TRANSFORMED BETA AND GAMMA DISTRIBUTIONS AND AGGREGATE LOSSES

GARY VENTER VOLUME LXX

DISCUSSION BY ORIN M. LINDEN AND FRED KLINKER

One of the most important problems in collective risk theory has been the computation of the distribution of aggregate losses given individual frequency and severity distributions. Various approaches have been tried since the subject was first introduced by Filip Lundberg more than seventy-five years ago (Cramér [1]). These include approximation, simulation, and actual computation using numerical techniques. (A stochastic approach is also possible and the reviewers hope to discuss this in a later paper.) Approximations have been used with mixed success over the years. An appeal to the central limit theorem "justifies" a normal approximation if the number of claims is large (Beard, Pentikäinen, Pesonen [2]). This has not been satisfactory. Other approximations, such as normal power, Esscher, Gamma, Pareto, and just about any other distribution, have been used based on various theoretical (we can "prove" it) or empirical (it works) arguments. The use of these approximations has not been entirely satisfactory. The reviewers offer a reason for this later.

Another approach, the so called Monte Carlo simulation method, gives much better results. (For an elementary discussion of simulation see Gordon [3].) Simulation gives much better results but has three major drawbacks. First, it can be extraordinarily expensive in computer time, especially with large frequencies. Second, it's subject to the "whims" of the random number generators used. Third, it offers little insight into why a distribution behaves as it does. It has, however, been used very successfully and, up until very recently, it was the best alternative available in most cases.

In the last year or so two very good techniques have been introduced. The first, using a discrete density for the severities, uses a recursive formula and computes the aggregate loss density directly (Panjer [4]). The second, using a piece-wise linear severity, inverts the characteristic function of the distribution (Meyers and Heckman [5]). Both of these methods use numerical techniques. While the reviewers have not used these methods, we do feel that they are very good and that the problems associated with them are decidedly minor.

Despite Panjer's, and Meyers's and Heckman's results, there are very good reasons to have a good approximation formula. It's simple, quick, easy to use, and requires little mathematical knowledge to understand. In addition, for some applications, it's just as good as other techniques. Thus, a pricing formula may often be programmed into a hand calculator. In his paper Gary Venter proposes such an approximation using what he calls the Transformed Gamma Distribution (TGD). By adding a third parameter, α , to the ordinary gamma distribution the author can match up to three moments of the actual distribution. He writes down all the necessary formulas to compute the distribution and, as an example, applies it to the computation of excess ratios used to price aggregate stop loss insurance. The author then introduces the Transformed Beta Distribution (TBD) and explains that the combination of a TGD with a gamma, done in a certain way, produces a TBD. (This is similar to the combining of a Poisson frequency with a gamma to produce a negative binomial frequency.) This property is used to model one form of parameter uncertainty (that of λ). Going back to his prior example the author shows how incorporating such risk into his model almost doubles the expected excess loss over \$1,000,000 in this case. Finally, the author compares the TGD to the more exact computations provided by Meyers and Heckman. The TGD itself, while not fitting badly, doesn't fit extremely well either. However, the excess ratios computed from the fitted TGD are extremely close to the exact methods. We will comment on these two statements shortly and show how a much closer fit to the distribution may be obtained by using a sum of TGD's.

The paper provides a large amount of useful information. APL programs are presented to do most of the necessary computations including the solving of two simultaneous equations. The reviewers used these programs and had no trouble reproducing any of the work in the paper. The incomplete gamma program is especially nice to have. A discussion of Gaussian quadrature, for numerical integration, appears in Appendix F. These features make the paper a useful reference document.

Before getting to the heart of our review we will make a few remarks.

The author comments that to use the TGD the skewness must be greater than the coefficient of variation. We did not investigate this. If the author has a reason for this we'd like to see it. In any event this doesn't seem to be a large limitation. All the distributions we've used recently have had this property.

The part of the paper we find least convincing is the section dealing with parameter risk. The author seems very impressed with the transforming of a TGD into a TBD. So much, in fact, that he makes the assumption that λ is

transformed gamma distributed. He is content to ignore uncertainty in α and r. This seems to be a somewhat artificial assumption. (It does, however, simplify the computations.) The expected value of the TGD is given by $E(X) = \Gamma(r + (1/\alpha))/\lambda\Gamma(r)$. Thus, a smaller λ implies a larger expected loss. Since most insurers don't go broke and most risks don't produce extraordinarily large losses, we would expect most λ 's to be near or larger than the expected value of λ . That is we expect $P(\lambda > E(\lambda)) > .5$. Using the parameters in the example we compute $P(\lambda > 1.144\text{E-6}) = 1 - G(1.144\text{E-6}, 2.597, 1.47, 1,288,500) = .65$. This result is expected and calms the mind somewhat but we would have expected a larger percentage intuitively. We also believe uncertainty in α and r should be considered. Of course to do so would greatly complicate the calculations.

Earlier on we commented on the fit of a TGD to the actual distribution. Looking at the cumulative distribution offers no insight into the nature of the errors. We argue that, in general, the TGD, TBD, or any other mono-modal density can't fit the aggregate density function very well due to the presence of multiple modes on the density. (By this we do not mean the possibility of having zero loss with positive probability. This spike at the origin is properly accounted for by the author's model.) Exhibit I plots the actual density, from Exhibit 3 of the paper, against the transformed gamma approximation. The differences, due to the modes, are obvious. Exhibit II gives an even more severe case. Both of these distributions resemble those we've used.

We also show in the exhibits a modified TGD we've invented which retains much of the simplicity of the original model yet does a much better job in explaining the modes of the distribution. The actual model we used is

(1)
$$\tilde{F}(x) = \sum_{n=0}^{\lfloor \sqrt{m} \rfloor} Q(n) \left[P(0|n) \pi(x - nm) \right]$$

+
$$(1 - P(0|n))G(x - nm; r_n, \alpha_n, \lambda_n)$$
]

Notation is as follows:

m = maximum possible loss per occurrence Q(n) = probability of *n* occurrences of size *m* (total losses) in a time period

P(0|n) = probability of no occurrences of size less than *m* (partial losses) given *n* total losses

$$\pi(x) = \begin{cases} 0 & x < 0 \\ 1 & x \ge 0 \end{cases}$$

 $G(x; r, \alpha, \lambda) =$ the TGD

Appendix II describes the method of fitting the $(r_n, \alpha_n, \lambda_n)$'s. Appendix I gives formulas for Q(n) and P(0|n) for Poisson and negative binomial frequencies. Note that the above sum requires a maximum of 1 + [L/m] terms where L is the excess loss limit. In general no more than five terms are needed. All terms in the sum are readily calculable with just a little more programming than is necessary to compute $G(x; r, \alpha, \lambda)$ alone. In many cases P(0|n) is small and thus the π -terms can be ignored. However, the required programming is so simple it's not necessary to do so.

The reviewers applied the above model to the cases shown in Exhibits I and II. A glance at these exhibits clearly indicates a substantial increase in accuracy. In particular, this approximation is able to pick up the multi-modal behavior of the aggregate density function. This is something that both the TGD and the TBD could not do.

We note that parameter risk can be considered in a way similar to that used in the paper. As will be seen later, \hat{F} has a very simple form in the case of a Poisson frequency. Thus, it is particularly simple to incorporate parameter risk. However, due to time constraints, we did not investigate this.

For completeness we consider the computation of excess ratios. Exhibits IV and V show comparisons of actual excess ratios to those computed from the TGD approximation and our modified TGD approximation. (Formulas to do the calculations for the modified TGD appear in Appendix III.) A look at these exhibits indicates that there is not much difference in using any of the three methods.

This result puzzled us at first, so we tried a fit to two other curves, a Pareto and a normal (see Exhibit IV). Excess ratios computed from the normal were also very close to the actual ratios. However, the more highly skewed Pareto provided ratios that were generally much higher. We speculate that the integral involved in the definition of the excess ratio smooths things out significantly, so that as long as the approximating curve isn't too highly skewed the formula for excess ratios is very robust. The performance of the Pareto supports this.

The form of our modified TGD is indicated by understanding the causes of multi-modality in the aggregate density. To do this we define additional notation as follows:

S(X) = probability of an occurrence < x P = probability of having an occurrence of at least size M = 1 - S(M) $S_1(X) = \begin{cases} S(x)/(1-p) & x < m \\ 1 & x \ge m \end{cases}$ $n^* \text{ as a superscript represents nth convolution}$ $P(n|n_0) = \text{ probability of } n \text{ partial losses given } n_0 \text{ total losses.}$

With the above notation the aggregate loss distribution is given by

$$F(X) = \sum_{n=0}^{\infty} P(n)S^{n^*}(x)$$

(Note that $S^{0^*}(x) = \pi(x)$)

In the following we consider separately the effects of partial losses and total losses. Clearly the conditional distribution of aggregate losses, given *n* partial losses and n_0 total losses, is given by $S_1^{n^*}(x - n_0m)$. Thus F(X) can be written

$$F(X) = \sum_{n_0=0}^{\infty} Q(n_0) \left[\sum_{n=0}^{\infty} P(n|n_0) S_1^{n^*}(x - n_0 m) \right]$$

= $\sum_{n_0=0}^{\infty} Q(n_0) \left[P(0|n_0) \pi(x - n_0 m) + \sum_{n=1}^{\infty} P(n|n_0) S_1^{n^*}(x - n_0 m) \right]$
Define $G(x|n_0) \equiv \frac{\sum_{n=1}^{\infty} P(n|n_0) S_1^{n^*}(x)}{1 - P(0|n_0)}$

Then

(2)
$$F(X) = \sum_{n_0=0}^{\infty} Q(n_0) [P(0|n_0)\pi(x - n_0m) + (1 - P(0|n_0))G(x - n_0m|n_0)]$$

The major problem arising in considering the modes of the density of F(X) is in examining the fine structure of G'(X). We believe that for any reasonable frequency and severity distributions (or combinations thereof) G'(X) will have a primary mode that tends to dominate all of its secondary modes. (Consider, for example, a Poisson frequency and a gamma severity.) That is, we can think of G'(X) as being essentially mono-modal. However, we should recognize that these secondary modes probably exist in most cases. They seem to give rise to much less important modes on the density of F(X). Our simulation investigations tend to support this view.

With this in mind, we see that F(X) is essentially a sum, weighted by the $Q(n_0)$'s, of distributions whose densities consist of a δ -function followed by a mono-modal distribution (see diagram).

30

Since the δ -functions have mass of only $P(0|n_0)$ they tend to have little effect on the shape of the density of F(X). Thus, from (2), F(X) will tend to have modes appearing at approximately the points where the $G'(x - n_0m|n_0)$ peak.

The above argument for the existence of modes hinges on the existence of a maximum loss. As a check Exhibit III shows the density of a distribution function with unlimited severity. The appearance of only one mode supports the argument.

The author recognizes a spike in the density of F(X) at the origin and fits the rest of the distribution to a transformed gamma. What we do in (1) is recognize all spikes and fit each $G(x|n_0)$ to a TGD. Thus if $G(x; r_n, \alpha_n, \lambda_n)$ is fitted to replace $G(X|n_0)$ then (2) is transformed into (1) yielding our model.

In the case of a Poisson frequency,

 $P(n|n_0) = e^{-\omega(1-p)} (\omega(1-p))^n / n!$

independent of n_0 . Hence $G(x|n_0) = G(x|0)$ is also independent of n_0 . Thus, (2) becomes

(3)
$$\tilde{F}(X) = \sum_{n=0}^{\infty} e^{-\omega p} (\omega p)^n / n! [e^{-\omega(1-p)} \pi (x - nm)]$$

+ $(1 - e^{-\omega(1-p)})G(x - nm; r, \alpha, \lambda)]$

where $G(x; r, \alpha, \lambda)$ fits to G(x|0). This is the approximation used in Exhibits I and II.

REFERENCES

- [1] H. Cramér, "Collective Risk Theory," The Jubilee Volume of Försäkringsaktiebolaget Skandia, 1955.
- [2] R. E. Beard, T. Pentikäinen, and E. Pesonen, *Risk Theory*, 2nd Edition, Chapman and Hall, 1977.
- [3] G. Gordon, System Simulation, 2nd Edition, Prentice Hall, 1978.
- [4] H. H. Panjer, "Recursive Evaluation of a Family of Compound Distributions," ASTIN Bulletin, Vol. 12, No. 1, page 22.
- [5] P. E. Heckman, and G. G. Meyers, "The Calculation of Aggregate Loss Distributions from Claim Severity and Claim Count Distributions," PCAS LXX (1983).

EXHIBIT IA

A COMPARISON OF AVERAGE DENSITIES

	Average Densities ⁽¹⁾			
Aggregate Loss Interval (× 1000)	Characteristic Function Method ⁽²⁾ $(\times 10^{-6})$	Transformed Gamma ⁽³⁾ (× 10 ⁻⁶)	Modified Transformed Gamma ⁽⁴⁾ $(\times 10^{-6})$	
0-25	2.032	2.484	2.264	
25-50	3.132	2.556	2.724	
50-75	2.872	2.540	2.784	
75-100	2.668	2.500	2.696	
100-125	2.452	2.436	2.536	
125-150	2.216	2.352	2.328	
150-175	1.992	2.252	2.100	
175-200	1.788	2.148	1.860	
200-225	1.604	2.028	1.628	
225-250	1.436	1.908	1.400	
250-275	1.944	1.776	1.944	
275-300	2.088	1.652	1.912	
300-325	1.808	1.524	1.760	
325-350	1.588	1.396	1.584	
350-375	1.376	1.276	1.408	
375-400	1.192	1.152	1.228	
400-425	1.024	1.040	1.064	
425-450	.884	.932	.908	
450-475	.760	.832	.768	
475-500	.656	.740	.644	
500-525	.668	.648	.660	
525-550	.624	.572	.592	
550-575	.524	.496	.512	
575-600	.440	.432	.440	
600-625	.368	.372	.376	
625-650	.308	.324	.316	
650-675	.256	.272	.260	
675-700	.212	.232	.220	
700-725	.180	.200	.180	
725-750	.148	.164	.148	

- (1) Average Density = (difference of the values of the cumulative distribution at the endpoints of the interval) $\frac{25,000}{25,000}$.
- (2) From Venter, Exhibit 3, Page 1, Column 2.
- (3) From Venter, Exhibit 3, Page 1, Column 6.
- (4) See Exhibit IV, Note (2) for parameters.

34

EXHIBIT IIA

A COMPARISON OF AVERAGE DENSITIES--ANOTHER DISTRIBUTION

	Average Density			
Aggregate			Modified	
Loss	Simulation	Transformed	Transformed	
Interval	Method ⁽¹⁾	Gamma ⁽²⁾	Gamma ⁽³⁾	
(× 24,076)	$(\times 10^{-6})$	$(\times 10^{-6})$	$(\times 10^{-6})$	
0–1	2.949	6.152	5.552	
1–2	3.697	2.251	2.512	
2-3	2.886	1.675	1.939	
3-4	2.201	1.387	1.626	
4–5	1.744	1.206	1.415	
5-6	1.578	1.078	1.258	
6–7	1.288	.9828	1.133	
7–8	1.080	.9074	1.030	
8–9	.9968	.8461	.9429	
9-10	.7892	.7950	.8670	
10-11	.7061	.7515	.8001	
11-12	.6646	.7137	.7404	
12-13	.6230	.6807	.6865	
13-14	.5400	.6513	.6377	
14-15	.5400	.6250	.5931	
15-16	.4984	.6011	.5521	
16–17	.4153	.5795	.5144	
17-18	.3738	.5596	.4796	
18–19	.3738	.5412	.4472	
19-20	.3323	.5241	.4173	
20-21	.2907	.5082	.3893	
21-22	.3323	.4933	.3633	
22-23	.2907	.4793	.3391	
23–24	.2492	.4661	.3165	
24-25	.2907	.4535	.2953	
25-26	.2077	.4416	.2756	
26–27	.2492	.4302	.2571	
27–28	.2077	.4194	.2398	

Notes appear on continuation of exhibit.

EXHIBIT IIA (continued)

A COMPARISON OF AVERAGE DENSITIES—ANOTHER DISTRIBUTION

	Average Density			
Aggregate Loss Interval (× 24,076)	Simulation Method ⁽¹⁾ $(\times 10^{-6})$	$\frac{\text{Transformed}}{\text{Gamma}^{(2)}}$ $(\times 10^{-6})$	Modified Transformed Gamma ⁽³⁾ $(\times 10^{-6})$	
28-29	.2077	.4089	.2237	
29-30	.1661	.3989	.2085	
30-31	.2077	.3893	.1944	
31-32	.1661	.3800	.1811	
32-33	.1661	.3710	.1688	
33-34	.1661	.3622	.1572	
34–35	.1246	.3538	.1463	
35-36	.1661	.3456	.1362	
36-37	.1661	.3376	.1267	
37-38	.1246	.3298	.1179	
38-39	.1246	.3221	.1096	
39-40	.1661	.3147	.1018	
40-41	.1246	.3075	.0946	
41–42	.4153	.3003	1.311	
42-43	1.371	.2934	1.136	
43-44	1.163	.2866	.8074	
44-45	.9968	.2799	.6629	
45-46	.7476	.2733	.5722	
46-47	.6646	.2668	.5066	
47–48	.4984	.2605	.4554	
48–49	.4569	.2543	.4134	
49-50	.4153	.2481	.3778	
50-51	.3323	.2421	.3470	
51-52	.2907	.2362	.3198	
52–53	.2907	.2303	.2955	
5354	.2492	.2246	.2737	
54–55	.2077	.2189	.2539	
55-56	.1661	.2133	.2358	

Notes appear on continuation of exhibit.

EXHIBIT IIA (continued)

A COMPARISON OF AVERAGE DENSITIES—ANOTHER DISTRIBUTION

	Average Density			
Aggregate Loss Interval (× 24,076)	Simulation Method ⁽¹⁾ $(\times 10^{-6})$	Transformed Gamma ⁽²⁾ $(\times 10^{-6})$	Modified Transformed Gamma ⁽³⁾ $(\times 10^{-6})$	
56-57	.2077	.2078	.2192	
5758	.1661	.2024	.2039	
58-59	.1661	.1971	.1898	
59-60	.1246	. 1919	.1767	
60-61	.1246	.1867	.1646	
61-62	.0830	.1816	.1533	
6263	.1246	.1766	.1429	
6364	.1246	.1717	.1331	
6465	.0830	.1669	.1240	
6566	.1246	.1621	.1156	
6667	.0830	.1574	. 1077	
67-68	.0830	.1528	.1003	
68–69	.0830	.1483	.09340	
69-70	.08307	.1438	.08697	
7071	.08307	.1394	.08097	
71–72	.08307	.1351	.07536	
72–73	.04153	.1309	.07012	
73–74	.08307	.1268	.06523	
74–75	.04153	.1227	.06067	
75-76	.08307	.1187	.05640	
76–77	.08307	.1148	.05242	
77–78	.04153	.1110	.04870	
78–79	.04153	.1072	.04524	
79–80	.04153	.1036	.04200	
80-81	.04153	.09999	.03899	
81-82	.04153	.09648	.03618	
82-83	.04153	.09304	.03356	
83-84	.2077	.08969	.3286	

Notes appear on continuation of exhibit.

EXHIBIT IIA (continued)

A COMPARISON OF AVERAGE DENSITIES—ANOTHER DISTRIBUTION

	Average Density			
Aggregate Loss Interval (× 24,076)	Simulation Method ⁽¹⁾ $(\times 10^{-6})$	Transformed Gamma ⁽²⁾ $(\times 10^{-6})$	Modified Transformed Gamma ⁽³⁾ $(\times 10^{-6})$	
84-85	.2492	.08641	.1722	
85-86	.2077	.08322	.1364	
86–87	.1661	.08010	.1163	
87-88	.1246	.07706	.1025	
88-89	.08307	.07409	.09184	
89–90	.08307	.07120	.08321	
90-91	.08307	.06839	.07593	
91-92	.08307	.06566	.06964	
92-93	.08307	.06300	.06410	
93–94	.08307	.06042	.05916	
94–95	.04153	.05791	.05471	
95-96	.04153	.05547	.05067	
96–97	.04153	.05311	.04699	
97–98	.04153	.05082	.04361	
98–99	.04153	.04860	.04051	
99-100	0	.04645	.03765	

(1) This distribution is based on a Poisson frequency with mean 13.7376 and a Pareto severity $F(X) = 1 - (B/(B + x))^{\delta}$ with B = 264.7 and $\delta = .45128063$

censored at 1,000,000.

The small scale fluctuations are due to our simulation routine which only calculates distributions to .001. Note that .001/24076 = .04153 E-6.

- (2) See Exhibit V, Note (2) for parameters.
- (3) See Exhibit V, Note (3) for parameters.

EXHIBIT IIIA

AVERAGE DENSITY

Aggregate Distribution for a Severity Without a Censor⁽¹⁾

Aggregate Loss	Simulation		
Interval	Method ⁽²⁾		
(× 120,380)	$(\times 10^{-7})$		
0-1	7476		
1_)	5 732		
7.3	12.63		
3-4	16.20		
4-5	14.12		
5-6	11.05		
6-7	7 809		
7-8	5 1 50		
8-9	3 373		
9-10	L.994		
10-11	1.412		
11-12	.8307		
12-13	.5815		
13-14	.3323		
14-15	.3323		
15-16	.1661		
16-17	.1661		
17-18	.08307		
18-19	.08307		
19-20	0		
20-21	.08307		
21-22	0		
22-23	.08307		
23-24	0		
24-25	0		
25-26	0		
26–27	.08307		
27-28	0		
28-29	0		
29-30	0		

- (1) Poisson frequency with $\omega = 13.7376$ and a Pareto severity with B = 65,721 and $\delta = 2.5$ censored at 10^{12} .
- (2) The small scale fluctuations are due to our simulation routine which only calculates distributions to .001. Note that .08307 E-7 = .001/120380.

EXHIBIT IV

Aggregate Loss Amount (× 1000)	Character- istic Function Method ⁽¹⁾	TGD ⁽¹⁾	Modified TGD ⁽²⁾	Normal ⁽³⁾	Pareto ⁽⁴⁾
25	.9016	.9031	.9026	.9033	.9062
50	.8107	.8125	.8116	.8131	.8236
75	.7273	.7283	.7276	.7292	.7506
100	.6507	.6503	.6504	.6517	.6859
125	.5806	.5786	.5798	.5801	.6282
150	.5163	.5129	.5152	.5145	.5768
175	.4573	.4529	.4562	.4546	.5307
200	.4030	.3984	.4022	.4001	.4893
225	.3529	.3491	.3525	.3507	.4521
250	.3066	.3047	.3066	.3062	.4185
275	.2642	.2650	.2648	.2662	.3881
300	.2273	.2295	.2279	.2305	.3605
325	.1951	.1981	.1955	.1987	.3354
350	.1672	.1702	.1674	.1706	.3126
375	.1431	.1457	.1430	.1458	.2917
400	.1221	.1243	.1219	.1241	.2727
425	.1039	.1055	.1036	.1051	.2552
450	.0880	.0893	.0878	.0887	.2392
475	.0742	.0752	.0741	.0745	.2244
500	.0622	.0631	.0622	.0622	.2109
525	.0518	.0528	.0519	.0518	.1984
550	.0430	.0439	.0432	.0429	.1868
575	.0357	.0364	.0358	.0353	.1761
600	.0296	.0301	.0296	.0290	.1662
625	.0245	.0247	.0245	.0237	.1570
650	.0202	.0203	.0202	.0192	.1485
675	.0167	.0165	.0166	.0155	.1406
700	.0137	.0134	.0136	.0125	.1332
725	.0112	.0109	.0112	.0100	.1263
750	.0091	.0088	.0091	.0080	.1199
775	.0074	.0070	.0074	.0063	.1139
800	.0060	.0056	.0059	.0050	.1082
825	.0048	.0045	.0048	.0039	.1030
850	.0039	.0035	.0039	.0030	.0980

COMPARISON OF EXCESS RATIOS FROM DISTRIBUTIONS IN VENTER'S EXHIBIT 3

Notes appear on following page.

EXHIBIT IV (continued)

COMPARISON OF EXCESS RATIOS FROM DISTRIBUTIONS IN VENTER'S EXHIBIT 3

- (1) From Venter, Exhibit 3.
- (2) Fit by method of Appendix II.

 $\omega = 13.7376$ m = 250,000p = 0.0241r = 0.7568 $\alpha = 1.55601$ $\lambda = 4.3616E-6$

(3) Fit to match first two moments.

Distribution Function = $\frac{1}{\sqrt{2\pi} \sigma(1 - \Phi(-\mu/\sigma))} \int_0^x \exp\left[\frac{-(t - \mu)^2}{2\sigma^2}\right] dt$

 $\Phi(x) = \text{Standard Normal Distribution}$ $\mu = -31,828.4$ $\sigma = 327,408.6$

(4) Fit to match first two moments. $F(X) = 1 - (B/(B + X))^{\delta}$ B = 807,039 $\delta = 4.22815586$

EXHIBIT V

COMPARISON OF EXCESS RATIOS FROM DISTRIBUTION IN EXHIBIT II

Aggregate Loss Amount $(\times 10^5)$	Simulation ⁽¹⁾	TGD ⁽²⁾	Modified Transformed Gamma ⁽³⁾
I	.8599	.8660	.8649
2	.7542	.7555	.7567
3	.6663	.6595	.6647
4	.5877	.5750	.5843
5	.5164	.5000	.5124
6	.4511	.4335	.4470
7	.3888	.3744	.3863
8	.3304	.3220	.3292
9	.2753	.2757	.2748
10	.2226	.2349	.2224
11	.1792	.1990	.1818
12	.1500	.1677	.1513
13	.1269	.1405	.1269
14	.1079	.1170	.1070
15	.0913	.0968	.0904
16	.0767	.0795	.0762
17	.0641	.0649	.0638
18	.0525	.0525	.0527
19	.0420	.0422	.0426
20	.0324	.0336	.0333
21	.0250	.0266	.0262
22	.0200	.0209	.0210
23	.0160	.0162	.0170
24	.0131	.0125	.0139
25	.0110	.0095	.0114
(1) $\omega = 13.7376$ Poi	isson Frequency		
m = 1,000,000	- 8	B = 264.7	-
S(X) = 1 - (B/(X - X))	$(+ B))^{\prime\prime}$ Pareto Severity	$\delta = .4512806$	3
(2) $\omega = 13.7376$		$\alpha = 2.56852$	7
r = 0.1/400/		$\Lambda = 4.948821-$ r = 0.383347	1
$(5) \omega = 15.7570$ m = 1.000.000		$\alpha = 1.42077$	
m = 1,000,000 p = 0.0243		$\lambda = 1.54E-6$	

APPENDIX 1

$$P(n)$$
, $Q(n)$, and $P(n|n_0)$

P(n) is the probability of n losses in a time period; p is the probability of a total loss (of size m) given that a loss has occurred.

Q(n) is the probability of n total losses. Then

$$Q(n) = \sum_{j=0}^{\infty} P(n+j) \binom{n+j}{n} p^n (1-p)^j$$

 $P(n|n_0)$ is the probability of *n* partial losses given that n_0 total losses have occurred. Then

$$P(n|n_0) = {\binom{n + n_0}{n}} p^{n_0}(1 - p)^n / Q(n_0)$$

If P(n) is Poisson, then so are Q(n) and $P(n|n_0)$. Likewise, P(n) negative binomial implies that Q(n) and $P(n|n_0)$ are also negative binomial. The form of the functions remains the same; only the parameters change.

	Poisson Parameter*	Negative Binomial Parameters**	
	α	α1	α ₂
P(n)	ω	x	q
Q(n)	ωp	x	q/(p+q-pq)
$P(n n_0)$	$\omega(1-p)$	$x + n_0$	p + q - pq

Note the following interesting fact about the negative binomial case.

$$E(n|n_0) \equiv \sum_{n=0}^{\infty} nP(n|n_0) = (x + n_0) \left(\frac{1 - p - q + pq}{p + q - pq}\right)$$

As the number of total losses increases, so does the expected number of partial losses. This lends support to the usual interpretation of the negative binomial distribution as being associated with situations of positive contagion. (See for example Meyers and Heckman [5].)

* The form of the Poisson is Poisson $(n) = e^{-\alpha} \alpha^n / n!$

** Negative Binomial (n) =
$$\binom{n + \alpha_1 - 1}{n} \alpha_2^{\alpha_1} (1 - \alpha_2)^n$$

APPENDIX II

Moments of $G(x|n_0)$

Recall
$$G(x|n_0) = \frac{1}{1 - P(0|n_0)} \sum_{n=1}^{\infty} P(n|n_0) \mathcal{G}_1^{n^*}(x)$$

where $\mathcal{P}_1^{n^*}(x)$ is the n^{th} convolution of the cumulative distribution function of the partial losses. Setting p = 1 - S(m) = the probability of a total loss,

$$\mathcal{G}_{1}(x) = \begin{cases} 0 & x < 0\\ S(x)/(1-p) & 0 \le x < m\\ 1 & m \le x \end{cases}$$

The program is as follows:

1) One already knows
$$E(n^j|n_0) = \sum_{n=0}^{\infty} n^j P(n|n_0)$$

and $E(x^j) = (1 - p) \int_0^m x^j d\mathcal{F}_1(x) + pm^j$ for $j = 1$ to 3.

(If $P(n|n_0)$ is Poisson or negative binomial, then the $E(n^j|n_0)$ are tabulated, and presumably one has already calculated the $E(x^j)$.)

Calculate
$$E^*(n^j|n_0) = \frac{\sum_{n=1}^{\infty} n^j P(n|n_0)}{1 - P(0|n_0)} = \frac{E(n^j|n_0)}{1 - P(0|n_0)}$$

and $E^*(x^j) = \int_0^m x^j d\mathcal{G}_1(x) = \frac{E(x^j) - pm^j}{1 - p}$ for $j = 1$ to 3.

- 2) $\mu_N = E(n|n_0)$ $\sigma_N^2 = E^*(n^2|n_0) - E^{*2}(n|n_0)$ $\gamma_N \sigma_N^3 = E^*(n^3|n_0) - 3E^*(n^2|n_0)E^*(n|n_0) + 2E^{*3}(n|n_0)$ $\mu_x = E^*(x)$ $\sigma_x^2 = E^*(x^2) - E^{*2}(x)$ $\gamma_x \sigma_x^3 = E^*(x^3) - 3E^*(x^2)E^*(x) + 2E^{*3}(x)$
- 3) Calculate for each n_0 needed, μ_L , σ_L , and γ_L of $G(x|n_0)$ function using the first three formulas of Venter's Appendix C.
- 4) Calculate the transformed Gamma parameters α_{n_0} , λ_{n_0} , and r_{n_0} by matching the three moments in (3).

Note that if P(n), hence $P(n|n_0)$, is Poisson, then $P(N|n_0)$ and $G(x|n_0)$ are actually independent of n_0 and you need only calculate one triplet α , λ , r for all the G's.

APPENDIX III

Computation of Excess Ratios

Define
$$\bar{F}(X) = \sum_{n=0}^{[x/m]} Q(n) [P(0|n)\pi(x - nm) + (1 - P(0|n))G(x - nm; r_n, \alpha_n, \lambda_n)]$$

Then $E(x) = [mp + (1 - p)E_{\mathcal{G}_1}(x)]E(n)$

where
$$E_{\mathcal{G}_1}(x) = \int_0^\infty x d\mathcal{G}_1(x)$$
 and $E(n) = \sum_{n=0}^\infty n P(n)$.

(Note: The above must be proved and anyone wishing to see a proof can contact the reviewers.)

Then
$$R(a) \equiv \int_{a}^{\infty} (x - a)d\tilde{F}(x)/E(x) = 1 - \frac{1}{E(x)} \sum_{n=0}^{\lfloor a/m \rfloor} Q(n) \left[P(0|n)nm + (1 - P(0|n)) \left\{ G\left(a - nm; r_n + \frac{1}{\alpha_n}, \alpha_n, \lambda_n\right) \frac{\Gamma(r_n + (1/\alpha_n))}{\lambda\Gamma(r_n)} + G(a - nm; r_n, \alpha_n, \lambda_n)nm \right\} \right] - \frac{a}{E(x)} (1 - \tilde{F}(a))$$

Although this appears complicated it is really quite simple to compute since usually not many terms are needed.

In the case of a Poisson (with $E(n) = \omega$),

$$P(n|n_0) = e^{-\omega(1-p)}(\omega(1-p))^n/n!$$

independent of n_0 . Therefore λ_{n_0} , α_{n_0} and r_{n_0} are also independent of n_0 .

Then
$$\tilde{F}(X) = \sum_{n=0}^{\lfloor x/m \rfloor} e^{-\omega p} \frac{(\omega p)^n}{n!} \left[e^{-\omega(1-p)} \pi(x - nm) + (1 - e^{-\omega(1-p)}) G(x - nm; r, \alpha, \lambda) \right]$$

$$E(X) = p\omega m + (1 - p)\omega E_{\mathcal{F}_{1}}(x)$$

$$= p\omega m + (1 - e^{-\omega(1-p)}) \frac{\Gamma(r + (1/\alpha))}{\lambda\Gamma(r)} +$$

$$R(a) = 1 - \frac{1}{E(X)} \sum_{n=0}^{[a/m]} e^{-\omega p} \frac{(\omega p)^{n}}{n!} \left[e^{-\omega(1-p)} nm + (1 - e^{-\omega(1-p)}) \left(G \left(a - nm; r + \frac{1}{\alpha}, \alpha, \lambda \right) \frac{\Gamma(r + (1/\alpha))}{\lambda\Gamma(r)} + G(a - nm; r, \alpha, \lambda) nm \right) \right] - \frac{a}{E(X)} (1 - \bar{F}(a))$$
†Note: $(1 - e^{-\omega(1-p)}) \frac{\Gamma(r + (1/\alpha))}{\lambda\Gamma(r)}$

$$\begin{aligned} &(1 - e^{-\omega(1-p)}) \int_0^\infty x \, d\left(\frac{\sum_{n=1}^\infty P(n|n_0)\mathcal{G}_1^{n^*}(x)}{1 - P(0|n_0)}\right) \\ &= (1 - e^{-\omega(1-p)}) \sum_{n=1}^\infty e^{-\omega(1-p)} \frac{(\omega(1-p))^n}{n!} \frac{nE_{J_1}(x)}{1 - e^{-\omega(1-p)}} \\ &= (1 - p)\omega E_{\mathcal{G}_1}(x) \end{aligned}$$