
A NOTE REGARDING EVALUATION OF MULTIPLE REGRESSION 
MODELS 

Econometric multiple regression models al-t’ now commonplace aids 
to understanding variables affecting the insurance industry. For actuaries 
and other corporate management personnel to utili/.e these models to 
fullest advantage. it is ncccssary to be familiar with important regression 
statistics and to be able to critically evaluate model structure. 

This paper discusses statistics for determining the strength or validity 
of a model. Special emphasis is given to the definition of the R’ statistic 
and its relationship to the R’ and F statistics. 

Exclusion of constants from causal models is recommended. Reasons 
for modeling change in dependent variable rather than level of the 
variable are considered. 
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It is not surprising to see rapid growth in the field of econometric research 
and modeling. Corporate management requires tools to enable it to evaluate 
economic projections and the probable conscqucnccs of alternative marketing 
and pricing decisions. Work has begun in this arca. Econometric models of 
trends for rate making are now being formulated and utilized for exposures, 
claim severity. and claim frequency for many lines under the auspices of ISO. 
Actuaries on industry rate making committees ha\c rcalircd that neither linear 
nor exponential least squares procedures can bc totally relied upon to yield 
realistic estimates of future trends in today‘s economic environment. What is 
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needed is an understanding of the causal relationships between outside economic 
elements and those elements important to insurance rate making and pricing. 
One vehicle that can provide this understanding is the multiple regression model. 
In order to make more effective use of the models being developed, it is 
necessary to be familiar with important regression statistics and to be able to 
critically evaluate model structure. 

II. TOOLS FOR EVALUATION 

Actuaries and all levels of insurance management are continually being 
presented with new, purportedly improved, and ever-more complicated models. 
In their paper 1 I] Lommele and Sturgis discuss seven tests for determining the 
strength or validity of a model. They are as follows: 

I. A t-test at the 95 percent level is used to test the importance of each 
independent variable. The usual standard for this test is It/r2 given at 
least I6 observations. 

2. The sign of the f-test, indicating whether the independent variable’s 
relation to the dependent variable is direct or inverse, should make good 
intuitive sense. 

3. R’, the coefficient of multiple determination, is a measure of the part of 
the variation in the dependent variable that is explained by the variation 
of the independent variables. There is no generally accepted standard of 
quality for R’, rather it provides a measure for comparison of one model 
against another [ 21. However, subjective standards do exist and are 
discussed in the next section in terms of R’. 

4. The Durbin-Watson d statistic is used to test for autocorrelation in the 
residual or error terms. The d statistic is generally considered acceptable 
if 1 .S<d<2.5. A d outside this range would indicate probable serious 
autocorrelation of error terms. 

5. Mean absolute error is an indicator of historical and recent accuracy. A 
more commonly calculated value is what is often referred to as the 
standard error of regression. It is calculated as: 
SEK = w - T,fi&f - K), where (N - K) is the degrees of free- 
dom. This is a statistic useful for comparison of models, without a 
specific threshold for acceptance. 

6. Correlation coefficients between each possible pair of variables from a 
model should show each independent variable to be more highly corre- 
lated with the dependent variable than with any other independent vari- 
able. If this is not the case colinearity may result, leading to low t-test 
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values for the two strongly-correlated independent variables as they 
compete for acceptance in the model. 

7. The model as a whole should be intuitively sensible. This test is very 
important if the model is to gain acceptance with other potential users. 

Information for the first five of these tests is often part of the model results 
presented by computer regression programs and in the published work of econ- 
ometricians. 

All seven tests are important considerations. but even with satisfactory 
indications from these tests. the model may still contain significant weaknesses. 

111. R-BAR-SQUARED (if’) 

If R2 for a given model is .93, the person evaluating the model may be very 
impressed with the model. However, it is possible that he is being deceived. A 
better measure of fit is R2, which is R’ adjusted for degrees of freedom [3]. 
Using R2 instead of R2 guards against a model being “overspecified.” Being 
“overspecified” basically means that the model has too many independent var- 
iables in conjunction with the given number of data observations, creating a 
problem with regard to degrees of freedom. A hint of this may come from the 
r-tests. If the f-test shows a marginal value or a value lower than acceptable at 
the 9.5 percent confidence level for a variable, overspecification may be the 
reason. Sometimes extra variables with questionable t-tests are left in the model 
because they improve the R2. The R2 statistic will aid in evaluation of whether 
all variables should be allowed to remain in the model. Extra independent 
variables will often increase R2, but R’ may decrease if the additional variable 
has little value. 

The reason that R2 reacts differently than R2 is that it is adjusted to account 
for degrees of freedom. A textbook [4] formula is: 

jp = I-K 
N-K 

+ R2(N - 1) 
N-K 

where: R” is the coefficient of multiple determination; 
K is the number of independent variables, including any constant; 
N is the number of observations. 
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But algebraically: 

87 

R2= 1 -K +R’(N- 1) 1 - K + R=N - R2 
N-K N-K = N-K 

R2N - R2K + R2K - K -I- 1 - R2 = 
N-K 

= R2 + KW2 - 1) - (R2 - 1) 
N-K 

= R2 _ (K - l)(l - R2) 
N-K 

Thus, R2 is equal to R2, less a correction for degrees of freedom. Since each 
of the terms contained in the correction is positive, R* will be less than R2. The 
only exceptions are in the special cases when R2 = 1 .O or K = 1, where the 
correction goes to zero and R* = R2. 

The effect on R2 and acceptability of r-test values together should determine 
whether an additional variable is allowed in a model. 

There are no generally accepted objective standards of quality for R2. How- 
ever, subjective standards do exist among knowledgeable evaluaters. Such stan- 
dards vary depending on the variable being modeled and the form and com- 
plexity of the model. Prior to examining the details of a simple model for the 
level of an inflation-sensitive dependent variable, my a priori expectation is that 
RF2 should be greater than .90 for the model to be worth reviewing. This is 
because high values of R2 are relatively easy to achieve when modeling the 
level of such a dependent variable. For a model of change in the dependent 
variable incorporating a number of complex variable relationships, my expec- 
tations of R2 will not be as high. For some models of change in the dependent 
variable, any R2 greater than .80 may indicate a model well worth investigating 
in further detail. 

The R2 statistic is most meaningful when used as a tool for comparison of 
competing models. Although R* is an important statistic, it cannot stand alone. 
All the tests discussed in Section II are important in the evaluation of a given 
model or when comparing it to alternative models. 
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IV. 7i’ AND ‘THE F-S’I’ATIS’I’IC 

Further algebraic substitution into the equation leads to an interesting rela- 
tionship. The F statistic is defined as: 

C(f, - Y)‘I(K - 1) explained variance 
F = X(Y, - Y,)‘i(N - K) = unexplained variance 

and 

R2 = x(Y, - h2 _ explained variation 
C(Y, - Ty - total variation 

where: 
Y, is the dependent variable for point or year i; 
Y, is the titted value; 
7 is the mean of the Y, values. 

Then it can be shown that: 

F= 
R’i(K - I) 

( 1 - R’)/(N - K) 
(see Appendix I) 

and by manipulating this formula, 

(K - 1)(1 - RI) R” 
(N - K) = F- 

so finally, 

or i?’ = R’( I - IIF) 

The F statistic is used to indicate the significance of the entire regression. 
With 11 or more observations, an E‘ 2 5 indicates a “signifcant” regression 
[5]. Note that given F = 10, then R’ = .‘IR’. The example introduced in Section 
III where R” was .93 would be .9 X .93 = .84 when adjusted for degrees of 
freedom. Such a model may not be quite so impressive when compared to 
another model that may be better specifed by a different set of independent 
variables, and thus have a higher R’. 
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V. CONSTANT WEAKNESS 

It is common in causal models to include a constant term. It is not unusual 
for the constant to have a strong r-test, indicating it is a strong contributor in 
the explanation of the level of, or change in, the dependent variable. Such a 
constant often may only be serving as a proxy for an economic variable that 
has historically shown stability or consistent period-to-period movement (de- 
pending on the form of the model equation). In an earlier paper 161 presenting 
a model of general liability written premium, it was noted that a constant did 
not improve that model. Rather, the major effect of inserting a constant was to 
replace one of the independent variables, as indicated by f-tests. 

A constant does nothing to describe the underlying contributory causes of 
change in the dependent variable. Any independent variable which seems to 
have a logical causal effect on the dependent variable should be carefully tested. 
If the dependent variable and the constant are independently inserted in separate 
tests of the model, and the r-test for the independent variable is similar in 
strength to that for the constant, then the variable should be preferred. A stronger 
model may result from the inclusion of an explanatory variable, even if histor- 
ically stable, because future movements in such a variable may prove important 
in the usefulness of the model as a predictor. 

A constant may be statistically strong, but it does not help “explain” the 
movement in the dependent variable. 

VI. MODELING CHANGE IN THE VARIABLE 

Many models being presented use the level of the actual values over time 
as the dependent variable. In an earlier paper [7], it is suggested that fitting to 
actual values or levels of an inflation-sensitive variable can often lead to prob- 
lems such as: 

1. Causing colinearity of independent variables; 
2. Misestimating turning points; or 
3. Masking the true magnitude of error. 

It is the third concern which is important in the context of this paper. The 
following is an example of a least squares linear regression fit to a set of actual 
values or levels: 
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Actual Value 
or Level 

200 
220 
245 
260 
250 
275 
300 

Fitted Value 

205.6 
220.4 
235.2 
250.0 
264.8 
279.6 
294.4 

R= = ,922 
R= = ,906 

There is certainly an upward trend and the model appears to produce a good 
fit. But is management really concerned about the long-term trend, or is it 
perhaps more concerned with the change from one year to the next’? If the 
concern is with annual changes-how does the above model perform‘? 

Annual Change 
In Actual Values 

+ ,100 
+ ,114 
+ ,061 
- ,038 
+ ,100 
+ .091 

Implied Annual 
Changes From 
Fitted Values 

+ ,072 
+ ,067 
+ .063 
+ ,059 
+ ,056 
+ ,053 

R2 = .051 

If the concern is with annual change, there is a need to develop a causal 
model of annual change that can do a better job of projecting this uneven and 
possibly cyclical annual change series. This is illustrated by the graphs in 
Appendix II. 

If the purpose of a model is to establish the direction and magnitude of a 
long-term trend. then modeling with actual value or level as the dependent 
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variable may be sufficient. However, if points of fluctuation, turning points, or 
the magnitude of any individual points are important, then the model should be 
based on change in actual values as the dependent variable. In a long-term 
inflationary environment, modeling level of actual values is relatively easy and 
high (>.90) values of R2 should be expected. This is because the magnitude of 
variable values and underlying long-term trend mask the true annual movement 
in the dependent variable. As shown in the example above, modeling annual 
changes instead of level is one approach which will unmask the movement in 
the dependent variable. Detecting and defining causal relationships for a model 
of annual change in the dependent variable is more difficult. A model of annual 
change for a cyclical series in most cases should be preferred to a model of 
annual level because the value of R’ is more meaningful. 

Another approach currently being utilized by actuaries working with loss 
severity trend is the removal of estimated underlying economic trend from the 
loss severity series by dividing severity values by index values from a deflator 
such as the GNP deflator. The underlying trend indicated by the indexed deflator 
is then set aside to be added back later in the analysis. This unmasks the true 
or residual trend in the insurance loss cost after stripping away the effects of 
general economic inflation. It is often difficult to develop a causal model with 
a high R” to lit the residual annual change series. However, a clearer under- 
standing of the causal effects of the independent variables is gained from the 
regression statistics of such a model. 

The 2’ statistic becomes more meaningful when it is not exaggerated by the 
effect of underlying long-term trend or general economic inflation. 

VII. MODELS IN A DYNAMIC ENVIRONMENT 

Even if a model of annual change does well in explaining a long-term 
historical cyclical pattern, its ability to predict future change should be carefully 
analyzed. The model of industry general liability premiums contained in the 
Proc~eeditzgs [S] is a good example. That model fits 20 years of annual change 
data well. It predicted the first negative annual changes in written premium for 
1980 and 198 1, but the predicted return to strong positive premium increases 
in 1982 and 1983 did not happen. The economic environment changed dramat- 
ically, and strong surplus positions and industry competition for cash flow have 
not allowed premiums to rise. The model did include a variable to measure 
surplus position, but high investment yields and cash flow patterns were not 
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directly accounted for. Did the model fail then? No. it provided an excellent 
explanation of premium changes for years 1962-198 I, but this example clearly 
points out the need for continual adjustment and modification in a changing 
economic environment. The model must bc moditied if it is to be useful in the 
future. Any model should be reviewed regularly to be sure that the relationships 
on which the model is based continue to hold true. 

Modeling can be used effectively to examine and better understand the 
relationships between elements in a complex and dynamic economy. This note 
emphasizes the R’ statistic as being one statistic and first difference in actual 
data as being one approach important to evaluating a multiple regression model. 
An understanding of important regression statistic4 and techniques for evaluation 
of model structure will enhance the usefulness of the modeling tool. 
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APPENDIX I 
DEFINITION 0~ THE F-STATISTIC IN TERMS OF RZ 

F = at - F12i(K - 1) 
C(Y, - P,)I(N - K) 

F = w, - W/C(Y, - B2]/(K - 1) 
[C(Yi - f;)2/x(Y, - i-y]l(N - K) 

We know that total variation = explained variation + unexplained variation, 

C(Y; - n* = C(fj - F),’ + C(Yi - Pi)2 

SO 

E(Y, - P,)’ = C(Y, - F),’ - C(f, - p)2 

and 

R2 = at - n’ 
C(Y, - n* 

then by substitution, 

F= 
R’I(K - I) 

{LW, - n2 - E(E, - y)‘]IzqY, - lq2}I(N - K) 

Finally 

F= 
R2/(K - I) 

(I - R’)I(N - K) 
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