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DISCUSSION BY STEPHEN PHILBRICK AND JEROME JURSCHAK 

Gary Patrik has written a paper which is significant from several points of 
view. It provides: 

. a well-conceived methodology for selecting a model for an empirical loss 
amount distribution; 

. thoughtful remarks suggesting more than usual intuitive familiarity with 
the subject matter; 

* a synthesis of a large body of existing literature interpreted to speak 
directly to the concerns of the actuary. 

Mr. Patrik has discussed a number of reasons for seeking models for loss 
amount distributions. Successful model building requires a level of abstraction 
and understanding which goes beyond the mere analysis of data. Useful models 
have typically isolated those factors of marginal importance-the less cluttered 
the model, the more easily it can be communicated and the more likely cross- 
fertilization with other disciplines can be accomplished. 

Since the K-S statistic is distribution-free and takes into account the natural 
ordering of the sample, it is a particularly useful goodness-of-lit test. However, 
the author states that it may be too powerful for certain actuarial considerations, 
since it has rejected (at the 5% level) all probability models yet tried. This 
observation is certainly not unexpected, partly for the reasons suggested by the 
author, but also due to clustering. 

As practitioners, more than theoreticians, we know that real data rarely 
conform to the ideal. A number of arguments can be given as to why loss 
amounts cluster about particular levels. This observation is found frequently 
enough to be considered something of a norm for certain classes of business. 
This fact is a powerful argument in support of a statistical test which is less 
powerful than the K-S test. The x2 test, for example, is simple to use and easily 
communicated. While the choice of intervals is subject to manipulation, this 
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liability can be an asset when dealing with the question of’ clustering. However, 
one must be careful, in any situation allowing m;mipulation. that ad,iustments 
which improve the fit can be realistically defended. 

Another alternative is to modify the rc.jcction percentile. Based on the 
expected discrepancies from the ideal. perhaps the K-S statistic should be used 
at other significance levels. In any case, the p-value (the smallest value of cy l’or 
which the hypothesis would have been rejected) should be stated, thereby 
permitting different conclusions to investigators with differing qualitative as- 
sessments of the data itself. 

It is also important to note a difference bctwccn the application of the K-S 
test to the simulated data in Appendix C and the application to the OL&T data. 
The simulated data consist of individual points. whereas the OL&T data is 
grouped (classified). Hoe1 (Introchctior~ to Mtrthmtc~ticul Sttrtisticx. p. 326) 
points out: ” the test then is no longer an exact one because the maximum 
difference for classilied and unclassified data may not be the same; however. 
the discrepancy is usually slight if the classification is not too coarse.” In the 
case of the OL&T data in Appendix E, Part 3. the first interval contains 41% 
of the data points. This is probably too coarse. However. il the point of the test 
is to compare the K-S statistic for competing distributions thi\ may not be a 
problem. 

One of the author’s main conclusions is that the method of maximum 
likelihood should be used to estimate the parameters of the particular model. 
Although we agree with this conclusion. two points need to be stressed. 

1. It must be recognized that comparison of method-ot’-monients estimates 
and the MLE estimates in Table 5. I and Table 5.1 arc not on the same 
basis. The MLE estimates arc derived under the assumption that losses 
are censored. The method-of-moments calculations ignore this assump- 

tion. Hence. it is not surprising that the meth~K1-of-moments estimates 
are so poor. The author recognizes this fact, since he later states: 
4. we could compute correct nlethod-of-moments estimates account- 
ing for the policy limit censorship. But the equations that must be solved 
are much more complicated than the general equation (5.5): 

2. The maximum likelihood estimates for the parameters of the normal 
distribution arc the sample mean and sample variance (Fraser. Sttrtistk- 
An Introduction. p. 126). Hence, the MLE estimates arc equivalent to 
the method-of-moments estimates. It then also follows that the method- 
of-moments applied to the lops of claim sizes (Method-of-Moments 11 
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in Table 5.2 jf it had been applied to the unlimited data) should be 
equivalent to the MLE estimates for the lognormal distribution. Note that 
this applies only to the unlimited distribution, not to a censored distri- 
bution. 

The EVC test suggested by Mr. Patrik can be a very useful one. After all, 
as we are reminded. the expected value of loss is the most important component 
of most insurance premiums. One suggestion which would have the effect of 
making the computation of the vector statistic 

i 
G(x,lfU - G,,(x,) 

G(x,(0) I 

less cumbersome, and which would recognize the importance of policy limits, 
would be evaluation of the alternative statistic 

1 
GV’,l0) - G,\(P,) 

G( x,(0) 1 

where the P,, i = I, . . , L are some of the commonly used policy limits or 
retentions (such as $100,000. $250,000) and G,(P,) is the sample average with 
censor P,. It is the expected value of loss at policy limits which is a premier 
consideration. 

Before ending with some comments on the use of the Pareto distribution, a 
few additional points will be discussed. 

I. Our experience indicates that failure to modify data for trend and devel- 
opment before solving for the maximum likelihood estimates can produce 
future loss estimates differing significantly from those obtained with 
adjusted data. To the extent that IBNR losses tend to be larger than 
average. this would ptrrtitrl/y account for the observation that the data 
has too many small losses. However, note that even adjusting the indi- 
vidual claims for case development will not solve this problem. We 
suggest that unadjusted data be used for illustrative purposes only. 

2. The author notes that the method-of-moments technique forces the value 
of 8 to be greater than 2. This is a problem since typical values of 6 arc 
often less than 2. It should be noted that the single parameter Pareto with 
distribution function 

F(x) = I - s F, 6 > 1,X I I 

has a less severe restriction. namely that 6 > 1. However, our experience 
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generally indicates that the single parameter Pareto should be restricted 
to fitting excess losses, where the truncation point is approximately 
$10,000 or more. 

3. In Table 6.1, the author fits the Pareto to the overall distribution and to 
the excess portion. The estimate of p for MLE 1 is .95 as shown in the 
table. It may be of interest to note that the value of p implied by MLE 
II, namely F(8000/347, ,877) is equal to .9385. Although MLE II 
produces poor estimates of tail probabilities, it does a reasonably good 
job of estimating the proportion of losses less than the truncation point. 

4. In Section VI, the author states that it is “convenient” to specify t (the 
truncation point at which the distribution splits into two distinct pieces) 
so that it is not an unknown. It should be pointed out that the choice of 
t is not an innocent oneAifferent values of t can produce model esti- 
mates of tail probabilities which are quite different. 

The final part of this review will deal directly with the Pareto distribution 
as a model for loss amount. While Mr. Patrik does not specifically advocate its 
use in any particular situation, he does state that both the IS0 Increased Limits 
Subcommittee and he personally have found the two parameter Pareto very 
useful. The authors of this review have used the Pareto distribution to model 
large property and casualty losses in a wide range of circumstances including 
estimating property damage losses at large petrochemical complexes, forecasting 
corporate casualty losses excess of various self-insured retentions, pricing work- 
ing cover excess of loss reinsurance, and establishing contributions to hospital 
trusts which serve to fund hospital professional liability losses. The particular 
model we have used is the single parameter distribution mentioned above. 

In choosing to use almost exclusively the single parameter distribution, we 
have been guided by two considerations. First, its analytical form is simple 
enough to make the MLE parameter estimation routine (6 = n/X In x,) and to 
make accessible answers to such questions as sensitivity of forecast results to 
parameter value, the relationship between sample size and confidence in the 
parameter estimate, and the comparative impact on forecast losses of using 
unlimited, truncated, and censored distributions. Second. a single parameter 
gives a good fit to a variety of empirical data. For example, when fitting a one 
parameter Pareto distribution to the censored data in Appendix E, Part I. the 
EVC statistic has components which range in magnitude from -6.04% to 
2.72% (versus - 5.60% to I .71% for the two parameter model). This type of 
variation is small when compared to that inherent in the sampling distribution 
of 6 itself. However. as mentioned earlier, the single parameter Pareto is 
generally appropriate only for excess losses. 
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Finally, we would like to discuss several areas in which additional research 
would be helpful. 

1. Although the methodology for the calculation of MLE estimates of 
parameters should be well within the grasp of all actuaries, it might be 
the case that relatively few would spend the time necessary to pursue 
this concept. 1s it possible that there are alternative methods which may 
sacrifice a little accuracy for a large savings in time and computation‘? 
For example, equating the 5th and 95th percentiles of the simulated data 
in Appendix C to the corresponding theoretical percentiles of the theo- 
retical two parameter distribution and solving the resulting two equations 
yields parameter estimates p = 28,339 and 6 = I .623 which in this 
case compare favorably to the actual values, as the probabilities that X 

.is greater than 100,000 or l,OOO,OOO are .086 and .003 respectively. 
(See Quandt ( 1966) for additional discussion of this method.) 

2. Suppose the estimates of parameters for a large set of data are calculated 
and also those for a small subset. For example, let the large set be all 
hospitals and the subset be a single hospital. Is it reasonable to derive 
parameter estimates for the single hospital by credibility weighting the 
two sets of parameters? If so, how does one determine the credibilities? 

3. If parameters are estimated for various accident years, the values of the 
parameters will differ. To what extent can real changes in the shape of 
the distribution be measured by the changes in the parameter values? 
Equivalently, how sensitive are the parameter values to various sets of 
losses‘? 

4. Can the concept of order statistics be used to draw inferences about the 
shape of the tail‘? For example, the expected largest loss from a finite 
sample generated by a Pareto distribution generally, in our experience, 
exceeds the greatest sample value. This may imply that the tail is too 
“thick,” or possibly that a truncated (from above) Pareto is a better 
descriptor of reality. 

5. In our experience, we have found that we can get reasonably good fits 
to loss data in excess of $25,000 with a one parameter Pareto (occasion- 
ally we split the distribution into two or more parts and estimate a 
sequence of parameters for a sequence of censored Pareto distributions). 
Although it is clear that two (or more) parameters are necessary to fit the 
distribution from ground zero, is it necessary for the distribution to have 
such a wide range’? In many cases, an estimate of aggregate losses below 
some value will suffice; in other cases a different distribution may be a 
better choice for small losses. It may sound more complex to have two 
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distributions, one for losses up to a truncation point t. and another for 
losses in excess of t, but in fact the estimation of parameters may be 
easier. 

Finally, we would like to make it clear that we do not advocate abandonment 
of a two parameter Pareto model. Anyone with the computer procedures for 
this distribution will certainly get good use out of them. WC arc merely sug- 
gesting to those without such techniques already developed. that there may be 
several suitable alternatives. 

The following is a short extension to the bibliography in Mr. Patrik’s paper. 

Benktander, G. (I961 ). “On the Correlation in Results from Different Layen 
in Excess Reinsurance,” Asritt Colloyuium I Y6 I , pp. 203-209 

Haung, J. S. (1975). “A Note on Order Statistics from Pareto Distribution,” 
Srwdinu~ian Actucrrid Jownd. pp. 187- IYO. 

Lwin, Thaung ( 1074). “Empirical Bayes Approach to Statistical Estimation in 
the Paretian Law,” Scundittcr~irttt Ac~trrtrritrl Jotrrtttrl. pp. 22 I-236. 

Malik, H. J. (lY70). “Estimation of the Parameters of Pareto Distribution.” 
Metriktr. Vol. 15, pp. 126132. 

Quandt, R. E. (1966). “Old and New Method5 of Estimation and the Pareto 
Distribution,” Merriklr. Vol. IO, pp. 55-K!. 


