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EXTRAPOLATING, SMOOTHlNG, AND INTERPOLATING 
DEVELOPMENT FACTORS 

RICHARD E. SHERMAN 

Abstrtrct 

The purpose of this paper is to provide a practical handbook describ- 
ing simple yet accurate methods of extrapolating. smoothing, and inter- 
polating development factors. It will focus on the inverse power curve. 
its properties, and examples of fits obtained to various types of loss 
experience. It will also illustrate usage of the inverse power curve in 
addressing a variety of actuarial problems. including the following: 

* A lack of mature development experience. 
. A lack of credible loss development data. 
* Loss data at interim evaluation dates. 
* Loss experience at odd. inconsistent evaluation dates. 
* A need to break down annual development into quarterly or 

monthly segments. 

The objective of this paper is to enhance the reader’s capability in 
analyzing loss development. 

INTKODCICTION 

Development factor analysis is fundamental to most actuarial studies for 
ratemaking and reserving purposes. It is the purpose of this paper to materially 
enhance the reader’s capability in analyzing loss development. A simple, general 
mathematical function, the inverse power curve, v:ill be presented that usually 
fits loss experience as well as or better than other functions in common use 
today. Comparisons of goodness of lit using the inverse power curve and various 
other functions have been made based on incurred and paid losses, reported and 
paid claim counts, and primary and excess experience for workers’ compensa- 
tion, medical malpractice, automobile and general liability. automobile physical 
damage, fidelity, and surety. This is not a theoretical treatise so much as it is a 
practical guide aimed at presenting simple yet very accurate methods of extrap- 
olating, smoothing, and interpolating development factors. WC will focus on 
effective approaches to dealing with the following common actuarial problems: 
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* The most mature experience available still indicates the clear potential for 
further development (either upward or downward) to an ultimate basis. 

* Only two or three development factors are available in the loss history, 
but there is still a need for a full profile of future loss development. 

* Development factors for the later stages of development are sparse or 
fluctuate significantly and the reliability of selecting factors for the most 
mature stages of development on the basis of one or two historical factors 
is openly questionable. 

* A given body of development data is based on relatively few claims and 
must be credibility weighted with external data sources while still pre- 
serving the unique characteristics of that experience. 

* All prior development experience is on a year-end basis, but there is a 
need to incorporate the latest evaluation which is at some point in the 
middle of the year. 

* Available loss experience is at odd, inconsistent evaluation dates. 

* There is a need to estimate quarterly or monthly development, but only 
annual data is available. 

* Accident or report quarter development factors are needed, but only annual 
factors for accident or report years are available. 

An approach to dealing with each of these problems will be described in 
various sections of this paper. Although the examples in this paper are illustrated 
with the use of one type of mathematical function, many of the techniques can 
be used with a wide variety of other functions. 

SECTION I 

EXTRAPOLATION OF INCURRED LOSSES AND PAID LOSSES USING THE INVERSE 

POWER FUNCTION 

The availability of a simple family of curves that closely fit loss development 
factors of all types for any line of business would be instrumental in advancing 
the quality of reserve and ratemaking analysis. Research indicates that the family 
of curves of the form, 1.0 + a(t + c))‘, which we shall call inverse power 
curves, comes closer to filling this need than other functions in use today. For 
example, a comparison of paid loss development factors for workers’ compen- 
sation (accident year 1969 for the Wausau Insurance Companies) with approx- 
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imations obtained by fitting the inverse power curve and tivc other mathematical 
functions is provided below. 

Development Factors 

Year of 
Develop- 

ment AWlal ~ __ 

2:l 1.920 

312 1.228 

413 I.098 

5:4 I .os I 

65 I .036 

716 I .02s 

8:7 I .OlY 

9:X I.014 

IO:9 1.01 I 

II:10 1 .ooY 

l2:l I 1.008 

Chi-Square 

Statistich 

Inverse 
Power McClenahan’ 

1.88Y 

1.224 

I.100 

I.056 

I .036 

I.025 

I.018 

1.014 

I.01 I 

I .OOY 

1.008 

,001 

2. x40 
I .32Y 

I.131 

I .061 

I.031 

l.Olh 

1.008 

I.004 

I.002 

I.001 

I.001 

,307 

Geo- 
metric’ 

I .6X3 

I.277 

I.147 

1.08X 

I .oss 

I .03s 

I.023 

I.015 

I.010 

I.007 

I .005 

,039 

EXpu- 

nential 

Decay ’ 

Log- 
Normal” 

LO&S 
rithmic’ 

1.309 

I.202 

I.133 

I.087 

I .os7 

I .037 

I ,025 

I.016 

1.01 I 

I .007 

I.005 

,289 

I .37x 

I.190 

I.112 

I .073 

I .os I 

I.036 

I .02X 

I .022 

I.016 

I .OL3 

1.01 1 

,316 

I.409 

1.16X 

1.103 

I .072 

1.054 

I.044 

1.037 

I.032 

I.026 

1.024 

I.021 

.lYl 

’ Obtained bq lilting an exponenttal curw ol the torm. v = ~(‘1”. to the development lactor\ les 

one. 

J Derived by titting a log-normal dlstrlbutton tu the cumulative paymcnth dlstrlbutwn. and then 
expressing the tittrd distribution in terms of development (II‘ Iactor\ 

’ Based on fitting a logarithmic curve of the lorm. \ - u t h Inr. to the cumulattvc payments 
distribution. and then expressing the tittrd distribution in term\ of development factor\. 
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The chi-square statistic for goodness of fit is substantially better for the 
inverse power curve than for the other functions. Similarly, the size of errors 
for the inverse power curve is also significantly less, as shown below. 

Comparison of Curve Fit Errors 

Year of 
Develop- 

ment 

2: I 
3~2 
4:3 
.5:4 
6:s 
7:6 
8:7 
9.8 

IO:9 
II:10 
12:ll 

Average Absolute 
Error 

Inverse 
Power 

-.03l 
- .004 
+ ,002 
+ .005 

,000 
,000 

-.OOl 
.ooo 
,000 
,000 
,000 

,004 ,102 ,037 ,068 ,061 ,065 

Expo- 
Geo- nential Log- Loga- 

McClenahan metric Decay Normal rithmic ---- 

+ .920 -.237 -.6ll -.542 -Sll 
+.I01 + ,049 - ,026 -.038 -.060 

+ ,033 +.049 t .035 +.014 + ,005 

+.010 + ,037 + ,036 t.022 +.021 

- .005 t ,019 t.021 t.015 +.018 

- ,009 +.010 +.012 t.01 I t.019 

-.Oll +.004 +.006 +.009 t.018 
-.OlO +.001 t.002 +.008 +.018 
- .009 -.OOl ,000 t .005 +.01.5 
- ,008 - ,002 -.002 +.004 t.015 

- ,007 - ,003 -.003 +.003 +.013 

Another test of the appropriateness of various functions is the factor to 
ultimate they indicate. For this purpose we will truncate any development 
indicated past 80 years (since all permanent disability claimants will presumably 
have died within this period.) A comparison of development factors from 12 
years to 80 years of development is as follows: 

Indicated by Case Reserves I .086 
Inverse Power Curve 1.076 
McClenahan 1.007 
Geometric 1.011 
Exponential 1.009 
Log-Normal I .047 
Logarithmic 1.537 

In the above example, historical patterns have shown that case reserves are 
adequate to cover IBNR losses as well as changes in reported reserves. 
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These results are representative of comparisons performed on both paid and 
incurred losses for most lines of business. This paper will focus on illustrating 
the usage of the inverse power curve to address a wide range of actuarial 
problems. 

In the following example, incurred losses for an isolated accident year will 
be extrapolated to an ultimate basis using an inverse power function. The only 
information we are given is incurred losses for automobile bodily injury liability 
for accident year 1978 at the following evaluation dates: 

Evaluation Incurred Development 
Date Losses Factor 

1213 1178 $ 8,479,OOO - 
12/31179 I3.380,OOO I .578 
I 213 I180 34,678,OOO 1.097 
12131181 IS, 147,000 1.032 

We will fit an inverse power curve to the development factors so that the factor 
at age I will be approximated by (I + (11 “). 

This fit can be performed in a least squares sense on a computer. For the 
sake of simplicity we will illustrate another method for fitting this curve which 
involves the use of only natural logarithms, exponentials, and linear regression. 
This method is displayed in Exhibit I First, we compute the reciprocals of each 
age of development (I) and we subtract I .O from each incurred loss development 
factor. The natural logarithms of l/l and each development factor minus one 
are then calculated. A linear regression is then performed with In (l/r) as the 
independent variable (x) and Mfactor ~ I .O) as the dependent variable (J). In 
this case, the coefficient of determination (goodness of fit) was .99887. The 
values of (I and b were obtained from the linear least squares trend line (J = 
n + b.r) as 2.33259 and 4.19024, respectively. These parameters give us the 
following equation for the incurred loss development factor at age t: 

1 .O + 10.30360r? “)“14, 

The extrapolated estimates in Exhibit 1 were easily obtained by first computing 
I/r and In( lit) for each future age of development and then using the relationship 

In (development factor - 1.0) = In N + h In( lit) 

from the linear regression to obtain the projections in column (4). These pro- 
jections were then exponentiated to obtain the projected development factors 
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(less one) in column (2). By adding one to each of these projected factors and 
taking their product, we obtain a factor to ultimate of 1.0257. This factor, when 
applied to the latest value of incurred losses for accident year 1978 of 
$15,147,000, yields an estimated ultimate incurred loss of $15,536,445. 

Exhibit 2 provides a comparison of actual and fitted incurred loss develop- 
ment factors for automobile bodily injury liability, general liability, and workers’ 
compensation over 10 to 15 years of development. 

The goodness of fit of the inverse power curve can often be improved by 
adding a third parameter, making the function of the form: 

1.0 + a (t + c)+ 

In this case, we define a function, f(c), to be the coefficient of determination 
(/?‘) of the above inverse power curve. The value offic) is estimated for a wide 
range of values of c and a local maximum can be found by numerical analysis 
techniques. For example, in Exhibit 2, c = - 1 was used for general liability. 
This technique is often useful in obtaining a better fit for the earlier periods of 
development than for later periods. Variations in the c parameter usually have 
little impact on the projected factors for later periods of development, but have 
a major effect on varying the shape of the inverse power curve for the earliest 
periods of development. As an alternative to letting c = - I, we may simply 
redefine the values of t. For example, for the 2: 1 development factor, we have 
defined t as being equal to 2 (its value at the end of the period of development). 
Alternatively, defining t as its value at the beginning of each development period 
would result in setting c =0 for the examples in Exhibit 2 and would eliminate 
this third parameter. 

To continue the previous example and to illustrate the versatility of the 
inverse power function, it will next be used to extrapolate paid losses to an 
ultimate basis using only the following information: 

Evaluation Incurred Development 
Date Paid Factor 

1213 l/78 $ 3,071,oOO - 
1213 l/79 8,603,OOO 2.801 
1213 l/80 11,941,OftO 1.388 
12131181 13,541,OOO 1.134 

The method is identical to that used in projecting the incurred factors above 
and is illustrated in Exhibit 3. A coefficient of determination of .99998 was 
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obtained, indicating an excellent fit. The product of all the extrapolated factors 
in column 2 is 1 1393 indicating an estimated ultimate loss of $15.427,261 . . . 
($13,541,000 X I. 1393). This closely compares with the incurred projection of 
$ I5,536,445 developed above. 

SIX’TION II 

SOME PROPERTLES OF ‘THE INVERSE POWER FUNCTlON 

The inverse power curve possesses a characteristic which is essential to 
obtaining close approximations to actual loss development factors. To show 
this, let us define some terms. Let n, represent the development factor for the 
ith period of development. Let B, be the “decay” ratio between (c!, ~ 1 .O) and 
(d,-, - 1 .O). We have observed that a common characteristic of loss develop- 
ment data of any type is that B, tends to increase asymptotically to 1 .O as i 
increases. This pattern can be vcriticd from Exhibit 2 for general liability 
incurred losses as follows: 

Decay Ratios (H,) 

Years of 

Development Actual Smoot bed’ 
Inverse 
Power 

4 
5 
6 

8 
9 

10 
II 
12 
13 
14 
IS 

.333 

.663 
,416 
,506 
,846 
.87Y 

I .034 
.633 
.737 

1.143 
,813 
,923 
,667 

,451 
.SlY 
,563 
7'1 &- 

.')I6 
,832 
.7x5 
.x1 1 
.X81 
.9X) 
,794 

,300 

,496 
,606 
,675 
,741 
,765 
,794 
,814 
x34 

.x4x 

.860 
,870 
.x79 

- Each smoothed decay ratio IS the third root of the product ot the corresponding actual l’actor and 
the immediately preceding and immediately succeeding t’xtor For example. .45 I = f.333 x 
,663 x ,416)’ ’ This is also equivalent to taking the third root of the deca) ratio hetueen a given 

development factor minus one (d, ~ I.01 and the third wbequent development factor mmus one 

Cd,+, - 1.0). For example, ,451 = CO77 .8X))’ ‘. Both \moothmg formulae xe bed on the 
assumption that there is a constant decay ratio applicable o\er a three-year period. 
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The inverse power curve satisfies this condition since 

B, = 

and it is clear that (1 - ( l/i))h increases to I .O as i increases. 

One simple method of tail analysis assumes that B, is constant (at least for 
the later periods of development). It is much more common for the decay ratios 
to increase than it is for them to remain constant. However, usage of a constant 
B, (with a B, based on more mature experience) can often serve to provide a 
lower bound for projections of future development. 

In loss development experience we have reviewed, the earliest decay ratios 
are usually very low (.2 to .4) rising to the .7 to .9 range for later periods. It 
is this property of the inverse power curve which yields generally better tits 
than other functions. For example, consider the following comparison of decay 
ratios for the functions compared at the beginning of this paper. 

Decay Ratios 

Year of 
Develop- 

ment Actual 

3 ,248 ,252 ,179 .406 .654 ,503 ,411 
4 ,430 ,446 ,398 ,531 ,654 ,589 ,613 
5 .520 ,560 ,466 ,599 ,654 ,652 ,699 
6 ,706 ,643 ,508 ,625 ,654 ,699 ,750 
7 .694 ,694 ,516 ,636 ,654 ,706 ,815 
8 ,760 ,720 ,500 ,657 ,654 ,778 ,841 
9 ,737 ,778 ,500 ,652 ,654 ,786 ,865 

IO ,786 ,786 ,500 ,667 ,654 ,727 ,813 
II ,818 ,818 .soo ,700 ,654 .813 .923 
12 ,889 ,889 1.000 .714 .654 .846 ,875 

Inverse 
Power McClenahan 

Geo- 
metric 

Expo- 
nential 
Decay 

Log- 
Normal 

Loga- 
rithmic 

While many functions can fit loss development factors well over some 
segment of the history of development, few provide good fits over the entire 
history. It is the properties of the inverse power curve in terms of decay ratios, 
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as noted above, as well as its flexibility in fitting the very large factors common 
at early stages of development, that make it a natural candidate for development 
factor analysis. 

Years of 
Development 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

First 2 
Factors 

1.839 
1.279 
1.146 
1.093 
I .065 
I.049 
I.038 
I.031 
I.026 
1.022 
1.019 
1.016 

Extrapolation Based on 

First 3 First 4 
Factors Factors 

I ,810 1.874 
I ,307 I.283 

1 .173 I.146 
I .I I7 I.092 
I ,085 1.064 
I ,066 I .048 
I ,053 ,037 
1 ,044 ,030 
1 ,037 ,025 
I ,032 .071 
I ,028 .01x 
I ,025 .OIS 

I4 I.014 1.022 I.014 
I5 I.01 I I ,020 I.012 

Because of the behavior of the decay ratios of the inverse power curve and 
their correspondence to this type of phenomenon in actual loss development 
experience, it is usually possible to obtain relatively good approximations of 
factors for later periods based solely on extrapolations of factors for earlier 
periods. For example, consider the general liability data in Exhibit 2 and 
extrapolations based only on the earliest factors: 

Actual 
Factors 

1.839 
I.279 
I. 185 
I.077 
I.039 
I .O33 
I .029 
1.030 
1.019 
I.014 
I.016 
I.013 
1.012 
I.008 

Naturally. the reliability of such projected factors is limited by the high degree 
of variability inherent in the first few factors and the sensitivity of any extrap- 
olation technique to such variability. 

While it would be highly desirable to derive a closed-form equation for the 
product of all extrapolated development factors as an estimate of the age-to- 
ultimate factor, the author has been unable to solve this problem. A simple 
program can be written to perform this otherwise cumbersome set of computa- 
tions. 
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SECTION 111 

FITTING THE INVERSE POWER CURVE TO INCURRED LOSSES FROM THE 

REINSURANCE ASSOCIATION OF AMERICA EXPERIENCE 

As an example of the goodness of fit of the inverse power function to excess 
experience, we have fitted curves to average incurred loss development factors 
from the 1983 edition of the Loss Development Study of the Reinsurance 
Association of America. In order to reduce fluctuations in this data before 
performing the curve fits, the mean factor for the latest IO years was obtained 
for each year of development. 

The curve fits shown in Exhibit 4 indicate that significant upward develop- 
ment is indicated beyond the most mature experience available for medical 
malpractice and workers’ compensation. Upward development of 36.0% is 
projected for medical malpractice from 14 to 25 years of development. Upward 
development of 18.5% is estimated for workers’ compensation from 25 to 50 
years of development, which would no doubt be due to increasing medical costs 
and benefit changes on permanent disability cases. 

SECTION IV 

PROJECTING LOSSES IN A DYNAMIC ENVIRONMENT USING THE TWO- 

DIMENSIONAL INVERSE POWER FUNCTION 

The accurate projection of losses in a dynamic environment can best be 
accomplished if a two-dimensional function can be found which closely ap- 
proximates recent historical experience and which does not exhibit any detect- 
able bias for any portion of that experience. In this section, the two dimensional 
inverse power function will be presented and tested and its derivation detailed. 
In keeping with the guidelines set forth earlier for keeping all analyses simple, 
we have limited our analytic tools to exponentials, natural logarithms, and linear 
least squares trend lines. The results are not perceptibly different from those 
which would be obtained from a computerized two-dimensional least squares 
fit and the added advantage of being able to perform all computations on a 
pocket calculator is achieved. 

The data used in this test consisted of paid loss development factors for 
workers’ compensation for accident years 1955 to 1980 from the Wausau 
Insurance Companies. The factors extended out to 12 years of development. 
The resultant two-dimensional inverse power curve took the following form: 

PLDFAy., = I.0 + (.819663 + .000983AY)t’-3.9”=’ + .027946An 
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Exhibit 5 provides a comparison of the actual and litted factors using the above 
function. 

In this equation. t represents the year of development of the given paid 
factor minus I .O. Thus, for the 2:1 factor. t equals I .O. This is equivalent to 
setting c = 1 .O for the three-parameter function. AY represents the accident 
year. expressed in years since 1900. (Since each set of coefficients is defined 
in terms of a linear relationship, it does not matter how AY is defined in terms 
of the initial year.) For example, for accident year 1967, AY = 67. The above 
two-dimensional function may be viewed as a family of one-dimensional inverse 
power curves. Sample curves are as follows: 

Accident Year Inverse Power Curve 

I957 I.0 + .876t ’ “’ 
1962 1.0 + .88lr-’ I”) 
1967 I .O + .886r ’ ““’ 
1972 1.0 + .890r ’ xyy 
1977 I .O t .895r ’ 7h’b 

The above two-dimensional equation was derived by first estimating one-di- 
mensional inverse power curves for the average factors for each of the following 
groups of accident years: 

1955-1959 
1960-1964 
1965-1969 
1970-1974 

From these fits, the following inverse power curves were obtained: 

Accident Goodness 
Years Inverse Power Curve of Fit 

1955-59 PLDF, = 1.0 + .877134r ’ “‘3hi .997336 
1960-64 PLDF, = 1.0 + .880757t ’ ““” .998984 
1965-69 PLDF, = 1.0 + .8X075& “‘1735-1 .999826 
1970-74 PLDF, = I.0 t .X93510rm’ ‘“““’ .9’)8100 

Linear regression analysis was then applied to the set of coefficients of t. with 
AY as the independent variable, to obtain the equation: 

Coefficient oft for accident year AY = .Xl9663 + .O@O983 AY. 

Likewise. a linear trend line was fitted to the exponents of t. 
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Exhibit 6 provides a test of potential bias which might result from fitting 
the two-dimensional function to the triangle of factors. There does not appear 
to be any detectable bias since there are not significant contiguous areas of the 
triangle for which the signs of the errors are consistently positive or negative. 

SECTION V 

SELECTING DEVELOPMENT FACTORS FOR THE MOST MATURE PERIODS OF 

DEVELOPMENT WHEN CREDlBlLlTY IS LOW 

The top portion of Exhibit 7 presents the commonly accepted method for 
selecting development factors for the most mature periods of development. The 
arithmetic mean of these factors for each period of development is selected- 
unless that mean appears too far out of line. We might, for example, want to 
temper the 6:5 factor because of its unexpected magnitude. 

Let us consider the reasonableness of this common practice. Of all of the 
mean Y:X factors, the mean factors for the earlier periods of development are 
often more reliable indications of future development factors (unless some clear 
trend is present or the magnitude of development is large) than the later mean 
factors. The earlier mean factors are the average of a greater number of indi- 
vidual factors, each of which is the end result of more claims transactions than 
those for the later factors. For example, consider the following history of 
incurred loss development. 

Accident 
Year 

1976 
1977 

Incurred Losses (000’s) 

I 2 3 4 5 6 

1,234 2,340 2,789 2,873 2,841 3,517 
1,462 2,506 3,185 3,507 4,07 1 

1978 1,618 2,657 3,459 3,684 
1979 1,824 2,740 3,378 
1980 1,943 3,087 
1981 2,120 

Ratio of Total 13,330 12,8l I 10,064 6,912 
Incurred Losses 8,081 10,243 9,433 6,380 
Dollar Weighted I .650 I.251 I .067 I .083 
Average Development Factor 

Relative Volume of Losses on which Average Factor is Based: 

Numerator l.ooO .961 ,755 ,519 
Denominator ,789 I .ooo ,921 ,623 

3,517 
2,841 
1.238 

,264 
,277 
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In the above example, the reliability which should be assigned to each 
successive factor (after the first) declines sharply. How do we recognize this in 
the commonly accepted procedures’? Not only is it often not recognized, it is 
usually violated to a successively greater extent as factors are selected for the 
later periods of development. This process is culminated by placing full reliance 
on the sole factor available for the oldest period of development. Furthermore, 
this one factor is heavily impacted by only a few, generally large, claims. 

An alternate method of selecting factors is displayed in Exhibit 7. As 
commonly done, the mean factors are first computed. An inverse power curve 
is then fitted to the mean factors for the tirst two periods of development to 
project the 4:3 factor. (Alternatively, the inverse power curve could be fitted to 
all the individual factors.) The selected factor (1.1 10) is then determined as the 
weighted average of the inverse power curve projection (1.125) and the arith- 
metic mean of the actual 4:3 factors (I ,065). In this simple example. the weights 
used are the number of actual factors on which each estimate is based. In the 
case of the arithmetic mean, three factors were used in computing the mean 
and a weight of three is assigned to 1.065. Nine factors underlie the inverse 
power curve projection (five 2:1 factors and four 3: 2 factors) and its estimate 
of 1. I25 is assigned a weight of nine. 

The above process is then repeated, with the next inverse power curve fitted 
to the first two mean factors and the selected 4:3 factor of I. 110. The projected 
factor of I .063 from the curve fit is given a weight of 12, versus a weight of 2 
for the mean factor of 1.075. The weighted average of 1.065 then becomes the 
selected factor. This process can be repeated ad infinitum to select development 
factors of greater stability and accuracy than can be typically obtained by 
selecting the mean factors for the most mature periods of development. 

Let us further suppose that we have another body of experience for the same 
line of business. How can this information be properly combined with the more 
specific, but less credible data we have just analyzed‘? Of many approaches 
tried, the following appears to possess the greatest validity. We begin by 
comparing the residual factors (i.e., the development factor less 1.0) corre- 
sponding to the development factors: 
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Years of Residual Factors 

Development Company “Industry” Ratio 

135 

2:l .669 .483 1.385 
312 .250 .167 1.497 
4:3 .I10 .094 1.170 
5:4 .065 .046 1.413 
6~5 .054 .033 1.636 

The arithmetic mean of the above ratios is 1.420; the median is 1.413; the 
arithmetic mean of the 3 middle ratios is 1.432. The stability of these ratios 
suggests that the company’s residual factors tend to be about 42% higher than 
the “industry’s,” We may then use this assumption to further smooth the selected 
factors, and, perhaps more importantly, to project the development factors at 
later, yet to be experienced, stages of development: 

Years of “Industry” Smoothed Company 
Development Factors Factors 

2:1 I.483 I .686 
312 1.167 1.237 
413 1.094 
514 1.046 
615 1.033 
7:6 1.028 
8:7 1.019 
9:8 1.012 

.I33 

.065 

.047 

.040 

.027 
,017 

SECTION VI 

ESTIMATING QUARTERLY DEVELOPMENT FACTORS FROM ANNUAL FACTORS FOR 

A GIVEN ACCIDENT(REPORT)YEAR 

In this section, a method will be presented for estimating quarterly devel- 
opment factors for a given accident (or report) year based only on annual 
development factors. The inverse power function is again used extensively. 
Applications for this technique appear in subsequent sections and include: 
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1) How to incorporate loss development information at odd evaluation dates. 
An example of this would be the inclusion of’ loss data as of June 30, 
1983 in an analysis of annual development factors which are all at year 
end. 

2) How to analyze loss development when all evaluation dates are odd. As 
an example, we will perform an analysis on accident years 1979-1982 
incurred losses where the only data available is at the following evaluation 
dates: July 31, 1980. November 30. 1981 and April 30. 1982. 

3) Performing more precise discount calculations by translating annual de- 
velopment factors into quarterly or monthly factors. 

For simplicity in our current example. we will assume that the only infor- 
mation we have on accident year I980 loss payments for workers’ compensation 
is: 

Cumulative Paid Loss 
Evaluation Date Paid Losses Development Factor 

December 3 1, 1980 $I 1,300.(X)0 
December 3 I, 198 1 25,817,OOO 2.285 
December 3 I, 1982 35.040,000 1.357 

In actuality, we have used data which includes quarterly evaluation dates and 
development factors, but we shall pretend that we do not have this and attempt 
to approximate it from the above information. The process is started by deriving 
two initial approximations of quarterly factorsdjne for each annual interval. 
Consider tirst calendar year 1981. There are four quarterly development factors 
we want to estimate, with t (in quarters as of the end of each period) equal to 
5. 6, 7, and 8. The average t value for these factors is 6.5. We know that the 
product of these four quarterly factors is the annual factor of 2.285. A first 
approximation for the average of these four factors is the fourth root of 2.285, 
or 1.229. We assign this to the average t-value of these factors (6.5). Similarly, 
an average factor of 1.079 is estimated for 1982 and assigned to an average t- 
value of 10.5. With this, we have tw$o points with which to determine a two- 
parameter inverse power curve (1 .O + 14.583516 1 ’ 1”)7’2), which forms the 
basis for our first approximation of the quarterly factors: 

t Factor t Factor 

J 1.410 9 1.111 
6 I .275 10 1.088 
7 1.195 11 1.071 
8 1.144 1’ 1 .059 
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We note that in both cases, the product of these factors exceeds the annual 
factor, indicating the need for an improved approximation. 

2.458 = I.410 x 1.275 x 1.195 x 1.144 
1.371 = I.111 x 1.088 x 1.071 x 1.059 

In the first case, the actual annual factor of 2.285 is .9296 of the above product 
of 2.458. The fourth root of .9296 (.9819) gives us an “average” correction 
factor to apply to our first set of approximations for calendar year 1981. Instead 
of applying this adjustment, it would be more accurate to distribute the total 
adjustment in proportion to the development factors less I .O. 

.4lO + .275 + I95 + ,144 = 1.024 
1.0 - .9296 = .0704 

(.410/1.024) x .0704 = .0282 
(.275/l .024) x .0704 = .Ol89 
(.195/1.024) x .0704 = .0134 
(.144/l .024) x .0704 = .0099 

(1.0 - .0282) x 1.410 = 1.370 
(1.0 - .0189) x 1.275 = 1.251 
(1.0 - .0134) X 1.195 = 1.179 
(1.0 - .0099) X 1.144 = I.133 

After analogous adjustments to the quarterly factors for calendar year 1982, 
we have a full set of second approximations. We then fit an inverse power curve 
to this second set of approximations to smooth the factors and produce our third 
and final set of estimates. 

Approximations Actual 
t First Second Third Factors Error 

1 3.500 3.531 -.03l 
3 2.067 1.971 + .096 
4 1.585 I .657 - ,072 
5 1.410 I .370 1.366 1.382 -.Ol6 
6 1.275 1.251 1.251 1.245 + .006 
7 1.195 
8 1.144 
9 1.111 

IO 1.088 
II 1.071 
I2 I .059 

.I79 ,181 

.I33 .I37 

.I IO .I07 
,087 .086 
.070 .070 
.058 .058 

.I60 +.021 

.I45 - ,008 

.I I2 -.005 
,079 + .007 
.063 + ,007 
,064 - .006 
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The final set of approximations differs from the actual data to such a small 
degree that such differences may be attributable only to random fluctuations in 
the actual loss experience. If these approximations are used, we may, for 
example, refine present value calculations. 

Present Value at 8% as of January 1, 1980 

Payments During Based on Based on 
Calendar year Annual Payments Quarterly Payments 

1980 96.23% 95.36% 
1981 x9. IO 89.32 
1982 82.50 82.71 

89.66% X9.51% 

SEC‘I‘ION VII 

INCORPORATING LOSS DEVELOPMENT DATA FROM ODD EVAI.UATION DATES 

This section provides an application of the techniques of the last section to 
a very common problem. For illustration, let us assume that we have incurred 
losses for accident years 1980-82 as of each year end and have just received 
the latest evaluation (June 30, 1983). How do we incorporate this information 
which doesn’t tit in our standard triangle’? Without a systematic approach, this 
is typically a frustrating situation. 

Accident Incurred Losses (000’s) as of X Months of Development 

Year 12 24 36 48 

1980 $24,132 $40,746 $55,109 $62,328* 
1981 27,782 45,929 55,712* 
1982 26,368 36,704* 
1983 15,961* 

*as of June 30. 1983 

Accident Incurred Loss Development Factors 

Year 24:12 36:24 48:36 

1980 1.689 1.352 1.131* 
1981 1.653 1.213* 
1982 1.392* 

*6-months factors 



DEVELOPMENT FACTORS 139 

In the above situation, usage of the June 30, 1983 data seems particularly 
important since it provides half of the known development factors. The first 
step is to determine what time interval serves as the least common denominator 
for the time lags between any two successive evaluations. In this case, t is six 
months, so we define it in terms of six-month intervals. We use the same 
techniques as described in the last section to break down the annual data into 
semiannual factors. It may then be compared with the actual semiannual factors 
from the first half of 1983. 

Source of Factors 

Incurred Loss Development Factors (Y:X Months) 

12:6 18:12 24:18 30:24 36130 42:36 - - - - - - 

Breakdown of 1.352 1.243 1.182 1.144 
Annual Experience 
First Half of 1983 1.392 1.213 1.129 
Inverse Power Curve 1.618 1.368 1.255 1.192 1.152 1.125 
Fitted to All of 
the Above Factors 

The inverse power curve factors can then be used to project each year’s 
losses as of June 30, 1983 to 42 months of development as well as to extrapolate 
losses to ultimate. In the above approach, we have effectively used all of the 
loss history available to make projections. 

SECTION VIII 

ANALYZING LOSS DEVELOPMENT WHEN ALL EVALUATION DATES ARE ODD 

In the following example, we will deal with the analysis of loss development 
when the evaluation dates are completely inconsistent. For accident years 1979- 
82, the only evaluation dates available are July 3 1, 1980, November 30, 1981, 
and April 30, 1982. Since the dates are 16 months and 5 months apart, the least 
common denominator is one month and we must break down the data into 
monthly factors. We will denote each data point as a two-dimensional vector, 
with the first coordinate being the age of the accident year at the given evaluation 
date, and the second being incurred losses. 
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Accident 
Year (Months of Development, incurred Losses (000’s)) 

1979 (lY.2413) (35.3Y52) (40,4245) 
1980 (7,450) (23.3120) (78,366O) 
1981 (11,120l) (16.2134) 
1982 (4,123) 

Accident 
Year (Months of Development, Development Factor) 

1979 (35:lY. 1.643) (40:35, 1.073) 
1980 (23:7, 6.933) (28:23. 1.172) 
1981 (16:11, 1.777) 

For each development period, we derive a first approximation of a monthly 
incurred loss development factor for a month in the middle of the period by 
taking the nth root of the development factor, where 11 is the length of the interval 
in months. 

Accident 
Year (Months of Development, Development Factor) 

1979 (27.526.5. 1.032) (38:37. 1.014) 
1980 (15.5:14.5, I. 129) (26:25. 1.032) 
1981 (14:13, 1.122) 

An inverse power curve is then fitted to all of the above points to estimate 
monthly development factors up to 40 months. The factors from this curve are 
then accumulated to produce approximations of the actual factors. 

Accident 
Year (Months of Development. Development Factor) 

1979 (35:lY. 1.690) (40:35. 1.073) 
1980 (23:7, 10.753) (2X:23. 1.184) 
1981 (16:11, 1.965) 

In this first iteration. our approximations are all signifcantly too high and 
we adjust our estimated monthly factors by correction factors equal to the 11’~ 
root of the quotient of the actual factor to the approximated factor. For example, 
the approximation of (23:7, 6.936) is (23:7, 10.753), so the correction factor 
is the 16’h root of (6.936/10.753), or .973. Thus, the new monthly development 
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factor is revised from (15.5:14.5, 1.129) to (15.5:14.5, 1.129 X .973). With 
all of these new monthly factors, we fit another inverse power curve and estimate 
an entire new set of monthly factors, which are then used to approximate the 
known factors. This iteration process is repeated until there is no further im- 
provement in minimizing the sum of the squares of the differences between the 
approximated factors and the known factors. In this case, the final curve is 
(1.0 + 31.010659 ~C’.‘09h24 ) and the sum of the squares of the differences is 
less than .OOl. With a full set of monthly factors, losses as of 4, 16, 29 and 
40 months can be projected to ultimate. 

SECTION IX 

ESTIMATING QUARTERLY ACCIDENT QUARTER DEVELOPMENT FACTORS FROM 

ANNUAL ACCIDENT YEAR FACTORS 

It is sometimes desirable to estimate quarterly development factors for 
individual accident quarters, but the only data available is that of annual devel- 
opment factors for separate accident years. In this section we will illustrate a 
procedure for deriving such a refinement in loss development history. 

If quarterly factors are not available for each accident year, then they must 
first be estimated as in Section VI. We shall use the third approximation factors 
from that section as the starting point for our analysis. For simplicity, we will 
assume that the incurred (or paid) losses as of one quarter of development are 
the same for all four accident quarters. If di represents the ith development factor 
and 4 represents losses as of one quarter of development, then incurred losses 
by accident quarter and quarter of development are as follows: 

Accident 
Quarter 

1 
2 
3 
4 

Quarters of Development 

1 2 3 4 5 - - 

q 41 qddz qd,dzdJ qd, d,d,da 
q @I qd,dz qdAd3 qd,dzd& 
4 41 qd,dz q&&d3 qd,dzdA 
Y qdl qdtdz qddd qd,dldJdh 

From the above, we can derive equations for each of the quarterly factors for 
the accident year: 
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(q + qd,)/q = 3.500 
(q + qd, + qd,d$(q + qd,) = 2.067 
(q + qd, + qd,dz + qd,dzd3)/(q + qd, + qd,d,) = I.585 

(qd, + qd,dz + qd,dzdJ + qd,drdxd.z) = 1,366 
(q + qd, + qdldz + qdid~d~) 

These equations can be solved successively to produce a first set of approxi- 
mations of the quarterly accident quarter factors: 

cl, = 2.500 dq = 1.228 
dz = 1.494 ds = 1.237 
d, = 1.133 d, = I.132 

While these first approximations do not progress downward in a smooth 
fashion, an inverse power curve may be fitted to these approximations to add 
consistency. This second set of factors should be tested in relation to how 
closely they can reproduce the original accident year factors. 

SECTION X 

A SIMPLE. ALTERNATIVE METHOD FOR ESTIMATING DEVELoPMEN BEYOND THE 

MOST MATURE EXPERIEN(‘E AVAILABLE 

Because of the nature of the inverse power curve, it cannot be fitted to 
development factors less than 1 .O, since this would involve taking the natural 
logarithm of a negative number. If development is generally upward, but there 
is an occasional factor less than 1 .O, such factors can be removed by smoothing 
techniques (such as replacing d, by (d, , d,d,, ,)’ ’ or (d, ?dr ,d,d,+ ,d,+?)’ ‘). If 
incurred losses generally develop downward in some segment of the loss tri- 
angle, then an alternative method of extrapolation of losses is needed. Such a 
method is presented in this section. It is based on noting relationships between 
paid losses during a given development period (for a given accident or report 
period) and the change in outstanding losses during that same period. 

It will be helpful to first present some mathematical notation. Loss payments 
during the ilh period of development will bc denoted by P,, and outstanding 
losses at the end of the ith period of development by 0,. Incurred losses at the 
end of the tfh period of development are then equal to 0, + C: , P,. 

At the end of the tfh period of development, the ultimate value of unpaid 
losses is C:=,+, P,. We wish to find some equivalent expression for this in terms 
of 0,. Suppose that, after some stage of development, there is a constant 
relationship between P, and (Oi. l-0,). That is. P, = cx(O, l-0,). Then 
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j, P, = i acot-1 - = Ot)=CX C (O,-I-Oi)=CXOI 
i=,+ I !=I+ I 

since 0, decreases to zero as t increases. If we can determine the value of ~1, 
the runoff ratio, then we have a quick estimate of the ultimate value of unpaid 
losses (aO,), where 0, is the latest evaluation of outstanding losses. Estimating 
(Y is easy since we can obtain estimates of it for every development period and 
accident or report period: 

Cl = Pil(Ot-I-Oi) 

Suppose that we find that for the more mature periods of development that paid 
losses are generally 80% of the decline in outstanding losses. Then, assuming 
that the runoff ratio (a) is constant for all future periods of development, the 
ultimate value of unpaid losses is simply 80% of the latest value of outstanding 
losses. 

Exhibits 8 through 10 present this application of the method to automobile 
liability data. With the consistent pattern of downward development of incurred 
losses shown in Exhibit 8, there is a need to anticipate further favorable devel- 
opment for accident year 1975. Exhibit 9 displays the calculation of runoff 
ratios for accident year 1975 while Exhibit 10 displays all available runoff 
ratios. A runoff ratio of 60% was selected on the basis of Exhibit 10, and 
application of this ratio to the latest outstanding losses for Accident Year 1975 
produced an estimate ($3,919,000) of the ultimate value of outstanding losses. 
This estimate is equivalent to an incurred loss development factor to ultimate 
of .975, which has been applied in Exhibit 8. 

Exhibit 11 displays runoff ratios for a company with severely deficient 
reserves. It should be noted that the runoff ratios never stabilize and continue 
to increase with age. In this case, application of some of the higher runoff ratios 
may only provide a lower bound for an estimate of ultimate losses. 

Once the runoff ratios stabilize for all development periods beyond a certain 
point, the ultimate value of outstanding losses may be estimated by a0, for 
each of the accident or report years which have reached that stage of maturity. 

CONCLUDING REMARKS 

It is hoped that the research and practical applications presented in this paper 
can serve as a foundation from which others can make further advancements in 
the field of loss development analysis. 



144 DEVELOPMENT FACTORS 

EXHIBIT I 

EXTRAPOLATION OF INCURRED Loss DEVELOPMENT FACTORS 

USING AN INVERSE POWER FUNCTION 

AUTOMOBILE BODILY INJURY LIAHLITY-ACCIDENT YEAR 1978 

Age 

(1) 

2 
3 
4 

(1) 

!/I 

500 
,333 
,250 

(2) 
Incurred 

LOSS 
Development 
Factor - 1 .O 

0.578 
0.097 
0.032 

(3) 

In (lit) 

-0.693 
-1.100 
- 1.386 

(3) 

In (Development 
Factor - I .O) 

-0.548 
-2.333 
-3.442 

Extrapolated Estimates 

5 .200 
6 ,167 
7 ,143 
8 ,125 
9 ,111 

10 .I00 
II ,091 
I2 ,083 
13 ,077 
14 .07 I 
15 .067 

0.0122 ~ 1.609 -4.410 
0.0057 ~ 1.792 -5.176 
0.0030 - I.946 -5.822 
0.0017 -2.079 -6.379 
0.0010 -2.197 -6.873 
o.OQO7 -2.303 -7.318 
o.OQo4 2.39x -7.715 
0.0003 7.4X5 -8.080 
0.0002 -2.565 -8.415 
0.0002 -2.639 -X.726 
0.0001 -2.708 -9.015 

(I ) The least quares regression was perf~mmed on the data for ages 2, 3. and 4. as shown above. 
which has been rounded to three places 

(1) The extrapolated estimates were derived frwv the least quares trend line I) = (1 + ht), ufith 
u = 2.33259 and b = 4.19024. 
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EXHIBIT 2 

COMPARISON OF ACTUAL AND FITTED INCURRED Loss DEVELOPMENT 
FACTORS USING AN INVERSE POWER FUNCTION 

Years of 
Development 

2 
3 
4 
5 
6 
7 
8 
9 

IO 
II 
I2 
I3 
14 
15 

Goodness 
of Fit (R’) 

Parameters 
Cl= 
b= 
(‘= 

Auto Bodily 
Injury Liability 

Actual Fitted 

1.634 1.680 
1.094 1.077 
1.025 1.022 
1.008 1.009 
1.003 1.004 
1.003 I.002 
1.001 I.002 
1.000 1.001 
I.001 1.001 

.98462 .98278 .98551 

.68047 .88614 .48984 
3.14215 1.73380 1.62362 

- 1 .ooooo -1.00000 -1.00000 

General 
Liability 

Actual Fitted - - 

Workers’ 
Compensation 

Actual Fitted 

1.839 1.886 I.493 1.490 
I .279 1.266 I.167 1.159 
I.185 I.132 I .094 1.082 
I.077 I.080 1.046 1.052 
1.039 1.054 1.033 1.036 
I .033 1.040 1.028 1.027 
1.029 1.030 I.019 I.021 
1.030 1.024 1.012 1.017 
1.019 1.020 1.010 I.014 
1.014 1.016 I.011 I.012 
1.016 I.014 1.010 1.010 
I.013 I.012 1.009 . 1.009 
I.012 I.010 1.008 1.008 
I.008 1.009 1.007 1.007 

Notes 
I I) The actual factors above represent composite experience from five major carriers for each line 

of business. 
(2) The goodness of fit is measured by the coefficient of determination (R*). 
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EXHIBIT 3 

EXTRAPOLATION OF PAID Loss DEVELOPMENT FACTORS 

USING AN INVERSE POWER FUNCTION 

AUTOMOBILE BODILY INJURY LIABILITY-ACCIDENT YEAR 1978 

Age 
(0 

- 

(1) 

l/r 

(2) 
Paid Loss 

Development 
Factor - 1.0 

(3) 

In (l/t) 

(4) 

In (Development 
Factor - I .O) 

2 ,500 I.801 -0.693 +o.mx 
3 ,333 0.388 ~I.100 -0.941 
4 ,250 0.134 ~ 1.386 -2.010 

Extrapolated Estimates 

5 
6 

8 
9 

IO 
II 
12 
13 
14 
IS 

,200 0.0578 - 1.609 -2.850 
,167 0.029 I - 1.792 -3.536 
,143 0.0163 -1.946 -4.114 
.I25 0.0099 -2.079 -4.613 
,111 0.0064 -2.197 -5.055 
.I00 0.0043 -2.303 -5.453 
.091 0.0030 -2.398 -5.809 
,083 0.0022 -2.485 -6. I35 
,077 0.0016 -2.565 -6.435 
,071 0.0012 -2.639 -6.713 
.067 0.0009 -2.708 -6.972 

Note - 
The extrapolated estimates were derived from the least quareb trend line (J = (I + h.r), with 
a = 3.18478 and h = 3.75038. 



Years of 

Development 

2:1 

3:2 

4:3 

514 

6:5 

716 

817 

98 

IO:9 

II:10 

12:l I 

13:12 

14:13 

l5:14 

16:15 

17:16 

18:17 

19:1x 

2O:lY 

21:20 

22:21 

23:22 

24123 

25124 

Automobile General 

Liability Liability 

Actual* Fitted Actual* Fitted 
- __ - - 

1.760 1.619 2.300 2.290 

I .227 1.264 1.541 I .536 

I.100 I.123 1.295 I.287 

1.061 1.062 I.171 1.177 

I.031 I .033 1.109 1.119 

1.015 I.018 I.093 I .085 

1.015 I ,011 1.060 1.064 

1.008 1.007 1.046 1.050 

I.006 1.004 1.045 1.039 

l.O@O 1.003 I.039 I .032 

1.001 1.002 1.022 1.027 

1.001 1.001 I .024 1.022 

1.001 1.001 1.004 I.019 

l.ooo 1.001 1.019 1.016 

I.000 1.000 1.008 1.014 

1 .OOl 1.000 1.010 1.012 

,999 1.000 1.008 I.011 

l.ooo I.000 1.018 I .OlO 

I.000 I .ooo 1.004 1.009 

,999 1.000 1.005 I.008 

1.000 I.000 I.017 I .007 

I.000 I.000 l.ooo I .006 

1.000 l.ooO ,997 1.006 

1.000 1.000 1.000 1.005 

Medical 

Malpractice 

Actual* Fitted 

7.876 6.104 

2.172 2.480 

I.654 1.717 

1.334 1.429 

I.150 1.288 

1.156 I.208 

1.163 1.158 

1.120 1.124 

1.133 1.101 

1.023 1.084 

1.058 1.070 

1.090 1.060 

1.063 1.052 

1.089 1.046 

1.040 

I.036 

I.032 

1.029 

I.027 

1.024 

I .022 

1.020 

1.019 

1.017 

Workers’ 

Comoensation 

Actual* Fitted 

1.634 1.630 

I.285 1.287 

1.169 I.172 

1.134 1.11x 

1.092 1.088 

1.053 I .068 

I .055 1.055 

I .048 1.046 

I .039 I.039 

1.036 I .034 

I.014 1.029 

1.017 1.026 

1.030 1.023 

1.023 I.021 

1.016 1.019 

1.032 I.017 

1.005 1.016 

1.021 I.015 

I.015 I.014 

I.037 1.013 

,996 1.012 

1.038 1.011 

I.026 1.010 

1.018 1.010 

* These factors are the average of the latest IO accident years for each given year of development from the 1983 edition of the 
RAA‘ 5 h.~ ~~~~~~~~~~~~~~~ sfudx. 



Accident 

Year 

1955 

1956 

1957 

19.58 

1959 

1960 

1961 

1962 

1963 

1964 

1965 

I966 

1967 

196X 

I969 

1970 

1971 

1972 

1973 

I974 

lY75 

1976 

I977 

1978 

I979 

Paid Loss Development Factory 

2:l 

Fitted Actual 

I .x32 I.874 

I .x07 I .x7.5 

I .X69 I .X76 

I .H63 I.877 

I .x52 I.878 

I.897 1.874, 

I .8X4 I.880 

1.x71 I.881 

I.934 I.882 

I .x27 I.883 

I.856 I.884 

I .x07 I .8X5 

I .x5x I .X86 

I .x7”) I .8X7 

I .Y’(I I .xx7 

I .x70 I .xxx 

l.Xli I .XXY 

I ,906 I .8YO 

I.067 I.801 

I ,026 I .XY? 

2.0’7 I .XY3 

! .923 I .8Y4 

1.892 I .XYS 

I.892 I .X96 

I.903 I .x97 

3:2 

Actual Fitted 
__ ~ 

I. I60 1.164, 

I.167 I.172 

I.161 I. 176 

I.182 I.179 

I.178 I.183 

I.181 I.187 

I. 1x9 I.191 

I.201 I.195 

I ,206 I.199 

I.198 I ,203 

I 21’ I 707 

I ‘1.7 I.211 

1.21s I 716 

I .“Y b& I.220 

I 22x I 22-t 

1.2lY 1.224, 

1.2’1 1.734 

I .?-I0 I .13Y 

I .24Y I.744 

I .‘S3 1.740 

I.269 I.254 

I.260 I.759 

I.242 I.264 

I.248 I.770 

4:3 S:4 

Actual Fitted Actual Fitted 

I .06S I.064 I.032 I.033 

1.064 I.066 I.042 I.034 

1.067 1.069 I.033 I .03S 

1.079 I.071 I.030 1.037 

I.075 I .073 I.035 1.038 

1.073 I .07s I.037 I ,040 

I.079 I .078 I.047 I.041 

I.073 I .0x0 I.045 I.043 

I .08X I.083 I.042 I.045 

I.074 I.086 I.045 I.037 

I 086 I .08X I .w4 I.048 

I .OYO I .OYI I .ostl I .OSO 

I 097 I.094 I .oso I .os2 

I.100 I .OY7 I.060 I.055 

I 09x I.100 I .OS I I.057 

I.091 I.104 I .oss I.059 

I.093 I I07 I.056 I.Ohl 

I.lIO l.llO I .(I62 I .064 

I.123 I.114 I.071 I.067 

I.117 l.llX I .U73 I.069 

I.130 I.122 I.076 I.072 

I.125 I.126 I.071 I.075 

I.124 I.129 

6:5 7~6 

Actual Fitted 
__ ~ 

I.017 I.019 

I.024 I .K?o 

I .02s I.021 

I.023 I .022 

1.023 I.023 

1.024 I.024 

1.024 I .025 

I.029 I.026 

1.028 I .02x 

I .02x I .O?Y 

I.023 I .030 

I .032 I.032 

1.034 I.033 

I .O?lS I.035 

I.036 1.036 

I .036 I 038 

I.040 I.040 

I 042 1.042 

I.047 I.044 

I 04x I .046 

I .05x I .04x 

Actual Fitted 

I.013 I.012 

I.017 I.013 

I.017 I.014 

I.016 I.014 

I.015 I.015 

I.OIX I.016 

I.016 I.017 

I.022 I.018 

I .022 I.OIY 

I .OlY I .0x 

I .()I6 I .02 I 

I.023 I .(I72 

I.024 I .(I’3 

I .027 I.024 

1.0’5 I .0’S 

I 079 I.027 

I .02x I .02x 

I.035 I.030 

I 033 I.031 

I 074 I.033 



149 DEVELOPMENT FACTORS 

EXHIBIT 5 
(Continued) 

COMPARISON OF ACTUAL AND FITTED PAID Loss DEVELOPMENT FACTORS 

TWO-DIMENSIONAL INVERSE POWER FUNCTION (WORKERS’ COMPENSATION) 
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DEVELOPMENT FACTORS 

EXHIBIT 6 

TEST OF BIAS: SIGNS OF ERRORS 

FIT OF TWO-DIMENSIONAL INVERSE POWER FUNCTION 

TO WORKERS’ COMPENSATION PAID Loss DEVELOPMENT FACTORS 
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DEVELOPMENT FACTORS 

EXHIBIT 7 

ESTIMATION OF SELECTED DEVELOPMENT FACTORS 
USING THE INVERSE POWER CURVE 

Workers’ Compensation 
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Accident 
Year 2:l 

1976 
1977 
1978 
1979 
1980 

.896 
,714 
.642 
.502 
,589 

Average Factor I ,669 

Fitted Curve-First 2 Factors 
(ILDF = I.0 + 3.584t-24J') 

I.669 

Weight for Average Factor 

Weighted Factor 
(3112 x 1.065 + 9112 x 1.125) 

Fitted Curve-First 2 Average 
Factors and Weighted 4:3 Factor 
(ILDF = 1.0 + 4.117fm2582) 

1.683 1.238 

Weight for Average Factor 

Weighted Factor 
(2114 x 1.075 + 12114 x 1.063) 

Fitted Curve-First 2 Average 
Factors and Weighted 4:3 and 
5:4 Factors 

I .680 1.239 

VLDF = I.0 + 4.040rc2 572) 

Weight for Average Factor 

Weighted Factor 
(I/IS x 1.238 + 14/15 x 1.041) 

Selected Factors 1.669 I.250 

Incurred Loss Development Factors 

3~2 4:3 

1.192 
1.271 
1.302 
1.233 

1.030 
1.101 
1.065 

1.250 1.065 

1.250 1.125 

3112 

1.110 

I.113 

1.114 

I.110 

5:4 6:5 -- 

.989 1.238 
1.161 

1.075 1.238 

1.063 

2114 

1.065 

1.064 I.041 

l/15 

1.054 

I.065 I .054 



Automobile Liability 

Accident 
Year 1 ~ ____ 

1975 121,943 
1976 129,645 
1977 146,500 
1978 157,940 
1979 158,590 
1980 168,432 

Accident 
Year 

1975 
1976 
1977 
1978 
1979 

2: 1 3:2 4:3 514 6:5 

.9.59 .96X ,972 ,964 ,974 
,965 .971 .952 ,962 
,951 ,943 ,951 
.Y39 ,948 
,965 

Average Factor ,956 .958 ,958 ,963 .974 .975 

Incurred Losses (000’s) 
As of X Years of Development 

2 3 4 5 6 ____ ~ 

116,946 113.249 110,057 106,055 103,343 
125,138 121,514 115,652 I 11,277 
139,283 13 1,289 124,856 
148,253 140.551 
153,068 

Incurred Loss Development Factors 

Factor 
To 

Ultimate 

Projected 
Ultimate 
Incurred 
Losses 

,975 100,759 
,950 105,713 
.Y15 114.243 
,876 123,123 
.x39 128,424 
,802 135.082 



Automobile Liability 
Accident Year 1975 

Evaluation 
As of 

December 3 1, 

(1) 

Incurred 
Losses 

(2) 
Cumulative 

Paid 
Losses 

1975 $121,943 $36,710 
1976 I 16,946 60,839 
1977 113.249 74,393 
1978 110,057 85,877 
1979 106.055 92.707 
1980 103,343 96,840 

(3) (4) (5) (6) 
m 
rr; 

Unpaid Change in Change in Runoff ? 
Losses Paid Unpaid Ratio 5 x 

(l)-(2) Losses Losses (4M5) $ 
s 

8r E 
6 
2 

$85,233 
56,107 +$24,129 -$29,126 82.8% 

@ 2 
+ 2 38,856 + 13,554 - 17,251 78.6 cc 0 

24,180 + 11.484 - 14,676 78.3 
a 
7 2 E 

13,348 + 6,830 - 10,832 63.1 5 
6,503 + 4,133 - 6,845 60.4 i? 

Note 
Amounts in columns I through 5 are in thousands of dollars. 



Automobile Liability 

Accident 
Year 

1975 
1976 
1977 
I978 
197’) 

Runoff Ratio During X Year of Development 

2 3 3 5 6 

82.8% 78.6% 78.39 63.1% 60.47~ 
85.0 80.9 67.1 64.2 
x0.0 69.1 67.8 
77.0 72.3 
86.2 



Example Company Nearing Receivership 
Accident Year 1973 

(1) (2) (3) (4) 
Evaluation Cumulative Unpaid Change in 

As of Incurred Paid Losses Paid 
December 3 1, Losses Losses (1b--(2) Losses 

1973 $10.458 $ 2,987 $7,471 
1974 14,294 8,896 5.398 +$5,909 
1975 15,857 13,329 2,529 + 4,433 
1976 17,160 15,672 I .488 + 2,343 
1977 18,287 17,630 657 + 1,958 
1978 19,675 19,202 473 + 1,572 

(5) 
Change in 

Unpaid 
Losses 

(6) 
Runoff 
Ratio 
(4M5) 

-$2,073 
- 2,870 
- 1,040 
- 831 
- 184 

285 .O% 
154.5 
225.3 
235.6 
854.3 

Note 
Amounts in columns 1 through 5 are in thousands of dollars. 


