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TRANSFORMED BETA AND GAMMA DISTRIBUTIONS AND 
AGGREGATE LOSSES 

GARY VENTER 

VOLUME LXX 

DISCUSSION BY ORIN M. LINDEN AND FRED KLINKER 

One of the most important problems in collective risk theory has been the 
computation of the distribution of aggregate losses given individual frequency 
and severity distributions. Various approaches have been tried since the subject 
was first introduced by Filip Lundberg more than seventy-five years ago (Cramer 
[I]). These include approximation, simulation, and actual computation using 
numerical techniques. (A stochastic approach is also possible and the reviewers 
hope to discuss this in a later paper.) Approximations have been used with 
mixed success over the years. An appeal to the central limit theorem “justifies” 
a normal approximation if the number of claims is large (Beard, Pentikainen, 
Pesonen 121). This has not been satisfactory. Other approximations, such as 
normal power, Esscher, Gamma, Pareto, and just about any other distribution, 
have been used based on various theoretical (we can “prove” it) or empirical (it 
works) arguments. The use of these approximations has not been entirely sat- 
isfactory. The reviewers offer a reason for this later. 

Another approach, the so called Monte Carlo simulation method, gives much 
better results. (For an elementary discussion of simulation see Gordon [3].) 
Simulation gives much better results but has three major drawbacks. First, it 
can be extraordinarily expensive in computer time. especially with large fre- 
quencies. Second, it’s subject to the “whims” of the random number generators 
used. Third, it offers little insight into why a distribution behaves as it does. It 
has, however, been used very successfully and, up until very recently, it was 
the best alternative available in most cases. 

In the last year or so two very good techniques have been introduced. The 
first, using a discrete density for the severities, uses a recursive formula and 
computes the aggregate loss density directly (Panjer 141). The second, using a 
piece-wise linear severity, inverts the characteristic function of the distribution 
(Meyers and Heckman [S]). Both of these methods use numerical techniques. 
While the reviewers have not used these methods, we do feel that they are very 
good and that the problems associated with them are decidedly minor. 



BETA AND GAMMA 27 

Despite Panjer’s, and Meyers’s and Heckman’s results, there are very good 
reasons to have a good approximation formula. It’s simple, quick, easy to use, 
and requires little mathematical knowledge to understand. In addition, for some 
applications, it’s just as good as other techniques. Thus, a pricing formula may 
often be programmed into a hand calculator. In his paper Gary Venter proposes 
such an approximation using what he calls the Transformed Gamma Distribution 
(TGD). By adding a third parameter, (Y, to the ordinary gamma distribution the 
author can match up to three moments of the actual distribution. He writes 
down all the necessary formulas to compute the distribution and, as an example, 
applies it to the computation of excess ratios used to price aggregate stop loss 
insurance. The author then introduces the Transformed Beta Distribution (TBD) 
and explains that the combination of a TGD with a gamma, done in a certain 
way, produces a TBD. (This is similar to the combining of a Poisson frequency 
with a gamma to produce a negative binomial frequency.) This property is used 
to model one form of parameter uncertainty (that of A). Going back to his prior 
example the author shows how incorporating such risk into his model almost 
doubles the expected excess loss over $l,OOO,OOO in this case. Finally, the 
author compares the TGD to the more exact computations provided by Meyers 
and Heckman. The TGD itself, while not fitting badly, doesn’t fit extremely 
well either. However, the excess ratios computed from the fitted TGD are 
extremely close to the exact methods. We will comment on these two statements 
shortly and show how a much closer fit to the distribution may be obtained by 
using a sum of TGD’s. 

The paper provides a large amount of useful information. APL programs 
are presented to do most of the necessary computations including the solving 
of two simultaneous equations. The reviewers used these programs and had no 
trouble reproducing any of the work in the paper. The incomplete gamma 
program is especially nice to have. A discussion of Gaussian quadrature, for 
numerical integration, appears in Appendix F. These features make the paper a 
useful reference document. 

Before getting to the heart of our review we will make a few remarks. 

The author comments that to use the TGD the skewness must be greater 
than the coefficient of variation. We did not investigate this. If the author has 
a reason for this we’d like to see it. In any event this doesn’t seem to be a large 
limitation. All the distributions we’ve used recently have had this property. 

The part of the paper we find least convincing is the section dealing with 
parameter risk. The author seems very impressed with the transforming of a 
TGD into a TBD. So much, in fact, that he makes the assumption that A is 
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transformed gamma distributed. He is content to ignore uncertainty in cx and r. 
This seems to be a somewhat artificial assumption. (It does. however, simplify 
the computations.) The expected value of the TGD is given by E(X) = I‘(r + 
(lia))lX~(r). Thus, a smaller A implies a larger expected loss. Since most 
insurers don’t go broke and most risks don’t produce extraordinarily large losses. 
we would expect most h’s to be near or larger than the expected value of A. 
That is we expect P(A > E(A)) > .S. Usin g the parameters in the example we 
computeP(A > l.l34E-6) = I - G(I.IJJE-6, 2.597, 1.47. 1.~88,500) = .65. 
This result is expected and calms the mind somewhat but we would have 
expected a larger percentage intuitively. WC also believe uncertainty in cr and 
r should be considered. Of course to do so would greatly complicate the 
calculations. 

Earlier on we commented on the fit of a TGD to the actual distribution. 
Looking at the cumulative distribution offers no insight into the nature of the 
errors. We argue that. in general. the TGD. TBD. or any other mono-modal 
density can’t tit the aggregate density function very well due to the presence of 
multiple modes on the density. (By this we do not mean the possibility of 
having zero loss with positive probability. This spike at the origin is properly 
accounted for by the author’s model. ) E<xhibit 1 plots the actual density. from 
Exhibit 3 of the paper. against the transformed gamma approximation. The 
differences, due to the modes. are obvious. Exhibit II gives an even more scvcrc 
case. Both of these distributions resemble those ~vc’ve used. 

We also show in the exhibits a modified TGD wc’vc invented which retains 
much of the simplicity of the original model yet doe a much better job in 
explaining the modes of the distribution. The actual model WC‘ used is 

(I) F(.r) = c Q(n) [P(O~r~)~TT(.\- - rr/rr) 
,I 0 

+ (1 - P(OItW(.\ ~ tatty; r,,. cy,,, A,,)] 

Notation is as follows: 

111 
Q(tr) 

P(Oln) 

= maximum possible loss per occurrcncc 
= probability of II occurrences of size 1~1 (total losses) in a time 

period 
= probability of no occurrences ot size le\s than VI (partial losses) 

given II total losses 

G(.r; I’. (Y, A) = the TGD 
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Appendix II describes the method of titting the (r,,, IX,,, A,,)‘s. Appendix I gives 
formulas for Q(n) and P(O(rr) for Poisson and negative binomial frequencies. 
Note that the above sum requires a maximum of I + [L/m] terms where L is 
the excess loss limit. In general no more than five terms are needed. All terms 
in the sum are readily calculable with just a little more programming than is 
necessary to compute G(x: r, (Y, A) alone. In many cases P(Oln) is small and 
thus the n-terms can be ignored. However, the required programming is so 
simple it’s not necessary to do so. 

The reviewers applied the above model to the cases shown in Exhibits I and 
II. A glance at these exhibits clearly indicates a substantial increase in accuracy. 
In particular, this approximation is able to pick up the multi-modal behavior of 
the aggregate density function. This is something that both the TGD and the 
TBD could not do. 

We note that parameter risk can be considered in a way similar to that used 
in the paper. As will be seen later, I’ has a very simple form in the case of a 
Poisson frequency. Thus, it is particularly simple to incorporate parameter risk. 
However, due to time constraints, we did not investigate this. 

For completeness we consider the computation of excess ratios. Exhibits IV 
and V show comparisons of actual excess ratios to those computed from the 
TGD approximation and our modified TGD approximation. (Formulas to do the 
calculations for the modified TGD appear in Appendix III.) A look at these 
exhibits indicates that there is not much difference in using any of the three 
methods. 

This result puzzled us at first. so we tried a fit to two other curves, a Pareto 
and a normal (see Exhibit IV). Excess ratios computed from the normal were 
also very close to the actual ratios. However, the more highly skewed Pareto 
provided ratios that were generally much higher. We speculate that the integral 
involved in the definition of the excess ratio smooths things out significantly. 
so that as long as the approximating curve isn’t too highly skewed the formula 
for excess ratios is very robust. The performance of the Pareto supports this. 

The form of our modified TGD is indicated by understanding the causes of 
multi-modality in the aggregate density. To do this we define additional notation 
as follows: 
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S(X) = probability of an occurrence < x 
P = probability of having an occurrence of at least size A4 = I - S(M) 
SIW = S(x)i( I - p) 

{ 
9 < in 

1 x 2 t?l 
n* as a superscript represents rlth convolution 

P(n(m) = probability of n partial losses given no total losses. 

With the above notation the aggregate loss distribution is given by 
x 

F(X) = z P(n)S”*(x) 
*=O 

(Note that f’*(x) = IT(X)) 
In the following we consider separately the effects of partial losses and total 

losses. Clearly the conditional distribution of aggregate losses, given n partial 
losses and no total losses, is given by S;*(x- - nom). Thus F(X) can be written 

F(X) = “go Q(m) [“t, P(nhdS’i*(x - nom)] 

Define G(xlnd = 
CX= 1 P(n n&T;*(x) 

1 - P(Ojnd 

Then 

(2) F(X) = 2 Q(ndP(Olnddx - nmm) + (1 - P(Olnd)G(.r - w&d1 n,,=O 
The major problem arising in considering the modes of the density of F(X) 

is in examining the fine structure of G’(X). We believe that for any reasonable 
frequency and severity distributions (or combinations thereof) G’(X) will have 
a primary mode that tends to dominate all of its secondary modes. (Consider, 
for example, a Poisson frequency and a gamma severity.) That is, we can think 
of G’(X) as being essentially mono-modal. However, we should recognize that 
these secondary modes probably exist in most cases. They seem to give rise to 
much less important modes on the density of F(X). Our simulation investigations 
tend to support this view. 

With this in mind, we see that F(X) is essentially a sum, weighted by the 
Q(no)‘s, of distributions whose densities consist of a a-function followed by a 
mono-modal distribution (see diagram). 
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DIAGRAM 
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Since the &functions have mass of only P(Olno) they tend to have little 
effect on the shape of the density of F(X). Thus, from (2), F(X) will tend to 
have modes appearing at approximately the points where the G’(x - nom/no) 
peak. 

The above argument for the existence of modes hinges on the existence of 
a maximum loss. As a check Exhibit III shows the density of a distribution 
function with unlimited severity. The appearance of only one mode supports 
the argument. 

The author recognizes a spike in the density of F(X) at the origin and fits 
the rest of the distribution to a transformed gamma. What we do in (1) is 
recognize all spikes and fit each G(,&) to a TGD. Thus if G(x; r,,, a,, A,) is 
fitted to replace G(X(no) then (2) is transformed into (1) yielding our model. 

In the case of a Poisson frequency, 

P(n(no) = e-““-P’(W(l - p))%! 
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independent of ~1~). Hence G(.xlntr) = G(x/O) IS a so independent of nu. Thus, (2) 1 . 
becomes 

(3) F(x) = c e~“‘~(op)“ln![e-““~“‘~(s - nm) 
,, = 0 

+ (1 - f’ U’ mP’)G(~ - nm; r, cx, X)] 

where G(.r; r, (Y, h) fits to G(xlO). This is the approximation used in Exhibits I 
and II. 
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EXHIBIT IA 

A COMPARISON OF AVERAGE DENSITIES 

Average Densities”’ 

Characterirtic 
Function 
Method”’ 
(X IO ‘7 

Transformed 
Gamma” 
(X 10 9 

(L-25 

2%so 

S&75 
7% IO0 
lO(h125 
12% I so 
iS(k-175 
175-200 
20(~?2S 
225-250 
2sc-275 
275~300 
Xl(b32S 
325-350 
3%&375 
375400 
4oc42s 
4254so 
3S(H7S 
47S~SOO 
SW525 
525550 
SS(~S75 
57%600 
hO(Lh2S 
625-650 
hS(b67S 
67.5-700 
7oc725 
725-750 

2.032 7.484 
3.132 2.556 
2.x72 2.540 
2.668 2.500 
2.452 2.436 
2.216 2.352 
I.9Y2 2.252 
I .7xx 2. I48 
I ,604 2.028 
1.436 I .90x 
1.944 I.776 
2.oK-i I.652 
I ,808 I.524 
I .sxx I.396 
I .376 1.276 
I.192 I. 1.52 
I.024 1.040 
,884 ,932 
,760 .x32 
,656 ,740 
h6X ,648 

,624 ,572 
,524 .4Y6 
,440 ,432 
.368 ,372 
,308 ,324 
,256 ,272 
.?I2 ,232 
,180 ,200 
,148 ,164 

(I) Average Density = (difference of the values of the cumulative distribution at 
the endpoints of the interval)/25,000. 

(2) From Venter, Exhibit 3, Page I, Column 2. 

(3) From Venter. Exhibit 3, Page I, Column 6. 

(4) See Exhibit IV, Note (2) for parameters. 
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Modified 
Transformed 

Gamma”’ 
(X IO 7 

2.264 
2.724 
2.784 
2.696 
2.536 
2.3’8 
2.100 
1.860 
I .62X 
I.400 
I.944 
I.912 
I ,760 
I .5x4 
1.408 
I.228 
I.064 
.90x 
.76X 
,644 
,660 
,592 
,512 
,440 
,376 
,316 
,260 
.22O 
.IXO 
.I48 
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EXHIBIT IIA 

A COMPARISON OF AVERAGE DENSITIES-ANOTHER DISTRIBUTION 

Average Density 

Aggregate 
Loss 

Interval 
(X 24,076) 

Simulation 
Method”’ 
(X 10-y 

Transformed 
Gamma”’ 
(X l0-h) 

Modified 
Transformed 

Gamma”’ 
(X 10-y 

Ckl 2.949 6.152 5.552 
l-2 3.697 2.251 2.512 
2-3 2.886 I .675 1.939 
3-4 2.201 1.387 1.626 
4-5 1.744 1.206 1.415 
5-6 I.578 1.078 1.258 
6-7 1.288 .9828 1.133 
7-8 1.080 .9074 1.030 
8-9 .9968 .8461 .9429 
9-10 .7892 ,795o .8670 
l&l1 .7061 .7515 .8001 
11-12 .6646 .7137 .7404 
12-13 .6230 .6807 .6865 
13-14 .5400 .6513 .6377 
14-15 .5400 .6250 .593 1 
15-16 .4984 .6011 .5521 
1617 .4153 .5795 .5144 
17-18 .3738 .5596 .4796 
18-19 .3738 .5412 .4472 
19-20 .3323 .5241 .4173 
20-2 1 .2907 .5082 .3893 
2 l-22 .3323 .4933 .3633 
22-23 .2907 .4793 .3391 
23-24 .2492 .4661 .3165 
24-25 .2907 .4535 .2953 
25-26 .2077 .4416 .2756 
26-27 .2492 .4302 .2571 
27-28 .2077 .4194 .2398 

Notes appear on continuation of exhibit. 
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EXHIBIT IIA (continued) 

A COMPARISON OF AVERAGE DENSITIES-ANOI H~K DISTRIBUTION 

Aggregate 
Loss Simulation 

Interval Method’ ’ ’ 
(x 24,076) (X 10-y 

28-29 .2077 
29-30 .I661 
3&3 I .2077 
31-32 .I661 
32-33 .I661 
33-34 .I661 
34-35 .I246 
35-36 .I661 
3637 .I661 
37-38 .I246 
38-39 .I246 
39-40 .I661 
4@41 1246 
41412 .4153 
4243 1.371 
4344 1.163 
44-45 .9968 
4546 .7476 
4&47 .6646 
47-48 .4984 
48-49 .4569 
49-50 .4153 
5tk5 1 .3323 
5 l-52 .2907 
52-53 .2907 
53-54 .2492 
54-55 .2077 
55-56 .I661 

Notes appear on continuation of exhibit 

Average Density 

Transformed 
Gamma”’ 
(X IO h, 

.40x9 

.3YXY 

.3893 

.38(N) 

.3710 

.36X 

.3538 

.3456 

.3376 
,320X 
3’31 . -- 

.3147 

.3075 

.300? 

.2934 

.2866 

.2799 

.2733 

.2668 

.2605 

.2543 

.24x1 

.242l 

.2362 
,303 
.2246 
.2189 
.2133 

Modified 
Transformed 

Gamma” 
(X lo-“) 

.2237 

.2085 

.I944 
,181 1 

688 
572 
463 
362 
267 
179 

IO96 
.I018 
.0946 

1.311 
1.136 
.8074 
.6629 
.5722 
.5066 
.4554 
.4134 
.3778 
.3470 
.3198 
.2955 
.2737 
.2539 
.23.58 
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EXHIBIT IIA (continued) 

A COMPARISON OF AVERAGE DENSITIES-ANOTHER DISTRIBUTION 

Average Density 

Aggregate 
Loss Simulation 

Interval Method”’ 
(x 24,076) (X 10. y 

56-57 .2077 
57-58 .I661 
58-59 .I661 
59-60 .1246 
60-6 1 .1246 
61-62 .0830 
62-63 .I246 
63-64 .I246 
64-65 .0830 
65-66 .1246 
66-67 .0830 
67-68 .0830 
68-69 .0830 
69-70 .08307 
70-7 I .08307 
71-72 .08307 
72-73 .04153 
73-74 .08307 
74-75 .04153 
75-76 .08307 
76-77 .08307 
77-78 .04153 
78-79 .04153 
79-80 .04153 
80-8 I .04153 
81-82 .04153 
82-83 .04153 
83-84 .2077 

Notes appear on continuation of exhibit. 

Transformed 
Gamma”’ 
(X IOmh) 

Modified 
Transformed 

Gamma’?’ 
(X 10-y 

.2078 .2192 

.2024 .2039 

.I971 .1898 

.1919 .1767 
867 .I646 
816 .I533 
766 .1429 
717 .1331 
669 .1240 
621 .I156 
574 .I077 
528 .1003 
483 .09340 
438 .08697 
394 .08097 
351 .07536 
309 .07012 
268 .06523 
227 .06067 
187 .05640 

.1148 .05242 

.1110 .04870 

.I072 .04524 

.1036 .04200 

.09999 .03899 

.09648 .0361X 

.09304 .03356 

.08969 .3286 

37 
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EXHIBIT IIA (continued) 

A COMPARISON OF AVERAGE DENSITIES-ANOTHER DISTRIBUTION 

Average Density 

Aggregate 
Loss 

Interval 
(x 24,076) 

Simulation 
Method”’ 
(X 10-p 

Transformed 
Gamma”’ 
(X 10Ph) 

Modified 
Transformed 

Gamma13’ 
(X 10-p 

84-85 .2492 .08641 .I722 
85-86 .2077 .08322 .I364 
86-87 .1661 .08010 .I163 
87-88 .I246 .07706 .1025 
88-89 .08307 .07409 .09184 
89-90 .08307 .07120 .0832 1 
90-9 1 .08307 .06839 .07593 
91-92 .08307 .06566 .06964 
92-93 .08307 .06300 .06410 
93-94 .08307 .06042 ,059 16 
94-95 .04153 ,057’) 1 .05471 
95-96 .04 153 .05547 .05067 
96-97 .04153 .05311 .04699 
97-98 .04153 .05082 .04361 
98-99 .04153 .04860 .0405 I 
99-100 0 .04645 .03765 

(I) This distribution is based on a Poisson frequency with mean 13.7376 and a 
Pareto severity 
F(X) = 1 - (B/(B + .u))’ with B = 264.7 and 8 = .45128063 
censored at I .OOO,OOO. 
The small scale fluctuations are due to our simulation routine which only 
calculates distributions to .OOl. Note that .001124076 = .04153 E-6. 

(2) See Exhibit V, Note (2) for parameters 

(3) See Exhibit V. Note (3) for parameters 
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EXHIBIT IllA 

AVERAGI-. DENSIT’I 

AGGREGATE DISTRIBUTION FOR A St?vtwt Y WI.I-HOUT- .i CENSOR ” 

.717h 
5.732 

17.62 
16.20 
I5 12 
I I .05 
7 XOY 
5. I50 
3.323 
I YYJ 
I.412 

x.307 
5815 
33!? 

.332.1 
lhhl 
lhhl 

.0x307 

.0x.307 
0 

.0x307 
0 

.f)XiO7 
0 
0 
0 

.0x307 
0 
0 
0 

(2) The small scale fluctuations are due to our simulation routine which only calculates 
distributions to ,001. Note that OX307 E-7 = .OOl 1703X0. 
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EXHIBIT IV 

COMPARISON OF EXCESS RATIOS FROM DISTRIBUTIONS IN VENTER’S EXHIBIT 3 

Aggregate Character- 
Loss istic 

Amount Function 
(X low Method”’ 

25 .9016 
50 .x107 
75 7213 
100 .6507 
125 .5806 
IS0 .5163 
I75 .4573 
200 .4030 
225 .3.529 
250 (3066 
275 .2642 
300 .2273 
325 .I951 
350 .I672 
375 .I431 
400 .I221 
42s .I039 
450 .0880 
475 .0742 
500 .0622 
525 .051X 
550 .0430 
575 .0357 
600 .0296 
625 .0245 
650 .0202 
675 .0167 
700 .0137 
725 .Ol I2 
750 .0091 
775 .0074 
800 .0060 
825 .0048 
850 ,003’) 

Notes appear on following page. 

TGD’ ’ ’ 
Moditied 
TGD’” Normal”’ Pareto’4’ 

,903 I .9026 .9033 .9062 
,812s .81 I6 .8131 .8236 
.?283 .7276 .7292 .7506 
.6503 .6504 .6517 .6859 
.5786 .5798 .5801 .6282 
.5129 .51.52 .5145 .5768 
.4529 .4562 .4546 .5307 
.3984 .4022 .4001 .4893 
.3491 .3525 .3507 .4521 
.3047 .3066 .3062 .4185 
.2650 .2648 2662 .3881 
.2295 .2279 ,230s (3605 
.I981 .I955 .I987 .3354 
I702 .I674 I706 .3126 

.I457 .I430 .I458 .2917 

.I243 .I219 1241 .2727 

.I055 1036 .I051 .2552 

.0893 :0878 0887 .2392 

.0752 .074l .0745 .2244 
,063 I .0622 .0622 .2109 
.0528 .05lY .0518 .I984 
.0439 .0432 .0429 .I868 
.0364 .0358 .0353 .I761 
.03Ol .0296 .0290 .I662 
.0247 ,024s .0237 .I570 
.0203 .0202 .Ol92 .I485 
.Ol65 .Ol66 .0155 .I406 
.Ol34 .0136 .0125 .I332 
.0109 .0112 .0100 .I263 
.0088 .0091 .0080 .I199 
.0070 .OO74 ,063 .1139 
.OOSh .OO5Y .0050 .I082 
.0045 .0048 .0039 .1030 
,003s .OO39 .0030 .0980 
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EXHIBIT IV (continued) 

COMPARISON OF EXCESS RATIOS FROM DISTRIBUTIONS IN VENTER’S EXHIBIT 3 

(I) From Venter, Exhibit 3. 

(2) Fit by method of Appendix II. 
w = 13.7376 
m = 250,000 
p = 0.0241 
r = 0.7568 
cr = 1.55601 
A = 4.3616E-6 

(3) Fit to match first two moments. 

Distribution Function = 1 
v% a(1 - q-p/u)) 

Q(x) = Standard Normal Distribution 
p = -31,828.4 
u = 327,408.6 

(4) Fit to match first two moments. 
F(X) = 1 - (El(E + xp 

E = 807,039 
6 = 4.22815586 
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EXHIBIT V 

COMPARISON OF EXCESS RAIWS FROM DISTRIBUTION IN EXHIBIT II 

Aggregate 
Loss Amount 

(X 10S) Simulation” 

I .85YY 
2 .7542 
3 .6663 
4 .5877 
5 .5164 
6 .4.511 
7 .388X 
8 .3304 
9 .27x3 
IO .2226 
II .I702 
12 .I500 
13 .I269 
14 .107Y 
15 .OY13 
I6 .0767 
17 .0641 
I8 .0525 
19 .0420 
20 .0324 
21 .0250 
22 .0200 
23 .0160 
24 .0131 
25 .01 10 

(1) w = 13.7376 Poisson Frequency 
m = I .ooo.ooo 
S(X) = I - (B/(X t B))” Pareto Severity 

(2) w = 13.7376 
r = 0.174661 

(3) w = 13.7376 
111 = 1 ,ooo,ooo 
p = 0.0243 

TGD”’ 

.8660 .8649 
,755s .7567 
.6SY5 .6647 
.5750 .S843 
.5OOO .5124 
.4335 .4470 
.3744 .3863 
.3220 .32Y2 
.2757 .2748 
.234Y .2224 
.I990 I818 
.I677 :1513 
,I405 .I269 
.I 170 .I070 
.OY68 .0904 
.0795 .0762 
.064Y .0638 
.0525 .0527 
,042' .0426 
.0?36 .0333 
.026b .0262 
,020’) .0210 
.()I62 .0170 
.0125 .013Y 
.0095 .Oll4 

H 7 ‘64.7 
6 - .45 I2XOh3 
cx = 2.56852 
A = -1.‘348821<-7 
r = 0.383347 

a = I .42077 
A = l.S4E-6 

Modified 
Transformed 

Gamma’ ” 
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APPENDIX 1 

p(n), Q(n), and f’(nlnd 

P(n) is the probability of n losses in a time period; p is the probability of a 
total loss (of size m) given that a loss has occurred. 

Q(n) is the probability of n total losses. Then 

Q(n) = ,$ ~(n + j) (" ; j) pn(~ - py 

P(nlno) is the probability of n partial losses given that no total losses have 
occurred. Then 

P(nJno) = (n ‘, “) p”Yl - p)“lQ(no) 

If p(n) is Poisson, then so are Q(n) and P(nlno). Likewise, P(n) negative 
binomial implies that Q(n) and P(n(no) are also negative binomial. The form of 
the functions remains the same; only the parameters change. 

Poisson Negative 
Parameter* Binomial Parameters** 

a aI a2 

P(n) 

Q(n) 5 

X 4 

X m + 4 - P4) 
fVln0) 41 - PI x + no P+4-P4 

Note the following interesting fact about the negative binomial case. 

E(n(n0) = go nP(n(no) = (x + no) (I ; “+ ; 4 iqpq) 

As the number of total losses increases, so does the expected number of partial 
losses. This lends support to the usual interpretation of the negative binomial 
distribution as being associated with situations of positive contagion. (See for 
example Meyers and Heckman [5].) 

* The form of the Poisson is Poisson (n) = Pan/n! 

** Negative Binomial (n) = 
n+a,-I 

a~~‘( I - az)” 
n 
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APPENDIX II 

Moments of G(x(no) 

Recall G(xl&) = 1 _ ;(o,no) -, P(nh)Y;‘(x) 

where z*(x) is the nth convolution of the cumulative distribution function of 
the partial losses. Setting p = 1 - S(m) = the probability of a total loss, 

i 

0 xc0 
Y,(x) = W/(1 - P) OSx<m 

1 m 5 x 

The program is as follows: 
z 

1) One already knows E(n’lno) = c rr’P(n)no) 
,I -0 

I 

m 
and E(d) = (1 - p) x’dYl(x) + pm’ for j = 1 to 3. 

0 

(If P(n(no) is P otsson or negative binomial, then the E(n’(no) are tabulated, 
and presumably one has already calculated the E(x’).) 

Calculate E*(n/(no) = w _ 1 “$I 
n0 

) 
n0 

and E*(d) = xJdY,(x) = 
E(.r/) - pm’ 

1 -P 
for j = 1 to 3. 

2) FN = =W+kd 
a; = E*(n’ln0) - E*‘(n(no) 

yNai = E*(n’(n0) - 3E*(n21n0)E*(nln0) + 2E*b+z0) 

px = E*(x) 

ax 2 = E*(xZ) - E*2(x) 

y.& = E*(x’) - 3E*(x’)E*(x) + 2E*3(x) 

3) Calculate for each no needed, p-L, uL, and yl, of G(xlno) function using 
the first three formulas of Venter’s Appendix C. 

4) Calculate the transformed Gamma parameters OL,,,, A,,, and r,,, by match- 
ing the three moments in (3). 

Note that if P(n), hence P(n(n0), is Poisson, then ~(~lno) and G(xlnd are 
actually independent of no and you need only calculate one triplet OL, A, r for 
all the G’s. 
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APPENDIX 111 

Computation of Excess Ratios 
Ix/ml 

Define F(X) = z Q(n)[P(Oln)n(x - nm) 
n=O 

+ (1 - P(Oln))G(x - nm; r,, CY”, A,)1 

Then E(X) = [mp + (1 - p)&,(x)]E(n) 

i 

-x cc 
where E&X) = xdYl(x) and E(n) = x d’(n). 

0 n=O 

(Note: The above must be proved and anyone wishing to see a proof can contact 
the reviewers.) 

Then R(a) = 1% (x - a)&x)lE(x) = 1 - & ‘si Q(n) [P(O(n)nm 
a 

+ (1 - P(O(n)) (G (a - nm; r, + & , a,, A.) “‘r”h+r(~~~) 

+ G(a - nm; r,, a,, A,)nm II - & (1 - m) 
Although this appears complicated it is really quite simple to compute since 
usually not many terms are needed. 

In the case of a Poisson (with E(n) = co), 

P(nlno) = e-Wc’-p’(cO(l - p))“ln! 

independent of no. Therefore A,, IL,, and r, are also independent of no. 
Wml 

Then &Y) = z eeWp y [e-“(‘-p)n(x - nm) 
n=O 

+(1-e pw(‘--P))G(~ - nm; r, a, A)] 
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E(X) = porn + (1 - p)w&,(x) 

zz porn + (1 - e-““-q I’(r + (l/a)) t 
AT(r) 

R(a) = 1 - 1 “g’ e-w,’ +Y [c -wCI-jdnm 
E(X) n-o 

+ G(u - nm; r, a, A)nm )I - &) (1 - f%)) > 
tNote: (I - e-""-"') r(r + (l/u)) Xi'(r) 

= (I - p)wE,,(.r) 


