EMPIRICAL BAYESIAN CREDIBILITY FOR WORKERS' COMPENSATION CLASSIFICATION RATEMAKING

GLENN MEYERS

Abstract

This paper demonstrates how a company can derive accurate classification relativities. The method uses an empirical Bayesian credibility formula as taken from the paper "Credibility for Loss Ratios" by Buhlmann and Straub and modified by the ISO Credibility Subcommittee.

The data re juired for this method can be purchased from the National Council. A classification review is performed on three years of live data. Relativities predicted by both this method and the present ratemaking formula are compared with the actual relativities from a fourth year of data.

1. INTRODUCTION

Workers' Compensation has traditionally been a highly regulated line of insurance. Rates are usually recommended by the National Council on Compensation Insurance and, with regulatory approval, become the industrywide standard. While many states permit deviations, insurers have generally adhered to the standard rates. Insurers compete on price by offering various dividend plans.

With the creation of the model law for competitive rating in Workers' Compensation, this is rapidly changing. In order to promote a better business climate, many states have passed competitive rating laws.

Under a uniform pricing system, it is not necessary to have rates equal to the expected cost of writing the policy. But in a competitive environment, many economists, such as Paul Samuelson [1], assert that the price will be equal to the expected cost of writing the policy. While the present ratemaking formula, which is described by Kallop [2], makes no systematic deviation from expected cost pricing (on an underwriting basis), it is not obvious that these rates are the best estimates of the expected cost. The present ratemaking method has held up for a long time under a system of uniform ratemaking, but it remains to be seen how long it will hold up under the increased pressure of open competition. In most states, all insurers report their experience to the National Council. This reporting takes two forms. First, insurers report their aggregate premium and loss experience. Since rates are uniform, it is not necessary to adjust premiums to a common rate level. Thus it is easier to estimate the overall needed rate change with this data. Second, insurers report loss and exposure experience for each insured on a policy year basis. While this data is not as timely as the financial aggregate data, it is more detailed. Because of its fine breakdown, it can be used for deriving class relativities.

The broad-based experience reported for Workers' Compensation should be compared to the experience reported for other lines. In private passenger automobile insurance, for example, many policies are written by independent insurers who do not report their experience. Many different classification systems and rating plans are used. Thus, combining experience is difficult, if not impossible. Because of this, it is difficult for many insurers to set accurate rates.

It can be argued that reporting experience on a standard basis can enhance competition by making it easier for insurers to enter the market. But the need to report experience on a standard basis can discourage insurers from trying innovative classification systems and rating plans. Clearly, some compromises must be made in order to obtain the greatest benefits from competitive rating.

To summarize, the economic incentive to calculate accurate rates for Workers' Compensation is stronger than ever before, and the volume and quality of data are better than in any other line of insurance. Also, methods of data processing are becoming cheaper and more flexible. Under these conditions, improvements in the accuracy of ratemaking can surely be made.

This paper addresses the problem of determining accurate classification relativities. The method used to derive classification relativities differs from the present method in its use of an empirical Bayesian credibility formula.

We begin with a description of the empirical Bayesian credibility formula. We then compare the accuracy of the classification relativities predicted using this formula with those predicted by the present ratemaking formula.

The theory described in this paper is applicable to both loss ratio and pure premium ratemaking. However, it makes no sense to credibility weight the pure premium of a class with a thirty cent rate with the pure premium of a class with a thirty dollar rate. This is frequently the case in Workers' Compensation. Thus, we describe the theory in terms of loss ratios. The loss ratios are based on Unit Statistical Plan data. Since the overall rate change is determined externally (the National Council uses financial aggregates), these loss ratios are used to determine class relativities.

2. INFORMATION AND ESTIMATION

A general principle in statistical estimation theory is that more information about a certain quantity leads to a better estimate of that quantity. A goal of statistical estimation theory is to develop ways of using all sources of relevant information in arriving at an estimate. In this section we shall show how this principle applies to Bayesian estimation and credibility theory.

Our problem is to estimate the loss ratio for a class of insureds. We consider two sources of information that can be used to estimate the loss ratio.

First, we can use the historical loss ratios for the class. While this information has a direct relationship to the quantity being estimated, it can be subject to random fluctuation because of small volume.

Second, we can use the loss ratio for a group of similar classes. Because of the greater volume of experience, this information has less random fluctuation. However, it has a less direct relationship to the quantity being estimated. The classes in the group may simply have different loss ratios.

Each of these sources of information is relevant to the quantity being estimated. The problem we want to address becomes the following: how can one use both sources of information to derive an estimate of the loss ratio for a class?

We seek a mathematical solution to this problem. To solve this problem we must first specify a model that we feel resembles the situation. We must then specify the information that we have available. We then mathematically derive the best estimate of the loss ratio.

We begin by making the following assumptions.

- 1. The expected loss ratio, μ , is randomly selected from a distribution with mean M and variance τ^2 .
- 2. Each loss ratio, X, is randomly selected from a distribution with mean μ , and variance σ^2 .

This model bears a fair resemblance to our situation. We observe a class loss ratio, X, which fluctuates around the class's expected loss ratio, μ . Our second source of information is the loss ratio, M, for a group of classes. The

possibility that classes in this group may have different loss ratios is represented by selecting μ at random from a specified distribution.

The problem is to estimate the true loss ratio for a given class. We now describe some solutions to this problem.

The Bayesian Solution

The Bayesian solution to this problem is to calculate the average μ for all classes with observed loss ratio X. We write this as $E[\mu|X]$. One must have a complete description of the distributions for X and μ to perform this calculation. For example, if we know that X and μ are normally distributed, it is demonstrated by Hoel [3] that

$$\mathbf{E}[\boldsymbol{\mu}|\boldsymbol{X}] = \frac{\boldsymbol{\tau}}{\boldsymbol{\tau}^2 + \boldsymbol{\sigma}^2} \cdot \boldsymbol{X} + \frac{\boldsymbol{\sigma}^2}{\boldsymbol{\tau}^2 + \boldsymbol{\sigma}^2} \cdot \boldsymbol{M}$$

Hewitt [4] and Mayerson [5] give the Bayesian solution for other distributional assumptions.

It should be noted that the Bayesian solution given above is a linear function of the observed loss ratio, X. While this is also true for many other Bayesian solutions, it is not true for all Bayesian solutions. Hewitt [6] gives an example where the Bayesian solution is not linear.

The Credibility Solution

The credibility solution, given by Buhlmann [7], is to use the linear approximation to the Bayesian solution which minimizes the expected squared error. As noted above, in many cases the credibility solution is identical to the Bayesian solution. While the credibility solution may not be as accurate as the Bayesian solution, it does not require as much information. One need not have a complete description of the distribution of X and μ . One need only have the values of M, τ^2 and σ^2 . We will denote the credibility solution by $C[\mu|X]$.

The credibility solution can be stated as follows. Let

 $C[\mu|X] = A \cdot X + B.$

We want to choose A and B so that

 $E[(C[\mu|X] - E[\mu|X])^2]$

is minimized. The solution can be written in the following form.

$$C[\mu|X] = \frac{\tau^2}{\tau^2 + \sigma^2} \cdot X + \frac{\sigma^2}{\tau^2 + \sigma^2} \cdot M.$$

Define the credibility factor, Z, as follows:

$$Z=\frac{\tau^2}{\tau^2+\sigma^2}$$

The credibility solution now takes the more familiar form:

$$C[\mu|X] = Z \cdot X + (1 - Z) \cdot M.$$

The credibility factor can be viewed as a measure which compares the variance of X with the variance of μ . A credibility factor close to zero indicates that the random fluctuations of individual class loss ratios are large compared to the true differences in loss ratios between classes in the group. A credibility factor close to one indicates just the opposite. Philbrick [8] discusses this aspect of credibility theory in detail.

A major problem with the credibility solution is that, in real life situations, one does not know M, τ^2 or σ^2 . While it is possible to choose the unknown parameters by judgment, American actuaries have used a more direct approach; they choose the entire estimation formula by judgment. These formulas are generally referred to as the "classical" credibility formulas. The rationale for these formulas is given by Longley-Cook [9].

While the Bayesian and the credibility solutions provide considerable insight into the estimation process, one more step is needed. We must be able to form our estimates entirely from observations. This is the essence of the empirical Bayesian solution.

3. EMPIRICAL BAYESIAN CREDIBILITY

We begin our discussion of empirical Bayesian credibility with a description of the solution given by Buhlmann and Straub [10] in their landmark paper "Credibility for Loss Ratios." This solution has been amplified and modified by the Credibility Subcommittee of Insurance Services Office. Much of the following development is taken from a report written by the Credibility Subcommittee [11].

We begin by specifying the model underlying the empirical Bayesian credibility formula. Next, we give the credibility formula in terms of the parameters of the model. Finally, we show how to estimate the parameters of the model.

The Model

The formula requires the following data.

- 1. T years of experience for N classes.
- 2. The premium for class *i* in year *t* (denoted by P_{ii}).
- 3. The loss ratio for class *i* in year *t* (denoted by X_{ii}).

We make the following assumptions.

- 1. The expected loss ratio for class *i*, μ_i , is randomly selected from a distribution with mean *M* and variance τ^2 .
- 2. Each loss ratio, X_{ii} , is randomly selected from a distribution with mean μ_i and variance V_i^2/P_{ii} .

Most actuaries would agree that the variability of a class loss ratio decreases as the size of the class increases. The assumption that the variance of the loss ratio is inversely proportional to the premium (i.e., $Var[X_{ii}] = V_i^2/P_{ii}$) is a simple way to approximate this relationship. Note that the constant of proportionality, V_i^2 , can be different for each class.

It is unlikely that this relationship is precise. Meyers and Schenker [12] propose a model of the loss process in which the variance of the loss ratio is not inversely proportional to the premium. In this model the variance of the loss ratio can be written in the form $Var[X_{it}] = \alpha/P_{it} + \beta$. The constant term, β , is positive when there are additional, but unidentified, sources of variation. Examples of this could include changing economic conditions, or increased emphasis on loss control. Meyers [13] discusses how a positive constant term affects the credibility formula.

The Credibility Formula

For a given class, *j*, we want to find an estimate, $\hat{\mu}_j$, of the expected loss ratio, μ_j . Here, we present the formula given by Buhlmann and Straub [14].

The estimate is of the following form.

$$\hat{\mu}_j = \sum_i \sum_i A_{ii} \cdot X_{ii}$$

 A_{ii} is chosen to minimize $E[(\hat{\mu}_j - \mu_j)^2]$, subject to the constraint that $E[\hat{\mu}_j] = M$.

Note that all the observed loss ratios, X_{ii} , contain some information about the expected loss ratio μ_{j} . The exact nature of this information is specified by

the assumptions listed above and the accompanying mathematics. It should be noted that since the X_{ji} 's contain more information about μ_j than the other X_{ii} 's, the A_{ii} 's depend upon j.

Using the method of Lagrange multipliers, one can solve for the A_{it} 's. Buhlmann and Straub went one step further by algebraically manipulating the solution so as to express it in a form which resembles a standard credibility formula.

Let
$$P_{i.} = \sum_{t} P_{it}$$
 (total class premium),
 $\bar{X}_{i.} = \sum_{t} P_{it} \cdot X_{it}/P_{i.}$ (premium weighted average of X_{it}),
 $\Sigma^{2} = E[V_{i}^{2}]$
 $K = \Sigma^{2}/\tau^{2}$ (credibility constant),
 $Z_{i} = P_{i.}/(P_{i.} + K)$ (credibility factor), and
 $\hat{M} = \sum_{i} Z_{i} \cdot \bar{X}_{i.} / \sum_{i} Z_{i}$ (credibility weighted average of $\bar{X}_{i.}$).
Then $\mu_{j} = Z_{j} \cdot \bar{X}_{j.} + (1 - Z_{j}) \cdot \hat{M}$.
There is one point that should not be overlooked. The complement

There is one point that should not be overlooked. The complement of credibility is assigned to the *credibility-weighted* average loss ratio and not the premium-weighted average loss ratio as many would assume. The reason for this is simply that it is the solution to the minimization problem. It should be noted that \hat{M} has some very nice properties.

First, it can be demonstrated [15] that

$$\sum_{i} \sum_{t} P_{it} \cdot \hat{\mu}_{i} = \sum_{i} \sum_{t} P_{it} \cdot X_{it}$$

This means that the estimates of the class loss ratios are "in balance" with the overall loss ratio.

Second, it can be demonstrated [16] that \hat{M} is the minimum variance unbiased estimate of M.

Estimating the Parameters

The following estimators of Σ^2 and τ^2 were derived by Buhlmann and Straub [17].

Let
$$P_{..} = \sum_{i} \sum_{i} P_{ii}$$
 (total premium),
 $P2 = \sum_{i} P_{i.}^{2}$,
 $\bar{X}_{..} = \sum_{i} \sum_{i} P_{ii} \cdot X_{ii}/P_{..}$ (premium-weighted average of X_{ii}), and
 $W = \sum_{i} P_{i..} \cdot (\bar{X}_{i..} - \bar{X}_{..})^{2}/(N - 1)$

Then estimates for Σ^2 and τ^2 are given by

$$\hat{\Sigma}^{2} = \frac{\sum_{i} \sum_{t} P_{it} \cdot (X_{it} - \bar{X}_{i.})^{2}}{N \cdot T - N} \text{ and }$$

$$\hat{\tau}^{2} = \frac{(W - \hat{\Sigma}^{2}) \cdot (N - 1) \cdot P_{..}}{P_{..}^{2} - P2}.$$

Buhlmann and Straub then used $\hat{K} = \hat{\Sigma}^2 / \hat{\tau}^2$ as their estimate of the credibility constant. The credibility of a class loss ratio becomes the following:

$$\hat{Z}_i^1 = \frac{P_{i.}}{P_{i.} + \hat{K}} \, .$$

The ISO Credibility Subcommittee modified this formula for the following reason. Even though $\hat{\Sigma}^2$ is an unbiased estimate of Σ^2 , and $\hat{\tau}^2$ is an unbiased estimate of τ^2 , it turns out that \hat{Z}_i^1 is a biased estimate of Z_i . The modified formula, which attempts to correct for this bias, can be written as follows.

$$\hat{Z}_i = \frac{P_i}{P_i + \hat{K}} \cdot \frac{N-3}{N} + \frac{3}{N}$$

This modification is identical to that given by Morris and Van Slyke [18]. A derivation of this modification is given by ISO [19]. This derivation makes a number of simplifying assumptions in addition to those already stated. They are as follows.

- 1. X_{ii} is normally distributed.
- 2. μ_i is normally distributed.
- 3. Σ^2 is known.

Since these assumptions are somewhat restrictive, this correction for bias should be regarded as only approximate.

Under the above assumptions, it is not possible to correct for this bias when N < 3. Thus, one should not use this empirical Bayesian formula when there are three or fewer classes.

Note that the minimum credibility that is possible in this formula is 3/N.

It is possible for the estimate, $\hat{\tau}^2$, to be negative. This can be disconcerting to those who think that estimates of a variance should be positive. However, this phenomenon does have a natural interpretation. If we assume that the X_{ii} 's are normally distributed in addition to our stated assumptions, it is possible to test the hypothesis that all the μ_i 's are equal. This test is referred to as analysis of variance (ANOVA), and is described by Freund and Littell [20]. This test calculates a statistic called the *F* statistic. Abnormally high values of the *F* statistic indicate that we should reject the hypothesis that all μ_i 's are equal, while lower *F* values indicate failure to reject this hypothesis.

It turns out in our case that $F = W/\hat{\Sigma}^2$. Thus we have that $\hat{\tau}^2$ is negative if and only if F is less than one. Since under the null hypothesis, $E[F] = (N \cdot T - N)/(N \cdot T - N - 2) > 1$, a negative $\hat{\tau}^2$ indicates failure to reject the hypothesis that all μ_i 's are equal.

Thus, we should assign a credibility of zero when $\hat{\tau}^2$ is negative.

One additional point should be made. The derivation of these estimators requires that the loss ratios for a given class are independent from one year to the next. Most ratemaking procedures in use at this time use loss ratios at "present rates." If rates are revised yearly, all but the most recent year of experience is used in calculating the present rate. The premium, and hence the loss ratio, for the most recent year will be influenced by the experience of the prior years. Thus, the independence assumption is violated!

The effect of using premium at present rates is to understate our estimate of τ^2 . *W* is sharply reduced, while $\hat{\Sigma}^2$ will not be significantly affected. An extreme case results when all years of the current review were used in making the present rates, and a credibility of one was used. In this case, all the X_{ii} 's are equal to the expected loss ratio, *W* is equal to zero and $\hat{\tau}^2$ is negative.

What to do about this problem is currently being debated by the Credibility Subcommittee. Some members feel that present rates should be used for estimating loss ratios, and the focus of the debate is on how to do this. In this

104

paper we do not use present rates. Instead we use the most recent rates which were not based on the current experience.

It should be noted that if X_{ii} is a pure premium rather than a loss ratio, the X_{ii} 's will be independent, and it is not necessary to refer to older rates.

In summary, we have presented a credibility formula whose parameters are derived entirely from available data, and we have stated the assumptions that are used in deriving this formula. As is often the case in actuarial science, the model associated with these assumptions is necessarily simpler than the real world. However, this formula is easy to use and can produce accurate results, as we shall now demonstrate.

4. RATEMAKING WITH EMPIRICAL BAYESIAN CREDIBILITY

We now demonstrate how to use empirical Bayesian credibility in classification ratemaking.

The Data

Whenever the National Council files rates, it releases the raw data that underlie the rates. Recently, they began selling tapes containing loss and exposure data (Schedule Z), by class, derived from the Unit Statistical Plan. For this study, we obtained the tapes which correspond to the 1982 and 1983 rates for the state of Michigan.

The most recent rates which did not utilize any of the above data were those for the year 1979. Thus we calculate the premium by multiplying the payroll times the 1979 rate.

Below, we use the data on the first tape to calculate class relativities. Thus it is possible to make a direct comparison between the 1982 rates and the rates produced below. The tape which corresponds to the 1983 Michigan rates contained an additional year of data. We will use this additional year of data to compare the accuracy of the rates derived using the present ratemaking formula with those derived using empirical Bayesian credibility.

The losses were adjusted for law changes and loss development with factors taken from the 1982 Michigan rate filing. One technical point should be made here. The 1982 National Council rates do not reflect the modification due to (Michigan) Senate Bill 1044. This is appropriate since none of the experience reflects this bill and the adjustment was made outside the usual ratemaking formula.

Our purpose is to provide a direct comparison of ratemaking formulas, and so classes which presented special problems were deleted from this analysis. The special problems were of two kinds. First, many classes were absorbed into other classes between 1979 and 1982. It was felt that the 1979 rate for the new class could not be accurately estimated. Second, some classes contained disease elements which require special treatment. In practice, these problems must be dealt with. But that is beyond the scope of this paper.

Exhibit I shows the data used.

Determining the Class Loss Ratios

The empirical Bayesian credibility formula was applied to the data of Exhibit I with the following results.

N = 319 $\hat{\Sigma}^2 = 92374$ $\hat{\tau}^2 = 0.019237$ $\hat{K} = 4801900$ $\hat{M} = 0.5822$

For each class *i*, the credibilities, \hat{Z}_i , and the estimates, $\hat{\mu}_i$, are given in Exhibit I.

Distributing the Overall Rate Change

Even a moderately large insurer is unlikely to have exposure in all classes for which it must have a rate. Thus most insurers must obtain data similar to that described above in order to make independent rates for all classes. However, a company does not need data in such fine detail to determine the overall rate change.

As noted above, the National Council uses financial aggregate premium and loss experience to determine the overall rate change. Individual companies operating in a competitive environment invariably will have their own way of deriving the overall rate level. It is not our purpose to describe methods of determining the overall rate change. Instead we will describe how a company might distribute the overall rate change to the individual classes.

The procedure described below will produce estimates, $\hat{\mu}_i$, of the loss ratio at 1979 rates for each class *i*. Since it is quite likely that an insurer's payroll in the various classes will have changed since 1979, a logical procedure for determining the final rates might proceed as follows.

- Let L = Total loss provision for the insurer's current book of business at the proposed rate level,
 - E_i = insurer's current payroll for class *i* and
 - $R_i = 1979$ rate for class *i*.

We define the rate adjustment factor, A, as follows.

$$A = L \Big/ \left(\sum_{i} E_{i} \cdot R_{i} \cdot \hat{\mu}_{i} \right)$$

The loss provision in the rate for class *i* is then given by the expression $R_i \cdot \hat{\mu}_i \cdot A$. If the loss provision in the rate for class *i* is defined in this manner, the total loss provision for the new class rates on the current book of business will be equal to *L*.

It should be noted that the estimates, $\hat{\mu}_i$, are really being used to determine class relativities.

5. TESTING CREDIBILITY FORMULAS

We shall now compare the accuracy of the rates produced by the empirical Bayesian credibility formula with those rates produced by the present ratemaking method.

The Underwriting Test

The accuracy of a ratemaking method can have a very important practical consequence. Suppose you are in an environment where some less accurate ratemaking method is being used. If you choose, or are required, to use the less accurate rates, you can use the more accurate rates to identify the better insureds. By writing these better insureds, you will have better than average underwriting results. Conversely, suppose you are able to use the rates indicated by the more accurate ratemaking method. You would then be charging a lower rate for the better insureds, and a higher rate for the worse insureds. You could then increase your writings for the better insureds and still make an adequate profit, while your competitors who use the other ratemaking method should write more of the worse insureds and make a less than adequate profit. A common phrase for this procedure is "skimming the cream."

Our first test will be based on this phenomenon, and will appropriately be called the "Underwriting Test." This test proceeds as follows. We first estimate the expected losses predicted by each formula for the test year. For each class, i, the expected losses are computed as follows.

Present Method:

Expected Loss_i = $Pavroll_i + 1982 Rate_i + 0.769384$

Empirical Bayesian Credibility:

Expected Loss_i = Payroll_i + 1979 Rate_i + $\hat{\mu}_i$ + 1.053661

Since we are interested only in class relativities, we use the factors 0.769384 and 1.053661 to force the expected loss to sum to the total expected losses for the test year.

Next, we divide the classes into two groups. Group 1 consists of all classes for which the present ratemaking formula gives lower expected losses. Group 2 consists of all other classes.

For each group we then compare the ratio of actual losses for the test year to the expected losses predicted by both ratemaking formulas. The results are in the following table.

TABLE 1

UNDERWRITING TEST

		Group 1	Group 2	Total
1.	# Classes	162	157	319
2.	Actual Loss	216906003	199032667	415938670
3.	Exp. Loss (Pres. Mthd.)	208238132	207700538	415938670
4.	Exp. Loss (E. B. Cred.)	220310030	195628640	415938670
5.	(2)/(3)	1.042	0.958	1.000
6.	(2)/(4)	0.985	1.017	1.000

Line 5 of Table 1 shows that by using the present ratemaking formula and underwriting in favor of the Group 2 classes, one expects a better than average profit. Line 6 of Table 1 shows that by using the rates produced by the empirical Bayesian credibility formula, one could charge less than the rates produced by the present formula for the Group 2 classes and still make an average profit. Competitors with the same overall rate level who use the present ratemaking formula may end up writing a greater concentration of Group 1 classes and make less than their anticipated profit.

108

Thus we conclude that the empirical Bayesian credibility formula produced more accurate rates for this data.

We now address the statistical significance of this result. Our test is similar to the "bootstrap" technique described by Diaconis and Efron [21]. For our test, we constructed 2000 groups of insureds in which the members of the group were selected at random with a probability of 0.5. The loss ratios for each group were calculated and then listed by percentiles. These percentiles are given in Table 2.

TABLE 2

Random Loss Ratios— Present Ratemaking Method

Percentile	Loss Ratio
.010	.939
.025	.949
.050	.957
.100	.965
.150	.971
.200	.976
.250	.980
.750	1.021
.800	1.027
.850	1.033
.900	1.041
.950	1.053
.975	1.064
.990	1.075

Looking at Table 2 we see that the Group 1 loss ratio for the present ratemaking method of 1.042 is near the 90th percentile of the random loss ratio distribution. Similarly, we see that the Group 2 loss ratio of .958 for the present ratemaking method is close to the fifth percentile of the random loss ratio distribution.

Now there are two types of errors that can be made. A Type I error occurs when one keeps the present method when the empirical Bayesian method is better. A Type II error occurs when one changes from the present method to the empirical Bayesian method when the two methods are equally accurate. Table 2 shows that the probability of making a Type II error is less than one in ten. The probability of making a Type II error (i.e. the significance level) that should be required in order to change methods depends upon the relative costs of the two types of errors.

A single insurance company operating in a competitive environment may miss a good opportunity to expand in some profitable classes if it makes a Type I error, but should lose very little by committing a Type II error. A one in ten chance of making a Type II error should be sufficient to justify adopting the empirical Bayesian method.

A Type II error can be very costly for a rating bureau which is making an industrywide filing in a noncompetitive environment. Should the error be discovered after such a filing, the cost of returning to the present method can be enormous in time, money, and embarrassment. In such cases a one in ten chance of making a Type II error may not be sufficient to justify changing methods, and additional tests should be made. However, it should be noted that the cost of a Type I error is not insignificant. Companies can use the empirical Bayesian method for underwriting. There could be availability problems for some classes.

The table of loss ratio distributions for the empirical Bayesian credibility formula is similar to Table 2. The loss ratios of .985 for Group 1 and 1.017 for Group 2 are well within the normal range of fluctuation.

Mean Squared Error

A natural test for a ratemaking method is to measure how close the expected loss comes to the actual loss for the next year. With this in mind we calculate the following statistic.

$$MSE = \sum_{i} P_i \cdot (A_i/E_i - 1)^2/N$$

Where A_i = actual loss for class *i*

 E_i = expected loss for class *i*

 $P_i = 1979$ rate for class *i* times the payroll for class *i*

N = number of classes (319).

We shall refer to the number $P_i \cdot (A_i/E_i - 1)^2$ as the squared error for class *i* and we shall refer to *MSE* as the mean squared error.

The test statistics for the ratemaking methods considered above are given in the following table.

TABLE 3

	MSE
Empirical Bayesian Credibility	289651
Present Ratemaking Formula	298063

Here we see that the empirical Bayesian credibility formula produces the lower mean squared error.

To test if the differences between these mean squared errors are statistically significant we must consider the following.

- 1. The squared error for a class using one method is not independent of the squared error for the same class using another method.
- 2. The distribution of the squared errors is not normal.

A test that can work under these conditions is the Wilcoxon signed ranks test [22], which we now describe.

For a class i, let $SE1_i$ be the squared error for the present ratemaking method and let $SE2_i$ be the squared error for empirical Bayesian credibility. Let

$$DSE_{i} = SE1_{i} - SE2_{i}$$

$$R_{i} = \text{Rank}(|DSE_{i}|) \cdot \text{Sign}(DSE_{i})$$

$$T = \sum_{i} R_{i} / (\text{Square root}(\sum_{i} R_{i}^{2}))$$

We want to test the hypothesis

 $H_0: \mathbb{E}[SE1_i] = \mathbb{E}[SE2_i]$

against the alternative hypothesis

 H_1 : E[SE1_i] \neq E[SE2_i].

For large N, we reject H_0 at the level of significance α if T lies below the $(\alpha/2)^{\text{th}}$ or above the $(1 - \alpha/2)^{\text{th}}$ percentile of the standard normal curve.

When comparing the MSE of the rates produced by the empirical Bayesian credibility formula with those produced by the present formula, we get

T = .198 which is at the 56th percentile of the standard normal distribution. Thus we cannot reject H_0 . Thus we conclude the expected mean squared errors are not significantly different.

Of the two tests conducted, the author considers the underwriting test to be the most relevant, since it corresponds directly to actions an insurance company can take. However the mean squared error test corresponds more closely to the criteria under which the empirical Bayesian credibility formula was derived, with the main difference being the substitution of actual loss ratios for "true" (but unmeasurable) loss ratios. This substitution adds a great deal of volatility to the test.

6. CONCLUSION

This paper describes how an empirical Bayesian credibility formula can be used to determine class relativities for Workers' Compensation insurance. Tests which compared the accuracy of this method with the present ratemaking method showed that the empirical Bayesian credibility formula produced more accurate rates.

The level of significance of these tests was sufficient for use by individual companies in a competitive environment, but the author would stop short of recommending industrywide use of this method in a highly-regulated noncompetitive environment until further tests are made.

However, it should be pointed out that if the empirical Bayesian approach is even marginally more accurate than the present approach, its accuracy should increase over time. One of the features of the approach described above is that it had to use the 1979 rates which were derived by the present ratemaking formula. If this method were adopted for the 1985 rates, the rates calculated above could be used in place of the 1979 rates. Gradually, the rates will become even more accurate.

Another advantage to the empirical Bayesian approach is that it calculates an optimal result based on an explicit set of assumptions. By knowing how well the assumptions are met, one can better decide when to adjust the calculated results on a judgemental basis, or when to derive a new formula based on alternative assumptions.

This author doubts that the above approach will be the last word in credibility theory, but it is hoped that this paper has set a standard that proposals for alternative formulas will follow. This standard is that the predictions should be tested on independent data. This standard is part of the scientific method and should be applied to actuarial science.

7. ACKNOWLEDGMENTS

The ratemaking method described in this paper is being used by my company. In developing this method I worked very closely with Burt Covitz. Burt's very detailed knowledge of Workers' Compensation ratemaking made this method much better than it might otherwise have been. Brad Alpert and Mike Kooken also contributed many valuable comments.

I have also profited tremendously by the very thorough work done by the staff of the ISO Credibility Subcommittee. ISO deserves to be commended for the resources committed to this subcommittee.

The research for this paper was supported by a grant from the Actuarial Education and Research Fund.

8. REFERENCES

- [1] Paul Samuelson, *Economics*, 11th Edition, McGraw-Hill, Manchester, Missouri, 1980, p. 431.
- [2] Roy Kallop, "A Current Look at Workers' Compensation Ratemaking," PCAS LXII, 1975, p. 62.
- [3] P. G. Hoel, Introduction to Mathematical Statistics, Fourth Edition, John Wiley and Sons, Inc., New York, New York, 1971.
- [4] Charles C. Hewitt, "Credibility for Severity," PCAS LVII, 1970, p. 148.
- [5] Allen L. Mayerson, "A Bayesian View of Credibility," PCAS LI, 1964, p. 65.
- [6] Hewitt, op. cit.
- [7] H. Buhlmann, "Experience Rating and Credibility," ASTIN Bulletin IV, Part III, 1967, p. 199.
- [8] Stephen W. Philbrick, "An Examination of Credibility Concepts," PCAS LXVIII, 1981, p. 195.

- [9] L. H. Longley-Cook, An Introduction to Credibility Theory, Casualty Actuarial Society, 1962.
- [10] H. Buhlmann and E. Straub, "Credibility for Loss Ratios," (Translated by C. E. Brooks), *ARCH*, 1972.
- [11] Insurance Services Office, Report of the Credibility Subcommittee: Development and Testing of Empirical Bayes Procedures for Classification Ratemaking, September, 1980.
- [12] Glenn Meyers and Nathaniel Schenker, "Parameter Uncertainty and the Collective Risk Model," PCAS LXX, 1983.
- [13] Glenn Meyers, "An Analysis of Experience Rating," (Submitted for Publication).
- [14] H. Buhlmann and E. Straub, op. cit.
- [15] Insurance Services Office, op. cit. p. 80.
- [16] Insurance Services Office, op. cit. p. 81.
- [17] H. Buhlmann and E. Straub, op. cit.
- [18] C. Morris and O. E. Van Slyke, "Empirical Bayes Methods for Pricing Insurance Classes," *Proceedings of the Business and Economics Section*, American Statistical Association, 1978.
- [19] Insurance Services Office, op. cit.
- [20] R. J. Freund and R. C. Littell, SAS for Linear Models, SAS Institute, 1980.
- [21] P. Dioconis and B. Efron, "Computer Intensive Methods in Statistics," Scientific American, May, 1983.
- [22] W. J. Conover, Practical Nonparametric Statistics, Second Edition, John Wiley and Sons, Inc., New York, New York, 1980, p. 280.

9. NOTES ON EXHIBIT I

Exhibit I—Individual Classification Data and Results List of Variables

CLASS	- NCCI class code
<i>PI</i> 1	- Policy year starting 4/78 payroll times RATE79
<i>PI</i> 2	- Policy year starting 4/77 payroll times RATE79
PI3	- Policy year starting 4/76 payroll times RATE79
<i>XI</i> 1	- Policy year starting 4/78 loss developed from first report to ultimate divided by PI1
XI2	 Policy year starting 4/77 loss developed from second report to ultimate divided by PI2
XI3	- Policy year starting 4/76 loss developed from third report to ultimate divided by PI3
RATE79	- NCCI rate in effect for 1979
RATE82	- NCCI rate in effect for 1982 (Before S.B. 1044)
PAYROLL	— Payroll for policy year starting 4/79
ACTLOSS	— Policy year starting 4/79 loss
PI	$- P_{i.}$
XI	$- \bar{X}_{i.}$
ZI	$- \tilde{Z}_i$ (credibility for class <i>i</i>)
UI	— $\hat{\mu}_i$ (credibility estimate for class <i>i</i>)
ELOSS	 Expected loss for policy year starting 4/79 predicted using UI (= RATE79*PAYROLL*UI*1.053661)
NCCIELOS	 Expected loss for policy year starting 4/79 predicted using NCCI rates (= RATE82*PAYROLL*0.769384)

EXHIBIT I

INDIVIDUAL CLASSIFICATION DATA AND RESULTS

NCCIELDS	522010	203078	554811	1055658	195550	1205471	1989666	255929	626255	191071	293009	1155196	332221		01101	199666	70172	2509787	289443	113146	3965999	323904	765473	248834	375862	668581	188/395	826122	570817	165484	80874	1355588	352559	48210	271817	269241	295533	212845	72916	95481	206162	4 5 1 9 6 0	140010	007/50	9001006	400005	73600	319253	811255
ELOSS	585077	206156	685882	2650021	C 0 0 C C C C	1425600	1815859	239541	417325	208075	186050	590690	376303		195391	120008	65268	2368092	240927	146719	3841239	335292	697956	205217	385916	573990	1/82696	616918	120142	1404847	82639	1253717	393319	4207 8	111200	249039	322734	200073	62447	104117	1/0164	5676D5		8180000	2128660	390900	71827	395420	849970 1705781
In	0.499	0.515	0.507	142.0		0.510	0.760	5 0.554	6 0.373	0.460	0.497	0.282	0.556		974 0	015 0 4	0.486	0.637	0.713	0.541	0.559	0.597	0.572	0.662	0.563	0.581	0.503	0.583	0.000	169.0	0.573	0.628	0.483	0.589	245 0 0	167.0	0.643	0.684	0.731	0.559		129.0	11C.U	1030 U		0.653	0.564	0.533	0.628
71	0.330	10.15	0.37				3 0.528	5 0.20	9 0.385	2 0.210	0.19	0.56	0.24				0.326	0.767	9.148	9 0.114	0.804	4 0.211	1.585	195	3 0.274	0.217		. 48,		7 0 531	0.125	7 0.480	333			0 0 185	3 0.301	5 0.128	0.038		.84.0				191 0 0	9 0.300	10.037	0.313	1 0.499 5 0.659
I XI	0.329	7 0.16	5 0.38	1 0.265		1 0 44	4 0.918	1 0.44	6 0.03	0.0	0.152	20.02					5 0.286	3 0.654	2 1.460	5 0.219	0.554	3 0.654	3 0.564	0 0 99]	9 0.51	3 0.576	386 0 1	9 0.586	22.0	22.0 3	8 0.50	7 0.677	7 0.28			0 1.710	8 0.78	7 1.376	2 4.53	5 0.378	10.350	~^ / ^	2 C . D . C		0 4 7 1	5 0.819	0.077	3 0.42	5 0.371 3 0.653
4	229678	85591	285963	01000	12/12/21	538879	527570	116971	293206	121608	112024	6001758	/92101	1975751	230517	55576	225097	1559602	781835	566020	19518441	122380	665163	110616	175365	127198	C9826C	251659	254596	5339196	612968	434369	231572	2519605	121201	103640	2006541	65306	14126		201100	7.51902	4401144	010000	1398968	1995366	135210	212407	894842
ACTLOSS	751702	51810	1495785	1156501	1041354	2000139	2286851	475465	64676	3390	2229	32915	5212 <u>8</u>		65890	1111598	25908	1975059	131157	77443	5415420	209135	505827	26395	231692	445940	19888481	646318 56733	8010110	1848896	219716	601444	294217		207151	197500	315221	104180	98762	6/22/	12995	01/001	1.1.1.0	101000	1754127	490748	20012	334844	6971US 1430447
PAYROLL	165413	44732	230480	4/T9TC	105601	201655	169560	47141	20021	6597	2335		206/9	51966	24078	24376	13834	357602	59402	20080	854319	70179	400986	40028	89960	180348	00000	562255	114640	222884	18799	421140	63674	11547	29368	38895	48671	66426	21216	20025	10202	10040	47021	119425	353227	56100	23433	103876	565089
RATE82	3.8 18	5.5	2.92	* 0 · 6		1.5.6	14.67	7.26	40.00	37.00	159.00	00.101	67.9		50.11	10.5.8	6.75	9.13	6.44	7.44	6.22	6.04	2.59	8.41	5.37	5 0 5 0 5 1		13.10	5 1 F	51.6	5.63	4.65	7.21	0/.21	11.86	8.87	7.82	11.5	- 25 - 25 - 25	99 N	10.01	00.0	16 96	1.2.1	7 54	9.12	60.9	4.07	5. YU
RATE79	6.73	8.49	5.57	12.41	19.54	13.15	13.38	8.70	53.00	65.00	152.00	125.00	01. FC			00.6	9.22	9.86	5.40	12.82	7.63	7.59	60 0	22.7	7.23	0.0		11.01		8.66	7.28	4.50	12.14	10.84	10.25	7.68	9.79	6 . 1 8	21	n		17 66	18.68	11.12	11.36	10.12	5.16	6.78	19 19 19
X13	0.144	0.295	0.408	102.0		0.749	1.157	0.687	0.00		222.0		C 02 - 0	111	0.312	0.011	0.159	0.587	0.233	0.361	0.638	0.458	0.687	165.54	9/2.0	0.622	00/10	000.0	0.257	0.714	0.748	0.331	0.357	200.0	1.188	2.317	0.433	0.540	1.1.40			1 006	0.582	0.499	195.0	0.509	0.000	0.294	0.913
X12	0.506	0.104	0.501	2422	0.20	0.280	0.685	0.072	0.070	200.0	1.0.5	195.0			0.536	0.005	0.426	0.688	2.840	0.114	0.511	1.248	0.524	21.0	0.509	0.629	000.0	010.0	122	0.830	0.518	1.017	0.229	100.0 0.00	1.288	1.400	1.249	1.690	120.2			469 U	0.604	0.420	0.540	0.416	0.095	669.0	0.563
11X	0.277	0.068	0.253			0.317	0.941	0.570	0.037		841.0		192.0	244	191	0 0 0 0	0.258	0.690	1.636	0.209	0.512	0.246	0.377	297.0	9.8.9	0.514	10/.1		0 664	0.807	0.250	0.656	0.277	141.0	1.811	1.484	0.641	1.483	90/.0		0.010		0.881	0.505	0.426	1.723	000.000	0/2.0	0.527
6Id	589346	308060	882704	1055057	1215192	1787954	1588122	349813	928189	010020	964196	5//296T	0110000	677215	614724	169822	721109	5318449	287299	154383	6530682	340787	2677964	106860	152/95	291250	1020012	1240441	772664	1595198	242064	1301183	622765	26.95	336260	317728	586290	125571	55055	700//I	110201	26.75.75	1549495	2970229	4342353	697613	11821	1618121	2628498
P12	864503	279120	159527	1005778	1248626	1947742	I810503	375746	995022		09/445		812128	420715	832018	182355	792484	5451995	222978	183177	6825105	426782	2503574	128440		5/0654 2004 195	2020002	4016U1	912997	1739229	145303	1426266	1/11//	11100	416927	356614	669319	234319	15/55	100047	676130	263581	1572742	3755144	4841774	731875	201011	1551150	3031377
114	842937 1460127	268738	1017404	1026692	1344541	1653095	1877080	644153	1008555			-06976T	110877	677413	858434	203068	737381	4825579	271555	228466	6162653	456234	1164795			2910148		100001	880299	2004770	225601	1616249	921/93 50061	1626	458832	362058	750939	293177		1711630	1111111	259750	1478929	2364423	4805556	565878	13284	0/22/0	3288549
CLA55	"]	34	55	104	128	129	130	201	806		214		1320	1463	1470	1654	1924	1925	2001	2002	2003	2014	2016		1502	1907	2021	100	2110	21112	2112	2121	2912	2503	2570	2571	2576	1967	1007	00000	2210	2731	2759	2797	2802	2841	C162	5262 5001	3018

NCCIELOS	725022	C/0714	1858365	119302	4501892	2252031	182973	281563	4076124	75736	1099051	1799508	5744591	872144	44346	628503	68709	141726	231984	342341	53947	1485384	881089	1384467	2710325	2718522	232597	65526	11088736	157495	979677	1667110	1101010	4971061	973238	1905057	820703	2597156	F14000	10771212	1071490	117753	3428900	928836	682	219443	568775	512118	308717	58521	15/5985	640147
ELOSS	737551	206000	1959711	105336	3299958	2088024	194757	274248	4742654	72671	996703	1999959	5477101	881064	35430	646523	63938	106497	274420	446256	51195	1572891	712108	1780030	2741949	2773853	251975	61691	10743705	213860	25/0/52	101010	1021646	5689534	900969	1908445	826537	275895959	101100	749974	1001001	131034	4185168	1020478	634	254858	580905	619299	311232	865/2	1/64200	679657
15	0.540	02/-0		0.556	0.388	0.621	0.526	0.646	0.599	0.560	0.680	0.405	0.602	0.595	0.593	0.532	0.546	0.610	0.515	0.505	0.570	0.558	0.691	0.421	0.520	0.452	0.581	0.613	0.632	0.547	109.0		105.0	0.556	0.618	0.577	0.649	0.684	1.0.0	00/.0	1 747	0.535	0.398	0.421	0.592	0.553	0.600	0.455	0.547	0.560	0.445	0.486
12	0.562	10.004	0 686	0.086	0.801	0.684	0.258	0.216	0.796	0.084	0.459	0.764	0.868	0.418	1 5 0 . 0	0.579	0.076	061.0	0.244	0.349	0.058	0.677	0.361	0.595	0.715	0.831	0.300	0.098	0.938	0.158	100.0		0.618	0.836	0.400	0.674	0.400	0.740	107.0	0.57.0	001	0.082	0.885	0.744	0.458	0.234	0.258	0.477	0.460	0.068	121.0	0.430
X	0.507	214.0	587	0.274	0.339	0.639	0.366	0.878	0.604	0.319	0.794	0.350	0.605	0.612	0.815	0.495	0.100	0.727	0.306	0.360	0.372	0.547	0.885	0.311	0.495	0.425	0.579	0.898	0.635	0.363			0.455	0.551	0.672	0.574	0.750	0./19		0.00	0.82	0.003	0.374	0.366	0.604	0.456	0.652	0.316	0.505	0.260	0.392	0.358
Id	6045429	111002	10358823	403464	19124188	10250508	1604602	12666822	18542541	392840	3988062	15317714	31130611	3363925	191508	6506374	343579	1069/29	1488031	2499615	246208	9927897	2636490	6928626	11894922	23361810	1994647	473222	72479387	850196	C+10022	11950717	7655045	24152100	3131053	9784611	3131925	12466595	100201	6767567	1114.192	380814	36455826	13808999	3970504	1407031	1606260	4286950	4007690	500352	11205221	3547487
ACTLOSS	248557	010100	1912284	38378	2849911	1421137	461273	42533	2312161	280460	773025	149901	5466606	347298	6 9 2 / 0	511048	0.000	402242	128496	775909	23383	1676944	998596	1725585	2961773	2146146	181411	130	8622676	4 36 2 2		1 20000	516514	3851358	684173	1623707	982363	16//062		576970	102500	80410	3263651	16006	0	157732	662855	361175	281979	20023	201021	200606
PAYROLL	196702	220411	197446	27554	1795443	201877	40034	64350	1668460	22228	192501	495875	1361354	162918	9806	94382	24435	29032	51345	41157	20002	202341	325871	388072	454320	314904	14098	28162	933011	63481	1/200		113088	2057991	359172	532338	174342	560342	67770	25222C	6262919	25039	757668	171646	137	36475	109735	78796	49651	12529	166922	179154
RATE82	5.02			5.70	3.34	16.15	6.10	5.80	3.34	4.45	7.39	4 90	5.44	6.95	0.00	8.68	3.91	6 4 6	6.13	11.08	3.55	9.75	3.70	4.78	8.28	10.86	21.72	3.06	15.09	52	2.0		12.03	3.34	3.62	4.86	6.24	18.0			50.0	7.23	6.74	8.46	6.58	8.10	6.81	8.10	8.25	2.93	9 9 	69.9
RATE79	6.59		16.08	6.53	4.50	15.80	8.77	6.26	4.50	5.54	7.23	9.45			8/	12.23	4 i 0 i	17.4	9.85	20.39	4.26	13.21	3.00	10.34	11.02	18.51	29.18	3.39	17.29	5.84	***		17.03	4.72	3.85	5.90	6.93	0.0	0.0		2.13	9.29	13.16	13.40	7.43	12.00	8.37	17.97	10.88	55 N	10./0 2	15.7
XI3	0.462		0.799	0.397	0.384	0.616	0.281	0.853	0.585	0.097	0.946	0.279	0.598	0.16/	0/6.0	0.630	140.0	1.0/2	0.153	0.293	D . 382	0.602	1.513	0.389	0.686	0.384	0.647	1.127	0.533	0.250			0.563	0.568	0.835	0.535	9.844	0.105		122.0	0.755	0.003	0.412	0.377	0.123	0.604	1.364	0.312	0.507	620.0	0.52.0	0.251
X12	0.569	1 2 2 1	0.523	0.438	0.382	0.762	0.513	1.328	0.714	0.459	0.641	0.473	0.575	0.818	0./66	0.467	0.003	0.543	0.239	0.402	0.165	0.629	0.796	0.413	0.349	0.464	0.424	0.332	0.719	0.285	7 9 C . U		0.288	0.638	0.757	0.657	575.0	1/0.0	2000 1	192.0	0.761	0.009	0.424	0.369	0.614	0.724	0.468	0.481	0.528	50/.0	284.0	0.350
11X	0.468		0.477	0.046	0.264	0.545	0.330	0.510	0.519	0.590	0.820	0.295	0.642	18/10	1.089	0.250	5-5-0 	1.5.0	0.520	0.475	0.544	0.421	0.434	0.200	0.510	0.423	0.682	1.144	0.649	0.513	10/.0	0 6 6 6	0.507	0.450	0.421	0.561	157.0	0.617	200.0		1.363	0.002	0.291	0.352	0.906	0.169	0.400	0.162	0.449	0,140	100000	0.464
PI3	2055905	1695755	3047891	130249	5413338	3455698	660913	438817	5414449	170861	1102200	4652120	10341663	050/66	977/9	2900956	105879	144/45	439154	1357789	59749	3011719	797898	2073385	2634862	7368786	613002	123465	24347583	234682		3560756	2861172	7290971	1016138	3761357	864647	1000100	001000	1804147	862330	127144	11011225	3645102	1034691	499360	381031	1360542	1475725	11/6/	CF1/5F2	1114642
P12	2449373	1836704	3502056	117603	6725930	3314510	491198	385490	6243554	168605	1344256	5162026	10322501	1103556	1/675	2262/66	116825	116610	557044	962009	85929	3389576	905448	1782323	4020307	8035243	713338	140749	26284498	2656492	150200	4158378	2563176	8354286	1092893	2341564	1092517	1077/20 870550	1848000	2214605	1098880	38736	12741665	5820391	1327867	334702	551242	1428867	1746149	095007	1010274	1214366
PII	1540151	2107110	3808876	155612	6984920	3480299	452491	442374	6854538	53374	1541606	5503567	10461448	1263320		1342651	120216	192261	491883	6115/5	100529	3526603	933144	3072918	5239753	7957781	668306	209007	21847307	220125	10001	4260098	2230698	8506844	1022022	3681690	11/4961	114441	2275135	2248815	1153182	214934	12702936	4343506	1607945	572970	673987	1497541	785816	C11421	CT/2015	1218479
CLASS	3022	1028	3030	3064	3096	3110	3111	3114	3116	3122	3131	3132	3146	2167	2100	5188	2220	3240	3241	3503	3306	3307	3315	3341	3365	3372	3373	3382	1400	5040		3612	3620	3628	3634	3635	80.00	C 7 9 7	1668	3681	3685	3719	3724	3726	3803	3807	3303	3821	3829	5861	4 U 0 4	4130

NCCIELOS	269233 84088	164481	90405	25455	1017100	240755	349042	39162	181608	990492	969235	284486	14507	53204	14243	17955	469006	3427279	1623708	1005514	357695	505396	316472	1068127	500466	169726	1042158	386006	161604	118904	6/22G	1204051	113768	786	17681	130821	47271	3675	179635	1769959	14405	18332	1440	192695	6 9 9 4 4 5	5525538	789108	2172204	586572	587318	428019	8561624	476488
ELOSS	268779 90237	180238	106782	1/519	1070101	205600	341254	47415	202563	214977	907101	269083	14234	41722	9568	14273	472811	4370472	1333770	1036478	343330	464894	289813	906406	591672	183275	945095	454179	191014	169762	522/5	02/000	187.89	963	13274	88317	28548	2602	141385	1623511	2112	13480	1197	169090	66528	5421145	874863	2085124	609549	516068	360001	8409515	394960
IN	0.580	0.532	0.551	6 5 C - D		0.107	0.587	0.524	0.542	0.564	0.802	0.702	0.592	0.583	0.572	0.574	0.599	1.091	0.469	0.536	0.587	0.784	0.708	0.726	0.535	0.547	0.546	0.536	0.480	0.528	292.0	0.470	865 C	0.627	0.588	0.576	0.601	0.546	0.675	0.707	0.580	0.628	0.711	0.716	0.613	0.574	0.481	0.584	0.510	0.604	0.558	0.53/	+ < < . D
12	0.229	0.230	0.176	9/0.0		0.250	0.754	0.180	0.186	0.572	0.495	0.205	0.030	0.047	0.022	0.030	0.292	0.724	0.636	0.551	0.397	0.278	0.198	0.541	0.316	0.196	0.432	0.259	0.304	0.139	0.033	112.0	0.102	0.017	0.025	0.068	0.026	0.070	0.147	0.562	0.017	0.030	010.0	0.293	0.0/5	0.856	0.590	0.649	0.421	0.286	0.282	904	0.500
x	0.574	0.365	0.407	122		0.7.80	0.601	0.258	0.364	0.551	1.026	1.167	0.928	0.599	0.130	0.309	0.641	1.285	0.404	0.498	0.596	1.309	1.217	0.848	0.433	0.405	0.498	0.403	0.248	161.0	0.068	3/5.0	0.740	3.239	0.809	0.493	1.319	0.062	1.217	0.804	0.442	2.110	3.480	1.039	1.002	0.573	0.411	0.586	0.410	0.658	0.476	0.532	129.0
Id	1364139 472059	1379356	971425	015755	001001001	1514121	1574549	999369	1038156	6311910	4618632	1183905	101029	191390	61404	99514	1915800	12462528	8273434	5794293	3089203	1782594	1131175	5567470	2151333	1115950	3567344	1618563	2036980	725474	500011 100001	10577501	491466	35706	75937	303806	82254	311209	771581	6062779	37473	103036	I 6675	1929948	328427	28239857	6809634	8731599	3411630	1856810	1819554	44921655	1997345
ACTLOSS	312722 17592	•	32668	1/5151	1 20 7 2 2 7	809713	180679	33254	332286	712366	779353	148888	64911	273950	63676	905	2558888	3854741	1235854	901221	297598	328422	182149	908619	143728	17459	496022	213245	36003	44860	50//01	110112	56150	130	062	1166	5431	•	161811	1054584	862	0/009		241559	130089	7 395982	275695	1452535	391810	309271	80293	8861174	284744
PAYROLL	58065 96319	39003	25708	12221	89001CT	76089	101807	40715	41940	157608	234939	66721	21712	113193	11018	18432	459255	301827	250577	196010	93524	377658	72063	156903	115190	31871	1040062	70313	21043	159006	9/102	200000	15138	113	2542	18796	6794	537	25674	254391	8055	85.6	616	41034	32605	923710	62695	173618	120846	85745	110367	2610/65	1236.38
RATE82	6.08 1.13	5.59	4.73	66. F	20 11	40.44		1.28	5.83	8.11	5.49	5.53	0.89	0.62	1.68	1.29	1.29	16.38	8.16	6.50	5.03	1.72	5.77	9.13	5.81	6.99	1.31	7.27	10.24	1.00			10.05	9.28	9.31	9.28	9.15	9.22	9.22	9.06	4.04	2.52	2.08	6.06	2.14	8.87	20.25	19.43	7.21	10.21	56.0	2.93	5.95
RATE79	7.57	8.24	7.15	(9. / I		90. y		2.11	8.46	10.40	4.57	5.45	1.05	0.60	1.44	1.28	1.63	12.59	10.77	9.37	5.93	1.49	5.39	7.55	9.11	9.97	1.58	11.44	17.93	1.92	24.7		10.31	12.91	8.43	7.74	6.63	8.43	7.74	8.57	5.65	2.13	- / · -	5.46	2.10	9.70	27.5%	19.50	9.39	9.46	5.72	5.67	5.68
XI 3	0.473	0.376	0.152	911-A	297 0	0.688	0.324	0.340	0.317	0.679	1.407	0.726	0.359	0.560	0.101	0.023	0.353	1.530	0.593	0.638	0.344	0.910	1.014	0.974	0.505	0.373	0.257	0.652	0.065	140.0	1 - U 5 4	612 0	0.341	3.983	2.292	0.512	1.089	0.089	2.656	1.062	0.000	2.8.5	0.085	0.835	1.855	0.572	0.241	208.0	0.132	0.396	287.0	0.555	1.33/
X12	0.332	0.274	0.700	611.0 0	1450.0	0.833	0.648	0.196	0.599	0.446	0.959	1.638	2.060	1.056	0.190	0.826	0.983	1.373	0.211	0.408	0.569	1.815	0.383	1.103	0.436	0.392	0.744	0.133	261.0	10.50	0.000		1.426	0.211	0.070	0.106	2.297	0.027	0.681	0.550	0.000	1.138	5.849	1.123	0.865	0.694	0.983	0.610	0.593	282.0	192.0	0.425	0.4/0
XI 1	0.862	955.0	0.236	212		168.0	0.770	0.122	0.202	0.501	0.742	1.201	445.0	0.186	0.097	0.077	0.580	0,966	0.418	0.466	0.887	1.133	2.015	0.494	0.369	0.452	0.458	0.386	0.522	0.136	790.0	1 1 1	0.470	0.062	0.130	0.836	0.062	0.023	0.195	0.827	106.1	1.931		1.159	10.01	0.464	0.202	0.394	0.486	202.0	0.264	619.0	979.0
PI3	364110 158834	403366	231045	110/4	1111170	700766	452038	509690	371601	2422609	1399756	424123	38308	555555	16847	27486	600357	4021782	2729080	1769049	1128722	497505	318264	1729763	719917	371991	1204285	578417	672292	16/112	201/2	100700	139993	28814	24628	92848	32477	174279	253529	2274498	12155	1125 %	1242	/31063	75958	8578730	2953845	2449114	1047667	627500	6//2/6	1265/435	559669
P12	474279 152437	480714	398955	100011	1561012	480466	535595	327854	317658	2074848	1749031	369029	34037	66931	21209	32830	628267	4195915	2855786	2097828	894172	623399	357863	1872429	593251	389925	1343382	498965	261651	119222	1010101	296065	158205	3026	27786	101500	31338	135091	337961	2435726	16598	012/2	202	559456	+CD211	9343889	16695/2	3123971	1045/34	681364	04/295	15442126	9/18/2
PII	525750 160788	495276	341426	17101218	147412	355089	586866	161825	348897	1814454	1469845	390753	28684	68873	23348	39198	687176	4244831	2688568	1927416	1057309	661689	455048	1965278	838165	354034	1019677	541180	605496	226062	156675	564546	195268	3866	23523	109458	18440	1839	160081	222251	8/1/8	27975	0.0/	865605	126761	1031/238	218621/	3158515	1520230	A 5 5 / 5 G	00000000	16842UVU	128621
CLASS	4131	4206	4207	14/4	6766	4250	4251	4253	4273	4279	4304	4307	4308	4351	4352	4360	4361	4420	4452	4459	4470	4511	4557	4558	4568	4583	4611	4635	4665	2695	1040	4740	4741	4807	4808	4809	4811	4812	4813	125	125	× 1 0 5	1221	2065	6265	5022	5040	5057	5102	5145	1010	5135	2215

NCCIELDS	4724015	121621	777//6	12000/	201102	74676	00000	8238737	1038917	186191	1853808	728075	862570	407436	20100100	2796907	110027	261202122	130729	4326434	457797	487925	562030	4706854	297555	371183	3107097	101000	341040	801421	992243	22332516	1623026	154612	6197067	2140682	11159	387599	637670	312769	131299	402029	101015 101018	178755	272555	158189	715254	166936	4278U/ 1791102
ELOSS	4977017	2026/21	0/6000	C110101	701626	116755	590283	8402935	986581	135895	1630189	689372	869768	481482	4091CIC	2462402	020201	2808325	143268	4377823	570802	465841	593760	4860874	371950	329630	20002211	805656	266916	847424	905080	22336456	1685545	158152	9042432	2158368	16457	337369	686268	284292	172060	456416	5 000 C 0	178585	270725	163481	688154	201178	528412
15	0.482	179.0	0.070				0.755	0.605	0.577	0.587	0.707	0.543	0.550	1 4 93	010.0	202.0	00070	81.9 O	0.533	0.488	0.568	0.541	0.528	0.396	0.508	-255	744.0	662	0.630	0.539	0.786	0.594	0 546	0.544	0.740	0.758	122.0	0.750	0.640	0.585	0.473	0.491	0.547 0.52	222	185.0	0.633	0.591	126.0	0.542
21	0.858	***	204 - D		1 5 1 X	1167	0.313	0.896	0.484	0.106	0.540	0.388	0.461	0.363			00000	0.750	0.202	0.841	0.307	0.359	0.424	0.863	0.348	0.304			0.178	0.527	0.447	196.0	0.593	0.258	0.882	282.D		0.226	0.414	0.216	0.258	0.424	10110	242	10.20	0.123	0.422	0.106	0.735
IXI	2 0.465		1 0.02 A 0		0 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		1 1 38	4 0.609	2 0.572	2 0.632	4 0.814	7 0.481	6 0.512	9 0.351					5 0.339	2 0.470	5 0.535	0 0.466	5 0.454	6 0.366	4 0.368	2 0.456	/25.0	10.766	0.853	4 0.501	3 1.039	0.594	5 0 -5 2 0 S	4 0.436	7 0.762	7 0.834		1 1.327	0 0.721	5 0.594	1 0.158	0 0.368	100.0 /	8 0 7 7 8 0 4 1 4 0 4 1 4 0 4 1 4 0 4 1 4 0 4 1 4 0 4 1 4 1	0 577	6 1.040	0 0.604	6 4.242	3 0.285
•	2880156		511100 511100	210232	422595	20110	211800	4073395	440790	51667	553920	296588	402377	266810		9497617	25.08661	1419642	115590	2507494	205925	262234	344987	2994360	248792	203235	CT/4001	266666	98320	524400	379903	11765965	688800	160878	3539431	500505	2850	134222	330984	126370	161253	346110	201120	1642120	192754	61910	342176	52023	1315341
ACTL055	4142254	2424402	076020	5511666	726873	A126	823951	10847540	595404	45090	2585405	576960	1093476	64/93/		00/00/00	023/020	1609170	22261	5212561	457269	40060	643190	6072388	329314	1651/8	1000001	1410219	164972	725333	1103040	24118052	3404102	36053	10632558	31104/6	08161	89361	212770	64283	70549	733127	1/0000	805158	42196	40845	965146	344277	914241 1978162
PAYROLL	1878430	41CDCTT	089211	20011	78879	15146	120310	1229627	264916	42220	417280	146795	177678	19868		1517366	1111240	1151756	31287	915514	102611	32833	66579	915909	48864	90/20	300344	138565	48531	154186	214622	3299246	794574	20695	2399602	543336 678096	6602	68816	181808	105330	74137	153349	10055		86733	27280	408908	9123	987596 407828
RATE82	3.85				13 30	10.7	66.1	9.70	5.81	6.78	6.83	7.29	6.82	.13			17 66		6.25	6.43	6.43	23.04	12.21	7.54	8.80	99.6	10.10	10.02	10.00	6.64	5.87	10.82	26.2	9.34	5.22	4 0 °		7.51	4.59	3.94	2.32	3.39	10.02	0.0		7 37	2.28	26.11	5.97
RATE79	5.22	C/ . T	02.01		15 19	16.36	6.16	10.70	6.12	5.20	5.24	8.21	5	10.68		10.1	CL . LC	10.1	8.15	9.30	9.30	24.91	16.03	12.72	14.23	6/ 6	12.10		8.28	9.67	60.0	10.82	1.69	13.32	6.83	- 6 - 6 - 5 - 6 -	0.12	6.20	5.60	4.38	4.66	5.75	10.00	19.1		8.91	2.70	21.55	1.06
X13	0.397		801.0		0.8.0	172	2.547	0.814	0.504	1.486	1.538	0.486	0.651	0.235				177	0.898	0.314	0.246	0.808	0.461	0.255	0.376	184.0	000.00	1.202	0.554	0.532	1.459	0.608	0.577	0.843	0.711	968.0 0 609	0.263	1.658	0.572	0.948	0.308	0.295		101.0	0.747	0.926	0.465	6.877	0.423
XIZ	0.423		109.0	0 686	966 0	0.075	0.376	0.516	0.461	0.319	0.700	0.546	0.379	182.0		0.000	0000.0	175 0	0.054	0.576	0.741	0.293	0.439	0.321	0.411	280.0	0.000		1.372	0.391	0.839	0.592	0.440	0.284	0.737	10.67/		2.278	0.327	0.291	0.080	0.3/9	270.0 2755.0		0 247	0.414	0.493	0.706	0.535
11X	0.553	7/7 T	40.0		0.530	260.0	0.621	0.528	0.718	0.040	6 4 4 6	0.417	0.539	0.4.58				919 0	0.455	0.470	0.542	0.387	0.463	0.469	0.316		001.0	0.55.0	0.602	0.611	. 915	282.0	0.549	0.105	0.836	1. (5)	0.000	0.102	1.166	0.540	160.0	0.447	171 D	761 0	0.701	1.694	0.865	4 912	0.632
E I d	1727757		310030	1071167	1511218	289172	658042	12141251	1229307	179112	1445326	854136	1085784	860072		2/21210	04 T 4 T 4 0	1584412	162137	5879962	494851	675441	968484	8606849	731464	62138	10022001	753434	272674	1774167	1036946	33690828	1957225	571829	11568520	1442002	5936	468875	960187	397113	512213	1242/19	10230201	514414	767212	210226	1092591	193791	4552100
P I 2	10192630		01070747	7871963	1648136	124050	707044	14164705	1469425	167766	1793603	1004201	1437969	952556		1000010201	#175226	4983361	513642	8724009	660285	814322	1216055	10186845	884324	63/802	1402707	968089	337771	1984456	1243933	42308736	2294613	618610	12023099	1140405	10824	420395	1074823	374034	537835	1168265	1010CTT	568901	601884	190418	1230926	173370	6355054
P I 1	10881175		007040781	E552400	1266600	297806	752918	14427998	1709170	169794	2300275	1107550	1500022	822192		0770771	01202414	5628626	480126	10470971	904120	1132577	1265337	11149911	872136	1916//	2068806	944919	372763	1485381	1518155	41660087	2636169	418345	11802698	2/51652 0198001	11746	452951	1274829	492558	562484	1044117	102/02/157	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	558444	218462	1098243	153075	4246260 4246260
CLA55	5190	1410	5115	1000	5223	5221	5348	5403	5437	5443	5445	5462	5479				5551	5606	5610	5645	5651	6003	6204	6217	6229	6233	0100	125	6400	6504	6834	6121	7230	7360	7380	1961	7405	7421	7423	7502	215/	1520	25,00	1540	7580	7590	7600	7601	7704

NCCIELOS	5068850	122062	2559071	2370990	2522521	314098	6446930	933423	671427	111908	8135199	1678634	2060731	249027	68673	362223	392980	67299	40290	4628024	1843118	667518	1018710	295206	152020	1776828	11228	264531	58600	263607	2493318	195357	83716	128375	1752679	1190742	1081079	19925567	2/05/02	0070707 080856		906909		00910	184155	0048473	10101	781810	143688	167902	12699759	11661565	323128	2088378
ELOSS	5007390	581105 781107	2282518	2461890	2567879	265858	6493368	1024841	662533	82967	8165487	1644567	2077145	301274	83533	353538	464728	44716	44824	4787921	1850291	618861	1057743	280924	144510	1691966	16855	295825	62647	264760	2457687	194493	61209	132486	1772327	1264627	1051826	296567	7061584	81780 C	1960803	1 10000	04164	02022	311665		151111	873588	122985	117711	12709373	11263976	328413	2713998
IN	6 0 . 6 4 0	575 D	2202	9 0 487	7 0.556	0 0.631	1 0.651	5 0.512	4 0.647	9 0.640	3 0.781	0 0.595	3 0.550	0 0.527	4 0.534	2 0 574	6 0.494	9 0.573	9 0.579	5 0 485	4 0.575	0 0.622	5 0 551	4 0.628	4 0.572	3 0.591	5 0.602	5 0 491	8 0.652	0 0.636	2 0.621	8 0.538	4 0.630	6 0.543	3 0.580	9 0.514	9 0.597		0.035 0.567				0.00	6.24 U 6	002 0 6	292.0	2120	7 0.469	2 0.719	9 0.604	0 0.595	30.696	9 0.590	\$ 0.551
12	-	10		0.74	0.70	0.18	0.83	0.581	0.35	0.06	0.85	0.64	0.71	0.22	0.11	0.25	0.27	0.05	0.15	0.87	0.63	0.351	6 7 0	0.15	0.09	0.57	0.02	0.22	0.07	0.18	0.73	0.19	0.06	11	0.64	0.65	6 - 0						200	000	0 2 0		200	0.56	0.09	0.08	0.92	0.902	0.21	0.623
1X	0.649		0.00	0.455	0.546	0.856	0.665	0.463	0.767	1.433	0.815	0.603	0.537	0.330	0.156	0.548	0.264	0.423	0.562	0.471	0.571	0.696	0.519	0.879	0.472	0.598	1.385	0.178	1.487	0.883	0.635	0.359	1.334	0.242	0.579	0.478	0.612	2/0/2	0 1 1 0 0		0 509	0 5.48	0.550	210 0	1 1 6 7	1 2 2 0	10000	0.382	2.066	0.830	0.536	0.707	0.616	0.533
14	30084080	143487	5918154	14153182	11444941	995917	23275086	6735546	2559480	304632	27592929	8399106	11763644	1297572	565549	1561066	1767075	255232	856788	33522908	\$200233	2517245	4607885	822626	449107	6343657	75839	1336169	355692	1001368	12952721	1125432	278850	565727	8510325	9153069	4595555	001/955	01159307	1748133	10668473	2681615	1 1 7 5 0 3 0 3 0	66696	1210321	42098860	1415986	6171941	438885	417106	54450230	46867232	1287150	7967376
ACTL055	6489913	156233	1905943	2681423	3211085	488083	6642611	765940	542852	51907	4703833	1634935	3102440	113045	303747	138510	299651	8711	190061	3737411	1222285	677751	362050	229746	538345	900885	211	257215	31593	280027	1386262	147449	109564	170124	1115014	1389675	186002	T *****CT	0961109	306668	1914058	622893	17363	24884	84974	9088589	188785	1170389	172829	314705	13813843	12688059	90341	1092473
PAYROLL	1409822	242768	710474	2448504	1671705	493402	4189113	152737	166275	62086	2408123	784983	556575	170160	33913	239716	276992	17474	6366	490877	465402	200507	298254	47376	31597	524388	1234	72075	4106	17156	166582	33365	16790	25995	261585	124897	231210		1708657	101121	562093	44419	8250	9704	196439	17968009	10185	1525051	119315	1087727	53363602	2076701	223961	6248490
RATE82	20.4 1	69.1	4 4 0	1.12	1.91	0.80	1.81	7.68	5.19	2.23	4.32	2.44	2.92	1.90	2.55	1.84	1.77	4.85	19.7	12.62	5.44	4.40	4.35	7.79	6.04	5.13	11.82	4.66	18.10	19.19	18.79	7.32	6.24	6.36	8.69	12.65	4 0 4 9 0					17 22	9 07	2.80	0.5	0.40		0.70	1.54	0.20	0.30	5.86	1.83	0.43
RATE79	5.27	2.5.6		1.96	2.62	0.81	2.26	12.44	5.84	1.98	4.12	4	4.04	3.19	4 38	2.44	3.22	4.24	11.54	19.10	6.56	4.71	6.11	8.96	7.59	5.18	21.52	7.93	22.20	23.01	22.54	10.28	5.49	8.90	11.08	18.71			2 - 2 - E	10.9		19.28	14 43		2 1 2		11.2	1.16	1.36	0.17	0.38	7.40	2.36	0.61
XI 3	0.562	1.260	0 794	0.501	0.560	0.739	0.603	0.442	0.475	0.787	0.877	0.695	0.558	0.458	0.095	0.688	0.264	0.251	0.662	0.412	0.709	0.270	0.351	1.362	0.074	0.446	0.189	0.264	3.206	0.590	0.541	0.347	4.532	0.456	0.517	0.513	0.1.50	202 0	0007.0	0 1 9 9	0.469	0.849	0.246	0.007	1.025	0.551	0 3 5 0	0.754	2.055	0.916	0.497	0.716	0.850	0.764
X12	0.640	0.250	1 164	0.368	0.565	0.621	0.554	0.355	1.393	2.108	0.591	0.579	0.363	0.201	0.174	0.282	0.188	0.726	0.603	0.542	0.647	0 * 6 * 0	0.598	0.249	1.253	0.560	3.432	0.144	0.096	1.072	0.530	0.471	0.181	0.158	0.396	0.604	007.0		1 0 1 0	0 887	0.464	0.741	0.634	5.144	1.338	1 463	0 4 1 9	0.148	1.354	1.113	0.545	0.651	0.806	0.414
X I I	0.759	0.301	9.7.9	0.499	0.516	1.151	0.813	0.606	0.423	1.306	0.970	0.524	0.699	0.357	0.212	0.703	0.319	0.286	0.354	0.457	105.0	0.832	0.586	1.036	0.169	0.726	0.00.0	0.128	0.024	0.933	0.807	0.278	0.080	048	9.827	0.322	010.0		202.0	542	0.580	0.382	0.034	0.003	1.067	0.664	163	0.308	2.606	0.503	0.725	0.753	0.277	0.480
P13	10416162	418058	1575736	4500191	3291833	288103	6904165	2378461	801416	95410	7464023	2896836	3428600	347115	209453	506930	420086	73121	310834	10659259	2294525	767748	1394697	247365	109178	1632457	21014	430558	160720	279266	4270895	348981	76630	197906	2571443	2750337	3505151		13017857	484371	2988391	795934	529766	21714	388562	12461295	551806	1800633	123832	119842	16281312	14923641	350497	2032592
P12	10707376	503560	2035575	4825172	3917308	331175	7715904	2290522	263635	110074	9424974	2980779	4231479	446326	188298	555130	562159	85570	332213	11070371	2790487	812610	1491526	266365	135213	2147056	29450	486868	11799	331980	3911813	346655	85949	206003	3040668	3199470	7407407	0010000	11958051	408405	3661562	877722	777156	41684	416034	14610494	331748	2176224	134787	142079	18494077	15802318	445809	2658985
LIA	8960542 471048	563211	2306843	4827819	4235800	376639	8655017	2066563	894430	99148	10703932	2521491	4103566	504131	167798	499006	784830	96541	213741	11793278	3115221	936887	1721662	308896	204716	2564144	25376	418743	95260	390122	4770013	429795	116271	161817	2898214	3203262	0100001	1112665	13182393	175357	4018520	1007959	68108	33601	405725	15027070	532432	2195084	180266	155186	19674841	16141273	4908944	3216/01
CLASS	7720	8001	1004	8008	8010	8013	8017	8021	8031	8032	8033	8039	8044	8046	8047	8050	8058	8102	8103	8106	8107	8111	8116	8209	8215	8227	8233	8235	8263	8264	8265	8279	8258	8291	8292	8293			8187	8392	8395	8500	8606	8719	8720	8742	8745	8748	8800	8803	8810	8829	8831	8832

NCCIELOS	2922525	119895	801200	3165815	46847	1917773	3066357	1471427	1563056	1150280	354440	15463790	6190271	393584	17349	435417	67583	264815	53168	394580	213858	11978	92044	478658	338446	3337157	1360005	806911	1121684	443236	80152	240112	258826	91905	393868	1687	330334
ELOSS	2830469	433769	139668	2931264	38849	1753263	2936892	1373950	1583380	1162256	341237	16087046	5950705	416041	17559	470137	49189	243253	58493	407014	233475	12913	114126	443048	320255	3288505	1385258	933486	916473	454461	57516	249704	237587	89228	416461	1161	325704
17	0.524	0.610	0.538	0.684	0.593	0.789	0.645	0.702	0.567	0.589	0.564	0.504	0.746	0.533	0.581	0.587	0.580	0.592	0.542	0.551	0.573	0.586	0.547	0.584	0.603	0.591	0.559	0.499	0.676	0.556	0.578	0.542	0.633	0.550	0.552	0.584	0.515
21	0.805	0 348	0.085	0.691	0.038	0.701	0.750	0.499	0.578	0.493	0.231	0.948	0.872	0.414	0.046	0.292	0.046	0.252	0.097	0.301	0.234	0.049	0.152	0.316	0.259	0.783	0.740	0.524	0.442	0.373	0 * 0 * 0	0.207	0.179	0.090	0.277	0.011	0.247
IX	0.866	0.662	0.060	0.730	0.876	0.877	0.666	0.822	0.556	0.596	0.502	0.500	0.770	0.463	0.562	0.598	0.528	0.620	0.163	0.479	0.542	0.651	0.349	0.589	0.662	0.594	0.551	0.423	0.794	0.512	0.468	0.386	0.866	0.218	0.473	997.0	0.312
14	19638325	2497566	001962	10576160	145064	11113752	14187421	4687570	6478019	4575052	1381290	86598869	32486700	3319933	186697	1915141	182650	1553324	462970	2002849	1410942	200840	814583	2155447	1617670	17123666	13462381	5180480	3724223	2789633	153260	1194473	993519	422918	1775880	5985	1517983
ACTLOSS	2422170	662406	456448	3842141	154485	1987999	2557158	1704957	1387950	1228969	293017	22208301	4334653	402062	6552	267078	23519	723697	37990	227424	534738	955	47046	484504	931210	3556465	2145720	969505	1002330	542245	31938	166386	207857	56806	304793	143	606673
PAYROLL	2687172 476618	124289	11720012	655949	16566	396519	698409	462289	664463	538152	285828	7529275	1363581	163540	5165	264885	84759	9701	12558	34808	29940	5912	5385	110169	80923	300128	319975	348285	269271	183846	18172	27024	31828	26567	688485	1103	256258
RATE82	1.33	6.31 1	5.0	5.67	3.62	5.55	4.77	3.76	2.84	2.60	1.51	2.21	5.41	2.99	4.26	2.07	1.03	34.27	5.48	15.10	8.93	2.57	22.10	5.46	5.37	14.32	5.38	3.05	5.76	3.13	6.50	12.99	12.28	4.59	0.71	2.01	1.63
RATE79	3.20	5	4 4 - O	6.20	3.75	5.32	6.19	4.02	3.99	3,48	2.01	4.02	5.55	4.53	5.55	2.87	0.95	40.22	8.16	20.13	12.92	3.54	36.78	6.53	6.23	17.59	7.35	5.10	4.78	4.22	5.20	16.19	11.19	5.80	1.04	1.70	2.34
XI3	0.748	0.510	990.0	0.658	2.647	1.045	0.774	0.959	0.675	0.593	0.569	0.514	0.806	0.294	0.467	0.152	1.699	0.262	0.132	0.425	0.700	0.754	0.298	0.489	0.469	0.413	0.524	0.333	1.222	0.396	1.308	0.290	1.430	0.361	0.642	0.000	0.298
X12	0.528	0.930	0.067	0.769	0.255	0.872	0.634	0.797	0.395	0.536	0.494	0.479	0.807	0.340	0.813	0.507	0.022	0.420	0.220	0.458	0.792	0.026	0.291	0.545	0.409	0.768	0.490	0.246	0.713	0.643	0.034	0.161	0.945	0.102	0.427	1.738	0.393
IIX S	0.580	0.494		0.750	0.225	2 0.581	0.587	5 0.768	0.607	0.658	0.447	0.509	0.668	5 0.770	\$ 0.292	1.037	0.169	1.255	0.153	0.552	0.132	5 1.302	0.481	0.733	1 1 . 0 4 1	0.593	2 0.652	0.682	0.528	10.481	5 0.173	7 0.700	5 0.240	5 0.203	0.383	2 0.000	0.254
î I d	7622172	841591	1043264	3138390	38445	4440302	4784389	1060573	1930050	1285497	451499	25907410	12239911	1067543	65678	568681	48321	540464	183758	665038	406398	66843	267169	703966	460424	5470534	4587642	1592850	1092400	833211	46135	411577	329166	125235	516081	1592	451331
P12	7496166	929839	107554	3724307	41776	4217572	4742673	1688192	2187406	1646871	447299	30189414	11719227	1185761	74714	636055	56303	538312	122975	650957	526911	73786	303365	736163	553395	5701963	4801123	1807575	1253369	967683	51234	383087	327073	134550	581205	2750	493516
P I I	4519987 1542399	726135	182220	3713463	64844	2455879	4660359	1938505	2360563	1642685	482492	30502044	8527562	1066629	46305	710404	78026	474549	156237	686853	477633	60211	234050	715318	603852	5951168	4074116	1780055	1378453	988738	55891	399810	337279	163032	678594	1643	573137
CLASS	8833 8835	8837	8900	9014	9033	9040	9052	9058	9060	9061	9063	9079	1016	9102	9103	9154	9156	9170	9178	6116	9180	9182	9186	9220	9402	9403	9410	9519	9521	9522	9545	9549	9558	9559	9586	9600	9620