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EXTRAPOLATING, SMOOTHING, AND INTERPOLATING
DEVELOPMENT FACTORS

RICHARD E. SHERMAN

Abstract

The purpose of this paper is to provide a practical handbook describ-
ing simple yet accurate methods of extrapolating, smoothing, and inter-
polating development factors. It will focus on the inverse power curve,
its properties, and examples of fits obtained to various types of loss
experience. It will also illustrate usage of the inverse power curve in
addressing a variety of actuarial problems, including the following:

A lack of mature development experience.

A lack of credible loss development data.

Loss data at interim evaluation dates.

Loss experience at odd, inconsistent evaluation dates.

A need to break down annual development into quarterly or
monthly segments.

The objective of this paper is to enhance the reader’s capability in
analyzing loss development.

INTRODUCTION

Development factor analysis is fundamental to most actuarial studies for
ratemaking and reserving purposes. It is the purpose of this paper to materially
enhance the reader’s capability in analyzing loss development. A simple, general
mathematical function, the inverse power curve, wvill be presented that usually
fits loss experience as well as or better than other functions in common use
today. Comparisons of goodness of fit using the inverse power curve and various
other functions have been made based on incurred and paid losses, reported and
paid claim counts, and primary and excess experience for workers’ compensa-
tion, medical malpractice, automobile and general fiability, automobile physical
damage, fidelity, and surety. This is not a theoretical treatise so much as it is a
practical guide aimed at presenting simple yet very accurate methods of extrap-
olating, smoothing, and interpolating development factors. We will focus on
effective approaches to dealing with the following common actuarial problems:
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- The most mature experience available still indicates the clear potential for
further development (either upward or downward) to an ultimate basis.

Only two or three development factors are available in the loss history,
but there is still a need for a full profile of future loss development.

+ Development factors for the later stages of development are sparse or
fluctuate significantly and the reliability of selecting factors for the most
mature stages of development on the basis of one or two historical factors
is openly questionable.

A given body of development data is based on relatively few claims and
must be credibility weighted with external data sources while still pre-
serving the unique characteristics of that experience.

All prior development experience is on a year-end basis, but there is a
need to incorporate the latest evaluation which is at some point in the
middle of the year.

Available loss experience is at odd, inconsistent evaluation dates.

There is a need to estimate quarterly or monthly development, but only
annual data is available.

Accident or report quarter development factors are needed, but only annual
factors for accident or report years are available.

An approach to dealing with each of these problems will be described in
various sections of this paper. Although the examples in this paper are illustrated
with the use of one type of mathematical function, many of the techniques can
be used with a wide variety of other functions.

SECTION 1

EXTRAPOLATION OF INCURRED LOSSES AND PAID LOSSES USING THE INVERSE
POWER FUNCTION

The availability of a simple family of curves that closely fit loss development
factors of all types for any line of business would be instrumental in advancing
the quality of reserve and ratemaking analysis. Research indicates that the family
of curves of the form, 1.0 + a(t + ¢)~", which we shall call inverse power
curves, comes closer to filling this need than other functions in use today. For
example, a comparison of paid loss development factors for workers’ compen-
sation (accident year 1969 for the Wausau Insurance Companies) with approx-
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imations obtained by fitting the inverse power curve and five other mathematicai
functions is provided below.

Development Factors

Year of Expo-
Develop- Inverse Geo- nential Log- Loga-
ment Actual  Power  McClenahan'  metric®  Decay' Normal'  rithmic®

2:1 1.920 1.889 2.840 1.683 1.309 1.37% 1.409
3:2 1.228 1.224 1.329 1.277 1.202 1.190 1.168
4:3 1.098 1.100 1.131 1.147 1.133 1112 1.103
5:4 1.051 1.056 1.061 1.088 1.087 1.073 1.072
6:5 1.036 1.036 1.031 1.055 1.057 1.05t 1.054
7:6 1.025 1.025 1.016 1.035 1.037 1.036 1.044
8.7 1.019 1.018 1.008 1.023 1.025 1.028 1.037
9:8 1.014 1.014 1.004 L.O1S 1.016 1.022 1.032
10:9 1.011 1.011 1.002 1.010 101t 1.016 1.026
11:10 1.009 1.009 1.001 1.007 1.007 1.013 1.024
12:11 1.008 1.008 1.001 1.005 1.005 1.011 1.021

Chi-Square

Statistic® 001 307 039 .289 216 191

' Charles L. McClenahan, A Mathematical Model for Loss Reserve Analysis,” PCAS LXI1, 1975,
pp. 134-153.

* David Skurnick. Discussion of A Mathematical Model for Loss Reserve Analysis,” PCAS LXIHLL
1976, pp. 125-127.

' Obtained by fitting an exponential curve of the form, v = ae¢™. 10 the development factors less
one.

+ Derived by fitting a log-normal distribution to the cumulative payments distribution, and then
expressing the fitted distribution in terms of development of factors.

* Based on fitting a logarithmic curve of the form. v = a + b Ini. to the cumulative payments
distribution, and then expressing the fitted distribution in terms of development factors.

¢ Paul H. Hoel, Introduction 10 Mathematical Statistics, 1971, pp. 225-234.
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The chi-square statistic for goodness of fit is substantially betier for the
inverse power curve than for the other functions. Similarly, the size of errors

for the inverse power curve is also significantly less, as shown below.

Comparison of Curve Fit Errors

Year of Expo-
Develop- Inverse Geo- nential Log- Loga-
ment Power McClenahan  metric  Decay  Normal  rithmic
2:1 —.031 +.920 -.237  -.6l1 —.542 -.511
3:2 —.004 +.101 +.049 —.026 —.038 —.060
4:3 +.002 +.033 +.049 +.035 +.014 +.005
5:4 +.005 +.010 +.037 +.036 +.022 +.021
6:5 .000 —.005 +.019  +.021 +.015 +.018
7:6 .000 —-.009 +.010 +.012  +.011 +.019
8:7 —.001 —.01 +.004  +.006 +.009 +.018
9.8 .000 -.010 +.001 +.002 +.008 +.018
10:9 .000 —.009 —.001 000 +.005 +.015
11:10 .000 —.008 —.002 -.002 +.004 +.015
12:11 .000 —.007 -.003 -.003 +.003 +.013

Average Absolute

Error .004 102 .037 .068 .061 .065

Another test of the appropriateness of various functions is the factor to
ultimate they indicate. For this purpose we will truncate any development
indicated past 80 years (since all permanent disability claimants will presumably
have died within this period.) A comparison of development factors from 12
years to 80 years of development is as follows:

Indicated by Case Reserves

Inverse Power Curve
McClenahan
Geometric
Exponential
Log-Normal
Logarithmic

1.086
1.076
1.007
1.011
1.009
1.047
1.537

In the above example, historical patterns have shown that case reserves are

adequate to cover IBNR losses as well as changes in reported reserves.
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These results are representative of comparisons performed on both paid and
incurred losses for most lines of business. This paper will focus on illustrating
the usage of the inverse power curve to address a wide range of actuarial

problems.

In the following example, incurred losses for an isolated accident year will
be extrapolated to an ultimate basis using an inverse power function. The only
information we are given is incurred losses for automobile bodily injury liability
for accident year 1978 at the following evaluation dates:

Evaluation Incurred Development
Date Losses Factor
12/31/78 $ 8,479,000 -
12/31/79 13,380,000 1.578
12/31/80 14,678,000 1.097
12/31/81 15,147,000 1.032

We will fit an inverse power curve to the development factors so that the factor
at age ¢ will be approximated by (I + ar ").

This fit can be performed in a least squares sense on a computer. For the
sake of simplicity we will illustrate another method for fitting this curve which
involves the use of only natural logarithms, exponentials, and linear regression.
This method is displayed in Exhibit 1. First, we compute the reciprocals of each
age of development (1) and we subtract 1.0 from each incurred loss development
factor. The natural logarithms of I/t and each development factor minus one
are then calculated. A linear regression is then performed with In (1/¢) as the
independent variable (x) and In(factor — 1.0) as the dependent variable (y). In
this case, the coefficient of determination (goodness of fit) was .99887. The
values of a and b were obtained from the linear least squares trend line (y =
a + bx) as 2.33259 and 4.19024, respectively. These parameters give us the
following equation for the incurred loss development factor at age .

1.0 + 10.30460; * 19024

The extrapolated estimates in Exhibit | were easily obtained by first computing
1/t and In(1/¢) for each future age of development and then using the relationship

In (development factor — 1.0) = In ¢ + b In(l/1)

from the linear regression to obtain the projections in column (4). These pro-
jections were then exponentiated to obtain the projected development factors
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(less one) in column (2). By adding one to each of these projected factors and
taking their product, we obtain a factor to ultimate of 1.0257. This factor, when
applied to the latest value of incurred losses for accident year 1978 of
$15,147,000, yields an estimated ultimate incurred loss of $15,536,445.

Exhibit 2 provides a comparison of actual and fitted incurred loss develop-
ment factors for automobile bodily injury liability, general liability, and workers’
compensation over 10 to 15 years of development.

The goodness of fit of the inverse power curve can often be improved by

adding a third parameter, making the function of the form:

1.0+a@+o)%

In this case, we define a function, f(c), to be the coefficient of determination
(Rz) of the above inverse power curve. The value of f{c) is estimated for a wide
range of values of ¢ and a local maximum can be found by numerical analysis
techniques. For example, in Exhibit 2, ¢ =—1 was used for general liability.
This technique is often useful in obtaining a better fit for the earlier periods of
development than for later periods. Variations in the ¢ parameter usually have
little impact on the projected factors for later periods of development, but have
a major effect on varying the shape of the inverse power curve for the earliest
periods of development. As an alternative to letting ¢ =—1, we may simply
redefine the values of 7. For example, for the 2:1 development factor, we have
defined ¢ as being equal to 2 (its value at the end of the period of development).
Alternatively, defining ¢ as its value at the beginning of each development period
would result in setting ¢ =0 for the examples in Exhibit 2 and would eliminate
this third parameter.

To continue the previous example and to illustrate the versatility of the
inverse power function, it will next be used to extrapolate paid losses to an
ultimate basis using only the following information:

Evaluation Incurred Development
Date Paid Factor
12/31/78 $ 3,071,000 -
12/31/79 8,603,000 2.801
12/31/80 11,941,000 1.388
12/31/81 13,541,000 1.134

The method is identical to that used in projecting the incurred factors above
and is illustrated in Exhibit 3. A coefficient of determination of .99998 was
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obtained, indicating an exceilent fit. The product of ali the extrapoiated factors
in column 2 is 1.1393, indicating an estimated ultimate loss of $15,427.261
($13,541,000 x 1.1393). This closely compares with the incurred projection of
$15.536.445 developed above.

SECTION 1

SOME PROPERTIES OF THE INVERSE POWER FUNCTION

The inverse power curve possesses a characteristic which is essential to

btaining close approximations to actual loss development factors. To show
otamning close app 1S to actual los nent tactors. 1o
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this, let us define some terms. Let d; represent the development factor for the
i"™ period of development. Let B, be the “decay™ ratio between (d; — 1.0) and
(di—y — 1.0). We have observed that a common characteristic of loss develop-
ment data of any type is that B, tends to increase asymptotically to 1.0 as i
increases. This pattern can be verified from Exhibit 2 for general liability
incurred losses as follows:

Decay Ratios (B)

Years of Inverse
Development Actual Smoothed’ Power

3 333 300

4 .663 451 496

5 416 519 .606

6 .506 .563 675

7 .846 722 741

8 .879 916 765

9 1.034 832 794

10 .633 785 814

I 137 811 834

12 1.143 881 848

13 813 950 .860

14 923 794 870

IS 667 879

* Each smoothed decay ratio is the third root of the product of the corresponding actual factor and
the immediately preceding and immediatcly succeeding factor. For example, 451 = (333 x
663 X 416)'". This is also equivalent to taking the third root of the decay ratio between a given
development factor minus one (d; — 1.0) and the third subsequent development factor minus one
(divs — 1.0). For example. 451 = (.077:.839)' ', Both smoothing formulae are based on the
assumption that there is a constant decay ratio applicable over a three-year period.
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and it is clear that (1 — (1/§))" increases to 1.0 as / increases.

a(i)”®
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One simple method of tail analysis assumes that B, is constant (at least for
the later periods of development). It is much more common for the decay ratios
to increase than it is for them to remain constant. However, usage of a constant
B, (with a B, based on more mature experience) can often serve to provide a

lower bound for projections of future development.

In loss development experience we have reviewed, the earliest decay ratios
are usually very low (.2 to .4) rising to the .7 to .9 range for later periods. It
is this property of the inverse power curve which yields generally better fits
than other functions. For example, consider the following comparison of decay

ratios for the functions compared at the beginning of this paper.

Decay Ratios

Year of Expo-
Develop- Inverse Geo- nential Log- Loga-
ment Actual  Power  McClenahan metric  Decay  Normal rithmic
3 .248 252 179 .406 .654 .503 At
4 430 446 .398 531 .654 .589 613
5 .520 .560 466 599 .654 .652 699
6 .706 .643 .508 .625 654 .699 750
7 .694 .694 Sté .636 .654 706 815
8 .760 720 .500 .657 .654 778 841
9 737 778 .500 .652 .654 786 .865
10 786 186 .500 .667 .654 727 813
11 818 .818 .500 700 .654 813 923
12 .889 .889 1.000 714 .654 .846 .875

While many functions can fit loss development factors well over some
segment of the history of development, few provide good fits over the entire
history. It is the properties of the inverse power curve in terms of decay ratios,
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at early stages of development that make it a nalural candidate fo
factor analysis.

Because of the behavior of the decay ratios of the inverse power curve and
their correspondence to this type of phenomenon in actual loss development
experience, it is usually possible to obtain relatively good approximations of
factors for later periods based solely on extrapolations of factors for earlier
periods. For example, consider the general liability data in Exhibit 2 and
errqnnlmmn\ based nnlv on the earliest factors:

Extrapolation Based on

Years of First 2 First 3 First 4 Actual
Development Factors Factors Factors Factors
2 1.839 1.810 1.874 1.839

3 1.279 1.307 1.283 1.279

4 1.146 1.174 1.146 1.185

5 1.093 1117 1.092 1.077

6 1.065 1.085 1.064 1.039

7 1.049 1.066 1.048 1.033

8 1.038 1.053 1.037 1.029

9 1.031 1.044 1.030 1.030

10 1.026 1.037 1.025 1.019

11 1.022 1.032 1.021 1.014

12 1.019 1.028 1.018 1.016

13 1.016 1.025 1.015 1.013

14 1.014 1.022 1.014 1.012

15 1.011 1.020 1.012 1.008

Naturally, the reliability of such projected factors is limited by the high degree
of variability inherent in the first few factors and the sensitivity of any extrap-
olation technique to such variability.

While it would be highly desirable to derive a closed-form equation for the
product of all extrapolated development factors as an estimate of the age-to-
ultimate factor, the author has been unable to solve this problem. A simple
program can be written to perform this otherwise cumbersome set of computa-
tions.
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SECTION IH

FITTING THE INVERSE POWER CURVE TO INCURRED LOSSES FROM THE
REINSURANCE ASSOCIATION OF AMERICA EXPERIENCE

As an example of the goodness of fit of the inverse power function to excess
experience, we have fitted curves to average incurred loss development factors
from the 1983 edition of the Loss Development Study of the Reinsurance
Association of America. In order to reduce fluctuations in this data before
performing the curve fits, the mean factor for the latest 10 years was obtained
for each vear of development.

The curve fits shown in Exhibit 4 indicate that significant upward develop-
ment is indicated beyond the most mature experience available for medical
malpractice and workers’ compensation. Upward development of 36.0% is
projected for medical malpractice from 14 to 25 years of development. Upward
development of 18.5% is estimated for workers’ compensation from 25 to 50
years of development, which would no doubt be due to increasing medical costs
and benefit changes on permanent disability cases.

SECTION 1V

PROJECTING LOSSES IN A DYNAMIC ENVIRONMENT USING THE TWO-
DIMENSIONAL INVERSE POWER FUNCTION

The accurate projection of losses in a dynamic environment can best be
accomplished if a two-dimensional function can be found which closely ap-
proximates recent historical experience and which does not exhibit any detect-
able bias for any portion of that experience. In this section, the two dimensional
inverse power function will be presented and tested and its derivation detailed.
In keeping with the guidelines set forth earlier for keeping all analyses simple,
we have limited our analytic tools to exponentials, natural logarithms, and linear
least squares trend lines. The results are not perceptibly different from those
which would be obtained from a computerized two-dimensional least squares
fit and the added advantage of being able to perform all computations on a
pocket calculator is achieved.

The data used in this test consisted of paid loss development factors for
workers’ compensation for accident years 1955 to 1980 from the Wausau
Insurance Companies. The factors extended out to 12 years of development.
The resultant two-dimensional inverse power curve took the following form:

PLDF.y, = 1.0 + (.819663 + .000983A4Y)s ~3-2!1356 + 02794641
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In this equation. r represents the year of development of the given paid
factor minus 1.0. Thus, for the 2:1 factor. 7 equals 1.0. This is equivalent to
setting ¢ = 1.0 for the three-parameter function. AY represents the accident
year, expressed in years since 1900. (Since each set of coefficients is defined
in terms of a linear relationship, it does not matter how AY is defined in terms
of the initial year.) For example, for accident year 1967, AY = 67. The above
two-dimensional function may be viewed as a family of one-dimensional inverse
power curves. Sample curves are as follows:

Accident Year Inverse Power Curve
1957 1.0 + 876 7"
1962 1.0 + .881: '
1967 1.0 + .886r 7
1972 1.0 + .890r '*”
1977 1.0 + .895: 7%

The above two-dimensional equation was derived by first estimating one-di-
mensional inverse power curves for the average factors for each of the following
groups of accident years:

1955-1959
1960--1964
1965-1969
1970-1974

From these fits, the following inverse power curves were obtained:

Accident Goodness
Years Inverse Power Curve of Fit
1955-59 PLDF, = 1.0 + 877134 =" .997336
196064 PLDF, = 1.0 + .880757; '™'12 .998984
1965-69 PLDF, = 1.0 + .880758 ~"7* .999826
1970-74 PLDF, = 1.0 + 893510 ' """ .998100

Linear regression analysis was then applied to the set of coefficients of t, with
AY as the independent variable, to obtain the equation:

Coefficient of r for accident year AY = 819663 + 000983 AY.

Likewise, a linear trend line was fitted to the exponents of 1.
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Exhibit 6 provides a test of potential bias which might result from fitting
the two-dimensional function to the triangle of factors. There does not appear
to be any detectable bias since there are not significant conuguous areas of the
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SECTION V

SELECTING DEVELOPMENT FACTORS FOR THE MOST MATURE PERIODS OF
DEVELOPMENT WHEN CREDIBILITY IS LOW

The top portion of Exhibit 7 presents the commonly accepted method for
selecting development factors for the most mature periods of development. The
arithmetic mean of these factors for each period of development is selected—
unless that mean appears too far out of line. We might, for example, want to
temper the 6:5 factor because of its unexpected magnitude.

Let us consider the reasonableness of this common practice. Of all of the
mean Y:X factors, the mean factors for the earlier periods of development are
often more reliable indications of future development factors (unless some clear
trend is present or the magnitude of development is large) than the later mean
factors. The earlier mean factors are the average of a greater number of indi-
vidual factors, each of which is the end result of more claims transactions than
those for the later factors. For example, consider the following history of
incurred loss development.

Incurred Losses (000’s)

Accident
Year I 2 3 4 5 6
1976 1,234 2,340 2,789 2,873 2,841 3,517
1977 1,462 2,506 3,185 3,507 4,071
1978 1,618 2,657 3,459 3,684
1979 1,824 2,740 3,378
1980 1,943 3,087
1981 2,120

Ratio of Total 13,330 12,811 10,064 6,912 3,517
Incurred Losses 8,081 10,243 9,433 6,380 2,841

Dollar Weighted  1.650 1.251 1.067 1.083 1.238
Average Development Factor

Relative Volume of Losses on which Average Factor is Based:

Numerator 1.000 .961 755 519 264
Denominator .789 1.000 921 623 277
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successive factor (after the first) declines sharply. How do we recognize this in
the commonly accepted procedures? Not only is it often not recognized, it is
usually violated to a successively greater extent as factors are selected for the
later periods of development. This process is culminated by placing full reliance
on the sole factor available for the oldest period of development. Furthermore,
this one factor is heavily impacted by only a few, generally large. claims.

An alternate method of selecting factors is displayed in Exhibit 7. As
commonly done, the mean factors are first computed. An inverse power curve
is then fitted to the mean faciors for the first two periods of development to
project the 4.3 factor. (Alternatively, the inverse power curve could be fitted to
all the individual factors.) The selected factor (1.110) is then determined as the
weighted average of the inverse power curve projection (1.125) and the arith-
metic mean of the actual 4:3 factors (1.065). In this simple example, the weights
used are the number of actual factors on which each estimate is based. In the
case of the arithmetic mean, three factors were used in computing the mean
and a weight of three is assigned to 1.065. Nine factors underlie the inverse
power curve projection (five 2:1 factors and four 3:2 factors) and its estimate
of 1.125 is assigned a weight of nine.

The above process is then repeated, with the next inverse power curve fitted
to the first two mean factors and the selected 4:3 factor of 1.110. The projected
factor of 1.063 from the curve fit is given a weight of 12, versus a weight of 2
for the mean factor of 1.075. The weighted average of 1.065 then becomes the
selected factor. This process can be repeated ad infinitum to select development
factors of greater stability and accuracy than can be typically obtained by
selecting the mean factors for the most mature periods of development.

Let us further suppose that we have another body of experience for the same
line of business. How can this information be properly combined with the more
specific, but less credible data we have just analyzed? Of many approaches
tried, the following appears to possess the greatest validity. We begin by
comparing the residual factors (i.e.. the development factor less 1.0) corre-
sponding to the development factors:
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Residual Factors

Years of
Development Company “Industry”  Ratio
2:1 .669 483 1.385
3:2 250 .167 1.497
4:3 .110 .094 1.170
5:4 .065 .046 1.413
6:5 .054 .033 1.636

135

The arithmetic mean of the above ratios is 1.420; the median is 1.413; the
arithmetic mean of the 3 middle ratios is 1.432. The stability of these ratios
suggests that the company’s residual factors tend to be about 42% higher than
the “industry’s.” We may then use this assumption to further smooth the selected
factors, and, perhaps more importantly, to project the development factors at
later, yet to be experienced, stages of development:

Years of “Industry”  Smoothed Company
Development Factors Factors
2:1 1.483 1.686
3:2 1.167 1.237
4:3 1.094 1.133
5:4 1.046 1.065
6:5 1.033 1.047
7:6 1.028 1.040
8:7 1.019 1.027
9:8 1.012 1.017
10:9 1.009 1.013
SECTION VI

ESTIMATING QUARTERLY DEVELOPMENT FACTORS FROM ANNUAL FACTORS FOR
A GIVEN ACCIDENT (REPORT) YEAR

In this section, a method will be presented for estimating quarterly devel-
opment factors for a given accident (or report) year based only on annual
development factors. The inverse power function is again used extensively.

Applications for this technique appear in subsequent sections and include:
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1) How to incorporate loss development information at odd cvaluation dates.
An example of this would be the inclusion of loss data as of June 30,
1983 in an analysis of annual development factors which are all at year
end.

2) How to analyze loss development when all evaluation dates are odd. As
an example, we will perform an analysis on accident years 1979-1982
incurred losses where the only data available is at the following evaluation
dates: July 31, 1980, November 30, 1981 and April 30. 1982.

3) Performing more precise discount calculations by translating annual de-
velopment factors into quarterly or monthly factors.

For simplicity in our current example. we will assume that the only infor-
mation we have on accident year 1980 loss payments for workers’ compensation
is:

Cumulative Paid Loss
Evaluation Date Paid Losses  Development Factor

December 31, 1980  $11,300.000 —_
December 31, 1981 25.817,000 2.285
December 31, 1982 35,040,000 1.357

In actuality, we have used data which includes quarterly evaluation dates and
development factors, but we shall pretend that we do not have this and attempt
to approximate it from the above information. The process is started by deriving
two initial approximations of quarterly factors—one for each annual interval.
Consider first calendar year 1981. There are four quarterly development factors
we want to estimate, with ¢ (in quarters as of the end of each period) equal to
5, 6, 7, and 8. The average t value for these factors is 6.5. We know that the
product of these four quarterly factors is the annual factor of 2.285. A first
approximation for the average of these four factors is the fourth root of 2.285,
or 1.229. We assign this to the average t-value of these factors (6.5). Similarly,
an average factor of 1.079 is estimated for 1982 and assigned to an average 1-
value of 10.5. With this, we have two points with which to determine a two-
parameter inverse power curve (1.0 + 14.583516 + **'**'*). which forms the
basis for our first approximation of the quarterly factors:

t Factor t Factor
5 1.410 9 1.111
6 1.275 10 1.088
7 1.195 11 1.071
8 1.144 12 1.059
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We note that in both cases, the product of these factors exceeds the annual
factor, indicating the need for an improved approximation.

2.458 = 1.410 X 1.275 x 1.195 x 1.144
1.371 = 1.111 x 1.088 x 1.071 X 1.059

In the first case, the actual annual factor of 2.285 is .9296 of the above product
of 2.458. The fourth root of .9296 (.9819) gives us an “average” correction
factor to apply to our first set of approximations for calendar year 1981. Instead
of applying this adjustment, it would be more accurate to distribute the total
adjustment in proportion to the development factors less 1.0.

410 + 275 + 1195 + .144 = 1.024
1.0 — .9296 = .0704

(.410/1.024) X .0704 = .0282

(.275/1.024) X .0704 = .0189
(.195/1.024) X .0704 = .0134
(.144/1.024) x .0704 = .0099
(1.0 — .0282) x 1.410 = 1.370
(1.0 -~ .0189) x 1.275 = 1.251
(1.0 — .0134) X 1.195 = 1.179
(1.0 — .0099) X 1.144 = 1.133

After analogous adjustments to the quarterly factors for calendar year 1982,
we have a full set of second approximations. We then fit an inverse power curve
to this second set of approximations to smooth the factors and produce our third
and final set of estimates.

Approximations

Actual
! First Second Third Factors Error
2 3.500 3.531 -.031
3 2.067 1.971 +.096
4 1.585 1.657 —.072
5 1.410 1.370 1.366 1.382 —.016
6 1.275 1.251 1.251 1.245 +.006
7 1.195 1.179 1.181 1.160 +.021
8 1.144 1.133 1.137 1.145 —.008
9 1.111 1.110 1.107 1.112 —.005
10 1.088 1.087 1.086 1.079 +.007
11 1.071 1.070 1.070 1.063 +.007

12 1.059 1.058 1.058 1.064 —.006
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The final set of approximations differs from the actual data to such a small
degree that such differences may be attributable only to random fluctuations in
the actual loss experience. If these approximations are used, we may, for
example, refine present value calculations.

Present Value at 8% as of January 1, 1980

Payments During Based on Based on
Calendar year Annual Payments Quarterly Payments
1980 96.23% 95.36%

1981 89.10 89.32

1982 82.50 82.71
89.66% 89.51%
SECTION VII

INCORPORATING LOSS DEVELOPMENT DATA FROM ODD EVALUATION DATES

This section provides an application of the techniques of the last section to
a very common problem. For illustration, let us assume that we have incurred
losses for accident years 1980-82 as of each year end and have just received
the latest evaluation (June 30, 1983). How do we incorporate this information
which doesn’t fit in our standard triangle? Without a systematic approach, this
is typically a frustrating situation.

Incurred Losses (000°s) as of X Months of Development

Accident
Year 12 24 36 48
1980 $24,132 $40,746 $55,109 $62,328*
1981 27,782 45,929 55,712%
1982 26,368 36,704*
1983 15.961*

*as of June 30, 1983

Incurred Loss Development Factors

Accident
Year 24:12 36:24 48:36
1980 1.689 1.352 1.131*
1981 1.653 1.213*
1982 1.392%*

*6-months factors
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in the above situation, usage of the June 30, 1983 data seems particularly
important since it provides half of the known development factors. The first
step is to determine what time interval serves as the least common denominator
for the time lags between any two successive evaluations. In this case, 7 is six
months, so we define it in terms of six-month intervals. We use the same
techniques as described in the last section to break down the annual data into
semiannual factors. It may then be compared with the actual semiannual factors
from the first half of 1983.

Incurred Loss Development Factors (Y:X Months)

Source of Factors 12:6 18:12 24:18  30:24 3630 42:36
Breakdown of 1.352 1.243 1.182 1.144
Annual Experience
First Half of 1983 1.392 1.213 1.129

Inverse Power Curve 1.618 1.368 1.255 1.192  1.152 1.125
Fitted to All of
the Above Factors

The inverse power curve factors can then be used to project each year’s
losses as of June 30, 1983 to 42 months of development as well as to extrapolate
losses to ultimate. In the above approach, we have effectively used all of the
loss history available to make projections.

SECTION VIII
ANALYZING LOSS DEVELOPMENT WHEN ALL EVALUATION DATES ARE ODD

In the following example, we will deal with the analysis of loss development
when the evaluation dates are completely inconsistent. For accident years 1979—
82, the only evaluation dates available are July 31, 1980, November 30, 1981,
and April 30, 1982. Since the dates are 16 months and 5 months apart, the least
common denominator is one month and we must break down the data into
monthly factors. We will denote each data point as a two-dimensional vector,
with the first coordinate being the age of the accident year at the given evaluation
date, and the second being incurred losses.
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Arnn~idant

Year (Months of Development, Incurred Losses (000's))

1979 (19.2413) (35.3952) (40,4245)

1980 (7,450) (23,3120) (28,3660)

1981 (11,1201) (16,2134)

1982 (4,123)

Accident

Year (Months of Development, Development Factor)
1979 (35:19, 1.643) (40:35, 1.073)

1980 (23:7. 6.933) (28:23,1.172)
1981 (e:it, 1.777)

For each development period, we derive a first approximation of a monthly
incurred loss development factor for a month in the middle of the period by
taking the n™" root of the development factor, where # is the length of the interval
in months.

Accident
Year (Months of Development, Development Factor)
1979 (27.5:26.5, 1.032)  (38:37, 1.014)

1980 (15.5:14.5, 1.129)  (26:25, 1.032)
1981 (14:13, 1.122)

An inverse power curve is then fitted to all of the above points to estimate
monthly development factors up to 40 months. The factors from this curve are
then accumulated to produce approximations of the actual factors.

Accident
Year (Months of Development, Development Factor)
1979 (35:19, 1.690)  (40:35, 1.073)

1980 (23:7, 10.753)  (28:23. 1.184)
1981 (16:11, 1.965)

In this first iteration, our approximations are all significantly too high and
we adjust our estimated monthly factors by correction factors equal to the n™
root of the quotient of the actual factor to the approximated factor. For example,
the approximation of (23:7, 6.936) is (23:7, 10.753), so the correction factor
is the 16™ root of (6.936/10.753), or .973. Thus, the new monthly development
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factor 1s revised from (15.5:14.5, 1.129) to (15.5:14.5, 1.129 X .973). With
all of these new monthly factors, we fit another inverse power curve and estimate
an entire new set of monthly factors, which are then used to approximate the
known factors. This iteration process is remated until there is no further im-
provement in minimizing the sum of the squares of the differences between the
approximated factors and the known factors. In this case, the final curve is
(1.0 + 31.010659 ¢ 2'%%%) and the sum of the squares of the differences is
less than .001. With a full set of monthly factors, losses as of 4, 16, 29 and

40 months can be projected to ultimate.

SECTION IX

ESTIMATING QUARTERLY ACCIDENT QUARTER DEVELOPMENT FACTORS FROM
ANNUAL ACCIDENT YEAR FACTORS

It is sometimes desirable to estimate quarterly development factors for
individual accident quarters, but the only data available is that of annual devel-
opment factors for separate accident years. In this section we will illustrate a
procedure for deriving such a refinement in loss development history.

If quarterly factors are not available for each accident year, then they must
first be estimated as in Section VI. We shall use the third approximation factors
from that section as the starting point for our analysis. For simplicity, we will
assume that the incurred (or paid) losses as of one quarter of development are
the same for all four accident quarters. If d; represents the i development factor
and g represents losses as of one quarter of development, then incurred losses
by accident quarter and quarter of development are as follows:

Quarters of Development

Accident

Quarter 1 2 3 4 5
1 q qdl (]d]dz qd1d2d3 qd|d3d3d4
2 q qdl qdldz qd1d2d3 qd|dzd3d4
3 q qd1 qdldz qd|d2d3 qd|d2d3d4
4 q qdl qd;d: qd|d2d3 qd|d2d3d4

From the above, we can derive equations for each of the quarterly factors for
the accident year:
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(g + gd\)ig = 3.500
(g + gdi + gd\d)/(qg + qdy) = 2.067
(g + gd\ + gdidx + qdidrd3)(g + qdy + gdidy) = 1.585

(qdl + qd1d2 qd dads + qd d>dsds)
(q + qd\ + gdidx + gd\d>ds)

= 1.366

These equations can be solved successively to produce a first set of approxi-
mations of the quarterly accident quarter factors:

d, = 2.500 dy = 1.228
d> = 1.494 ds = 1.237
dy = 1.133 de = 1.132

While these first approximations do not progress downward in a smooth
fashion, an inverse power curve may be fitted to these approximations to add
consistency. This second set of factors should be tested in relation to how
closely they can reproduce the original accident year factors.

SECTION X

A SIMPLE, ALTERNATIVE METHOD FOR ESTIMATING DEVELOPMENT BEYOND THE
MOST MATURE EXPERIENCE AVAILABLE

Because of the nature of the inverse power curve, it cannot be fitted to
development factors less than 1.0, since this would involve taking the natural
logarithm of a negative number. If development is generally upward, but there
1s an occasional factor less than 1.0, such factors can be removed by smoothing
techniques (such as replacing d, by (d; | dd;, )" or (d,- »di dididiv '), If
incurred losses generally develop downward in some segment of the loss tri-
angle, then an alternative method of extrapolation of losses is needed. Such a
method is presented in this section. It is based on noting relationships between
paid losses during a given development period (for a given accident or report
period) and the change in outstanding losses during that same period.

It will be helpful to first present some mathematical notation. Loss payments
during the i period of development will be denoted by P,, and outstanding
losses at the end of the ™ period of development by O,. Incurred losses at the
end of the 1™ period of development are then equal to O, + X | P..

At the end of the ™ period of development, the ultimate value of unpaid
losses is Z;=,+1 P;,. We wish to find some equivalent expression for this in terms
of O,. Suppose that, after some stage of development, there is a constant
relationship between P; and (O;.,—0,). Thatis. P, = o(O; 1—0,). Then
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o e

2 Pi= 2 a0 —-0)=a % (0 — 0) =00,
i=r+1 i=r+1 i=1+1
since O, decreases to zero as ¢ increases. If we can determine the value of «,
the runoff ratio, then we have a quick estimate of the ultimate value of unpaid
losses (a0,), where O, is the latest evaluation of outstanding losses. Estimating
o is easy since we can obtain estimates of it for every development period and
accident or report period:

o = P/HO;—0)

Suppose that we find that for the more mature periods of development that paid
losses are generally 80% of the decline in outstanding losses. Then, assuming
that the runoff ratio (o) is constant for all future periods of development, the
ultimate value of unpaid losses is simply 80% of the latest value of outstanding
losses.

Exhibits 8 through 10 present this application of the method to automobile
liability data. With the consistent pattern of downward development of incurred
losses shown in Exhibit 8, there is a need to anticipate further favorable devel-
opment for accident year 1975. Exhibit 9 displays the calculation of runoff
ratios for accident year 1975 while Exhibit 10 displays all available runoff
ratios. A runoff ratio of 60% was selected on the basis of Exhibit 10, and
application of this ratio to the latest outstanding losses for Accident Year 1975
produced an estimate ($3,919,000) of the ultimate value of outstanding losses.
This estimate is equivalent to an incurred loss development factor to ultimate
of .975, which has been applied in Exhibit 8.

Exhibit 11 displays runoff ratios for a company with severely deficient
reserves. It should be noted that the runoff ratios never stabilize and continue
to increase with age. In this case, application of some of the higher runoff ratios
may only provide a lower bound for an estimate of ultimate losses.

Once the runoff ratios stabilize for all development periods beyond a certain
point, the ultimate value of outstanding losses may be estimated by aO, for
each of the accident or report years which have reached that stage of maturity.

CONCLUDING REMARKS

It is hoped that the research and practical applications presented in this paper
can serve as a foundation from which others can make further advancements in
the field of loss development analysis.
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EXHIBIT 1

EXTRAPOLATION OF INCURRED L0OSS DEVELOPMENT FACTORS
USING AN INVERSE POwWER FUNCTION
AUTOMOBILE BODILY INJURY LIABLITY—ACCIDENT YEAR 1978

(n (2) (3) (4)
Incurred
Loss

Age Development In (Development
{n i Factor — 1.0 in (i/n Factor — 1.0)

2 500 0.578 —0.693 —0.548

3 332 0.097 —1.100 —2.333

4 250 0.032 —-1.386 —3.442

Extrapolated Estimates

5 .200 0.0122 —1.609 —4.410

6 167 0.0057 —1.792 -5.176

7 143 0.0030 —1.946 —5.822

8 125 0.0017 -2.079 —6.379

9 11 0.0010 —-2.197 —6.873
10 100 0.0007 —2.303 —7.318
11 .091 0.0004 —-2.398 —-7.715
12 .083 0.0003 - 2.485 —8.080
13 077 0.0002 —2.565 —8.415
14 071 0.0002 -2.639 —8.726
15 067 0.0001 —2.708 —9.015
Notes

(1) The least squares regression was performed on the data for ages 2. 3, and 4, as shown above,
which has been rounded to three places.

(2) The extrapolated estimates were derived from the least squares trend line (v = ¢ + hx), with
a = 2.33259 and b = 4.19024.
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EXHIBIT 2

145

COMPARISON OF ACTUAL AND FITTED INCURRED LOSS DEVELOPMENT

FAcTORS USING AN INVERSE POWER FUNCTION

Auto Bodily General Workers’
Years of Injury Liability Liability Compensation
Development Actual Fitted Actual Fitted Actual Fitted
2 1.634 1.680 1.839 1.886 1.493 1.490
3 1.094 1.077 1.279 1.266 1.167 1.159
4 1.025 1.022 1.185 1.132 1.094 1.082
5 1.008 1.009 1.077 1.080 1.046 1.052
6 1.003 1.004 1.039 1.054 1.033 1.036
7 1.003 1.002 1.033 1.040 1.028 1.027
8 1.001 1.002 1.029 1.030 1.019 1.021
9 1.000 1.001 1.030 1.024 1.012 1.017
10 1.001 1.001 1.019 1.020 1.010 1.014
11 — — 1.014 1.016 1.011 1.012
12 — — 1.016 1.014 1.010 1.010
13 — — 1.013 1.012 1.009 < 1.009
14 — — 1.012 1.010 1.008 1.008
15 — — 1.008 1.009 1.007 1.007
Goodness
of Fit (RY) .98462 .98278 .98551
Parameters
a= .68047 .88614 48984
b= 3.14215 1.73380 1.62362
c= —1.00000 —1.00000 —1.00000
Notes

(1) The actual factors above represent composite experience from five major carriers for each line

of business.

(2) The goodness of fit is measured by the coefficient of determination (RY.
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3

EXTRAPOLATION OF Paib Loss DEVELOPMENT FACTORS

USING AN INVERSE POWER FUNCTION

AUTOMOBILE BODILY INJURY LIABILITY—ACCIDENT YEAR 1978

(1 2) (3) 4
Paid Loss

Age Development In (Development
63) 1/t Factor — 1.0 In (1/1) Factor — 1.0)

2 .500 1.801 —0.693 +0.588

3 333 0.388 —1.100 -0.947

4 .250 0.134 —1.386 —2.010

Extrapolated Estimates

5 .200 0.0578 —1.609 —2.850

6 167 0.0291 -1.792 -3.536

7 .143 0.0163 —1.946 -4.114

8 125 0.0099 —2.079 -4.613

9 BEY 0.0064 —2.197 =5.035

10 100 0.0043 —2.303 —5.453

11 .091 0.0030 —2.398 —5.809

12 .083 0.0022 —2.485 -6.135

13 077 0.0016 —2.565 —6.435

14 071 0.0012 -2.639 -6.713

15 .067 0.0009 —2.708 —6.972
Note

The extrapolated estimates were derived from the least squares trend line (v = g + bx), with
a = 3.18478 and b = 3.75038.



Automobile General Medical Workers’
Years of Liability Liability Malpractice Compensation

Development Actual* Fitted Actual* Fitted Actual* Fitted Actual* Fitted
2:1 1.760 1.619 2.300 2.290 7.876 6.104 1.634 1.630
3:2 1.227 1.264 [.541 1.536 2.172 2.480 1.285 1.287
4:3 1.100 1.123 1.295 1.287 1.654 1.717 1.169 1.172
5:4 1.061 1.062 1.171 1.177 1.334 1.429 1.134 1.118
6:5 1.031 1.033 1.109 1.119 1.150 1.288 1.092 1.088
7:6 1.015 1.018 1.093 1.085 1.156 1.208 1.053 1.068
8.7 1.015 1.011 1.060 1.064 1.163 1.158 1.055 1.055
9:8 1.008 1.007 1.046 1.050 1.120 1.124 1.048 1.046
10:9 1.006 1.004 1.045 1.039 1.133 1.101 1.039 1.039
11:10 1.000 1.003 1.039 1.032 1.023 1.084 1.036 1.034
12:11 1.001 1.002 1.022 1.027 1.058 1.070 1.014 1.029
13:12 1.001 1.001 1.024 1.022 1.090 1.060 1.017 1.026
14:13 1.001 1.001 1.004 1.019 1.063 1.052 1.030 1.023
15:14 1.000 1.001 1.019 1.016 1.089 1.046 1.023 1.021
16:15 1.000 1.000 1.008 1.014 1.040 1.016 1.019
17:16 1.001 1.000 1.010 1.012 1.036 1.032 1.017
18:17 1999 1.000 1.008 1.011 1.032 1.005 1.016
19:18 [.000 [.000 1.018 1.010 1.029 1.021 1.015
20:19 1.000 1.000 1.004 1.009 1.027 1.015 1.014
21:20 .999 1.000 1.005 1.008 1.024 1.037 1.013
22:21 1.000 1.000 1.017 1.007 1.022 .996 1.012
23:22 1.000 1.000 1.000 1.006 1.020 1.038 1.011
24:23 1.000 1.000 .997 1.006 1.019 1.026 1.010
25:24 1.000 1.000 1.000 1.005 1.017 1.018 1.010

* These factors are the average of the latest 10 accident years for each given year of development from the 1983 edition of the

RAA’s Loss Development Study.
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Paid Loss Development Factors

Accident 2:1 32 4:3 5:4 6:5 7:6
Year Actual  Fitted Actual  Fitted Actual Fitted Actual Fitted Actual  Fitted Actual  Fitted
1955 1.832  1.874 1.160 1.169 1.065 1.064 1.032 1.033 1.017 1.019 1.013 1.012
1956 1.807  1.875 1.167 1.172 1.064 1.066 1.042 1.034 1.024 1.020 1.017 1.013
1957 1.869 1.876 1.161 1176 1.067  1.069 1.033  1.035 1.025 1.021 1.017 1.014
1958 1.863 1.877 1.182  L.179 1.079 1.071 1.039 1.037 1.023 1.022 1.016 1.014
1959 1.852  1.878 1.178 1.183 1.075 1.073 1.035 1.038 1.023 1.023 1.015 1.015
1960 1.897 1.879 1.181 1.187 1.073  1.075 1.037 1.040 1.024 1.024 1.018 1.016
1961 1.884  1.880 1.189 1.191 1.079 1.078 1.047 1.041 1.024 1.025 1.016 1.017
1962 1.871 1.881 1.201 1195  1.073  1.080 1.045 1.043 1.029 1.026 1.022 1.018
1963 1.934  1.882  1.206 1.199 1.088 1.083 1.042 1.045 1.028 1.028 1.022 1.019
1964 1.827  1.883  1.198  1.203 1.074 1.086 1.045 1.047 1.028 1.029 1.019 1.020
1965 1.856  1.884 1.212 1207 1.08 1.088 1.044 1.048 1.023 1.030 1.0l6 1.021
1966 1.893 1.885 1.213 1.211 1.090 1.091 1.050 1.050 1.032 1.032 1.023 1.022
1967 1.858  1.886  1.215  1.216  1.097 1.094 1.050 1.052 1.034 1.033 1.024 1.023
1968 1.879  1.887 1.229  1.220 1.100  1.097 1.060 1.055 1.035 1.035 1.027 1.024
1969 1,920 1.887 1.228 1.224  1.098 1.100 1.051 1.057  1.036 1.036 1.025 1.025
1970 1.870 1.88% 1.219 1.229 1.091 1.104 1.055 1.059 1.036 1.038 1.029 1.027
1971 1.813 1.889  1.221 1,234 1093 1107 1.056  1.061 1.040 1.040 1.028 1.028
1972 1.906 1.890 1.240 1.239 1.110 1.110 1.062 1.064 1.042 1.042 1.035 1.030
1973 1.967 1.891 1.249  1.244 1.123  1.114 1.071 1.067 1.047 1.044 1.033 1.031
1974 1.926 1.892 1.253 1.249 1.117 1.118 1.073 1.069 1.048 1.046 1.034 1.033
1975 2,027 1893 1.269  1.254 1130 1.122  1.076  1.072 1.058 1.048
1976 1.923 1,894 1.260 1.259 1.125  1.126  1.071 1.075
1977 1.892 [.895 1.242 1.264 1.124 1.129
1978 1.892  1.896 1.248 1.270
1979 1.903  1.897
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EXHIBIT 5

(Continued)

COMPARISON OF ACTUAL AND FITTED Paip Loss DEVELOPMENT FACTORS
Two-DIMENSIONAL INVERSE POWER FUNCTION (WORKERS' COMPENSATION)
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EXHIBIT 6

TEST OF Bias: SIGNS OF ERRORS
FiT1 oOF TwWOo-DIMENSIONAL INVERSE POWER FUNCTION
TO WORKERS’ COMPENSATION Palp L0sS DEVELOPMENT FACTORS

Years of Development
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EXHIBIT 7

ESTIMATION OF SELECTED DEVELOPMENT FACTORS
USING THE INVERSE POWER CURVE

Workers’ Compensation

Incurred Loss Development Factors

Accident
Year 2:1 3:2 43 54 6:5
1976 1.896 1.192 1.030 .989 1.238
1977 1.714 1.271 1.101 1.161
1978 1.642 1.302 1.065
1979 1.502 1.233
1980 1.589
Average Factor 1.669 1.250 1.065 1.075 1.238
Fitted Curve—First 2 Factors 1.669 1.250 1.125
(ILDF = 1.0 + 3.584r 2*%)
Weight for Average Factor 3/12
Weighted Factor 1.110

(3/12 X 1.065 + 9/12 x 1.125)

Fitted Curve—First 2 Average 1.683 1.238 1.113 1.063
Factors and Weighted 4:3 Factor
(LDF = 1.0 + 4.117¢ >

Weight for Average Factor 2/14

Weighted Factor 1.065
(2/14 X 1.075 + 12/14 X 1.063)

Fitted Curve—First 2 Average 1.680 1.239 [.114 1.064 1.041
Factors and Weighted 4:3 and

5:4 Factors

(ILDF = 1.0 + 4.0401 %)

Weight for Average Factor 1/15

Weighted Factor 1.054
(1/15 X 1.238 + 14/15 X 1.041)

Selected Factors 1.669 1.250 1.110 1.065 1.054



Automobile Liability

Incurred Losses (000’s) Projected
As of X Years of Development Factor Ultimate
Accident To Incurred
Year 1 2 3 4 5 6 Ultimate Losses
1975 121,943 116,946 113,249 110,057 106,055 103,343 975 100,759
1976 129,645 125,138 121.514 115,652 111,277 .950 105,713
1977 146,500 139,283 131,289 124,856 915 114,243
1978 157,940 148,253 140,551 .876 123,123
1979 158,590 153,068 .839 128.424
1980 168,432 .802 135.082
Accident Incurred Loss Development Factors
Year 2:1 3:2 4.3 5:4 6:5
1975 .959 968 972 964 974
1976 965 971 952 962
1977 951 943 951
1978 .939 948
1979 .965
Average Factor 956 .958 958 963 .974 975
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Automobile Liability

Accident Year 1975

(H () 3) (4) (5) (6
Evaluation Cumulative  Unpaid Change in Change in  Runoff
As of Incurred Paid Losses Paid Unpaid Ratio
December 31, Losses Losses (H—(2) Losses Losses (4)/(5)
1975 $121,943 $36,710 $85,233
1976 116,946 60,839 56,107 +$24,129 —$29,126 82.8%
1977 113,249 74,393 38,856 + 13,554 - 17,251 78.6
1978 110,057 85,877 24,180 + 11,484 — 14,676 783
1979 106,055 92.707 13,348 + 6,830 - 10,832 63.1
1980 103,343 96,840 6,503 + 4,133 - 6,845 604
Note

Amounts in columns 1 through 5 are in thousands of dollars.
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Automobile Liability

Runoff Ratio During X Year of Development

Accident
Year 2 3 4 5 6
1975 82.8% 78.6% 78.3% 63.1% 60.4%
1976 85.0 80.9 67.1 64.2
1977 80.0 69.1 67.8
1978 77.0 72.3

1979 86.2
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Example Company Nearing Receivership

Accident Year 1973

(1) (2) 3) 4) (5) (6)
Evaluation Cumulative  Unpaid Change in  Change in  Runoff
As of Incurred Paid Losses Paid Unpaid Ratio
December 31, Losses Losses (1 —(2) Losses Losses 4)/(5)
1973 $10,458 $ 2,987 $7.471
1974 14,294 8,896 5.398 +$5,909  —-$2,073  285.0%
1975 15,857 13,329 2,529 + 4,433 - 2,870 1545
1976 17,160 15,672 1.488 + 2,343 — 1,040 2253
1977 18,287 17,630 657 + 1,958 — 831 235.6
1978 19,675 19,202 473 + 1,572 — 184 8543
Note

Amounts in columns | through 5 are in thousands of dollars.
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