcs- 
sion. On top of that, Europe was rebuilding its economy and unahlc to fulfill 
its domestic market’s demand for goods and services. This was a time when 
the countries of Europe, and perhaps most of the rcat of the world, looked up 
to American management know-how and wondered whether they would cvcr 
catch up. 

During the post-war period, it was difficult for American management trot 
to excel. But now all of this is history. Stimulated by the entry of aggrcssivc 
foreign lirms. the deregulation of domcxtic industries. and the maturation of the 
U.S. market, competition has intensified to unprecedented levels. With so many 
U.S. firms struggling in this environment. it is not surprising that seekers of 
management technology look more to Japan than the linited States. 

To see how the competitive environment holds nothing sacrosanct, one need 
only look at the membership in the Fo,-flc~lr 500 from 1955 to 19x5. This list 
includes the largest and presumably strongest U.S. competitors. Yet of the SO0 
leading firms in 1955. only 219 survived to hc included in the list in 1Y85. Of 
the 28 1 firms that dropped out of the 500. some went bankrupt. \omc dwindled 
in size, while others were subsumed into more succcxsful corporations through 
acquisition. Indeed, of the 43 firms classilied a5 “excellent” in the I Y)x I book 
In SrtrrcA of E.~-wIIctx~~~. 13 were experiencing competitive difficulties in lY85. 

With one-half of the top I00 property-casualty firms experiencing a negative 
cash How in 1984. 1 riced not acquaint you with the impact of competitive 
forces. Yet much of your industry’s adverse performance has brcn shrouded by 
the underwriting cycle and other trends such as mounting litigation. Once the 
dust settles, however, you will find new competitive threats to deal with, 
especially from banks, retailers. and other parties that heck to enter niches of 



your business. As we see it, the strongest among you will struggle to thrive. 
while the weakest struggle to survive. There are even scenarios in which whole 
sectors of the insurance business diminish or change into unrecognizable forms. 
This is not to say that all of you will be working for Citicorp or Sears; but I 
bet some of you will. 

It comes as no surprise that in this environment the literature and advice of 
consultants and academics are full of prescriptions for gaining a competitive 
advantage. Unfortunately, there has been too much advice. too much confusion, 
and too little demonstrated success. As a consultant working with financial 
service firms to develop competitive strategies. I want to put this advice in 
perspective, pointing out useful concepts and demonstrating how to apply them 
to your business. 

All the current ideas about competitive strategy can be mapped on the grid 
in Figure I, with the classifications of economic versus qualitative, and concept 
versus process. The economic ideas derive from the “rational” studies of indus- 
trial economics, whereas the qualitative, or “irrational,” ideas spring more from 
the science of marketing. “Concept” refers to prescriptive ideas suggesting 
specific formulas for success, while “process” refers to frameworks for thinking 
about your business to gain a competitive advantage. 

Let us first consider the economic concepts, since they have played such a 
major role in competitive strategy over the past 15 years that they are now 
almost synonymous with strategic planning. Economic concepts focus predon- 
inantly on costs and employ such phrases as “cost curves,” “industry structure,” 
“barriers,” and “mobility.” Many of these concepts were intellectually appealing, 
if not addictive, and came to be used throughout U.S. industry. Although there 
are too many concepts to cover here, I do want to give you a sense of their 
development and use today. 

One of the earliest concepts was the product life cycle, which dictates that 
all products and businesses inexorably follow the path from development to 
decline shown in Figure 2. The concept identifies not only the nature of the 
competitive environment but also the specific market strategies a firm should 
pursue. For example, a firm should secure broad distribution capability in growth 
markets while emphasizing cost reduction and product differentiation in mature 
markets. 

The concept of product life cycles, when properly applied, illustrates the 
falsity of the common assumption that financial services is a growth business. 



Life cycles apply to insurance only if you USC real growth measures, such as 
policies, instead of premiums. which tend to escalate with inflation and many 
other factors, obscuring the true maturity of the market. By detinition, mature 
markets grow at a slower rate than rcul GNP. When real growth measures are 
used. as in Figure 3. it becomes clear that most major insurance lines arc mature 
and exhibit many of the competitive characteristics prcdictcd tq the product life 
cycle. 

Another early economic concept was the experience curve. which is shown 
in Figure 4. The concept dictates that a firm’s production cohts decline in a 
predictable pattern as production volume accumulates. Specifically, a percentage 
increase in accumulated production volume (or “experience”) gives rise to a 
proportional percentage dccrcasc in unit production cost. This concept IS very 
appealing, since it provides a definite course of action to gain competitive 
advantage: increase vo1u11w faster than c~~n1pctitor.s in order to lower cohts. 

The experience, or learning. curve wa\ little used in competiti\c strategy 
until it was incorporuted into the growth-share matrix (Figure 5). The introduc- 
tion of this new concept raised prescripticc t’ormulas ti)r competttive success to 
new heights of popularity. Very simply, the growth-share matrix uses the product 
life cycle as its vertical axis. Its hori;lontal axi\ is market chart. a surrogate li)r 
the experience curve (the greater the market share. the greater the production 
experience and the lower the cogs). The grotvth-share mutriu prc\cribed a 
different course of action for the \,arious buhincss lines fitting within each of 
the four cells. For example. cash cow5 tlow growth. high share lines) should 
be “milked” for the cash needed to convert question marks into stars. The stars. 
in turn, would eventually becclme neck cash cob’r as their market matures. 
Above all. the growth-share concept prc\criheb cost reduction and market share 
expansion. 

The growth-share matrix was the most c&ant and popular competitive 
concept of its time. It has been cstimatcd that by IYKI nearly one-half of the 
E‘otmtrc, 500 firms used the matrix in their planning processes. Yet it soon 
became apparent that the concept failed to explain man> anomalies, \uch as 
why small businesses in mature markets have hcen able to displace larger. well- 
established firms. Further. it has been rccogni/ed that not all products sell on a 
price-commodity basis and that cost structures vaq widely acres\ industries and 
often do not conform to the experience curbc. Rcccntly. the grou,th-share matrix 
has been blamed !i)r bringing to near ruin a number of leading firms that widelq 
adopted it. 



One does not have to look hard at the breakdown of insurance costs (Figure 
6) to realize that the growth-share matrix does not apply to your business. Of 
all the cost elements, only the 10 percent administrative cost might be affected 
by the learning curve, and even that is driven much more by organizational 
structure, processing methods, and automation. If you really wanted to lower 
insurance costs, you would obviously focus on the 70 percent claims cost, which 
is affected by actuarial, underwriting, and claims methods. This may sound like 
a back to basics message. You have long competed by focusing on underwriting 
because that is where the largest costs are. In the future, much of the cost 
advantage for carriers, especially in personal lines, will come from reducing 
sales costs. which involves a consideration of distribution methods, not expe- 
rience curves. 

The heavy criticism of the growth-share matrix spawned many elaborate 
variations that attempted to overcome its weaknesses. The matrices grew larger, 
with more cells, vaguer definitions, and less straightforward prescriptions for 
gaining a competitive advantage. It is interesting to follow Michael Porter’s 
exposition of these concepts in his first book. Ultimately, he proposes a new 
matrix called “strategy space.” This is actually just an empty matrix, which you 
must label by determining the “key mobility barriers” in your business. Reading 
between the lines, I take this to mean that you have to determine the key success 
factors and you have to do so by yourself. 

If you’re getting the sense that these economic concepts do not offer an easy 
route to a competitive advantage, you’re getting the right message. In fact. 
these prescriptive concepts recently have become so discredited as to cast a 
heavy pall over strategic planning in general. Many firms have disbanded 
corporate-level planning departments and pushed competitive strategy back 
down to the business units where managers know best how their markets 
function. 

The major lesson from this review of prescriptive economic concepts is that 
there is no simple method for gaining a competitive advantage. Industries are 
too different and businesses too complex. Prescriptive economic concepts are 
reminiscent of stock market forecasts and models of the U.S. economy, both 
of which have been discredited for trying to explain the infinitely complex with 
simple rules. The only way to attain a competitive advantage is to take a hard, 
objective look at your own firm and the environment in which it exists, 

Before leaving the subject of economic concepts, I should note Michael 
Porter’s new book. which introduces the value chain (Figure 7). The value 



chain suggests that a firm is a collection of numerous activities and that to gain 
a competitive advantage one must isolate each activity. as well as the activities 
of upstream suppliers and downstream distributors. to determine how to reduce 
costs or add value to the end customer. The value chain ih not in fact a 
prescriptive concept, but rather a framework t‘or analyzing a lirm which provides 
a lengthy checklist of ideas to consider. Again, the mcssagc is clear: there are 
no pat answers. 

The insurance business holds many good examples of innovation to enhance 
value-added. Direct billing has eliminated the incfticient agency-billing method 
and reduced premium noat. Agency automation and interface have reduced 
manual and redundant tasks. Expert systems have given rise to a new value- 
added approach to risk management. Computer acccs,:, to claims data has en- 
hanced the value of management reports. And finally. some carriers have re- 
placed insured objects such as cars rather than reimburse cu\tomerh for losses. 

New competitors can also use the value chain framework to gain an advan- 
tage in your business. Banks, for example. belicvc that they will have a signif- 
icant distribution advantage over agents. enabling them to heighten convenience 
and lower costs. In the group health business. hospital chains are the ultimate 
suppliers of health benefits and now believe they can increase consumer value 
by selling directly to corporations, bypassing the traditional intermediaries. 

But the value chain is still an economic framework. not a qualitative concept. 
Qualitative concepts have existed for many years. upheld by adherents such as 
Theodore Levitt, and have recently been popular&d bl the two “Excellence” 
books. Rejecting the notion that all products arc commodltic\ sold on price 
alone, qualitative concepts arc hased on the belief’ that customers and employees 
are real human beings and must be properly cared for if a tirm ia to succeed. 

The latest “Excellence” book suggests that a tirm gains a competitive ad- 
vantage by doing hundreds. if not thousands, of things well. The book’s recipe 
for doing things well includes four ingredients: being close to customers. in- 
novating constantly. having “turned-on” people. and having inspirational lead- 
ership. Though it may be hard to believe that huch qualitative aspects lead to 
competitive advantage, we have seen it proved a number of times in the 
insurance industry. 

In this regard, 1 want to share with you an interesting case study involving 
Third Party Administrators (TPAs). which arc smallish lirms that are making 
inroads into the self-insured niches of the industry. In particular, they have 



rapidly established themselves in the heavily self-insured group health business. 
In this segment alone, there are an estimated 3.000 TPAs, which have increased 
their share of the market from 5 percent in 1977 to 25 percent in 1985. 

The success of these small firms at the expense of established carriers 
illustrates the value of the qualitative aspects of competition. At Temple, Barker 
& Sloane, we have undertaken extensive research on TPAs. We have found 
that consumers rate TPAs higher than carriers on systems and other capabilities, 
a startling fact since we know firsthand that carriers are much more sophisticated 
than TPAs in service offerings. There was only one explanation for this paradox: 
qualitative factors drive consumers’ perception of quality. That is, the attitude 
and responsiveness of employees, as well as other service factors, cloud a 
customer’s perception of fundamental product features. 

We saw the same thing when we analyzed how commercial brokerage firms 
choose among carriers in competitive bids. We were surprised to find that 
brokers’ decisions were often based on qualitative factors, such as personal 
relations, responsiveness, flexibility, competence, and authoritativeness, rather 
than strictly on price. As illustrated in the grid (Figure 8). brokers clearly judged 
carriers on these subjective criteria. Carriers A and B had highly skilled field 
people who were granted considerable authority and were flexible and responsive 
to brokers’ requests. Carrier C ranked relatively low in this regard and won 
considerably fewer competitive bids than Carriers A and B. 

Our experience indicates that qualitative factors are integral to achieving a 
competitive advantage. They are also more subtle than tangible economic ad- 
vantages such as lower prices and superior claims systems. For example, the 
Japanese determined that car consumers place a higher priority on the quality 
of car interiors than exteriors. In response, the Japanese manufacturers focused 
on interiors, while U.S. manufacturers continued to focus on bodies. Perhaps 
we need a concept called ‘-quality space,” an empty matrix that requires one to 
label on the basis of how customers perceive quality. To determine how con- 
sumers define quality, you must ask them. It is particularly useful to inquire 
about why you won or lost a particular competitive bid or lost an established 
account. 

Before ending my discussion of qualitative advantages, 1 want to mention 
market positioning, a concept that has its origins in advertising. According to 
the concept, illustrated in Figure 9, a customer can identify only one or, at 
most, a few suppliers that occupy certain niches, or positions, in the market: 
all other suppliers operate in a sea of anonymity. These positions are not 



necessarily traditional product or segment nichoh but rather perceptual niches 
that the customer can readily identify. For example. IBM occupies the positions 

of “industry standard” and “safety” in the computer market. while Intel occupies 
the position of “. Innovation” in the integrated circuit market. Tho competitive 
advantage of dominating a market position is clear: a dominant firm is more 
frequently included in competitive bid5 and wins them on bases other than price. 

The concept of market positioning readily applies to the vast property- 
casualty industry. where hundreds of firms compete. Though some firms don- 
inate various product or market niches. only it very l’cw have recognizable 
positions in the major markets such as personal lines. Most carriers are afloat 
in the sea of anonymity. 

As we have seen. the road to ;I competitive advantage 15 ;L twisting one; 
there arc no simple rules, no foolproof prtxriptions. Some general concepts 
are useful. hut each industry practitioner must ob.jcctively analyx his or her 
own business to find the winning formulas. And. ;IS WL’ have also seen. a 
competitive advantage encompasso more than the rational economic model of’ 
industry structure: it also includes man! of the qualitative factor\ presented 
here. 

Let me now suggest a straightforuard planning framenorh that WC at TBS 
use to help clients apply these concepts md develop a compcritive advantage. 
As shown in Figure IO. the l’ramcuorh in\ol\,e\ four level\ 01‘ anal~~si\ in the 
development ol’ a strategic plan. The first \tep i\ to analy/.c three broad areas: 
( I ) the environment. (2) the comprtitlon. mcl (3) your firm itself. The cnviron- 
mental analysis should include first and foremost the marhet. Where appropriate. 
the analysis should also include other i’;ictors such ;I\ Icgal and regulatory issues, 
which arc particularly key to the property-cajualt> c‘nvironment. In analyzing 
competitors, you must focus not just on traditional rivals but aIs0 on emerging 
firms with increasing market share. particularly non-traditional competitors. In 
analyzing your internal capabiliticz. you might USC the value chain or other 
concepts. but it is most important that you apply them H.ith objectivity. 

By comparing developments in the C‘IIC ironment with jour analy& of’ the 
competition. you should be abtc to iduntil’> the threats and opportunities your 
tirm faces. Similarly, by comparing !our lirm with its competitor\, you xhould 
be able to define your competitive strength\ and \\eakncaes. This analysis 
should produce a clear understanding of’ !‘our overall competitive position in 
terms of the opportunities and challcngcs ahcad and hon. well your firm is suited 
to deal with them. Once your compctiti\e position i\ well defined. you will 
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have a solid basis for identifying and evaluating alternative courses of action in 
the development of a strategic plan. 

We would note, however, that even when armed with a brilliant strategy 
most firms have organizational and cultural barriers that will block their attempt 
to gain a competitive advantage. I recall a recent quote in Business Week that 
recommended spending 20 percent of your time on developing a competitive 
advantage and 80 percent on developing the culture to make it work. Judging 
from our experience. this might be understated: strategy, organization, and 
culture are inseparable aspects of gaining a competitive advantage. 

The barriers to effective implementation are intrinsic to the typical organi- 
zation with its many managerial layers and functional divisions. As Figure 11 
shows, these organizations keep key decision makers too distant from the 
market. Market information filters out as it passes up through the myriad levels 
of management. Too often firms respond to this problem with a “bootstrap” 
marketing approach, attempting to compensate for the lack of direct market 
contact by feeding senior management quantitative market research. Market 
research is important, but it is a poor substitute for actual market exposure. 

Organizational complexity often produces an ivory tower effect where senior 
managers have little or no contact with the customers who are the reason for 
their existence. We have, however, seen a number of cases of a firm breaking 
this barrier, gaining a significant competitive advantage by placing senior man- 
agement in contact with customers. In one instance a major brokerage firm, 
which was consolidating its carriers, chose the winning firms largely because 
their CEOs were involved in the sale. The CEO is the most effective sales 
resource you have to gain an advantage, and one that is too often overlooked. 

Remoteness from the market also breeds imitation, a common occurrence 
in the insurance industry. Firms often closely copy the innovations and proce- 
dures of their counterparts. Competitive advantage will again go to those carriers 
that buck this trend and start chasing the market rather than each other. 

A second barrier to strategic implementation is tunnel vision, which is caused 
by the rigid functional structure that plagues many industries, especially insur- 
ance. A functional orientation may be necessary in a technical industry such as 
insurance, but when taken too far it breeds insularity. Employees know only 
their particular sphere of activity and are ignorant about the market’s broader 
context. They are distant not only from the market but from each other. This 
structure results in functional specialists becoming CEOs or division heads, 
precluding any generalist perspective. It is illuminating to note that the devel- 



opment of Universal Life, the major product innovation in individual insur- 
ance, resulted when a securities executive was put in charge of an acquired 
life company. 

The ponderous organization is the third barrier to strategic implementation. 
Even when a typical firm finds a competitive advantage, it often loses it by 
taking too long to exploit it in the market. The symptoms of the ponderous 
organization are an overreiiance on committees. protracted decision making, 
slow response to the environment. a lack of anyone in charge, overlooked 
responsibilities, and conflict resolution rcaiding in the CEO’s office. 

The fourth barrier to implementation is the risk-averse culture of most 
carriers. Carriers are in the risk management business by definition, but too 
often this cultural heritage spills over into many aspects of business. With regard 
to attitude toward customers, for example. there arc often more people in a 
carrier that can say no to a customer than yes. Risk avoidance too often 
influences a carrier’s attitude toward business risks. resulting in a paralyzing 
conservatism. Sacred cows block new innovations. and old, time-tested (and 
often outdated) ways are the only accepted ways. In this environment. innovation 
becomes frozen and competitive advantage becomes an illusion. 

The risk-adverse culture also leads carriers to have an overly conservative 
human resources policy, built on the belief that ten lower-paid, mediocre em- 
ployees are better than a few higher paid, highly motivated, skilled individuals. 
1 know from experience this is false. Another manifestation of risk-aversity is 
a paternalistic attitude toward employees, which management takes in the hope 
that it will lead to loyalty when ultimately it leads only to a polarization of 
senior management and workers. 

The development of insurance generalists is impeded by the typical orga- 
nizational culture. It’s been said that it is hard to tind an industry that does so 
little job rotation as insurance. Judging from our observations of the talent at 
many leading-edge financial service firms, if you cannot attract high quality 
generalists or develop them internally, you arc going to face stiff competition 
in the future. 

The clear winners in tomorrow’s financial services market will be those 
firms that make a successful transition from the traditional environment to the 
current competitive environment, as outlined in Figure 12. The winners will 
overcome the organizational and cultural barriers and will be able to identify 
and exploit competitive advantages in the market. Once again, strategy, orga- 



nization, and culture are inseparable considerations in pursuing a competitive 
advantage. 

I would like to conclude by discussing how my comments relate to your 
profession and the career paths you might take. The options before you are to 
pursue a technical career either within a firm or in consulting or to progress in 
the organization to the level of senior actuary or general manager. If you choose 
the latter path, you will be faced with the challenge of seeking a competitive 
advantage for your firm, and in this you must consider your own career devel- 
opment. Though actuaries are in some ways the intelligentsia of the firm, their 
long years of schooling and professional practice can lead to isolation. If you 
truly seek a general management career, you might consider advanced manage- 
ment programs, job rotation, or other vehicles to gain broad exposure. Although 
it is hard to imagine a flood of actuaries making sales calls, perhaps something 
along these lines would not be so bad. 

Our experience has shown that directly exposing bright, intuitive executives 
to the market builds superior market intelligence and yields superior strategies. 
The development of a broadly skilled senior actuary who is market- and em- 
ployee-oriented might be a large step a carrier can take toward attaining a 
competitive advantage. 
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MINUTES OF THE 1985 ANNUAL MEETING 

November 10-12, 1985 

WESTIN CROWN CENTER, KANSAS CITY. MISSOL~RI 

Sun&y, Navember IO, 1985 

The Board of Directors held their regular quarterly meeting from I:00 p.m. 
to 4:00 p.m. 

Registration was held from 490 p.m. to 6:X) p.m. 

The Officers hosted a reception for new’ Fellows and their spouses from 
5:30 p.m. to 6:30 p.m. 

A general reception for all members and guests was held from 6:30 to 7:30 
p.m. 

Monday, November I I, 1985 

Registration continued from 7:30 a.m. to 8:30 a.m 

President C. K. Khury opened the meeting at X:30 a.m. He introduced 
Fletcher Bell, Kansas Commissioner of Insurance. who welcomed the member- 
ship to Kansas City. 

Mr. Khury then announced the results of the elections of Officers and 
Directors: 

President-Elect 
Michael A. Walters 

Directors 
James R. Berquist 
Charles F. Cook 
David P. Flynn 
Mavis A. Walters 

Herbert J. Phillips was appointed by the Board of Directors to fill the remaining 
term of Michael Fusco, who resigned to take a position on the Executive 
Council. 



Mr. Khury recognized the nine new Associates and presented diplomas to 
the twenty-eight new Fellows, who were introduced by Mr. Wayne Fisher, Vice 
President-Membership. The names of these individuals follow. 

Steven D. Basson 
Kevin H. Bursley 
John E. Captain 
Joel S. Chansky 
Ross A. Currie 
Linda A. Dembiec 
Claude Desilets 
Robert V. Deutsch 
Brian Duffy 
N. Paul Dyck 

FELLOWS 

Gregory S. Grace 
Ronald E. Greco 
Jonathan B. Hale 
Jeffrey L. Hanson 
Gayle E. Haskell 
Timothy T. Hein 
Kenneth J. Hoppe 
Robert S. Kaplan 
Jeffrey H. Mayer 

Gail A. Mendelssohn 
William S. Morgan 
E. Toni Mulder 
John C. Narvell 
Andre Normandin 
Robert L. Sanders 
Harvey A. Sherman 
Jerome J. Siewert 
Joanne S. Spalla 

ASSOCIATES 

Janet B. Dezube Jeffrey R. Jordan Sharon A. Mair 
Scott H. Dodge Robert S. Kaplan Roger A. Yard 
Steven B. Goldberg Andrew E. Kudera Mark A. Yunque 

Mr. Khury then introduced Mr. George Morison, a past President of the 
Society, who addressed the new Fellows concerning their professional respon- 
sibilities. 

Mr. Charles A. Bryan summarized the three new Proceedings papers. Paul 
Braithwaite delivered a review of James E. Buck’s paper, “On Stein Estimators: 
‘Inadmissibility of Admissibility as a Criterion for Selecting Estimators.” 

Mr. Khury concluded the Business Session at 9:30 a.m. and introduced the 
Keynote speaker, Mr. William A. Sherden, Vice President, Temple, Barker & 
Sloane, Inc., who spoke on “The Search for Competitive Advantage.” 

The remainder of the morning was devoted to concurrent sessions, consisting 
of four General Attendance Workshops, a Limited Attendance Workshop, a 
workshop presentation by the Committee on Ratemaking Principles, and three 
new ProceeflinRs Papers. 



The General Attendance Workshops are listed below. 

1. “Are Auto Residual Market Mechanisms Effective’?” 
John Corbley-h4oderutnr 
President 
AIPSO 

Gary Grant 
Actuary 
State Farm Mutual Automobile Insurance Company 

Michael A. LaMonica 
Actuary 
Allstate Insurance Company 

7 A. ‘State-Of-The-Art Personal Auto Pricing Techniques” 
Charles A. Bryan-Moderutor 

Senior Vice President. Actuary 
USAA 

Kyleen Knilans 
Director. Personal Auto Pricing 
Nationwide 

Robert T. Muleski 
Associate Actuary 
Liberty Mutual 

Glenn M. Walker 
Associate Actuary 
GEICO 

3. “The Practical Implications of Insurer Insolvency” 
David G. Hartman-Modercrtor 
Vice President and Actuary 
Chubb Group 

James E. Gustafson 
Senior Vice President 
General Reinsurance Corporation 

Richard Heydinger 
Director of Risk Management 
Hallmark Cards. Inc. 



Chris Milton 
Vice President 
AIG Reinsurance 

4. “Controlling Legal Expenses by Rebuilding the Courthouse Steps” 
Patrick J. Grannan-Moderaror 
Consulting Actuary 
Milliman & Robertson, Inc. 

Jerome Wolf 
Spencer. Fane, Britt and Browne 

Deborah R. Hensler 
Senior Social Scientist 
The Rand Corporation 

The Limited Attendance Workshop was 

“The Insurer’s Market Identity Crisis” 
William A. Sherden-Modrrarcjr 
Vice President 
Temple, Barker & Sloane, Inc. 

The Committee on Ratemaking Principles workshop was an “Open Discus- 
sion on a Statement of Ratemaking Principles.” The session provided an open 
forum for the review and discussion of the Committee’s first draft of a Statement. 

The three new Procreditrgs papers are listed below: 

“An Analysis of Experience Rating” 
Authr: Glenn G. Meyers 

University of Iowa 

“The Valuation of an Insurance Company for an Acquisition Involving a 
Section 338 Tax Election” 

Aufhors: Orin M. Linden, James A. Hall. III, Stephen Gerard, 
Michael Heitz 
Coopers & Lybrand 

“An Intoduction to Underwriting Profit Models” 
Author: Howard C. Mahler 

Massachusetts Rating Bureaus 



I-El.I.OWS 

Mohl, F. J. 
Moore, P. S. 
Morison, G. D. 
Mulder, E. T. 
Muleski, R. T. 
Murdza, P. J., Jr. 
Muza, J. J. 
Myers, N. R. 
Narvell, J. C. 
Newlin, P. R. 
Niles, C. L., Jr. 
Normandin, A. 
O’Connell, P. G. 
O’Neil, M. L. 
Otteson, P. M. 
Phillips, H. J. 

Andler, J. A. 
Austin, J. P. 
Bailey, V. M. 
Cadorine, A. R. 
Chorpita, F. M. 
Cimini, E. D., Jr. 
Clark, D. G. 
Cohen, A. I. 
Connor. V. P. 
Crifo, D. A. 
Dezube, J. B. 
Dodge, S. H. 
Domfeld, J. L. 
Eagelfeld, H. M. 
Edie, G. M. 
Einck, N. R. 
Galiley, B. J. 
Gapp, S. 
Goldberg, S. B. 

Renze, D. E. 
Roberts, L. H. 
Rodermund, M. 
Ryan, K. M. 
Sanders, R. L. 
Sherman, H. A. 
Shoop, E. C. 
Skurnick, D. 
Smith. L. M. 
Snader, R. H. 
Spalla, J. S. 
Stephenson. E. A 
Streff. J. P. 
Tatge. R. L. 
Tiller. M. W. 
Tom, D. P. 

ASSOCIATES 

Gould, D. E. 
Harwood, C. B. 
Henry, T. A. 
Jensen, J. P. 
Jordan. J. R. 
Kelly, M. K. 
Klawitter, W. A. 
Kolk. S. L. 
Koupf. G. I. 
Kudera, A. E. 
Leo, C. J. 
Licht, P. M.. Sr. 
Lis, R. S.. Jr. 
Loper, D. J. 
Mair. S. A. 
McDaniel. G. P. 
Mokros, B. F. 
Mozeika, J. K. 
Murphy, W. F. 

Tresco. F. J. 
Tuttle. J, E. 
Van Ark, W. R. 
Van Slyke, 0. E. 
Walker, G. M. 
Walker. R. D. 
Walters. M. A. 
Walters, M. A. 
Weimer, W. F. 
Weller. A. 0. 
Wilson, J. C. 
Wilson, R. L. 
Wiseman. M. L. 
Woods, P. B. 
Wulterkens. P. E. 

Napierski, J. D. 
Nelson, J. K. 
Ogden, D. F. 
Pelletier, C. A. 
Penniman. K. T. 
Peterson, S. J. 
Port, R. D. 
Potts. C. M. 
Ratnaswamy, R. 
Rice. W. V. 
Rudduck, G. A. 
Sansevero. M., Jr. 
Schulman, J. 
Schultheiss, P. J. 
Smith. B. W. 
Stroud. R. A. 
Terrill, K. W. 
Townsend, C. J. 
Tucker, W. 8. 
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Waldman, R. H. 
Whatley, M. W. 
White, C. S. 

Armstrong, S. H. 
Bradley, S. 
Carpenter, J. G. 
Colver, C. F. 
Colvin, S. P. 
Comstock, S. 
Demarlie, G. 

ASSOCIATES 

Yard, R. A. Yau, M. W. 
Yatskowitz, J. D. Yunque, M. A. 

GUESTS-SUBSCRIBERS-STUDENTS 

Didonato, A. M. 
Dunn, J. T. 
Farwell, R. A. 
Furtney, G. 
Graves, G. G. 
Johnson, J. E. 
Johnston, S. J. 

Natte, B. 
Peck, S. 
Schmidt, L. 
Smith, D. A. 
Stenmark, J. A. 
Sterk, J. 
Wilson, G. S. 
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REPORT OF THE VICE PRESIDENT-ADMINISTRATION 

This report, by the Vice President-Administration, is intended to provide 
the members with a brief summary of the more important activities of the 
Society during the last fiscal year. 

Both the Board of Directors and the Executive Council, as well as all the 
standing committees were extremely active in this year, our second year under 
the reorganization program. A great deal of progress has been made on your 
behalf. The Board of Directors, with the prime responsibility of setting policy, 
met four times, and took several key policy positions affecting all facets of the 
Society: Administration, Programs, Membership, and Development. These pol- 
icies were announced in the Actuarial Review and will also appear in the next 
edition of the Yearbook. The Yearbook, by the way, is being expanded gradually 
to include more information relative to policies set by the Board, as well as 
operational items enacted by the Executive Council. 

The Executive Council, with the prime responsibility of running the day-to- 
day activities of the CAS, also met four times during the year and dealt with 
the very extensive agendas at each meeting. In addition, for the first time, the 
Executive Council held a meeting of all committee chairmen. which was well 
attended and very well received. It provided a forum for both the officers and 
committee chairmen to get to know each other; to openly discuss their mutual 
problems, goals, and activities; and to discuss the best way to accomplish the 
various tasks assigned. It is planned that such a meeting will be held at least 
annually from now on. 

The membership of the CAS continues to grow at a rapid rate. At the Spring 
Meeting in Boca Raton, sixty-eight new Associates and nineteen new Fellows 
were admitted. At this meeting in Kansas City, nine new Associates and twenty- 
eight new Fellows were admitted. The membership is now approximately I, 190. 
Certainly, we will surpass the 1,200 mark next year. 

As a result of this growth in membership and the fact that the CAS operates 
largely by the willingness of its members to volunteer their time and effort, the 
Executive Council commissioned a study of the future of the CAS office. The 
recommendation of the committee was that one staff member be added to the 
business office, basic automation be installed (one personal computer) and the 
necessary space and furniture be acquired. This recommendation was approved 
by the Council and will go into effect quickly. 
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Another facet of the membership growth and the resulting budget require- 
ments to maintain adequate services was the need to install a functional ac- 
counting system. This concept was also approved by the Executive Council and 
installed with the 1985/86 fiscal year budget. Income and disbursement items 
now will be segregated into four distinct functions-Membership Services, 
Examinations, Programs, and All Other. The budget approved for the 1985/86 
fiscal year is in excess of $500,000 and will require an increase of $20 in dues 
for all classes of members and an increase of $20 in exam fees for Parts 4 
through 10. 

The activities of both Board and Council in this past year, in no particular 
order of priority, included the subjects listed below. 

I. Goals and objectives governing the educational efforts of the CAS. This 
subject includes the basic examination process, as well as continuing 
education for current members. 

2. Establishment of a talent bank to provide for the identification of mem- 
bers willing to serve on committees and an indication of their primary 
interests or specialties. 

3. Revised and updated guides for the submission of papers. 
4. Registering of the Proceedings in the Library of Congress and obtaining 

an International Standard Serial Number (ISSN). 
5. Establish bibliographies on ratemaking principles and loss reserving prin- 

ciples. 
6. Canadian content on the CAS Syllabus. 
Finally, the Audit Committee audited the 1984/85 fiscal year books of the 

CAS and found the accounts to be properly stated. The year ended with an 
increase in surplus of $37,281.22, which fortunately offset the operating loss 
of the previous year. The reason for the increase was the success of the Boca 
Raton meeting-registrations far exceeded anticipated levels-and a much better 
investment yield than the budget predicted. 

Members’ equity now stands at $258,799.90, subdivided as follows: 

Michelbacher Fund 
Dorweiler Fund 
CAS Trust 
Scholarship Fund 
CAS Surplus 

$ 59,681.87 
9,881.80 
2,005.28 
7, Il2.50 

180,I 18.45 

$258,799.90 



For 1985186, the Board of Directors elected the following Vice Presidents: 

Vice President-Administration Richard H. Snader 
Vice President-Development David G. Hartman 
Vice President-Membership Wayne H. Fisher 
Vice President-Programs Michael Fusco 
This is my final report as Vice President-Administration and I would be 

remiss if I did not publicly thank those who have worked with me over the past 
years: Bob Daino as Assistant Secretary; Tony Grippa as Assistant Treasurer, 
and his staff; and, in particular, Edee Morabito in charge of the business office; 
as well as the other committee members within the Administration function. 
The CAS is indeed fortunate to have such people and 1 enjoyed working with 
them. 

Respectfully submitted. 

HERBERT J. PHILLIPS 

Vice President-Administrution 
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INCOME 

FINANCIAL REPORT 
FISCAL YEAR ENDED 9130185 (ACCRUAL BASIS) 

DISBURSEMENTS 

Dues $115857 72 
Exam Fees 103 281 22 
Meetings 196.611 99 
Proceed,ngs 12.743 95 
Readings 1451453 
lnvltatlonal Program 4,880 00 
Interest 35.094 08 
Acfuarrai Review 332 00 
Yearbook 950 00 
Foreign Exchange (551 92) 
MlSC~ll.9”WXJS 73 1,014 

Total $484 728 30 

Income $484,728 30 
Disbursements 447,447 08 
Change I” CAS Surplus 5( 37.281 22) 

Prlnllng 8 Stationery $122.703 66 
Office Expenses 107.422 90 
Exam Expenses 4.464 88 
Meeting Expenses 177,851 74 
ILlbraty 41524 
Insurance 733348 
Refund-Dues 290 00 
Aelund-Exam 2.735 00 
Relund-Meehng 9,350 00 
Refund-Readina 94 00 
Math ASSOC of Amervx 2.000 00 
Expenses--President 5.000 00 
Expenses-Pres -E&f 2.500 00 
OutsIde Servces 0 
MlSC&3”~OUS 18 5,286 

T&l $447 447 08 

ACCOUNTING STATEMENT (ACCRUAL BASIS) 
ASSETS 9130184 9130185 CHANGE 

___ ___ 

Checking Accounr 

Bank ‘Cert!l,cates 01 Deposit 
U S Treasury Notes & 6111s 

Monev Market Fund 

Accrued Interest 
Total Assets 

LIABILITIES 

$ 

102 573 

35,866 

00 

94 

0 

$ 

(102,573 00) 

1 

99 971 

25980 

90 

$ 

222,926 

(34,607 

78 

14) 

122,954 88 

61.930 

24,216 

52 

75 

143 

11.684 

12028 

06 

81.189 

____ ___ 

76 

(12.532 69) 

$324 559 11 $378.990 92 $ 54,431 81 

Office Expenses S 28.00000 $ 30.000 00 $ 2,000 00 
Printing Expenses 62,000 00 30.611 00 (31.389 001 
PrepaId Examlnallon Expenses (273 14) 0 273 14 
Meellng Expenses R PrepaId Fees (3.500 00) 13.81302 17,313 02 
PrepaId Exam Fees 29,970 00 45,767 00 1579700 
Other 0 0 0 

Total Llabilltw $116.196 86 $120.19102 $ 3,994 16 

MEMBERS’ EQUITY 

Mlchelbacher Fund 
Dow&r Fund 
CAS Trust 
Scholarship Fund 
CAS Surplus 

Totals 

$ 54.791 76 5 59.681 87 5 4.890 11 
8,922 62 9,881 80 959 18 
1.81064 2.005 28 194 64 

0 7,11250 7.11250 
142.837 23 180.11845 37,281 22 

$208 362 25 $256.799 90 $ 5043765 

Herbert J Phillips 
Vice Presldenl-Adm/n,slraI,on 

This IS 10 certlly that the assets and accounts shown I” the above ilnancel slalement 
have bee” audIled and lound to be correct 

Audrf Committee 
Walter J Fltzglbbo”. Jr, Chawman 
George G Berlles 
Dawd M Klel” 
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1985 EXAMINATIONS-SUCCESSFUL CANDIDATES 

Examinations for Parts 4, 6, 8 and 10 of the Casualty Actuarial Society 
were held on May 2 and 3. 1985. Examinations for Parts 5, 7 and 9 were held 
on November 6, 7, and 8. 1985. 

Examinations for Parts I, 2 and 3 are jointly sponsored by the Casualty 
Actuarial Society and the Society of Actuaries. These examinations were given 
in May and November of 1985. Candidates who passed these examinations 
were listed in the joint releases of the two societies. 

The Casualty Actuarial Society and the Society of Actuaries jointly awarded 
prizes to the undergraduates ranking the highest on the General Mathematics 
examination. For the May, 1985 examination, $200 prizes were awarded to 
Noam D. Elkies. Francois Grenon, Martin Papillon. and Jeffrey M. Sanders. 
The additional $100 prize winner was Andrew Lee. For the November, 1985 
examination, the $200 prize was awarded to Stephen J. Stribling. The additional 
$100 prize winners were Rajasekhar Malyala. Darien G. Letkowitz, Howard P. 
Hines, and Anthony J. Benjamin. 

The following candidates were admitted as Fellows and Associates at the 
November, 1985 meeting as a result of their successful completion of the Society 
requirements in the May, 1985 examinations. 

FELLOWS 

Steven D. Basson 
Kevin H. Bursley 
John E. Captain 
Joel S. Chansky 
Ross A. Currie 
Linda A. Dembiec 
Claude Desilets 
Robert V. Deutsch 
Brian Duffy 
N. Paul Dyck 

Gregory S. Grace 
Ronald E. Greco 
Jonathan B. Hale 
Jeffrey L. Hanson 
Gayle E. Haskell 
Timothy T. Hein 
Kenneth J. Hoppe 
Robert S. Kaplan 
Jeffrey H. Mayer 

Gail A. Mendelssohn 
William S. Morgan 
E. Toni Mulder 
John C. Narvell 
Andre Normandin 
Robert L. Sanders 
Harvey A. Sherman 
Jerome J. Siewert 
Joanne S. Spalla 
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ASSOCIATES 

Janet B. Dezube Jeffrey R. Jordan Sharon A. Mair 
Scott H. Dodge Robert S. Kaplan Roger A. Yard 
Steven B. Goldberg Andrew E. Kudera Mark A. Yunque 

The following is the list of successful candidates in examinations held in 
May, 1985. 

Part 4 

Aquino, John G. 
Audet, Daniel 
Billings, Holly L. 
Blakinger, Jean M. 
Boudreau, Joseph J. 
Bradley, J. Scott 
Brehm, Paul J. 
Caulfield, Michael J. 
Cohen, Sheldon 
Commodore, Alfred D. 
Conway, Ann M. 
Crawshaw, Mark 
Cross, Susan L. 
Desnoyers, Lee A. 
Drent, Susan M. 
Feldblum, Sholom 
Fitzpatrick, William G. 
Forbus, Barbara L. 
Francis, Louise A. 
Franz, Vincent-M. 
Gagnon, Luc 
Gameau, Denis 
Gergasko, Richard J. 
Gevlin, James M. 
Gibson, Richard N. 
Goldberg, Leonard R . 
Goldberg, Robert H. 
Griffith, Ann V. 
Groh, Linda M. 

Groshong, Susan J. 
Grossack, Marshall J. 
Gruenhagen, Todd A. 
Haefner, Larry A. 
Haidu, Deborah D. 
Hawley, Karin S. 
Hays, David H. 
Herderick, Teresa J. 
Hurley, John M. 
Johnson, Eric J. 
Johnston, Steven J. 
Kaplan, Robert S. 
Keatinge, Clive L. 
Keen, Eric R. 
Kesby, Kevin A. 
Kwon, Frank 0. 
Lalonde, David 0. 
Lamb, Dean K. 
Lamy, Mathieu 
Lapointe, Susan E. 
Lebens, Joseph R. 
Leveille, Jean-Marc 
Lyons, Mark D. 
Mahon, Mark J. 

Mayer, Malkie 
McNichols, James P. 
Millar, Leonard L. 
Miller, John E. 
Miller, Mary F. 
Nelson, Chris E. 
Nyce, Glen C. 
Panjer, Harry H. 
Paterson, Bruce 
Pipitone, Faith M. 
Popejoy, Kathy 
Protz, Steven G. 
Saton, Melissa A. 
Sauthoff, Stephen P. 
Shirt&us, Mary B. 
Sliwa, Jan 
Slotznick, Lisa A. 
Spiegler, David 
Spore, Louis B. 
Steinberg, Karen F. 
Strasser, Benjamin C. 
Swanstrom, Ronald J. 
Sweeney, Eileen M. 
Wacker, Gregory M. 

Mallison, Robert G., Jr. Werland, Debra L. 
Marchena, Eduardo P. Wilson, Theresa A. 
Marles, Blaine C. Wrobel, Edward M. 
Maud, Christine E. Wu, Chien-Chien L. 
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Part 6 

Adams, Jeffrey Fanning, William G. 
Allard, Jean-Luc Fletcher, James E. 
Anderson, Mary V. DiGaetano. Mark 
Apfel, Kenneth Goldberg, Steven B. 
Atkinson, Richard V. Graves, Gregory T. 
Bender, Robert K. Graves, Nancy A. 
Boucek, Charles H. Johnson. Wendy A. 
Brissman, Mark D. Johnston, Joyce M. 
Cardoso, Ruy A. Jordan, Jeffrey R. 
Carlson, Christopher S. Kelly, Beverley A. 
Carlson, Karyl T. Kido, Chester T. 
Caron, Philippe Kreps, Rodney E. 
Closter, Donald L. Kudera, Andrew E. 
Comstock, Susan J. Lacko, Paul E. 
Crane, Veronika K. Lewandowski, John J. 
Curry, Michael K. Lewis, Michael E. 
Danielson, Guy R. Lombardi, Paul M. 
Desjardins, Charles Mair, Sharon A. 
Dezube. Janet B. Malik, Sudershan 
DiDonato, Anthony M. Miller, Susan M. 
Dodge, Scott H. Ng, Kwok C. 
Doyle, Michael J. Ollodart, Bruce E. 
Dunlap, George T., IV Ostergren, Gregory V. 
Ericson, Janet M. Overgaard, Wade T. 

Part 8 

Almagro, Manuel, Jr. 
Amundson, Richard B. 
Becraft, Ina M. 
Bellusci, David M. 
Bennett, Robert S. 
Bursley, Kevin H. 
Cartmell, Andrew R. 
Chen, Chyen 
Cieslak, Walter P. 
Cohn, Barbara 
DeConti. Michael A. 

Deede, Martin W. 
DeFalco, Thomas J 
Dekle, James M. 
Dembiec, Linda A. 
Diamantoukos, Christopher 
Downing, Jeremiah M. 
Dufresne, Jacques 
Earwaker, Bruce G. 
Edmondson. Alice H. 
Elliott, Paula L. 
Gapp, Steven A. 

Pelly, Brian G. 
Plano, Richard A. 
Privman. Boris 
Procopio, Donald W. 
Rhodes, Frank S. 
Rice. Denise E. 
Schustak, Marlene D. 
Scruggs. Michael L. 
Scully. Mark W. 
Spalding, Keith R. 
Sutter, Russel L. 
Tan, Suan-Boon 
Taylor, Craig P. 
Taylor, R. Glenn 
Vezina, Guy 
Von Seggem, William J. 
Wargo, Kelly A. 
Whitehead, Guy H. 
Wilson, Ernest I. 
Wilson, Gregory S. 
Yard, Roger A. 
Yow, James W. 
Yunque. Mark A. 

Guenthner, Denis G. 
Haskell, Gayle E. 
Henry, Thomas A. 
Hollister, Jeanne M. 
Johnson, Andrew P. 
Kartechner, John W. 
Kneuer, Paul J. 
Koupf. Gary I. 
Lacroix, Marthe A. 
Levine, George M. 
Littmann. Mark W. 
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Lyons, Daniel K. 
Maguire, Brian P. 
Martin, Paul C. 
Mayer, Jeffrey H. 
McClure, John W., Jr. 
McDonald, Gary P. 
Menning, David L. 
Miller, William J. 
Morgan, William S. 
Mulder, Evelyn T. 
Myers, Thomas G. 
Noyce, James W. 

Parr 10 

Aldin, Neil C. 
Barclay, David L. 
Basson, Steven D. 
Bear, Robert A. 
Berry, Janice L. 
Boyd, Wallis A. 
Bursley, Kevin H. 
Captain, John E. 
Chansky, Joel S. 
Clark, Daniel B. 
Curran, Kathleen F. 
Currie, Ross A. 
Desilets, Claude 
Deutsch, Robert V. 
Dornfeld, James L. 
Duffy, Brian 
Dyck, N. Paul 

Pei, Kai-Jaung 
Putney, Alan K. 
Rathjen, Ralph L. 
Reppert, Daniel A. 
Roth, Randy J. 
Sandman, Donald D. 
Schnapp, Frederic F. 
Schultheiss, Peter J. 
Shepherd, Linda A. 
Siewert, Jerome J. 
Silver, Melvin S. 

Dye, Myron L. 
Easlon, Kenneth 
Einck, Nancy R. 
Gillam, William R. 
Grace, Gregory S. 
Greco, Ronald E. 
Hale, Jonathan B. 
Hanson, Jeffrey L. 
Hein, Timothy T. 
Homan, Mark J. 
Hoppe, Kenneth J. 
Keller, Wayne S. 
Krakowski, Israel 
Lee, Robert H. 
Lewis, Martin A. 
Lipton, Barry C. 

Terrill, Kathleen W. 
Thorrick, John P. 
Townsend, Christopher J. 
Trudeau, Michel 
Veilleux, Andre 
Visintine, Gerald R. 
Votta, James C. 
Wick, Peter G. 
Williams, Robin M. 
Willsey, Robert L. 
Woodruff, Arlene F. 

Mendelssohn, Gail A. 
Montgomery. Warren D. 
Murphy, Francis X., Jr. 
Narvell, John C. 
Normandin, Andre 
Onufer, Layne M. 
Pelletier, Charles A. 
Ryan, John P. 
Sanders, Robert L. 
Schilling, Timothy L. 
Sherman, Harvey A. 
Smith, Michael B. 
Spalla, Joanne S. 
Treitel, Nancy R. 
Webster, Patricia J. 
White, Charles S. 
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The following candidates will be admitted as Fellows and Associates at the 
May, 1986 meeting as a result of their successful completion of the Society 
requirements in the November. 1985 examinations 

Allaben, Mark S. 
Bear, Robert A. 
Berry, Janice L. 
Boyd, Wallis A. 
Clark, Daniel B 
Curran, Kathleen F 
Domfeld, James L. 

Aldin, Neil C. 
Almagro, Manuel, Jr. 
Amoroso, Rebecca C. 
Anderson, Mary V. 
Apfel. Kenneth 
Atkinson, Richard V. 
Callahan, James J. 
Carlson, Christopher S. 
Caron, Louis-Philippe 
Cascio, Michael J. 
Cathcart, Sanders B. 
Cellars, Ralph M. 
Christhilf, David A. 
Comstock, Susan J. 
Cox, David B. 
Davis. Dan J. 
Debs, Raymond V. 
Dekle, James M. 
Doyle, Michael J. 
Englander, Jeffrey A. 
Fletcher, James E. 
Forbus, Barbara L. 
Gauthier. Richard 
Gebhard, James J. 

Hall, Allen A. 
Hayward. Gregory L. 
Lewis, Martin A. 
Lipton, Barry C. 
Mashitz, Isaac 
Miller, Robert A., III 

Gidos, Peter M. 
Glicksman, Steven A. 
Graham, Jeffrey H. 
Guenthner, Denis G. 
Hay, Randolph S. 
Herbers. Joseph A. 
Hertling, Richard J. 
Homan, Mark J. 
Johnson, Wendy A. 
Kasner, Kenneth R. 
Kneuer. Paul J. 
Koegel, David 
Kreps. Rodney E. 
Kulik, John M. 
Kuo, Chung-Kuo 
Lacek. Mary Lou 
Lacroix, Mar-the A. 
Lessard, Alain 
Lyons, Mark D. 
Mailloux, Patrick 
McCoy. Mary E. 
Millar. Leonard L. 
Miller, Susan M. 
Mohrman. David F. 

Murphy, William F. 
Nester, Karen L. 
Port. Rhonda D. 
Smith. Michael B. 
Treitel. Nancy R. 
White, Charles S. 

Mueller, Robert A. 
Musante, Donald R. 
Newell. Richard T.. Jr. 
Newman, Henry E. 
Ollodart. Bruce E. 
Ostergren, Gregory V. 
Overgaard, Wade T. 
Peraine. Anthony 
Pridgeon. Ronald D. 
Privman, Boris 
Rhodes. Frank S. 
Rice, Denise E. 
Rice, James W. 
Roesch. Robert S. 
Sandman, Donald D. 
Scully, Mark W. 
Shepherd, Linda A. 
Somberger, George C. 
Spidell. Bruce R. 
Steingiser, Russell 
Sutter, Russel L. 
Tan, Suan-Boon 
Thompson, Robert W. 
Tingley. Nanette 



Tistan, Ernest S. 
Trudeau, Michel 
Turner, George W., Jr. 
Von Seggem, William J. 
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Walker, David G. Woodruff, Arlene F. 
Wargo, Kelly A. Yen, Chung-Ye 
Weber, Dominic A. Yow, James W. 

The following is the list of successful candidates in examinations held in 
November, 1985. 

Parr 5 

Allen, Danny M. 
Almagro, Manuel, Jr. 
Artes, Lawrence J. 
Atkins, Heather E. 
Barnes, Katharine E. 
Bauer, Bruno P. 
Benninghof, Kay E. 
Boisvert, Paul, Jr. 
Bonte, Sharon R. 
Boudreau, Joseph J. 
Brathwaite, Malcolm E. 
Brehm, Paul J. 
Bums, William E. 
Byington, Jennifer S. 
Cardoso, Ruy A. 
Caulfield, Michael J. 
Chabarek, Paul 
Cloutier, Denis 
Cofield, Joseph F. 
Cote, Jean 
Crawshaw, Mark 
Crouse, John W. 
Darby, Robert N. 
Desjardins, Charles 
DiDonato, Anthony M. 
DiGaetano, Mark 
Elliott, Angela F. 
Evans, Karen F. 
Fitzgerald, Beth E. 
Fitzpatrick, William G. 

Fletcher, James E. 
Fonticella, Ross C. 
Forbus, Barbara L. 
Frank, Jacqueline B. 
Gagnon, Luc 
Gardner, Andrea 
Gebhard, James J. 
Gendelman, Nathan J. 
Gill, Bonnie S. 
Goldberg, Leonard R. 
Graham, Jeffrey H. 
Greenhill, Eric L. 
Griffith, Ann V. 
Groh, Linda M. 
Gross, Marian R. 
Hawley, Karin S. 
Hayes, Thomas L. 
Hays, David H. 
Hebert, Norman P. 
Hertling, Richard J. 
Hess, Todd J. 
Heyman, David R. 
Hostetter, David B. 
Hurley, John M. 
James, Peter H. 
Johnston, Joyce M. 
Johnston, Steven J. 
Jones, Terre11 A. 
Kaufman, David 
Keatinge, Clive L. 

Kerin, Allan A. 
Kesby, Kevin A. 
Kishi, Leslie K. 
Klenow, Jerome F. 
Kligman, Daniel F. 
Kryczka, John R. 
Lalonde, David A. 
Lamb, Dean K. 
Lebens, Joseph R. 
Leiner, William W., Jr. 
Lewandowski, John J. 
Lewis, Michael E. 
Lifschitz, David E. 
Lyons, Mark D. 
Mahoney, Michael W. 
Marchena, Eduardo P. 
McCreesh, James B. 
McGill, Cassandra M. 
McNichols, James P. 
McShea, Christopher J. 
Meyer, Robert J. 
Millar, Leonard L. 
Miller, Mary F. 
Moylan, Thomas G. 
Naylor, Walter R. 
Nelson, Chris E. 
Nemlick, Kenneth J. 
Ng, Wai Hung 
Nordquist, Randall S. 
Nyce, G. Christopher 



Oliver, Douglas W. 
Peck, Steven C. 
Pestcoe, Marvin 
Phifer, Robert C. 
Phillips, George N. 
Pichler, Karen J. 
Pino, Susan L. 
Poirier, Denis 
Popejoy, Kathy 
Proska, Mark R. 
Provencher, Yves 
Rhoads, Karin M. 

Part 7 

Aldin, Neil C. 
Amoroso, Rebecca C. 
Anderson, Mary V. 
Apfel, Kenneth 
Aquino, John G. 
Atkinson. Richard V. 
Atkinson. Roger A., III 
Baker, Mark S. 
Billings, Holly L. 
Buchanan, John W. 
Callahan, James J. 
Carlson, Christopher S. 
Caron, Louis-Philippe 
Casale, Kathleen N. 
Cascio, Michael J. 
Cathcart. Sanders B. 
Cellars, Ralph M. 
Christhilf, David A. 
Comstock, Susan J. 
Cox. David B. 
Cross, Susan L. 
Davis, Brian W. 
Davis, Dan J. 
Debs, Raymond V. 
Dekle, James M. 

Roberts, Jonathan S. 
Schadler. Thomas E. 
Schug, Richard D. 
Shimkus. Mary B. 
Snook, Linda D. 
Steinberg, Karen F. 
Sterling. Mary E. 
Stone, Edward C. 
Sublett. Sharon 
Swanstrom, Ronald J. 
Szczepanski. Chester J. 

Thorrick, John P. 
Tremblay, Martin-Eric 
Van de Water, John 
Veilleux, Andre 
Watkins, Nancy P. 
Werland, Debra L. 
Wilson, Gregory S. 
Woodruff, Arlene F. 
Yen. Chung-Ye 
Yit. Bill S. 
Yocius. Richard P. 

Diamantoukos, Christopher Kulik. John M. 
Doyle, Michael J. Kuo. Chung-Kuo 
Edlefson, Dale R. Lacek, Mary Lou 
Englander, Jeffrey A. Lacroix, Marthe A. 
Epstein, James C. Lesxard. Alain 
Feldblum, Sholom Liebers. Elise C. 
Francis, Louise A. Mailloux. Patrick 
Gauthier, Richard Math. Steven 
Gidos, Peter M. McCoy, Mary E. 
Glicksman, Steven A. Miller, Susan M. 
Guenthner, Denis G. Mohrman, David F. 
Harbage, Robin A. Mueller. Nancy D. 
Hay, Randolph S. Mueller, Robert A. 
Herbers, Joseph A. Mulvaney, Mark W. 
Hill. Tony D. Musante, Donald R. 
Homan, Mark J. Musulin, Rade T. 
Huberman, Gloria L. Newell. Richard T., Jr. 
Johnson, Eric J. Newman. Henry E. 
Johnson. Wendy A. Ollodart. Bruce E. 
Kasner, Kenneth R. Ostcrgren. Gregory V. 
Kinson. Paul E. Overgaard, Wade T. 
Kneuer, Paul J. Paglieri, Wayne C. 
Koegel, David Peraine. Anthony 
Koufacos. Constantine G. Pridgeon, Ronald D. 
Kreps, Rodney E. Privman. Boris 
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Rhodes, Frank S. 
Rice, Denise E. 
Rice, James W. 
Roesch, Robert S. 
Ryan, Beverley K. 
Sandman, Donald D. 
Schultze, Mark E. 
Schwandt, Jeffory C. 
Scully, Mark W. 
Shepherd, Linda A. 
Skov, Steven A. 
Somberger, George C. 

Harwood, Catherine B. 

Part 9 

Allaben, Mark S. 
Bear, Robert A. 
Bellafiore, Leonard A. 
Bellusci, David M. 
Berry, Janice L. 
Blakinger, Jean M. 
Boor, Joseph A. 
Boyd, Wallis A. 
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WALTER T. EPPINK 
1902-1984 

Walter T. Eppink, a Fellow of the Casualty Actuarial Society since 1935, 
and a charter member of the American Academy of Actuaries, died of congestive 
heart failure on August 20, 1984, at the age of 82. 

Walter was a graduate of Western Reserve University (now known as Case 
Western Reserve University) in Cleveland. 

During his fifty year career at Merchants Mutual Insurance Company he 
held various positions, including Assistant Treasurer, Treasurer, Actuary, and 
Assistant Vice President. At the time of his retirement in 1972 he was Executive 
Vice President of the company. 

Walter thoroughly enjoyed his work and his association with co-workers at 
Merchants Mutual. He was well known for his kindness and helpfulness. 

Walter was a devoted family man. Following his retirement at the age of 
70, he and his wife traveled extensively throughout North America visiting their 
children and grandchildren. 

Walter is survived by his wife, Marion, two sons, Richard and Robert, 
sixteen grandchildren, and one great-grandchild. 

HUGH P. HAM 
1905-1984 

Hugh P. Ham, an Associate of the Casualty Actuarial Society since 1936, 
died April 6, 1984 at the age of 78. 

Before retiring due to ill health in 1966, Hugh spent more than forty-two 
years in the service of the Western-British America Group of Insurance Com- 
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Donald Palmer, Loyd Fueston; Second row: Heidi Hutter, Lois Ross, RaJa Bhagavatula, Jeffrey Carlson; Third row: Alan Hapke, 
Michael M&ally, Diane Symnoski, Robert Meyer, Warren Ehrlich; Fourth row: James Surrago, William Biegaj, Allan Neis, 
Stephan Christiansen, John Fomey. 
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NEW ASSOCIATES ADMITTED MAY 19X5 (Left to Right): First row: William Miller. Arthur 
Placek, Mark Allaben, Christy Gunn, Barry Lipton, David Scholl, Jeffrey Salton; Second row: 
Robert Muller, Richard Quintano, Roger Schultz, Jeffrey Scheuing, Robert Willsey, Frederick 
Cripe; Third row: Thomas Myers, Edward Somers, Brian Maguire, Robert Whitlock, Brian Brown, 
Jeffrey Post; Fourth row: Robert Gardner, Warren Montgomery, Robert Lee, Daniel Gogol, Leonard 
Bellatiore, Andrew Cartmell; Fifth row: Mark Littmann, Daniel Reppett, Jerry Visintine, Jacques 
Dufresne, Thomas DeFalco, Martin Lewis; Sixth row: Kenneth Easlon, Susan Woemer, Arlyn 
Shapiro, Robert Mucci, Kevin Greaney; Seventh row: Kirk Fleming, Michael Smith, Kathleen 
Curran, Kathleen Ten-ill, Jeanne Hollister, Ruth Howald; Eighth row: Stacy Weinman, Nancy 
Treitel, Daniel Clark, William Carpenter, Janice Cutler, Joseph Theisen; Ninth row: C. K. Khury 
(President), Eugene McGovern, John Slusarski. 



i. _. 
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Andre Normandin, Evelyn Toni Mulder. Gail Mendelssohn, C. K. Khury (President), Joanne Spalla, Linda Dcmbicc, Robert 

Kaplan. Kevin Bursley, Steven Basson, Brian Duffy, Jeffrey Mayer; Back row: Joel Chansky, N. Paul Dyck, Robert San&n, 
Harvey Sherman. Gqory Grace, Timothy Hein, Kenneth Hoppe, Robert Deutsch, John Narvell, ROSS &tie. 



NEW ASSOCIATES ADMITTED NOVEMBER 1985 (Left to Rlpht): Roger Yard, Andrew Kudera. Mark Yunque. Robert Kaplan. 
Sharon Mm. Janet Derube. Jeff Jordan. Steven Goldberg. Scott Dodge. 
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WALTER T. EPPINK 
1902-1984 

Walter T. Eppink, a Fellow of the Casualty Actuarial Society since 1935, 
and a charter member of the American Academy of Actuaries, died of congestive 
heart failure on August 20, 1984, at the age of 82. 

Walter was a graduate of Western Reserve University (now known as Case 
Western Reserve University) in Cleveland. 

During his fifty year career at Merchants Mutual Insurance Company he 
held various positions, including Assistant Treasurer, Treasurer, Actuary, and 
Assistant Vice President. At the time of his retirement in 1972 he was Executive 
Vice President of the company. 

Walter thoroughly enjoyed his work and his association with co-workers at 
Merchants Mutual. He was well known for his kindness and helpfulness. 

Walter was a devoted family man. Following his retirement at the age of 
70, he and his wife traveled extensively throughout North America visiting their 
children and grandchildren. 

Walter is survived by his wife, Marion, two sons, Richard and Robert, 
sixteen grandchildren, and one great-grandchild. 

HUGH P. HAM 
1905-1984 

Hugh P. Ham, an Associate of the Casualty Actuarial Society since 1936, 
died April 6, 1984 at the age of 78. 

Before retiring due to ill health in 1966, Hugh spent more than forty-two 
years in the service of the Western-British America Group of Insurance Com- 
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panies. He joined the staff in Winnipeg in 1924; was transferred to the head 
office in Toronto in 1943; was appointed General Manager in 1952, and a 
Director in 1958. In 1960, he was named President of the Western-British 
America Companies and, following the acquisition of those companies by the 
Royal Insurance Group, also was appointed a General Manager for Canada of 
the Royal Insurance Group. 

Hugh is survived by his wife, Dorothy Emma. 

EXEQUIEL S. SEVILLA 
1904-1985 

Exequiel Sevilla, an Associate of the Casualty Actuarial Society since 1930, 
died on January 6, 1985 at his home in Manila, Philippines at the age of 80. 
He had suffered a massive stroke in 1979 and had been bedridden since then. 

Exequiel Sevilla was born on March 4, 1904 in Manila. In 1927, he grad- 
uated summa cum laude from the University of the Philippines. Even before 
graduation, he had been appointed an Insurance Examiner by Dr. Emeterio Roa, 
the first Filipino Actuary. The territorial government sent him as a scholar to 
the University of Michigan, where he graduated with a Master of Science degree 
in Actuarial Mathematics in 1929. He trained for one year at the United States 
Life Insurance Company in New York City. 

Upon his return to the Philippines, he was appointed Actuary in the Office 
of the Insurance Commissioner. In 1933, he left the government service to help 
found the National Life Insurance Company in Manila. He stayed with this 
company, first as Actuary, then as General Manager, and finally as President 
and member of the Board of Directors, until his retirement in 1974. Following 
his retirement, he continued to serve the company in a consulting role. 

In 1937, President Quezon appointed Mr. Sevilla a member of the first 
Board of Directors of the Government Service Insurance System. He taught 
mathematics at the University of the Philippines, Far Eastern University, and 
the University of the East. 

Mr. Sevilla was a member of the American Academy of Actuaries and the 
International Actuarial Association, a corresponding member of the Instituto de 
Actuaries Espanioles and a fellow of the Actuarial Society of the Philippines. 



He served as President of the Actuarial Society of the Philippines, the Philippine 
Statistical Association, the Philippine Association of Life Insurance Companies 
and the Advanced Management Association of the Far East. 

Mr. Sevilla is survived by his wife, Lourdes de Veyra Sevilla, his six 
children, Josefina, Exequiel Jr., Ekluardo, Emesto, Silvia and Aida, and thirteen 
grandchildren. His first wife, Susanna Guidote Sevilla, died in 1956. 
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