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A NOTE ON LOSS DISTRIBUTIONS 

J. GARY LAROSE 

Abstract 

This paper presents a generalized notation in order to represent several 
actuarial rating values which are derived from loss distributions. Four functions 
are defined and then used to define various rating values such as Table M 
charges and savings, loss elimination ratios, increased limit factors, and excess 
loss premium factors. The notation has been adapted from a notation originally 
presented by R. J. Finger. Using this manner of presentation, a more unified 
approach to actuarial uses of loss distributions is possible. The paper should be 
of particular value to students of the Society. 
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I. INTRODUCTION 

The topic of loss distributions has been and continues to be an important 
area of actuarial study. Many papers have been presented to this Society which 
discuss various actuarial applications utilizing loss distributions. Some of these 
papers appear on the CAS examination syllabus. In addition, the Actuarial 
Education and Research Foundation is currently preparing a textbook on loss 
distributions. It is the purpose of this paper to define some elementary functions 
which utilize an underlying loss distribution and then use these functions to 
generalize the derivation of several actuarial rating values. Using this manner 
of presentation, a more unified approach to actuarial uses of loss distributions 
is possible. 

The term loss distribution is intended to be a general term. It could represent 
a per claimant loss distribution, a per occurrence loss distribution, a per risk 
annual loss ratio distribution, etc. The generality and wide application of the 
elementary functions result, in part, from the variety of types of specific loss 
distributions and probability models which could be considered in various areas 
of ratemaking. It should be noted that the functions presented are “distribution- 
free” in the sense that no particular probability law is assumed. In this paper 
we will use the terms “claim” and “loss” interchangeably. 

II. ELEMENTARY FUNCTIONS 

In this section, we give definitions for four elementary functions which 
utilize an underlying loss distribution and which will be used throughout the 
paper. We will use t to denote a loss variable andflt) to represent the probability 
density function (p.d.f.) of t. The domain of the functions is the non-negative 
real numbers and their range is the closed unit interval. In this paper we will 
use only continuous random variables; however, the discrete case is easily 
substituted. We now proceed with our definitions. 

1. Cumulative Distribution Function 
This function represents the probability that a given loss size will be less 
than or equal to X. 

F(x) = Ix fit) dt 
0 

2. Basic Loss Function 
This function represents the percentage of total losses generated by all 
claims which are smaller than some specified value X. 



LOSS DISTRIBUTIONS 

Xl(x) = d t dF(t), 
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00 

where 01 = t dF(t) = mean of the distribution. 
0 

3. Primary Loss Function 
This function represents the percentage of total losses generated by the 
aggregate amount of the first x dollars of each claim (the whole claim 
amount, if less than or equal to x). 

X2(x) = $ 
oc 

t dF(t) + : dF(O 

= Xl(x) + t [l - F(x)] 

4. Excess Loss Function 
This function represents the percentage of total losses generated by the 
aggregate amount of the dollars of loss which exceed x per claim. 

X3(x) = i 
a 

(t - x) dF(t) 

= 1 - Xl(x) - t [l - F(x)] 

= 1 - X2(x) 

III. FREQUENCY, SEVERITY, AND PURE PREMIUM 

We would like to have an expression for the pure premium and its compo- 
nents in terms of the elementary functions. But first we need to make the 
following definitions. 

R = retention (or deductible) amount 
E[n] = zero retention (or full coverage) frequency. Bickerstaff’ calls this 

“absolute” frequency. 
p(R) = pure premium at retention level R 

I D. R. Bickerstaff, “Automobile Collision Deductible and Repair Cost Groups: The Lognormal 
Model,” PCAS LIX (1972), p. 68. 
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g(R) = frequency at retention level R = [l - F(R)] * E[n] 
s(R) = severity at retention level R = OL - X3(R) / [l - F(R)] 

Then, 

P(R) = g(R) . s(R) 
= [(l - F(R)) * E[n]] . [cx . X3(R) / (1 - F(R))] 
= E[n] . (Y . X3(R) 

We can define expected excess and expected primary losses as follows: 

expected primary losses = Ep = u * p(0) - u . p(R) = u . E[n] . cx . X2(R) 
expected excess losses = Ee = u . p(R) = u . E[n] . (Y . X3(R) 

expected losses = E = Ep + Ee = u . p(0) = u . E[n] . (y 

where u = number of exposure units. 

With these definitions and those of the preceding section, we are now ready 
to discuss some specific applications. 

IV. LOSS ELIMINATION RATIOS 

The Straight Deductible Loss Elimination Ratio 

In his paper on automobile collision deductibles, Bickerstaff defines a “first- 
dollar” loss elimination ratio (LER) as follows: 

LER(D) = 
D . G(D) + (x . H(D) 

a 

= H(D) + (Dlar)G(D) 

I 

D 
= (l/a) t dF(t) + (Dlol)[l - dF(Ol 0 

= Xl(D) + (Dla)[ 1 - F(D)] 

= X2(D) 

Bickerstaff takes f(t) to be the lognormal p.d.f. and goes on to show that 
an adjustment to the loss cost, (Y, must be made in order to reflect an upper 
bound to the unlimited lognormal distribution. This is in recognition of the 

2 ibid. 



LOSS DISTRIBUTIONS 19 

practical fact that there exists a finite dollar bound, L, on the actual cash value 
of a vehicle. This adjustment can be calculated as: 

“adjustment” = 
a - J(L) - L . G(L) 

a 

= J(L) - (L/a)[l - F(L)] 

= 1 - Xl(L) - (L/a)[l - F(L)] 

= X3(L) 

We can now compute the net cost per claim (NCPC) for a given deductible 
D as follows: 

NCPC(D,L) = cx - (Y . X2(D) - CY . X3(L) 
= a[1 - X2(D) - X3(L)] 
= 4X3(D) - X3(L)] 

(Note that NCPC does not equal severity, as defined in the previous section.) 

If we expand this formula and make the modifications Bickerstaff suggests, 
we can obtain a “complete” formula for net loss cost (i.e., pure premium). 

NCPC(D,L) = CY - cx . X2(D) - (Y . X3(L) 
= a - 01 . Xl(D) - D[l - F(D)] - ar[l - Xl(L)] 

+ L[l - F(L)] 

We now substitute a( 1 + r)n-l for cx, Ld”-’ for L, and multiply by AC,, to 
obtain the formula for net loss cost, 

AC,{a(l + r)‘-’ - ol(l + r)n-l Xl(D) - D[l - F(D)] - ar(1 + r)n-l 
[l - Xl(Ld”-‘)I + Ld”-‘[l - F(Ld”-‘)I}, 

which the reader can verify is equivalent to the Bickerstaff formula. 

Snader3 gives a discrete formula for the straight deductible LER which can 
be generalized to X2(D). This is straightforward and is left to the reader. 

The Franchise Deductible Loss Elimination Ratio 

The franchise deductible requires the insured to pay for losses less than or 
equal to the deductible amount, but when a loss exceeds the deductible, the 

3 R. H. Snader, “Fundamentals of Individual Risk Rating and Related Topics,” CAS Study Note, 
Part III, p. 60. 
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loss is paid in full. The formula for the loss elimination ratio is: 

LER(D) = d t dF(t) 

= Xl(D). 

The Disappearing Deductible Loss Elimination Ratio 

The discrete formula for this type of deductible is given by Snader.4 Since 
the derivation of the equivalent form in terms of the elementary functions is 
rather cumbersome, only the formula will be given. This type of deductible is 
a straight deductible up to losses of amount D, there is a decreasing amount of 
deductible from D to an amount A (at which D = 0), and no deductible for 
losses in excess of A. 

LER (D;A) = Xl(A) - & [Xl(A) - Xl@>1 

+ -& WWW) - F(D)1 

V. EXPERIENCE RATING 

D Ratios 

Bailey5 tells us that “any experience rating plan which uses a loss limitation 
must cope with D ratios.” These ratios are necessary in order to split expected 
losses into expected primary and expected excess losses. However, there are 
several types of loss limitation which can be used to emphasize frequency of 
loss. One type is illustrated by the maximum single loss (MSL) limitation used 
in general liability.6 In this case we have: 

D ratio = EpIE 
= [u - E[n] . CY * X2(M)]I[u - E[n] * a] 
= X2(M) 

where M = maximum single loss limitation. 

4 ibid., Part III, p. 61. 

5 R. A. Bailey, “Experience Rating Reassessed,” PCAS XLVIII (1961), p. 60. 

6 G. N. Alff, “Liability Experience Rating: Concepts and Structure,” CPCU Journal, March, 1979, 
p. 44. 



LOSS DISTRIBUTIONS 21 

In workers’ compensation, individual losses are split into primary and excess 
portions by the use of a formula in conjunction with additional dollar limits on 
multiple claimant cases, disease cases, etc. Currently, the formula primary 
portion of a loss is dependent on the size of the ground-up loss and, hence, is 
variable. This situation is similar to the deductible provisions of several of the 
crop-hail insurance policy forms. ’ In these cases, the formula given previously 
for Ep will not hold and, hence, we cannot obtain X2(M) as a representation of 
the D ratio. Thus, this formula is not applicable when discussing workers’ 
compensation experience rating, or any other plan not using a constant loss 
limitation, but it can be helpful in those plans which do use a constant loss 
limitation. This will also be the case with the excess ratio which we will discuss 
next. 

Excess Ratios 

In his paper on experience rating credibilities, Perryman* defines the excess 
ratio, r, to be the ratio of expected excess losses to expected losses. Hence, 

r = EeIE 
= [u . E[n] - (Y - X3(M)]I[u - E[n] - a] 
= X3(M) 

It should be emphasized that this formula is only valid when losses are 
limited by a constant amount such as an MSL limitation (see previous section). 
Since the excess ratio plays a part in two of Perryman’s credibility formulae, 
we can see that, all other things being equal, the same forces which impact the 
loss distributions will also affect credibility values based on these formulae. 

Values of g 

These values are of more historical than practical interest; however, readings 
are currently on the examination syllabus which discuss the concept of a g 
value. The necessity for a g value arises from the possibility that primary 
credibility may exceed unity for sufficiently large values of the excess ratio, r, 
under Perryman’s Formula II. By substituting KE = K * (1 - IV) + WgS for K 
when Q 5 E, we guarantee that primary credibility will not exceed unity. 

7 R. J. Roth, “The Rating of Crop-Hail Insurance,” PCAS XLVII (1960), p. 108. 

* F. S. Perryman, “Experience Rating Plan Credibilities,” PCAS LVIII (1971), p. 143. 
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Perryman defines g as: 

g = max {r} 
= max {X3(M)} 

where r varies by classification. 

Since g is a function of the excess ratio, this formula is valid only for 
constant amount loss limitations. It should be clear that, for a fixed M, the 
values of X3(M) and hence g will increase under inflation and must be adjusted 
to reflect current conditions. UhthofflO gives a good discussion of the impact of 
inflation upon these values and the implications of a failure to adjust certain 
experience rating values under changing conditions. 

VI. RETROSPECTIVE RATING 

Table M Charge 

Snaderli defines the “charge” (or excess pure premium ratio) at entry ratio 
r to be: 

+(r) = Ip (t - r)@(t)/ Lrn t dF(t) 

= (l/a) Irn (t - r)dF(t) 
r 

= X3(r) 
where r = entry ratio 

= actual losses t expected losses 
= actual loss ratio + expected loss ratio. 

Since the Table M charge is based on a ratio to expected losses, we must 
multiply by the permissible loss ratio, E’, to obtain a ratio to (standard) pre- 
mium. Thus, the percentage charge (applicable to standard premium) for a 
maximum loss ratio is E’ * X3(r) (exclusive of loss adjustment expenses). 

9 ibid. 

lo D. R. Uhthoff, “The Compensation Experience Rating Plan-A Current Review,” PCAS XLVI 
(1959), p. 285. 

11 Snader, op. cit., Part II, p. 52. 
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Table M Saving 

SnadeP defines the “saving” at entry ratio r to be: 

e(r) = 1’ (r - t)dF(t)l Ia t dF(t) 
0 

= (2) 16 dF(t) - (l/a) 1 t dF(t) 

= (rla)F(r) - Xl(r) 
= 1 - Xl(r) - (r/a)[l - F(r)] + (r/01) - 1 
= X3(r) + (r/(Y) - 1 
= +(r) + (r-h) - 1 

If cx = 1, then we obtain an important relationship between the charge and 
saving, namely, 

k@(r) = +(r) + r - 1 

Excess Loss Ratio 

Snader13 defines the excess loss ratio for a given injury type and loss 
limitation, 1, as follows: 

e*(l) = y - r*x 

I 

m 
where, y = (l/a) t dF(t) 

I 

r* = l/c4 
m 

x= dF(t). 

I* ibid., Part II, p. 54. 

I3 ibid., Part II, p. 55. 
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Harwayne14 describes a method of obtaining countrywide excess loss ratios 
using statewide tables of excess loss ratios based on ratios to the mean. If we 
let r = I/q then we can substitute r for 1 and obtain: 

e*(l) = e*(r) 
= X3(r) 

It should be noted that Skurnickls calls the excess loss ratio a loss elimination 
ratio (denoted k). This should not be confused with a deductible loss elimination 
ratio which is the complement of the excess loss ratio. 

Excess Loss Premium Factor 

We can now obtain the excess loss premium factor (ELPF) for a dollar loss 
limitation per claim under a retrospective rating plan (net of any expense items). 
Since X3(Z) is a ratio of excess losses to expected losses, we can transform this 
into a ratio of excess losses to premium by multiplying by the permissible loss 
ratio, E’. Hence, 

ELPF = E’ . X3(1) 
= E’ - X3(r) 

where r = lla. 

VII. REINSURANCE 

Excess of Loss Coverage 

The term burning ratio (BR) could be used to describe the ratio of expected 
excess losses to expected losses. This can be written as: 

BR = EeIE 
= [u * E[n] * (Y - X3(R)]I[u . E[n] . 011 
= X3(R) 

In order to apply this ratio to subject premium we must multiply by the 
permissible loss ratio, E’, underlying the primary rates. Compare this to our 
discussion of ELPF’s. 

FergusoG refers to burning cost (BC) as the ratio of unmodified excess 

14 F. Harwayne, “Accident Limitations for Retrospective Rating,” PCAS LX111 (1976), p. 1 

I5 D. Skurnick, “The California Table L,” PCAS LX1 (1974), p. 117 

I6 R. E. Fergwon, “An Actuarial Note on Loss Rating,” PCAS LXV (1978), p. 50. 
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losses to subject premium. Let us change this definition to include the modifi- 
cations to excess losses which Ferguson discusses (e.g., trend and loss devel- 
opment factors). Then we see that, 

(BC) . P = (BR) . E’ . P 
BC = E’ * (BR) 

= E’ . X3(R) 

where P = subject premium. 

In other words, burning cost is similar to an ELPF in retro rating and 
burning ratio is similar to the excess loss ratio. 

In practice, the reinsurer will not accept unlimited exposure and thus the 
burning ratio would have to be modified for a reinsurer limit, L, as follows: 

R+L m 

BR = (l/o) 
I 

(t - R) dF(t) + (L/a) 
f 

dF(t) 
R RCL 

= (l/o) 
f 

m 
(t - R) dF(t) - (l/o) 

R I 

m m 
(t - R) dF(t) + (Lh) 

I dF(t) 
R-FL R+L 

I 

cc 
= X3(R) - (l/a) [t - (R + L)] dF(t) 

R+L 

= X3(R) - X3(R + L) 
= X2(R + L) - X2(R) 

In his review of Ferguson, Patrik17 gives a formula for expected aggregate 
losses excess of R with limit L as: 

R+L m 

“expected losses” = 
I 

(t - R) dF(t) + L 
f 

dF(Q 
R R+L 

= a[X3(R) - X3(R + L)] 
= 4X2(R + L) - X2(R)] 

Dividing this formula by (Y yields the above formula for the burning ratio with 
limit, L. 

Stop Loss Coverage 

In a previous section we discussed the Table M charge. This equals the 
percentage of expected losses which is expected to be incurred above a selected 

I7 G. Patrik, discussion of “An Actuarial Note on Loss Rating” by R. E. Ferguson, PCAS LXV 
(1978), p. 56. 
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maximum loss ratio, r. We can show that this charge is equivalent to the charge 
necessary for a stop loss (aggregate excess) reinsurance contract. The only 
conceptual difference is in the definition of “claim” and “risk.” Specifically, we 
can define “risk” to be a primary insurer with an underlying reinsurance program 
and “claim” to be an annual (aggregate) recoverable for net losses which exceed 
a specified loss ratio. Thus, 

m m 
stop loss ratio = 

f 
(t - r) dF(t)l 

I 
t dF(t) 

r 0 

= (l/o) ,/- (t - r) dF(t) 
r 

= X3(r) 

where r = annual net loss ratio. 

If there is a percentage participation (p) by the reinsured on excess losses 
and a reinsurer limit of lOOL%, we would have 

stop loss ratio = (1 - p)[X3(r) - X3(r + L)]. 

A stop loss premium factor can be obtained as the product of the permissible 
loss ratio, E’, underlying the subject premium and the stop loss ratio, or 
E’ . X3(r) (compare to the previous section). 

VIII. EXCESS RATING 

Increased Limit Factors 

Miccolis’* shows that increased limit factors can be obtained from a claim 
size distribution. If we let 

E[g(x;k)] = ik t dF(t) + k[l - F(k)] 
0 

= a * Xi(k), 

then we can obtain a formula for an increased limit factor, Z(k). 

I* R. S. Miccolis, “On the Theory of Increased Limits and Excess of Loss Pricing,” PCAS LXIV 
(1977), p. 27. 
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X2(k) _ 
X2(b) 

Miccolis goes on to show that risk-adjusted increased limit factors can be 
obtained as: 

I (k) r = EMd)l + X . ~k(.W21 
E[gk%l + X - E[g(x;b>21 

= cx . X2(k) + X - E[g(x;k)2] 
cx * X2(b) + X * E[g(x;b)2] 

= X2(k) + X * E[g(x;k)‘]/(w 
X2(b) + X * E[g(x;b)2]lol 

IX. MISCELLANEOUS 

Relative Trend 

In his paper on basic limits trend factors, Fingerlg defines the term relative 
trend (RT) to be the ratio of basic limits trend to total limits trend. In order to 
obtain a working formula, Finger defines the average relative trend (ART), for 
a particular period of time, which is the percentage increase in basic limits 
losses divided by the percentage increase in total limits losses. That is, 

ART(r) = BW - B(r) ~ T(vr1 - T(r) 
B(r) T(r) 

where, r = basic limit + mean 
v = (1 + i)-’ 
i = total limits trend over the period of time. 

I9 R. L. Finger, “A Note on Basic Limits Trend Factors,” PCAS LX111 (1976), p. 106. 
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We will define: 

B(r) = E[n] . cx * X2(r) 
E(r) = E[n] . a * X3(r) 
T(r) = B(r) + E(r) = E[n] * a * [X2(r) + X3(r)] = E[n] * a 

Under inflation, r will decrease to vr and cx will increase to a( 1 + i). Hence, 

B(vr) = E[n] * a * (1 + i) . X2(vr) 
E(vr) = E[n] * a * (1 + i) . X3(vr) 
T(vr) = E[n] . a * (1 + i) 

We can now compute a working formula for ART. 

ART(r) = 
E[n] * a * (1 + i) * X2(vr) - E[n] . cx * X2(r) 

E[n] . a * X2(r) 

_E[n].a*(l +i)-E[n]‘a 
E[n] . a 

= (1 + i) * X2(vr) - X2(r) 
i * X2(r) 

If we take the limit of ART as i+O, we obtain the relative trend prior to the 
inflation of the period of time assumed. Thus, 

RT(r) = lim ART(r) 
i-0 

= lim (l/i) - 
(1 + i) * X2(vr) - X2(r) 

i+O X20-) 

_ X10-1 
X20-) 

(using L’HGpital’s Rule) 

Depending on the particular application, either RT(r) or ART(r) may be needed. 

X. CONCLUSION 

We have discussed several original papers which have presented material to 
this Society relating to loss distributions. All of these papers are currently on 
the examination syllabus. However, this is not to imply that these are the only 
papers which utilize loss distributions. There are other papers currently in the 
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Proceedings, and there will most likely be future papers, dealing with this topic. 
Many of these papers could be analyzed using the generalized notation presented 
here. If this paper assists in the development of a clearer framework from which 
to understand the uses of loss distributions in casualty actuarial work, then the 
goal of the paper will have been reached. An appendix is included which gives 
a summary of the formulae presented. From this summary, it is clear that several 
rating concepts are mathematically (actuarially?) equivalent. The notation for 
the elementary functions is similar to that derived by R. J. Finger. 

APPENDIX 

SUMMARY OFFORMULAE 

1. Straight deductible LER 
2. Franchise deductible LER 
3. Disappearing deductible LER 
4. D ratio 
5. Excess ratio 
6. g value 
7. Table M charge 
8. Table M saving 
9. Excess loss ratio 

10. Excess loss premium factor 
11. Burning ratio 
12. Burning cost 
13. Stop loss ratio 
14. Stop loss premium factor 
15. Increased limit factor 
16. Average relative trend 
17. Relative trend 

X2(D) 
Xl(D) 

see Section IV 
X20-f) 
X3(M) 

max {X3(W) 
X3 69 

(r/a)F(r) - Xl(r) 
X3(r) 

E’ * X3(r) 
X3(R) 

E’ . X3(R) 
X3(r) 

E’ * X3(r) 
X2(k)lX2(b) 

see Section IX 
Xl(r)/X2(r) 


