ESTIMATING CASUALTY INSURANCE LOSS AMOUNT DISTRIBUTIONS

GARY PATRIK

I. INTRODUCTION

It is often necessary to estimate probability distributions to describe the loss processes covered by insurance contracts. For example, in order that the premium charged for a particular contract be correct according to any reasonable premium calculation principle, it must be based upon the underlying loss process for the contract. Practically, it is impossible to know the true underlying loss process, but a reasonably accurate estimate of this process can provide the basis for a reasonably accurate premium. One may discuss the loss process for an individual insured with a single coverage provided by a single contract, or for a group of insureds with multiple coverages provided by many contracts.

This paper considers the estimation of individual loss amount (severity) distributions. The term "loss amount" is used to signify the total settlement value of a single loss event. The term "contract" will be used to define any particular situation: the context should make clear whether individual or group, single or multiple coverages and contracts are being discussed.

I assume that for a particular contract at any point in time, there exists a probability distribution governing the loss amount for any loss event occurring at that time. There may be different distributions at different times, and they all may be interrelated and mutually dependent upon the number of events and their times of occurrence (Bühlmann (1970), p. 54ff). The distribution of loss amounts over a contract period is a function of the point-of-time distributions, the number of events and their timings.

This paper concentrates upon probability model-building and statistical techniques for estimating and testing the model parameters. I describe a general procedure for selecting a "best" parameterized model based upon loss amount data. This solves only part of a broader problem, which is to estimate loss amount distributions for future coverage periods or (future) final-valued loss amount distributions for past coverage periods where the losses are not all settled or even known. To solve this broader problem it is necessary to specify models of the overall insurance loss processes, defining how the future relates to the past and how the individual insured relates to the whole insurance portfolio. These models may be very simple or very complex, very loose or very mathematically precise, but we implicitly create them whenever we specify these future/past, individual/whole relationships. I will argue that a key component of the broader problem's solution is the use of probability models for loss amount distributions. Although this paper ignores some of the broader issues such as trend, loss development, population structure (classification), etc., I believe that precise model-building and testing would also resolve many of the problems connected with these.

This paper extends the work of Weissner (1978), who estimated report lag distributions from truncated data, to the estimation of loss amount distributions using censored and truncated data. The particular techniques were developed both for the estimation of commercial liability increased limits factors and for excess-of-loss reinsurance pricing. I would like to thank the following people for their contributions to this paper: Charles Hachemeister, Russell John, Mark Kleiman, Aaron Tenenbein, and Edward Weissner.

II. MATHEMATICAL MODELS

There are compelling reasons to use mathematical models to describe insurance loss amount distributions. In general, a model is a simplified, idealized interpretation of reality. A mathematical model describes the behavior of a real system by use of mathematical symbols, functions and equations. All science is a continuing process of model-building and model-testing (Kuhn (1970)). Wagner (1969) describes the purpose of a model as follows:

Constructing a model helps you put the complexities and possible uncertainties attending a decision-making problem into a logical framework amenable to comprehensive analysis. Such a model clarifies the decision alternatives and their anticipated effects . . . In short, the model is a vehicle for arriving at a well-structured view of reality. (p. 10)

But we must be careful: "The scientist who uses models in his reflections must always remain alert to the possibility that his questions are inspired only by properties of the model, having nothing directly to do with the subject matter itself" (Hanson (1971), p. 79). Because of this, some actuaries believe that we should not attempt to describe real loss amount distributions with mathematical models, but rather we should work with the raw data. This would be fine if all we wished to do was discuss sample realizations of historical loss amount distributions. However, as has been argued in the introduction, whenever we want to extend or compare our various information, we must use some kind of model. Since this is the case in insurance work when we want to predict future possibilities, it seems clear that we should use mathematical models to describe loss amount distributions.

However, we should not believe that we can build models which will completely describe reality.¹ What we can hope for instead is to discover models which describe the salient features of a real system with some degree of accuracy. Whenever we specify a model, we should test it to see if it adequately describes the real system it is meant to describe.

I suggest that the type of model we should construct for a given loss amount distribution should be a probability model with only as many parameters as warranted by the data against which we will be testing it. Too few parameters and it is unlikely to adequately describe any given loss amount distribution; too many parameters and it becomes difficult to understand, difficult to work with and difficult to specify and test. Some of the advantages of such a "parsimonious" probability model are as follows:

- 1. It can be easily understood. Its main characteristics can be clearly described and measured.
- 2. It can be easily manipulated. For instance, loss development and inflationary trends *might* be accounted for simply by adjusting a few parameters.
- 3. It can be easily extended to more general cases or to analogous cases in a consistent manner. For example, some knowledge of the distribution of loss amounts up to certain policy limits *might* indicate something about the tail of the unbounded distribution. Also, we might expect that the loss amount distributions for similar lines of insurance would have the same general form.

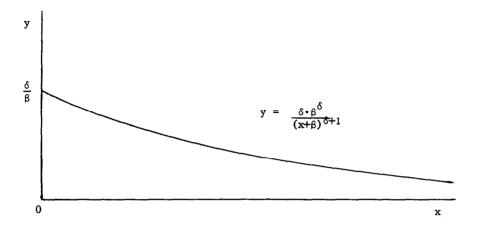
¹ Gödel's proof that any axiomatic system for the natural numbers must be incomplete (Gödel (1931), (1934) and Edwards (1967)) should lead us to suspect that if an abstract idealized mathematical system cannot be completely described, then any real system must be too complicated to be completely described by a model.

- 4. It can be easily restricted to particular cases in a consistent manner. For example, the distribution of Owners, Landlords and Tenants liability loss amounts for small grocery stores in Kansas *might* be a special case of the general countrywide distribution of Owners, Landlords and Tenants liability loss amounts. Also, the distribution of loss amounts for any particular policy limit *might* be a restriction of some general distribution of unlimited loss amounts.
- 5. It can be tested using explicit statistical methods. For example, the fit of any probability model to any set of loss amount data can be tested via the Kolmogorov-Smirnov statistic or by other statistical tests.
- 6. It can be used to compare or combine various contracts or sets of data. For example, for a given set of contracts, the probability models for various years can be explicitly compared in order to determine the effects of inflation. Or perhaps the relationship of the probability models for different contracts can be tested to see if it would be better to specify a single "credible" probability model for the group.

Many possible forms of probability models for loss amount distributions have appeared in the literature. The Bibliography is a fairly comprehensive listing of relevant English-language papers and books; Johnson and Kotz (1970) is especially useful.

The purpose of this paper is to describe a general procedure for selecting an adequate model for any particular loss amount distribution; I do not advocate any particular model. However, for illustration I will use the Pareto distribution of the second kind, also called the Lomax or Pearson Type VI distribution (Johnson and Kotz (1970), p. 233ff). Its cumulative distribution function (c.d.f.) for the random variable X is defined by:

$$F(x \mid \beta, \delta) = \operatorname{Prob} \left[X \le x \right] = 1 - \left(\frac{\beta}{x + \beta} \right)^{\delta} \quad \text{for all } x \ge 0 \quad (2.1)$$


where $\beta > 0$, $\delta > 0$ are parameters.

This Pareto distribution is very easy to work with; a catalog of its main properties is given in Appendix A. The graph of its probability density function (p.d.f.) is shown in Figure 2.1.

60

FIGURE 2.1

PARETO DENSITY FUNCTION

In a slightly more complex form (to be discussed later), this model has been very useful both to myself and to the Insurance Services Office Increased Limits Subcommittee. It appears to more accurately account for large liability loss amounts than does the lognormal or other c.d.f.'s we have tested. Other investigators, such as Benckert and Sternberg (1957), Benktander and Segerdahl (1960), Mandelbrot (1964), Benckert and Jung (1974), Ramachandran (1974), and Shpilberg (1977) have found that this or the usual form of the Pareto describes fire loss data fairly well.

We will next consider how to estimate parameters for any probability model.

III. MAXIMUM LIKELIHOOD ESTIMATION

Suppose that we have postulated a probability model, such as the Pareto distribution (2.1), to describe a given loss amount distribution. The next step in our procedure should be to estimate values for the parameters of the model.

Suppose that we have a random sample of loss amounts and let us assume that they are properly adjusted to the level of the (future) distribution we are interested in. This is a strong assumption since, as already mentioned, we never see proper data because of the problems of individual loss reserve development, IBNR, and time and population differences. However, let us start here; later we will discuss a simple way of handling the time (trend) problem. We can estimate the parameters first via the method of maximum likelihood.

The situation is as follows:

- 1. We are given a sample x_1, x_2, \ldots, x_n which we believe to be distributed according to a c.d.f. of a certain form, $F(x \mid \theta) = \text{Prob} [X \leq x]$, where X designates the random variable and $\theta = \{\theta_1, \ldots, \theta_r\}$ designates the indeterminate general parameter (actually, a set of individual component parameters) for the c.d.f.
- 2. We want to find a paramter $\hat{\theta}$ such that the model with $\hat{\theta}$ as the value of θ "best" describes the data.

The method of maximum likelihood chooses that parameter $\hat{\theta}$ which maximizes the likelihood function:

$$L(\theta) = \prod_{i=1}^{n} f(x_i \mid \theta)$$
(3.1)

where $f(x_i \mid \theta)$ is either the probability of x_i given θ or the p.d.f. evaluated at x given θ , depending upon whether or not the distribution function has a jump or is absolutely continuous at x_i .

Thus, $\hat{\theta}$ is "best" in the sense of being "most likely" given x_1, x_2, \ldots, x_n .

For example, if $F(x \mid \theta)$ is our Pareto c.d.f. (2.1), then $\theta = \{\beta, \delta\}$ and

$$L(\beta, \delta) = \prod_{i=1}^{n} \frac{\delta \cdot \beta^{\delta}}{(x_i + \beta)^{\delta+1}}$$
(3.2)

Maximum likelihood estimation is a standard statistical method and much is known in general about the properties of maximum likelihood estimates (MLE's). Kendall and Stuart (1967), Dudewicz (1976) and many other standard statistical texts discuss the general MLE properties, and many papers discuss particular examples. Appendix B outlines the general properties and describes how to calculate the estimates in the case of r parameters. Essentially, we can expect that for large samples, MLE's will be more accurate than any other estimates. Because of this it is surprising that the maximum likelihood method has not been used more often by actuaries. I believe the reason for this is that MLE's are usually difficult to calculate—we must have detailed data and usually we must use some fancy iterative technique to approximate the MLE's. However, with modern computers the method is much easier; even mini-computers

62

can be programmed to approximate MLE's very quickly for many of the standard probability models.

The standard procedure is to set the first partial derivatives of the natural logarithm of (3.1) equal to zero. These first partials are of the form:

$$\frac{\partial \log L(\theta)}{\partial \theta_j} = \sum_{i=1}^n f(x_i \mid \theta)^{-1} \cdot \left(\frac{\partial f(x_i \mid \theta)}{\partial \theta_j}\right)$$
(3.3)
for $j = 1, 2, \ldots, r$

Setting these equal to zero gives us a system of r equations in the r unknowns $\theta_1, \ldots, \theta_r$ which we can solve by the Newton-Raphson iterative technique outlined in Appendix B.

We will consider a few examples in this paper to illustrate that MLE's can be much better than the standard method-of-moments estimates most often used in the actuarial literature. These are not presented as proofs; the proofs are in the statistical texts. These are simply illustrations.

Let us begin with the simple case of our Pareto c.d.f. (2.1). Suppose the data are the set of loss amounts listed in Appendix C (column 1); these 200 values are computer-generated pseudo-random Paretian values with parameters $\beta = 25,000$ and $\delta = 1.5$. These are realistic parameters for commercial liability losses. We can easily compare the MLE's and the method-of-moments estimates to these values. To compute the MLE's we must maximize the likelihood function (3.2). It is equivalent to maximize the loglikelihood:

$$\log L = \log L(\beta, \delta)$$

= $n \cdot \log \delta + n\delta \cdot \log \beta - (\delta + 1) \sum_{i=1}^{n} \log (x_i + \beta)$ (3.4)

If log L has second partial derivatives with respect to β and δ existing throughout its range, then a necessary condition for a point $(\hat{\beta}, \hat{\delta})$ to maximize log L is that the first partials evaluated at $(\hat{\beta}, \hat{\delta})$ be equal to zero. The first partials are:

$$\frac{\partial \log L}{\partial \beta} = n\delta\beta^{-1} - (\delta + 1) \cdot \sum_{i=1}^{n} (x_i + \beta)^{-1}$$
(3.5)

$$\frac{\partial \log L}{\partial \delta} = n\delta^{-1} + n \cdot \log \beta - \sum_{i=1}^{n} \log(x_i + \beta)$$
(3.6)

The second partials are:

$$\frac{\partial^2 \log L}{\partial \beta^2} = -n\delta \cdot \beta^{-2} + (\delta + 1) \cdot \sum_{i=1}^n (x_i + \beta)^{-2}$$
(3.7)

$$\frac{\partial^2 \log L}{\partial \delta \cdot \partial \beta} = \frac{\partial^2 \log L}{\partial \beta \cdot \partial \delta} = n\beta^{-1} - \sum_{i=1}^n (x_i + \beta)^{-1}$$
(3.8)

$$\frac{\partial^2 \log L}{\partial \delta^2} = -n\delta^{-2} \tag{3.9}$$

Since $\beta > 0$ and $\delta > 0$, the second partials exist throughout the range of log L. Thus, setting (3.5) = 0 and (3.6) = 0 defines a point $(\hat{\beta}, \hat{\delta})$ which may maximize log L. We should check to be sure that $(\hat{\beta}, \hat{\delta})$ indeed gives a maximum (see Appendix B). The equations can be solved by a simple iterative technique such as the Newton-Raphson technique (see Appendix B).

For our Pareto example, the calculated MLE's and the implied tail probabilities for amounts greater than 100,000 and 1,000,000 (calculated via (2.1)) are displayed in Table 3.1.

TABLE 3.1

PARETO

	β	_δ	<u>Prob [$X > 100,000$]</u>	Prob $[X > 1,000,000]$
Model	25,000	1.500	.089	.004
MLE	26,297	1.586	.083	.003
Method-of-Moments	56,042	2.371	.088	.001

The corresponding method-of-moments estimates β' , δ' are obtained by solving the two equations:

$$\frac{\beta'}{\delta'-1} = \text{sample mean} = 40,880$$

$$\frac{\delta' \cdot \beta'^2}{(\delta'-2) \cdot (\delta'-1)^2} = \text{sample variance} = 10.683 \times 10^9$$
(3.10)

The method-of-moments implied probability that X > 100,000 is close to the true value, but the implied tail probability beyond 1,000,000 is understated.

LOSS AMOUNT DISTRIBUTIONS

One property of the Pareto distribution is that any non-central moment $E[X^k]$ for the unbounded c.d.f. exists only if $k < \delta$ (see Appendix A). The methodof-moments estimates, by assuming the existence of the variance and thus of $E[X^2]$, automatically forces $\delta' > 2$. Consequently, the method-of-moments estimates based upon Pareto data with the true $\delta < 2$ will always produce an estimated c.d.f. with relatively fewer large losses than the true model. Let us note here that values of δ less than 2 are typical for liability loss amount data.

Next we will consider how to test a probability model with estimated parameters against the sample data, and we will discuss how we may select final models and parameter values.

IV. MODEL TESTING AND PARAMETER SELECTION

Now suppose that we have postulated a probability model to describe a particular loss amount distribution and from sample data we have calculated MLE's of the parameters. The next step in our procedure should be to test the model and perhaps to modify the parameters for other considerations, such as credibility.

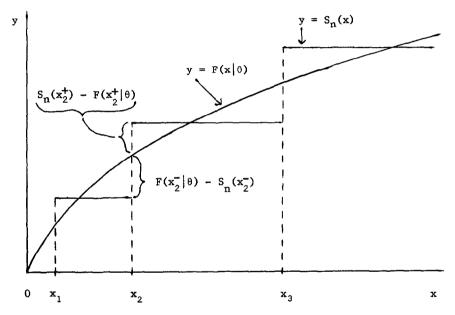
We know that any model cannot be a perfect descriptor of reality, so we should only be looking for one that is good enough for the use to which it is to be put. I suggest that the following two tests are useful for determining whether or not a particular probability model with specified parameters adequately describes a random sample from a particular loss amount distribution:

Test 1: The Kolmogorov-Smirnov Test

This is a standard statistical test that attempts to decide whether or not a given sample was generated according to a specified c.d.f. See Massey (1951), Kendall and Stuart (1967) or Conover (1971) for good general discussions of the test. The test statistic is the maximum absolute difference between the specified c.d.f. and the sample c.d.f. That is, the test statistic D_n is defined by:

$$D_n = \max \{ |F(x_i^- \mid \theta) - S_n(x_i^-)|, |F(x_i^+ \mid \theta) - S_n(x_i^+)| \}$$
(4.1)

where $\{x_i\}$ is the ordered sample $x_1 \leq x_2 \leq \cdots \leq x_n$


$$S_n(x_i^-) = \frac{i-1}{n}$$
; the value of the sample c.d.f. before the jump at x_i

 $S_n(x_i^+) = \frac{i}{n}$; the value after the jump

- $F(x_i^- \mid \theta) = \lim_{x \to x_i^-} F(x \mid \theta)$; the limit from the left of the values of the specified c.d.f.
- $F(x_i^+ \mid \theta) = \lim_{x \to x_i^+} F(x \mid \theta)$; the limit from the right.

FIGURE 4.1

K-S TEST

For any pre-specified confidence level, one rejects the hypothesis that the sample was generated according to a specified c.d.f. if the test statistic is greater than some critical value. Appendix C displays the K-S test of our Pareto c.d.f. with MLE parameters (Table 3.1) against the sample Pareto data. The K-S test statistic is .032 (Appendix C). Thus, using K-S test critical values from one of the aforementioned texts, we would not reject the hypothesis that the sample was generated by the specified Pareto c.d.f., if we were testing at a 5% significance level.²

66

 $^{^{2}}$ K-S test critical values should be smaller when the parameters are estimated from the sample. For example, see Lilliefors (1969) and Dropkin (1964).

The K-S test is more powerful than the chi-square test, since it takes into account the natural order of the data while the chi-square test ignores this order. See Massey (1951) and Conover (1971) for comparisons of the two tests. In fact, a problem with the K-S test is that in practice it seems to be too powerful for testing c.d.f.'s of loss amount distributions. At a 5% significance level it rejects any probability model yet tried for liability loss amount data. We will see an example of this later. Of course, the data we have may not be truly representative of the underlying loss amount distributions because of the previously mentioned problems (development, IBNR, etc.). I believe that we should continue to use the K-S test because its properties are well known, and the value of the K-S statistics can help us decide among different c.d.f.'s. However, we should have another test, to use in conjunction with the K-S test, which will not reject every probability model. The following test gives much useful information to an actuary.

Test 2: Expected Value Comparison (EVC) Test

This is a test of the expected value functions of the specified c.d.f. and the sample c.d.f. Define the following functions:

$$G(x \mid \theta) = \int_0^x X \cdot dF(X \mid \theta) + x \cdot (1 - F(x \mid \theta))$$
(4.2)

$$G_n(x) = \frac{1}{n} \left\{ \sum_{x_i \le x} x_i + x \cdot (\text{number of } x_i > x) \right\}$$
(4.3)

A suitable EVC test statistic might be the vector of values:

$$\left\{\frac{G(x_i \mid \theta) - G_n(x_i)}{G(x_i \mid \theta)}\right\}$$
(4.4)

where $x_1 \leq x_2 \leq \cdots \leq x_n$ is again the sample.

This test statistic is simply the relative difference of the expected value functions $G(x \mid \theta)$ and $G_n(x)$ at each sample point. It is similar to the K-S test *vector* (not just a maximum). I don't know of any statistical work which investigates the properties of this statistic, but it is certainly a good statistic for actuaries who are interested in losses per layer. Appendix C (last column) displays the EVC statistic (as a percentage) for our Pareto c.d.f. with MLE parameters (Table 3.1) against the sample Pareto data. Note that for these 200 data points, the EVC statistic changes sign ten times and the largest absolute value is .0194 (-1.94%).

A reasonable decision rule might be: choose the probability model which has a low K-S test statistic and also has an EVC statistic which is close to the 0-vector and which has random-looking sign changes. We will see applications of this rule in the following sections.

After deciding which c.d.f. best describes a given sample of loss amounts, we should have further decision criteria which use additional information and knowledge to judge the reasonableness of the particular model. We want to know, for instance, that the particular model does not contradict our general knowledge of what loss amount distributions should look like based upon analogous data. Of the six advantages of mathematical models listed in section II, three have to do with extending to, restricting to, or comparing analogous cases. If we had a good broader model for how loss amount probability models should differ for different but similar contracts, we could test any particular c.d.f. against the general criteria. This is a deep problem in the realm of credibility theory, and it is certainly beyond the scope of this paper. However, in practice, since we actuaries do not yet have a comprehensive credibility model, we all use "actuarial judgment" to specify other pieces of the broader model.

Next we will consider some practical modeling and estimation problems and revise our basic probability model to handle them.

v. modeling and estimation problem 1: Policy limits bound the loss amount data

For most lines of insurance, loss amounts are inherently bounded by policy limits. If the parameters of an unbounded c.d.f. are estimated from bounded data, then the c.d.f. with the estimated parameters may greatly understate the true tail of the loss amount distribution. This happens because the unbounded c.d.f. does not expect the tail of the loss amount distribution to be cut off by the policy limit.

For example, suppose our Pareto data in Appendix C (column 1) is limited to 200,000; we will then have 7 data points limited to the value 200,000. If the parameters are estimated by the method-of-moments formulas (3.10), we obtain the results displayed in Table 5.1. The "censored" MLE results will be derived later.

TABLE 5.1

PARETO (DATA LIMITED TO 200,000)

	_β	_δ	Prob $[X > 100,000]$	Prob $[X > 1,000,000]$
Model	25,000	1.500	.089	.004
Method-of-Moments	96,773	3.984	.059	.0001
"Censored" MLE	25,119	1.533	.085	.003

Since the lognormal model has been used so often for loss amount distributions, I thought that a lognormal example would also be instructive here. Appendix D lists 200 computer-generated pseudo-random lognormal values with parameters and tail probabilities given by $\mu = 9.0$ and $\sigma = 2.0$, where the parameterization used is the usual one with:

Prob
$$[X \le x] = \phi\left(\frac{\log x - \mu}{\sigma}\right)$$
 (5.1)

where $\phi(y)$ is the normal (0, 1) c.d.f.

The standard method-of-moments estimates μ' , σ' are obtained from the data limited to 200,000 by solving the two equations:

$$\exp\left\{\mu' + \frac{\sigma'^2}{2}\right\} = \text{sample mean} = 28,166$$

$$(5.2)$$

$$(\exp\left\{\sigma'^2\right\} - 1) \cdot (\text{mean})^2 = \text{sample variance} = 2.204 \times 10^9$$

Solving these we obtain the results displayed in Table 5.2 as "Method-of-Moments I."

TABLE 5.2

LOGNORMAL (DATA LIMITED TO 200,000)

	μ	<u>σ</u>	Prob $[X > 100,000]$	Prob $[X > 1,000,000]$
Model	9.000	2.000	.104	.008
Method-of-Moments I	9.581	1.153	.047	.0001
Method-of-Moments II	8.950	1.897	.088	.005
"Censored" MLE	8.980	1.973	.100	.007

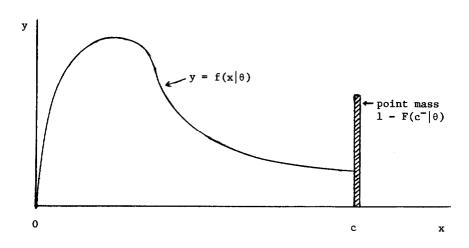
Alternative method-of-moments estimates μ'' , σ'' can be obtained by considering the natural logarithms of the data limited to 200,000 to be normally distributed and taking the usual method-of-moments estimates for the normal distribution, e.g., $\mu'' =$ mean of the logs, etc. The results are displayed in Table 5.2 as "Method-of-Moments II." The "censored" MLE results will be derived later.

The c.d.f.'s with the method-of-moments estimated parameters underestimate the tail probabilities. These examples are important because this method has been used exactly as shown here so often in actuarial work.

Thus, our probability model must account for the effect of policy limits. When policy limits have been recognized in the actuarial literature, there seems to be a standardized model for liability losses. See Benktander and Segerdahl (1960), Lange (1969), Miccolis (1977) among others. They postulate that for liability loss amounts, for each particular type of business and type of coverage, there exists a unique underlying probability law dictating the distribution of loss amounts in the absence of policy limits; call this implied c.d.f. $F(x \mid \theta)$. The standard model hypothesizes that any policy limit c acts on the losses as a "censor" in the following sense: any loss which naturally would be greater than c is artificially limited to amount c. The bounded c.d.f. $F(x \mid \theta; c)$ for policy limit c can be written:

$$F(x \mid \theta; c) = \begin{cases} F(x \mid \theta) & \text{if } x < c \\ 1 & \text{if } x \ge c \end{cases}$$
(5.3)

The probability function $f(x \mid \theta; c)$ is given by $f(x \mid \theta; c) = f(x \mid \theta)$ for x < c, and there is a discrete probability point mass $f(c \mid \theta; c) = 1 - F(c^- \mid \theta)$ at the point c, where $F(c^- \mid \theta) = \lim_{x \to c^-} F(x \mid \theta)$. The graph of $f(x \mid \theta; c)$ may be illustrated loosely by Figure 5.1.


There is no standard model for property loss amount distributions. See Benckert and Sternberg (1957), Bickerstaff (1972), Benckert (1962), Benckert and Jung (1974), Shpilberg (1977) among others. Many investigators have studied the distribution of the individual loss amount ratioed to the policy face amount for particular groups of fire insurance contracts. They have proposed either an inherently bounded c.d.f. such as the Beta distribution or some kind of censored model similar to the standard liability model.

We proceed with the censored model (5.3).

70

FIGURE 5.1

GRAPH OF $y = f(x|\theta; c)$

Suppose that x_1, x_2, \ldots, x_n is a sample of loss amounts which we believe to be distributed according to a censored c.d.f. of the form (5.3), where c is the policy limit. We may reorder the x_i 's so that the first n - m are less than c and the remaining m are equal to c, i.e.,

$$x_1 \le x_2 \le \cdots \le x_{n-m} < c, \ x_{n-m+1} = \cdots = x_n = c$$

In this case, the likelihood function for the censored c.d.f. (5.3) can be written:

$$L(\theta; c) = \left\{ \prod_{i=1}^{n-m} f(x_i \mid \theta) \right\} \cdot \{1 - F(c^- \mid \theta)\}^m$$
(5.4)

We can continue from here to find MLE's for the parameters by using the standard techniques discussed in Appendix B. Note that we will be solving a system of equations of the form:

$$\frac{\partial \log L}{\partial \theta_j} = \sum_{i=1}^{n-m} f(x_i \mid \theta)^{-1} \cdot \left(\frac{\partial f(x_i \mid \theta)}{\partial \theta_j}\right) - m \cdot \{1 - F(c^- \mid \theta)\}^{-1} \cdot \left(\frac{\partial F(c^- \mid \theta)}{\partial \theta_j}\right)$$
(5.5)

for j = 1, 2, ..., r

This is simply (3.3) with the addition of a censorship term. (Remember that n in (3.3) corresponds to n - m in (5.5).) Note that the resulting MLE's are the parameters for the unbounded c.d.f. $F(x \mid \theta)$.

We can illustrate this with our Pareto example. The Pareto censored c.d.f. is given by:

$$F(x \mid \beta, \delta; c) = \begin{cases} 1 - [\beta/(x + \beta)]^{\delta} & \text{for } 0 \le x < c \\ 1 & \text{for } x \ge c \end{cases}$$
(5.6)

where $\beta > 0, \delta > 0$

The loglikelihood function is then:

$$\log L = (n - m) \cdot \log \delta + n\delta \cdot \log \beta$$
$$- m\delta \cdot \log (c + \beta) - (\delta + 1) \cdot \sum_{i=1}^{n-m} \log (x_i + \beta)$$
(5.7)

Note that this is simply (3.4) with the addition of the censorship term: $m\delta \cdot \log \beta - m\delta \cdot \log (c + \beta)$. (To see this, note that *n* in (3.4) becomes n - m in (5.7).) We can compute the first and second partials as before and use a Newton-Raphson iteration to approximate the MLE's. For our Pareto data in Appendix C (column 1) censored to 200,000, we obtain MLE's and estimated tail probabilities displayed in Table 5.1 as "censored" MLE. These are quite different from the method-of-moments estimates in Table 5.1 and are quite close to the true values.

The MLE's and estimated tail probabilities for our lognormal data in Appendix D censored at 200,000 are displayed in Table 5.2 as "censored" MLE. Again, these are quite different from the method-of-moments estimates in Table 5.2 and are quite close to the true values. Of course, we could compute correct method-of-moments estimates accounting for the policy limit censorship. But the equations that must be solved are much more complicated than the general equation (5.5).

Insurance loss amount data are usually from a mixture of contracts with different policy limits. Since the standard liability model postulates a single underlying distribution $F(x \mid \theta)$ for unbounded loss amounts for a particular type of business at a particular time, the data from all policy limits should be used simultaneously to estimate the model for this distribution. The maximum like-lihood method allows us to do this very easily.

Suppose that $\{x_{ki}\}$ is a sample of loss amounts which we believe to be distributed according to the same unbounded c.d.f. except that for each k, the x_{ki} 's are censored by policy limit c_k . Again, we may reorder the x_{ki} 's so that for each k, the first $n_k - m_k x_{ki}$'s are strictly less than c_k and the remaining m_k are equal to c_k . In this case, the general likelihood function for the total sample is simply the product of the likelihood functions for each policy limit:

$$L(\theta; c_1, \ldots, c_s) = \prod_{k=1}^s L(\theta; c_k)$$
(5.8)

Since the general likelihood function is a product, the loglikelihood and all its partial derivatives will be sums of the individual censored components. Writing it all out results in equations terrifying to behold, but whose solution is really quite straightforward in practice. For example, (5.5) becomes:

$$\frac{\partial \log L}{\partial \theta_j} = \sum_{k=1}^s \left\{ \sum_{i=1}^{n_k - m_k} f(x_i \mid \theta)^{-1} \cdot \left(\frac{\partial f(x_i \mid \theta)}{\partial \theta_j} \right) - m_k (1 - F(c_k^- \mid \theta))^{-1} \cdot \left(\frac{\partial F(c_k^- \mid \theta)}{\partial \theta_j} \right) \right\}$$
(5.9)

for j = 1, 2, ..., r

There may be a problem with the MLE's in this general censored case. Since the general likelihood function (5.8) is a product of likelihood functions with respect to different c.d.f.'s (because of different censorship points), the properties discussed in Appendix B may not hold. The theoretical results on the properties of MLE's have been derived for a likelihood function with respect to a single c.d.f. I have not seen any derivation of the properties of MLE's for the general likelihood function (5.8). However, in practice thus far we have noticed no strange behavior of the resulting $\hat{\theta}$.

We will see an example of data from mixed policy limits in section VIII when we consider the problem of having data from many dates of occurrence.

VI. MODELING AND ESTIMATION PROBLEM 2: THERE ARE MORE SMALL LOSSES THAN CAN BE PREDICTED BY THE USUAL MODELS

A problem encountered when we attempt to describe liability loss amount data by one of the usual c.d.f.'s, such as the Pareto or lognormal, is that there are more small loss amounts than the model predicts. Appendix E, Part 1, displays an ISO Owners, Landlords and Tenants bodily injury liability loss amount data summary for policy limit \$300,000 for policy year 1976 evaluated as of March 31, 1978. The number of losses below \$8,000 is more than predicted by any model that I or the ISO Increased Limits Subcommittee have tried. Forcing one of these probability models to fit the total distribution will cause the model to greatly understate the potential tail.

To account for the many small "nuisance claims," Hewitt and Lefkowitz (1979) worked with mixed c.d.f.'s such as:

Prob
$$[X \le x] = p \cdot G(x \mid \theta_G) + (1 - p) \cdot H(x \mid \theta_H)$$
 (6.1)
where $0 \le p \le 1$
 $G(x \mid \theta_G)$ is gamma with parameter θ_G
 $H(x \mid \theta_H)$ is loggamma or lognormal with parameter θ_H

The rationale for this model is that there may be two distinct loss amount generating processes, where some losses are "regular" large losses and may be described by a c.d.f. $H(x \mid \theta_H)$, while others are "nuisance" small losses which may be described by a c.d.f. $G(x \mid \theta_G)$.

For a sample x_1, \ldots, x_n generated according to this loss amount distribution, the loglikelihood function is:

$$\log L = \sum_{i=1}^{n} \log \{ p \cdot g(x_i \mid \theta_G) + (1-p) \cdot h(x_i \mid \theta_H) \}$$
(6.2)

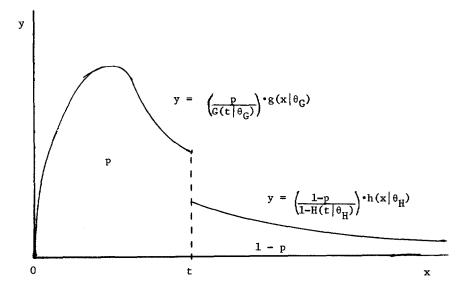
where g and h are the relevant p.d.f.'s.

We can certainly calculate MLE's for this model, although one can see that the equations will be complicated and that we will have many parameter components θ_G , θ_H and p to consider simultaneously.

A much simpler alternative model may be used if we are primarily interested in the large losses and thus want to concentrate upon estimating the tail of the loss amount distribution. This model assumes that the overall distribution splits into two distinct pieces above and below some truncation point t. The overall c.d.f. F(x) can be written as follows:

$$F(x \mid \theta_G, \theta_H, t, p) =$$

$$\begin{cases}
\left(\frac{p}{G(t \mid \theta_G)}\right) \cdot G(x \mid \theta_G) & \text{for } x \leq t \\
p + \left(\frac{1-p}{1-H(t \mid \theta_H)}\right) \cdot (H(x \mid \theta_H) - H(t \mid \theta_H)) & \text{for } x > t
\end{cases}$$
where $0 \leq p \leq 1$ and $t \geq 0$


$$G(x \mid \theta_G) = \text{small loss amount c.d.f.}$$

$$H(x \mid \theta_H) = \text{large loss amount c.d.f.}$$

If $g(x \mid \theta_G)$ and $h(x \mid \theta_H)$ are the respective p.d.f.'s, the graph of the overall p.d.f. $f(x \mid \theta_G, \theta_H, t, p)$ is shown in Figure 6.1.

FIGURE 6.1

GRAPH OF
$$y = f(x|\theta_G, \theta_H, t, p)$$

The picture is intentionally drawn so that the graphs do not match up at t, i.e., $f(x \mid \theta_G, \theta_H, t, p)$ is not necessarily continuous at t. Unless we are pricing small deductibles, we are primarily interested in $H(x \mid \theta_H)$ and need only gross

estimates of $G(x \mid \theta_G)$. In this case, there is no need to try to force continuity at t. For commercial liability data, good values for t seem to lie between \$2,000 and \$8,000.

In practice, it is convenient to specify a value for t so that it is no longer an indeterminant parameter. Maximum likelihood estimation for this model then becomes very simple, because the parameters θ_G , θ_H and p may all be estimated separately. That is, the following lemma holds:

- *Lemma:* Assume that for the model (6.3), t is fixed and θ_G and θ_H are disjoint sets.³ Suppose that x_1, \ldots, x_n is a sample generated according to the model and $x_i \leq t$ for $i = 1, 2, \ldots, m$ and $x_i > t$ for i = m + 1, $m + 2, \ldots, n$. Then:
 - 1. $\hat{p} = (m/n)$ is the MLE for p
 - 2. The MLE's $\hat{\theta}_G$ and $\hat{\theta}_H$ are obtained independently from the subsamples $\{x_1, \ldots, x_m\}$ and $\{x_{m+1}, \ldots, x_n\}$ respectively.

The proof of this lemma is obvious once we write out the loglikelihood function:

$$\log L(\theta_G, \theta_H, p) = \sum_{i=1}^n \log f(x_i \mid \theta_G, \theta_H, p)$$

$$= \sum_{i=1}^m \log \left\{ \left(\frac{p}{G(t \mid \theta_G)} \right) \cdot g(x_i \mid \theta_G) \right\}$$

$$+ \sum_{i=m+1}^n \log \left\{ \left(\frac{1-p}{1-H(t \mid \theta_H)} \right) \cdot h(x_i \mid \theta_H) \right\}$$

$$= m \cdot \log p - m \cdot \log G(t \mid \theta_G) + \sum_{i=1}^m \log g(x_i \mid \theta_G)$$

$$+ (n-m) \cdot \log (1-p) - (n-m) \cdot \log \{1-H(t \mid \theta_H)\}$$

$$+ \sum_{i=m+1}^n \log h(x_i \mid \theta_H)$$

$$= m \cdot \log p + (n-m) \cdot \log (1-p)$$

$$+ \sum_{i=m+1}^m \log g(x_i \mid \theta_G) - m \cdot \log G(t \mid \theta_G)$$

$$+ \sum_{i=m+1}^n \log h(x_i \mid \theta_H) - (n-m) \cdot \log \{1-H(t \mid \theta_H)\}$$

³ θ_G and θ_H have no elements in common.

Since the loglikelihood splits into three parts dependent upon p, θ_G , and θ_H respectively, then the first partial derivatives with respect to p, θ_G , and θ_H depend only upon those three parts respectively.

This model and the lemma allow us to split the Owners, Landlords and Tenants bodily injury liability loss data at \$8,000, for example, and to estimate the distribution of the large loss amounts by:

- 1. estimating p from the relative number of large and small loss amounts;
- 2. estimating θ_H strictly from the large loss amounts.

If $H(x \mid \theta_H)$ is our Pareto c.d.f. censored at c = \$300,000 (5.6), then (6.4) and (5.4) together say that $\theta_H = \{\beta, \delta\}$ may be estimated from the loglikelihood:

$$\log L = \sum_{i=m+1}^{n-m'} \log h(x \mid \beta, \delta) + m' \cdot \log \{1 - H(c \mid \beta, \delta)\}$$

$$= (n - m) \cdot \log \{1 - H(t \mid \beta, \delta)\}$$

$$= \sum_{i=m+1}^{n-m'} \log \left(\frac{\delta\beta^{\delta}}{(x_{i} + \beta)^{\delta+1}}\right) + m' \cdot \log \left(\left(\frac{\beta}{c + \beta}\right)^{\delta}\right)$$

$$= (n - m) \cdot \log \left(\left(\frac{\beta}{c + \beta}\right)^{\delta}\right)$$

$$= (n - m - m') \cdot \log \delta + (n - m - m') \cdot \log \beta$$

$$- (\delta + 1) \cdot \sum_{i=m+1}^{n-m'} \log (x_{i} + \beta)$$

$$+ m'\delta \cdot \log \beta - m'\delta \cdot \log (c + \beta) - (n - m)\delta \cdot \log \beta$$

$$+ (n - m)\delta \cdot \log (t + \beta)$$

$$= (n - m - m') \cdot \log \delta - (\delta + 1) \cdot \sum_{i=m+1}^{n-m'} \log (x_{i} + \beta)$$

$$- m'\delta \cdot \log (c + \beta) + (n - m)\delta \cdot \log (t + \beta)$$
where $n - m$ = total number of $x_{i} > t$

$$m' = number of loss amounts equal to c$$

$$t < x_{i} < c \text{ for } i = m + 1, m + 2, \dots, n - m'$$

The MLE's of β , δ and p for our Pareto c.d.f. fit to the O. L. & T. data excess of \$8,000 in Appendix E, Part 1, are displayed in Table 6.1 as "Pareto MLE I" where for the fitted Pareto, the tail probabilities are:

$$P[X > x \mid \hat{\beta}, \, \hat{\delta}, \, \hat{p}] = (1 - \hat{p}) \cdot \left(\frac{t + \hat{\beta}}{x + \hat{\beta}}\right)^{\hat{\delta}} \qquad \text{from (6.3)}$$

TABLE 6.1

PARETO FIT TO O. L. & T. DATA

	β	δ		P[X > 100,000]	$P[X \ge 300,000]$
Data	NA	NA	.950	.0016	.0004
Pareto MLE I	1,463	1.453	.950	.0016	.0003
Pareto MLE II	347	0.877	NA	.0069	.0027

Appendix E, Part 2, displays the results of the K-S test and the EVC test. The Pareto model, of course, fails the K-S test. But the EVC statistic does not look bad: there are eight sign changes, the last component is -.0187 (-1.87%) and the absolute maximum 0.056 (-5.60%) occurs in the same interval (\$9,000 - \$10,000) as the K-S maximum. The Pareto c.d.f. fits better at the upper end and the expected value functions coincide well. If we fit the Pareto model to the overall loss amount distribution, the results are worse. The results are displayed in Table 6.1 as "Pareto MLE II"; note how poorly this "untruncated" Pareto c.d.f. predicts the tail probabilities. Appendix E, Part 3, displays the K-S test and EVC test results for this "untruncated" Pareto. The results are opposite those which usually occur; in this particular case, both the tail probabilities and expected values are too high for the Pareto. The point here is that the "untruncated" results are misleading.

A word about the data. Remember that these are a full policy year of incurred loss amounts evaluated at 27 months and grouped by intervals. They are immature (individual loss reserve development), incomplete (IBNR), from loss events occurring over a two year period, and are not listed by individual loss amount for the MLE procedure. Thus any remarks regarding the approximation of the true underlying distribution are tentative. I decided to use undeveloped and incomplete data for this example so as not to get involved in the question of how to develop and complete it. Unsatisfactory though the data are, I hope that the example is illustrative.

A word about using data summarized by interval, as the O. L. & T. data. For c.d.f. $F(x \mid \theta)$, the likelihood function for interval data is based upon the discrete distribution of probability per interval. If the intervals are $(a_0, a_1]$, ..., $(a_{s-1}, a_s]$ and a sample produces n_i losses in the *i*th interval, the true likelihood function is:

$$L(\theta) = \prod_{i=1}^{s} \left(\frac{F(a_i \mid \theta) - F(a_{i-1} \mid \theta)}{F(a_s \mid \theta) - F(a_0 \mid \theta)} \right)^{n_i}$$
(6.6)

Our MLE's based upon the O. L. & T. data, however, treated the data as if all the losses in each interval were concentrated at the average value for the interval. In Appendix E, Part 1, for example, the 58 losses in the interval 10,000 - 11,000 were assumed each to have value 10,430 and the "individual data point" loglikelihood function (6.5) was used. Our testing has shown that treating interval data this way gives good results as long as the intervals are fairly narrow.

This estimation technique for large loss data truncated below is also useful when dealing with excess-of-loss reinsurance coverage where the data are usually excess of some underlying retention. To illustrate its accuracy in estimating the "total distribution," we again turn to our Pareto data in Appendix C. Truncating below at 5,000 and censoring above again at 200,000, we calculate the MLE's and tail probabilities displayed in Table 6.2. The analogous estimates from the lognormal data in Appendix D truncated below at 5,000 and censored above at 200,000 are displayed in Table 6.3.

The lognormal estimates here are not as good as we have seen in previous cases. In both these examples, the corresponding method-of-moments estimates would be ridiculous if the lower truncation were not taken into account, and the formulas would be difficult if it were.

TABLE 6.2

PARETO (DATA TRUNCATED AT 5,000)

	_β	δ		P[X > 100,000]	$\underline{P[X > 1,000,000]}$
Model	25,000	1.500	.239	.089	.004
MLE	23,354	1.492	.235	.085	.004

TABLE 6.3

LOGNORMAL (DATA TRUNCATED AT 5,000)

	μ	<u> </u>	_ <u>p</u>	P[X > 100,000]	P[X > 1,000,000]
Model	9.00	2.000	.405	.104	.008
MLE	8.98	1.858	.370	.091	.005

VII. MODELING AND ESTIMATION PROBLEM 3: THE UNDERLYING LOSS AMOUNT DISTRIBUTIONS ARE NOT SMOOTH

Whenever we see detailed loss amount data, such as the Owners, Landlords and Tenants bodily injury liability loss interval data in Appendix E, Part 1, or individual loss amount data, we are immediately struck by the fact that the losses tend to cluster at certain round values such as 1,000, 10,000, 25,000, . . . , 100,000, etc. This clustering occurs even in mature loss amount data. Thus, it is apparent that any probability model which is to describe the data as exactly as possible cannot be a smooth c.d.f. such as the Pareto or lognormal.

An alternative to a smooth model might be a mixed c.d.f. similar to the Hewitt/Lefkowitz model (6.1) with $G(x \mid \theta_G)$ smooth and $H(x \mid \theta_H)$ discrete. If a mixed model is to fit loss amount data significantly better than a completely smooth model can, then it may need many parameters, perhaps one for each discrete cluster point. The likelihood equations (6.2) would be very difficult to solve. And even then would such a model provide any better prediction, through simple parameter changes, of future loss amount distributions? I believe that our data are inadequate to support such a model.

Even though our data seem to have cluster points, the last column of Appendix E, Part 2, shows that the Pareto c.d.f. describes the expected loss function fairly well. Remember that expected value is the most important component of most insurance premiums. The same exhibit shows how well the Pareto c.d.f. estimates the tail probabilities (see also Table 6.1); this is also an important aspect of insurance pricing. Since we apparently cannot specify a better model without great difficulty (remember the data problems), it looks as if we must be satisfied with smooth models for large loss amount distributions as long as the parameters are properly estimated.

VIII. MODELING AND ESTIMATION PROBLEM 4: THE DATA ARE FROM MANY OCCURRENCE DATES

To have enough data to be able to study loss amount distributions, we must of necessity use data from many accident occurrence dates. Suppose that we want to study the loss amount distribution at one point-of-time and suppose that we have specified a broader model which tells us how to trend the data from different occurrence dates to the level of this single date. Let us also suppose that besides being subject to various policy limits, our data are also larger than some common lower truncation value t. This situation is common in reinsurance, where our data are often excess of some specified retention level. Also this situation arises if we use a probability model such as (6.3) to separate large and small losses and we use a common split point t for all our data. In this case, for each occurrence date we must trend the value t along with the loss amounts and the policy limits to our single occurrence date. Thus our trended data have a mixture of trended lower truncation points and trended policy limits (censorship points). The method of maximum likelihood allows us to painlessly calculate parameter estimates for the single point-of-time model simultaneously from all these data.

Let us illustrate this situation with our Pareto c.d.f. Let the x_{ki} 's represent the trended loss amounts. Assume that they are ordered so that for each k, the x_{ki} 's are larger than the trended lower truncation point t_k and are censored at the trended policy limit c_k . Also assume that for each k, the first $n_k - m_k x_{ki}$'s lie strictly between t_k and c_k and the remaining m_k are equal to c_k . We assume that except for lower truncation and upper censorship, the x_{ki} 's are subject to the same underlying Pareto c.d.f. $F(x \mid \beta, \delta)$. Then using equations (5.8) and (6.5), with a suitable change in notation, the general likelihood function is:

$$L(\beta, \delta) = \prod_{k=1}^{\delta} L(\beta, \delta; t_k, c_k)$$
(8.1)

where the component loglikelihood function for each k is:

$$\log L(\beta, \, \delta; \, t_k, \, c_k) = (n_k - m_k) \cdot \log \delta$$

$$- (\delta + 1) \cdot \sum_{i=1}^{m_k} \log (x_{ki} + \beta)$$

$$- m_k \delta \cdot \log (c_k + \beta) + n_k \delta \cdot \log (t_k + \beta)$$
(8.2)

As in (5.9), the partial derivatives of the general loglikelihood will be the sum of the partials of the components in (8.2) for each truncation/censorship combination. The computer programming is straightforward.

For example, let us use the Owners, Landlords and Tenants bodily injury liability loss amount data in Appendices E and F for policy years 1975 and 1976 for policy limits of \$300,000 and \$500,000, and adjust by a trend factor of 18.9% per annum to an occurrence date of July 1, 1980. Since the individual loss occurrence dates are unknown, we will simply assume the average occurrence dates: for policy year 1975 this is January 1, 1976 and for policy year 1976 it is January 1, 1977. It would, of course, be better to know the occurrence month of each loss amount. We will use original lower truncation points for each year of \$8,000.

The simultaneous estimates for β , δ for July 1, 1980 are $\beta = 4,955$ and $\delta = 1.473$. The K-S test and EVC test results are displayed in Appendix G for the Pareto with parameters β , δ and each set of trended data. Note that in this case, the assumption that the loss amounts from different policy limits have the same underlying distribution looks like it may be false. The reason for this tentative conclusion is that the fitted Pareto greatly understates the expected values for higher limits of the \$500,000 policy limit trended data. This can be seen by studying the EVC test statistic in the last columns of Appendix G; the final value for trended policy year 1975 \$500,000 policy limit data is -.298 (Part 2) and the final value for trended policy year 1976 \$500,000 policy limit data is -.178 (Part 4).

The ISO Increased Limits Subcommittee has had mixed results when testing this assumption of a common loss amount distribution underlying different policy limits (except, of course, for the censorship at each limit). It is apparent that much more testing (and more careful model-building) needs to be done.

IX. CONCLUSION

This paper has presented a general procedure for selecting an adequate model for any particular loss amount distribution. The point of view is that we must use models whenever we want to extend or compare our various information, and moreover, we should use mathematical models. The procedure for finding an adequate model is to:

- 1. specify a particular probability model;
- 2. estimate parameters via the method of maximum likelihood;
- 3. test the model and select final parameters.

We have also discussed how to account for policy limits is censors, for too many small losses, for probability cluster points, and final y for loss amount inflation trends. The estimation technique discussed has b en the method of maximum likelihood.

The Bibliography lists, beyond the direct references, man English-language papers and books which study casualty loss amount distreputions or related problems. I trust that other American actuaries will find t ese references of interest.

÷.,

APPENDIX A

Pareto (Lomax, Pearson Type VI) Distribution

$$F(x) = \operatorname{Prob} \left[X \le x \right] = 1 - \left(\frac{\beta}{x + \beta} \right)^{\delta} \quad \text{for } x \ge 0 \tag{A1}$$

where $\beta > 0$, $\delta > 0$ are parameters.

$$f(x) = \frac{\delta \cdot \beta^{\delta}}{(x+\beta)^{\delta+1}} \text{ density}$$
(A2)

$$E[X] = \frac{\beta}{\delta - 1} \quad \text{exists if } \delta > 1 \tag{A3}$$

$$\operatorname{Var}\left[X\right] = \frac{\delta \cdot \beta^2}{(\delta - 2) \cdot (\delta - 1)^2} \quad \text{exists if } \delta > 2 \tag{A4}$$

$$E[X^k] \text{ does not exist for } k \ge \delta \tag{A5}$$

Prob
$$[X - t \le x \mid X > t] = 1 - \left(\frac{\beta + t}{x + (\beta + t)}\right)^{\delta}$$
 for $x \ge 0$ (A6)

Thus, a Pareto distribution excess of a lower truncation t is a Pareto distribution with new "beta parameter" $\beta + t$.

If
$$Y = tX$$
 for some $t > 0$, then (A7)

Prob
$$[Y \le y] = 1 - \left(\frac{\beta t}{y + \beta t}\right)^{\delta}$$
 for $y \ge 0$

Thus, if t is a trend factor and Y is the inflated value of X, then Y also has a Pareto distribution with new "beta parameter" βt . For any limit c, notate the integral of X^k from 0 to c by:

$$E[X^{k}; c] = \int_{0}^{c} X^{k} dF(X)$$
 (A8)

Lemma: For any censor c, if k is a non-negative integer and $k - \delta$ is not a non-negative integer, then the integral of X^k from 0 to c is given by:

$$E[X^{k}; c] = \frac{k! \cdot \beta^{k}}{(\delta - 1)(\delta - 2) \cdot \cdot \cdot (\delta - k)}$$
$$- \delta \left(\frac{\beta}{c + \beta}\right)^{\delta} \left\{ \frac{(c + \beta)^{k}}{\delta - k} - {k \choose 1} \frac{\beta(c + \beta)^{k-1}}{\delta - k + 1} + \cdots + (-1)^{k} \left(\frac{\beta^{k}}{\delta}\right) \right\}$$
$$+ (-1)^{i} \left(\frac{k}{i}\right) \frac{\beta^{i}(c + \beta)^{k-i}}{\delta - k + i} + \cdots + (-1)^{k} \left(\frac{\beta^{k}}{\delta}\right) \right\}$$
(A9)

Proof: (This lemma and proof are due to Mark Kleiman)

$$\begin{split} E[X^k; c] &= \int_0^c x^k \cdot \delta \cdot \beta^\delta \cdot (x+\beta)^{-\delta-1} dx \\ &= \int_0^c \delta\beta^\delta (x+\beta)^{-\delta-1} \{ (x+\beta) - \beta \}^k dx \\ &= \int_0^c \delta\beta^\delta (x+\beta)^{-\delta-1} \left\{ (x+\beta)^k - {k \choose 1} \beta (x+\beta)^{k-1} + \cdots \right. \\ &+ (-1)^i {k \choose i} \beta^i (x+\beta)^{k-i} + \cdots + (-1)^k \beta^k \right\} dx \\ &= \delta \int_0^c \left\{ \beta^\delta (x+\beta)^{k-\delta-1} - {k \choose 1} \beta^{\delta+1} (x+\beta)^{k-\delta-2} + \cdots \right. \\ &+ (-1)^i {k \choose i} \beta^{\delta+i} (x+\beta)^{k-\delta-i-1} + \cdots + (-1)^k \beta^{\delta+k} (x+\beta)^{-\delta-1} \right\} dx \\ &= \delta \left\{ \left(\frac{\beta^\delta}{k-\delta} \right) \cdot (x+\beta)^{k-\delta} - {k \choose 1} \left(\frac{\beta^{\delta+1}}{k-\delta-1} \right) (x+\beta)^{k-\delta-1} + \cdots \right. \\ &+ (-1)^i {k \choose i} \left(\frac{\beta^{\delta+i}}{k-\delta-i} \right) (x+\beta)^{k-\delta-i} + \cdots \\ &+ (-1)^k \left(\frac{\beta^{\delta+k}}{\delta} \right) (x+\beta)^{-\delta} \right\} \Big|_0^c \end{split}$$

$$= \delta \left\{ \left(\frac{\beta^{\delta}}{k-\delta}\right) \left[(c+\beta)^{k-\delta} - \beta^{k-\delta} \right] \right.$$
$$- \left. \binom{k}{1} \left(\frac{\beta^{\delta+1}}{k-\delta-1}\right) \left[(c+\beta)^{k-\delta-1} - \beta^{k-\delta-1} \right] + \cdots \right.$$
$$+ \left. (-1)^{i} \left(\binom{k}{i} \right) \left(\frac{\beta^{\delta+i}}{k-\delta-i}\right) \left[(c+\beta)^{k-\delta-i} - \beta^{k-\delta-i} \right] + \cdots \right.$$
$$+ \left. (-1)^{k} \left(\frac{\beta^{\delta+k}}{\delta}\right) \left[(c+\beta)^{-\delta} - \beta^{-\delta} \right] \right\}$$
$$= \delta \beta^{k} \left\{ \frac{1}{\delta-k} - \binom{k}{1} \frac{1}{\delta-k+1} + \cdots + (-1)^{k} \frac{1}{\delta} \right\}$$
$$- \delta \left(\frac{\beta}{c+\beta} \right)^{\delta} \left\{ \frac{(c+\beta)^{k-i}}{\delta-k} + \cdots + (-1)^{k} \frac{\beta^{k}}{\delta} \right\}$$

We now want to prove that the first expression in braces in the last equality is equal to:

$$\frac{k!}{\delta(\delta-1)\cdots(\delta-k)} \quad \text{if } \delta-k \text{ is not a negative integer}$$

This is proved by judicious use of the binomial theorem and from the definitions of Gamma and Beta functions.

$$\frac{k!}{\delta(\delta-1)\cdots(\delta-k)}$$

$$=\frac{\Gamma(k+1)\cdot\Gamma(\delta-k)}{\Gamma(\delta+1)} \quad \text{if } \delta-k \text{ is not a negative integer}$$

$$=\int_{0}^{1} (1-x)^{k} x^{\delta-k-1} dx$$

$$=\int_{0}^{1} \left\{1-\binom{k}{1}x+\cdots+(-1)^{i}\binom{k}{i}x^{i}+\cdots+(-1)^{k} x^{k}\right\} x^{\delta-k-1} dx$$

$$= \int_{0}^{1} \left\{ x^{\delta-k-1} - \binom{k}{1} x^{\delta-k} + \dots + (-1)^{i} \binom{k}{i} x^{\delta-k+i-1} + \dots + (-1)^{k} x^{\delta-1} \right\} dx$$

$$= \left\{ \frac{x^{\delta-k}}{\delta-k} - \binom{k}{1} \frac{x^{\delta-k+1}}{\delta-k+1} + \dots + (-1)^{k} \frac{x^{\delta}}{\delta} \right\} \begin{vmatrix} 1\\0 \end{vmatrix}$$

$$= \frac{1}{\delta-k} - \binom{k}{1} \frac{1}{\delta-k+1} + \dots + (-1)^{k} \frac{x^{\delta}}{\delta} \end{vmatrix} \begin{vmatrix} 1\\0 \end{vmatrix}$$

$$= \frac{1}{\delta-k} - \binom{k}{1} \frac{1}{\delta-k+1} + \dots + (-1)^{k} \cdot \frac{1}{\delta}$$

Note: If $c < \infty$, then any integral $E[X^k; c]$ exists (is finite).

If $k - \delta$ is a non-negative integer, then $E[X^k; c]$ may be approximated for small $\epsilon > 0$ via:

$$E[X^k; c] \simeq \{ E[X^{k-\epsilon}; c] + E[X^{k+\epsilon}; c] \}/2$$
(A10)

So, the lemma evaluation formula may be used.

Corollary: For any censor c:

$$E[X; c] = \frac{\beta}{\delta - 1} \left\{ 1 - \left(\frac{\beta}{c + \beta}\right)^{\delta - 1} \quad \left(\frac{\delta c + \beta}{c + \beta}\right) \right\} \quad \text{if } \delta \neq 1 \quad (A11)$$

APPENDIX B

Maximum Likelihood Estimation and Newton-Raphson Iteration

Given a sample x_1, x_2, \ldots, x_n and general c.d.f. $F(x \mid \theta)$ with parameter $\theta = \{\theta_1, \ldots, \theta_r\}$ in some set Θ . The likelihood function is given by:

$$L(\theta) = \prod_{i=1}^{n} f(x_i \mid \theta)$$
(B1)

where $f(x_i \mid \theta)$ is either the probability of x_i given θ or the p.d.f. evaluated at x_i given θ , depending upon whether or not the distribution function has a jump or is absolutely continuous at x_i .

The important properties of MLE's are (Kendall and Stuart (1967), p. 38ff and Dudewicz (1976), p. 193ff):

1. Under very general conditions, MLE's are consistent. That is, the MLE $\hat{\theta}$ converges in probability to θ_0 , the true value of θ , as the sample size increases.

2. Under very general conditions, MLE's are consistent asymptotically normally distributed and efficient. That is, $\hat{\theta}$ is asymptotically (as sample size $n \to \infty$) normally distributed with mean θ_0 and covariance matrix equal to the inverse of the Fisher information matrix:

Cov
$$\hat{\theta} \simeq I(\theta_0)^{-1}$$
 (approximately) (B2)

where

$$I(\theta_0) = -E\left[\left(\left(\frac{\partial^2 \log L(\theta)}{\partial \theta_j \cdot \partial \theta_i} \middle|_{\theta=\theta_0}\right)\right)\right]$$
(B3)

The determinant of Cov $\hat{\theta}$ becomes minimal as $n \to \infty$.

For our Pareto example (2.1), for sample size *n* we have:

$$I(\beta, \delta) = \begin{pmatrix} \frac{n\delta}{\beta(\delta+2)} & \frac{-n}{\beta(\delta+1)} \\ \frac{-n}{\beta(\delta+1)} & \frac{n}{\delta^2} \end{pmatrix}$$
(B4)

So,

$$\operatorname{Cov}(\hat{\beta}, \hat{\delta}) \simeq \frac{1}{n} \begin{pmatrix} \frac{\beta^2}{\delta} (\delta+1)^2 (\delta+2) & \beta \delta (\delta+1) (\delta+2) \\ \beta \delta (\delta+1) (\delta+2) & \delta^2 (\delta+1)^2 \end{pmatrix}$$
(B5)

Finding a $\hat{\theta}$ which maximizes $L(\theta)$ is equivalent to finding a $\hat{\theta}$ which maximizes

$$\log L = \log L(\theta) = \sum_{i=1}^{n} \log f(x_i \mid \theta)$$
(B6)

If log L has second partial derivatives with respect to the θ_j 's existing throughout its domain Θ , then a necessary condition for a point $\hat{\theta}$ to maximize log L is that the first partials evaluated at $\hat{\theta}$ be equal to zero:

$$\frac{\partial \log L}{\partial \theta_j} \bigg|_{\theta=\theta} = 0 \quad \text{for } j = 1, 2, \dots, r$$
 (B7)

If the matrix of second partials evaluated at $\hat{\theta}$ is negative definite, then $\hat{\theta}$ indeed maximizes log L.

Assuming that the matrix of second partials will be negative definite, we must find $\hat{\theta}$ which satisfies the system of equations (B7). Newton-Raphson iteration allows us to find a sequence of vectors $\theta^{(1)}$, $\theta^{(2)}$, ... which may converge to a solution for any system of equations such as (B7). The only condition necessary is that the partials of the equations in (B7) with respect to each θ_i must exist for each $\theta^{(m)}$. See Conte and de Boor (1972).

Expressions for the second partial derivatives of log L are somewhat unwieldly. So we will simplify the notation of (B7) to a more general case: we assume that our problem is to find a point $\hat{\theta} = {\hat{\theta}_1, \ldots, \hat{\theta}_r}$ which is a solution for the following system of r equations:

$$\Psi_{1}(\theta) = 0 \tag{B8}$$

$$\Psi_{2}(\theta) = 0$$

$$\vdots \qquad \vdots$$

$$\Psi_{r}(\theta) = 0$$

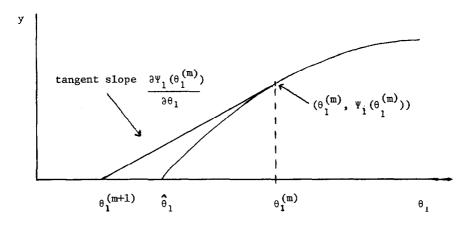
And we assume that the partials of the Ψ_i 's with respect to the θ_j 's exist throughout the domain Θ .

Start by selecting an initial value $\theta^{(1)}$. Then, in general, $\theta^{(m+1)}$ is obtained from $\theta^{(m)}$ by solving the following system of r equations in r unknowns $\theta_1^{(m+1)}, \ldots, \theta_r^{(m+1)}$:

$$\sum_{j=1}^{r} (\theta_{j}^{(m+1)} - \theta_{j}^{(m)}) \cdot \frac{\partial \Psi_{1}(\theta^{(m)})}{\partial \theta_{j}} = -\Psi_{1}(\theta^{(m)})$$

$$\vdots$$

$$\sum_{j=1}^{r} (\theta_{j}^{(m+1)} - \theta_{j}^{(m)}) \cdot \frac{\partial \Psi_{r}(\theta^{(m)})}{\partial \theta_{j}} = -\Psi_{r}(\theta^{(m)})$$
(B9)


In the case that r = 1, we have the familiar solution:

$$\theta_1^{(m+1)} = \theta_1^{(m)} - \Psi_1(\theta_1^{(m)}) \cdot \left(\frac{\partial \Psi_1(\theta_1^{(m)})}{\partial \theta_1}\right)^{-1}$$
(B10)

The 1-dimensional case may be illustrated by Figure B1.

FIGURE B1

GRAPH OF $y = \Psi_1(\theta_1)$

The tangent through the point $(\theta_1^{(m)}, \Psi(\theta_1^{(m)}))$ intersects the θ_1 -axis at the new θ_1 value, $\theta_1^{(m+1)}$. It should be clear that as long as $\Psi_1(\theta_1)$ is well-behaved, if $\theta_1^{(m)}$ is close to a zero $\hat{\theta}_1$ for $\Psi_1(\theta_1)$, then $\theta_1^{(m+1)}$ should be even closer, as in the figure.

In the general case, the solution to (B4) is obtained via Cramer's Rule as long as the matrix of second partials evaluated at $\theta^{(m)}$ is nonsingular (Herstein (1964), p. 288). For example, the case r = 2 is easily illustrated:

$$\theta_1^{(m+1)} = \theta_1^{(m)} - \frac{\Psi_1(\theta^{(m)}) \cdot \left(\frac{\partial \Psi_2(\theta^{(m)})}{\partial \theta_2}\right) - \left(\frac{\partial \Psi_1(\theta^{(m)})}{\partial \theta_2}\right) \cdot \Psi_2(\theta^{(m)})}{J(\theta^{(m)})}$$
(B11)

$$\theta_{2}^{(m+1)} = \theta_{2}^{(m)} - \frac{\Psi_{2}(\theta^{(m)}) \cdot \left(\frac{\partial \Psi_{1}(\theta^{(m)})}{\partial \theta_{1}}\right) - \left(\frac{\partial \Psi_{2}(\theta^{(m)})}{\partial \theta_{1}}\right) \cdot \Psi_{1}(\theta^{(m)})}{J(\theta^{(m)})}$$

where $J(\theta^{(m)})$ is the Jacobian evaluated at $\theta^{(m)}$:

$$J(\theta^{(m)}) = \left(\frac{\partial \Psi_1(\theta^{(m)})}{\partial \theta_1}\right) \cdot \left(\frac{\partial \Psi_2(\theta^{(m)})}{\partial \theta_2}\right) - \left(\frac{\partial \Psi_1(\theta^{(m)})}{\partial \theta_2}\right) \cdot \left(\frac{\partial \Psi_2(\theta^{(m)})}{\partial \theta_1}\right) \quad (B12)$$

This technique gives an iteration $\theta^{(1)}$, $\theta^{(2)}$, ... which may be stopped when successive values $|\theta^{(m+1)} - \theta^{(m)}|$ are small enough according to some metric $|\theta|$.

APPENDIX C

Pareto

200 Psuedo-Random Values

$\beta = 25,000$	$\delta = 1.5$	$\mathbf{P}[X \le x] = 1 -$	$\left(\frac{\beta}{x+\beta}\right)$	δ
------------------	----------------	-----------------------------	--------------------------------------	---

		K-S Test	EVC Test			
			·	M	eans	EVC
<u>x</u>	Pareto CDF F(X)	Sample CDF S(X)	Maximum Difference	Pareto	Sample	Statistic (%)
9	.001	.005	004	8	9	03
151	.009	.010	.004	150	150	.02
225	.013	.015	.003	223	223	03
282	.017	.020	003	279	279	03
295	.018	.025	007	292	292	01
670	.039	.030	.014	656	658	20
772	.045	.035	.015	754	757	34
773	.045	.040	.010	755	757	34
845	.049	.045	.009	824	827	37
910	.053	.050	.008	885	889	38
915	.053	.055	.003	890	893	38
1.035	.059	.060	.004	1.003	1,007	35
1,092	.062	.065	003	1,057	1,060	34
1,151	.066	.070	004	1,112	1,116	32
1,208	.069	.075	~ .006	1,165	1,169	29
1,231	.070	.080	010	1,187	1,190	28
1.548	.087	.085	.007	1,479	1,481	19
1,616	.090	.090	.005	1.541	1,544	19
1,638	.091	.095	004	1,561	1,564	19
1.643	.092	. 100	008	1,565	1.568	19
1,727	.096	. 105	009	1,641	1.644	15
1,786	.099	.110	011	1,695	1,697	12
1,866	.103	.115	012	1.767	1,768	07
2.005	.110	.120	010	1,891	1,891	01
2.049	.112	.125	013	1.930	1,930	.01
2.081	.114	. 130	016	1,958	1.958	.03
2.108	.115	. 135	020	1,982	1,981	.05
2.127	.116	.140	024	1,999	1,998	.07
2.469	.133	. 145	012	2,298	2,292	.29
2.626	.140	.150	010	2.434	2,426	.33
2,945	.155	. 155	.005	2,706	2.697	.33
2,949	.155	.160	005	2,709	2,700	.33
2,958	.156	. 165	009	2,717	2,708	.33
3,036	.159	.170	011	2,783	2,773	.34
3,048	.160	.175	015	2,793	2.783	.35
3,285	.170	.180	010	2,991	2,979	.40
3,356	.173	.185	012	3,049	3,037	.41
3,428	.177	.190	013	3,109	3,095	.43
3,593	. 184	.195	011	3,244	3,229	.46
3,796	.193	.200	007	3,409	3,393	.48
3,936	. 198	.205	007	3,521	3,505	.48
3,952	. 199	.210	011	3.534	3,517	.48
4.424	.219	.215	.009	3,908	3,890	.45
4.753	.232	.220	.017	4,163	4,148	.34
4,849	.235	.225	.015	4,236	4,223	.31
4.961	.240	.230	.015	4,322	4,310	.27
4.979	. 240	.235	.010	4,335	4,324	.26
5,114	.246	.240	.011	4.437	4,427	.23
5.129	.246	.245	.006	4,449	4,439	.23
5,135	.246	.250	004	4,453	4,443	.23

LOSS AMOUNT DISTRIBUTIONS

APPENDIX C

Pareto

200 Psuedo-Random Values

		K-S Test	EVC Test			
	Pareto CDF	Sample CDF	Maximum	M	eans	EVC Statistic
<u>X</u>	F(X)	Sample CDP S(X)	Difference	Pareto	Sample	(%)
5.195	.249	.255	006	4,498	4,488	.23
5.331	.254	.260	006	4,600	4,589	.24
5.662	.266	.265	.006	4,845	4,834	.22
5,666	. 266	.270	004	4.848	4,837	.22
5.966	.277	.275	.007	5,067	5,056	.20
6.044	.280	.280	.005	5,123	5,113	.20
6.274	.288	.285	.008	5,288	5,278	.17
6,418 6,675	.293 .301	.290 .295	.008	5,390	5,381	.16
0.0/5 7.048	.314	.300	.011 .019	5,571 5,829	5,564 5,827	.12 .03
7.064	.314	.305	.014	5,840	5,838	.03
7.117	.316	.310	.011	5,876	5,875	.02
7.287	.322	.315	.012	5,992	5,992	01
7,343	.323	.320	.008	6.030	6,031	01
7.352	.324	.325	.004	6.036	6,037	01
7.366	.324	.330	006	6.045	6,046	01
7.613	.332	.335	003	6,211	6,212	.00
8.184		.340	.014	6,588	6,591	05
8,247 8,261	.351 .352	.345 .350	.011 .007	6,629 6,638	6,633 6,642	06 06
8,265	.352	.355	003	6,640	6,645	06
8.274	.352	.360	003	6.646	6,651	06
8,920	.371	.365	.011	7,059	7,064	00
8,924	.371	.370	.006	7,061	7,066	07
8,960	.372	.375	003	7.084	7,089	07
9.035	.374	.380	006	7,131	7,136	07
9.045	.374	.385	01)	7,137	7,142	07
9.205	.379	.390	011	7.237	7.241	05
9.323	.382	.395	013	7.310	7,313	03
10.128	.404	.400	.009	7,799	7.800	01
10.494	.413	.405	.013	8.015	8,019	05
10.535	.414	.410	.009	8,040	8,044	05
10.580	.415	.415	.005	8.066	8,070	05
10.652	.417	.420	003	8,108	8,112	05
11.295	.433	.425	.013	8,478	8,485	09
11.584	.439 .448	.4.30	.014	8,641	8.651	12
11.967 12,036	.448	.435	.018	8.854	8,870	18
12,826	.450	.440	.015 .027	8,892 9,319	8,909 9,351	19 34
12.961	.407	.443	.025	9,319	9,331	34
13,041	.472	.455	.022	9,433	9,470	39
13,185	.475	.460	.020	9,509	9.549	41
13.187	.475	.465	.015	9,510	9,550	41
13,321	.478	.470	.013	9,580	9,621	43
13.690	.486	.475	.016	9,772	9,817	46
13,846	.489	.480	.014	9,852	9,899	48
13.998	.492	.485	.012	9,929	9,978	49
14.373	.499	.490	.014	10,118	10,171	52
14,447 14,648	.501	.495 .500	.011 .010	10,155 10,255	10,209 10,310	53 54
14.699	.506	.505	.006	10.280	10.336	54
14.766	.507	.510	003	10.314	10,369	54
15.007	.511	.515	004	10,432	10,487	53
			003	10,577	10,631	52
15.415	.519	.525	~.006	10,630	10,684	5

APPENDIX C

Pareto

200 Psuedo-Random Values

		K-S Test			EVC Test		
		frank CDF	Maximum	M	eans	EVC	
<u></u>	Pareto CDF F(X)	Sample CDF S(X)	Difference	Pareto	Sample	Statistic	
15.909	.528	.530	.003	10,865	10,919	50	
15,983	.529	.535	006	10.900	10,954	49	
16.282	.534	.540	006	11,040	11,093	48	
16.479	.538	.545	007	11,131	11,183	47	
16,685	.541	.550	009	11.226	11.277	45	
16,710	.542 .543	.555	013	11,238	11.288	.45	
16,818 17,036	.543	.560 .565	017 018	11.287	11.336	44 40	
17.030	.551	.570	018	11.380	11.521	40	
17,428	.554	.575	021	11,563	11,602	34	
17,428	.567	.580	013	11,928	11,955	23	
18,452	.570	.585	015	12,011	12,036	23	
19,123	.580	.590	010	12,297	12,315	15	
19,755	.589	.595	006	12,559	12,574	11	
19.862	.590	.600	010	12.603	12.617	11	
19,905	.591	.605	014	12.621	12.634	10	
19,985	.592	.610	018	12,654	12,666	10	
20.146	.594	.615	021	12,719	12,729	07	
20,275	.596	.620	024	12,771	12,778	05	
20,390	.598	.625	027	12,818	12.822	03	
21,889	.617	.630	013	13,406	13,384	.16	
22,017	.619	.635	016	13,455	13,431	.17	
22,172	.621	.640	019	13,514	13,488	. 19	
22,309	.623	.645	022	13.566	13.537	.21	
22,362	.623	.650	027	13,586	13,556	.22	
22,369	.623	.655	032	13,588	13,559	.22	
23,919	.642	.660	018	14,158	14.093	.46	
23,919	.642	.665	023	14.158	14,093	.46	
24.469	.648	.670	022	14.353	14.278	.53	
25,241	.656	.675	019	14.622	14,532	.61	
25,384	.658	.680	022	14.671	14.579	.63	
27.539	.679	.685	006	15,386	15,268	.76	
28.520	.688 .688	.690 .695	.003 007	15.696 15.704	15,578 15,585	.75 .75	
28,545 28,712	.690	.700	007	15,756	15,636	.75	
30.016	.701	.705	004	16,153	16,027	. 78	
32,430	.720	.710	.015	16.851	16,740	.66	
33,821	.731	.715	.021	17,232	17,143	.52	
34,131	.733	.720	.018	17,316	17,231	.49	
34,177	.733	.725	.013	17,328	17,244	.48	
34.448	.735	.730	.010	17,400	17.319	.47	
34,947	.738	.735	.008	17.531	17,453	.44	
35,422	.742	.740	.007	17.655	17,579	.43	
35,987	.745	.745	.005	17.800	17,726	.41	
37.488	.755	.750	.010	18,175	18.109	.36	
37,641	.756	.755	.006	18,213	18.147	.36	
37,975	.758	.760	.003	18,294	18.229	.35	
38,361	.760	.765	005	18,387	18.322	.36	
38,498	.761	.770	009	18,420	18.354	.36	
39,750	.768	.775	007	18.715	18.642	.39	
40,137	.770	.780	010	18,804	18,729	.40	
40.987	.775	.785	010	18,998	18,916	.43	
43,817	.789	.790	.004	19.615	19,524	.46	
44.606	.793	.795	.003	19,780 19,892	19,690 19,802	.46 .46	
45.150	.795	.800	005	19.09-	19,004	.40	

APPENDIX C

Pareto

200 Psuedo-Random Values

		K-S Test		EVC Test		EVC		
				Me	eans			
<u></u>	Pareto CDF F(X)	Sample CDF S(X)	Maximum Difference	Pareto	Sample	Statistic (%)		
47,319	.805	.805	.005	20,326	20,235	.45		
48,160	.803	.803	.003	20,328	20,235	.45		
53,161	.808	.815	.003	20,489		.44		
53,909	.829	.815	.017		21,350			
57,601	.829	.825	.014	21,529 22,137	21,488	.19 07		
59,057	.845	.825			22,152			
59,908	.845	.830	.020	22,365	22,407	19		
62,120	.854	.835	.018	22,495	22,552	25		
63,423	.834 .857		.019	22,825	22,917	40		
		.845	.017	23.013	23,125	49		
64,290	.859	.850	.014	23,136	23,260	53		
64,539	.860	.855	.010	23,171	23,297	54		
66,841	.865	.860	.010	23,487	23,631	61		
66,928	.866	.865	.006	23,499	23,643	61		
69.947	.872	.870	.007	23,894	24,051	- 65		
71,658	.876	.875	.006	24,110	24,273	68		
71,830	.876	.880	004	24,131	24,295	68		
72,206	.877	.885	008	24,178	24,340	67		
74,097	.881	.890	009	24,407	24,557	62		
74,454	.881	.895	014	24,450	24,596	60		
74,806	.882	.900	018	24,491	24,633	58		
97,519	.914	.905	.014	26,774	26,905	49		
97,704	.915	.910	.010	26,790	26,922	50		
98,579	.915	.915	.005	26,864	27,001	51		
98,812	.916	.920	004	26,884	27,001	51		
117,157	.932	.925	.012	28,270	28,488	77		
118,540	.933	.930	.008	28,363	28,592	81		
120,717	.935	.935	.005	28,505	28,745	83		
126,789	.939	.940	.005	28,890	29,139	85		
137,105	.945	.945	.004	29,490	29,758	80		
151,162	.952	.950	.005	30,216	30,531	-1.04		
158,996	.955	.955	.005	30,582	30,923	-1.11		
165,704	.957	.960	003	30,877	31,225	-1.13		
166,837	.958	.965	007	30,925	31,270	-1.12		
210,571	.969	.970	.004	32,498	32,801	93		
217,732	.971	.975	004	32,712	33,016	93		
243,729	.975	.980	005	33.413	33,666	76		
253,630	.977	.985	008	33,652	33,864	63		
370,910	.987	.990	003	35,733	35,623	.31		
616,233	.994	.995	.004	37,978	38,076	26		
,176,968	.998	1.000	.003	40,100	40,880	-1.94		

Beta is 26,297 Delta is 1.586 The Truncation Point is 0 The Censorship Point is 10,000,000

The Sample Size is 200 Kolmogorov-Smirnov Test Statistic is 0.0317

APPENDIX D

Lognormal

200 Pseudo-Random Values

$\mu = 9$	$\sigma = 2$	Prob $[X \le x] = \phi\left(\frac{\log x - \mu}{\sigma}\right)$
	where $\phi(y) =$	$(2\pi)^{-1}\int_{-\infty}^{y}\exp\left\{-\frac{t^{2}}{2}\right\}dt$

2	1,904	5,449	12,301	39,866
20	1,938	5,552	12,371	42,942
21	1,996	5,696	12,606	45,129
89	2,007	5,785	12,626	45,665
134	2,067	5,859	13,690	45,859
135	2,123	5,897	14,090	46,175
164	2,134	5,900	15,759	47,292
165	2,233	5,918	16,359	47.477
186	2,321	6,208	17,134	47,580
236	2,369	6,553	17,298	50,698
402	2,376	6,804	17,649	50,707
438	2,380	6,875	17,949	58,131
451	2,497	6,901	18,682	58,441
526	2,631	6,929	19,696	61,890
582	2,672	6,934	19,789	64,181
601	2,873	7,010	19,874	66,391
639	2,879	7,047	21,275	67,898
676	2,970	7,737	21,305	70,527
850	2,974	7,750	24,569	80,932
911	3,275	7,980	24,600	82,360
914	3,394	8,047	26,571	83,122
1,029	3,397	8,220	27,021	83,849
1,052	3,407	8,448	27,290	83,917
1,053	3,505	8,623	27,969	88,095
1,071	3,584	8,784	28,212	104,508
1,073	3,746	9,029	29,088	112,291
1,102	3,772	9,118	29,205	113,729
1,182	3,903	9,326	29,507	122,065
1,185	3,924	9,356	30,927	129,896
1,258	3,997	9,475	32,490	132,125
1 227	1.660	0.000	22.657	
1,337	4,660	9,896	32,657	168,200
1,340	4,780	9,989	33,929	209,599
1,357	4,794	10,145	34,797	225,688
1,501	4,816	10,272	35,149	260,210
1,627	5,020	10,429	35,194	307,687
1,669	5,041	10,551	35,261	375,796
1,798	5,074	10,675	35,669	463,569
1,825	5,154	10,679	37,859	510,905
1,836	5,206	12,079	38,049	861,999
1,903	5,354	12,274	39,150	1,684,380

APPENDIX E

Part 1

ISO Owners, Landlords and Tenants Bodily Injury Liability

Loss Amount Data: Policy Year 1976 as of March 31, 1978 Policy Limit \$300,000

0 250 10.075 88 250 500 3.049 374 500 1.000 3.263 783 1.000 2.000 2.690 1.490 2.000 3.000 1.498 2.543 3.000 4.000 964 3.521 4.000 5.000 794 4.777 5.000 7.000 8.000 106 7.429 8.000 9.000 114 8.500 9.736 9.000 11.000 58 10.430 12.000 1.000 12.000 56 11.279 12.572 13.000 14.000 20 13.541 14.965 15.000 15.000 151 14.965 15.001 16.000 17.000 16 64.71 19.950 20.000 74 19.950 20.000 74 19.950 20.000 12 22.5	Loss Amount	Number of Losses	Average Loss Amount
250 500 3.049 374 500 1.000 3.263 783 500 1.000 3.000 1.498 2.543 3.000 4.000 964 3.521 4.000 5000 794 4.777 5.000 6.000 261 5.629 6.000 7.94 4.777 5.000 6.000 7.000 8.000 406 7.429 8.000 9.000 114 8.500 9.000 10.00 279 9.736 0.000 1.000 58 10.430 1.000 10.000 47 12.572 3.000 4.000 20 13.541 4.000 15.000 16 16.471 17.000 18.000 24 17.643 19.000 20.000 7 21.733 20.000 20.000 7 21.733		10.075	
\$500 1.000 3.263 783 1.000- 2.000 3.000 1.490 2.000- 3.000 1.498 2.543 3.000- 4.000 964 3.521 4.000- 5.000 794 4.777 5.000- 7.000 191 6.600 7.000- 8.000 406 7.429 9.000- 10.000 279 9.736 10.000- 1.300 47 12.572 13.000- 1.000 58 10.430 11.000- 15.000 151 14.965 15.000- 15.000 151 14.965 15.000- 17.000 16 16.471 17.000- 18.000 24 17.643 19.000- 20.000 74 19.950 20.000- 21.000 16 24.960 23.000- 12 23.658 23.000 12 23.658 23.000- 24.960 25 38.610			
1.000 - 2.000 2.690 1.490 $2.000 - 3.000$ 1.498 2.543 $3.000 - 4.000$ 964 3.521 $4.005 - 5.000$ 794 4.777 $5.000 - 6.000$ 261 5.620 $7.000 - 8.000$ 191 6.600 $7.000 - 8.000$ 114 8.500 $9.000 - 10.000$ 279 9.736 $10.000 - 11.000$ 58 10.430 $11.000 - 12.000$ 56 11.279 $12.000 - 13.000$ 47 12.572 $13.000 - 14.000$ 20 13.541 $14.000 - 15.000$ 151 14.965 $15.000 - 16.000$ 28 15.501 $16.000 - 17.000$ 74 19.950 $10.000 - 12.000$ 7 21.753 $10.000 - 21.000$ 7 21.753 $20.000 - 7$ 21.753 22.000 $21.000 - 22.000$ 7 21.753 $21.000 - 23.000$ 12 22.658			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
4.000-5.000 794 4.777 $5.000-6.000$ 261 5.629 $6.000-7.000$ 191 6.600 $7.000-8.000$ 406 7.429 $8.600-9.000$ 114 8.500 $9.000-10.000$ 279 9.736 $0.000-1.0.000$ 28 11.279 $12.000-13.000$ 47 12.572 $13.000-14.000$ 28 15.501 $14.000-15.000$ 16 16.471 $17.000-18.000$ 24 17.643 $18.000-19.000$ 9 18.713 $19.000-20.000$ 7 21.753 $20.000-23.000$ 7 21.753 $20.000-23.000$ 7 21.753 $20.000-23.000$ 12 22.658 $30.000-40.000$ 4 28.377 $30.000-50.000$ 30 33.888 $35.000-60.000$ 8 59.813 $40.000-55.000$ 1 70.000 42.960 3 33.888 $35.000-60.000$			
5.000 6.000 261 5.629 6.000 7.000 8.000 406 7.429 8.000 9.000 114 8.500 9.005 9.000 10.000 279 9.736 10.000 11.000 58 10.430 11.000 58 11.279 9.736 10.000 11.000 58 11.279 12.000 13.000 47 12.572 13.000 14.000 20 13.541 14.000 15.000 151 14.965 15.000 16 16.471 17.950 20.000 21.000 74 19.950 20.000 12 22.688 23.000 12 22.588 23.000 12 22.568 33.000 44 23.756 23.000 12 22.588 35.000 30 33.888 25.000 30.000 <t< td=""><td></td><td></td><td></td></t<>			
6.000 - 7.000 191 6.600 $7.000 - 8.000$ 406 7.429 $8.000 - 9.000$ 114 8.500 $9.000 - 10.000$ 279 9.736 $10.000 - 12.000$ 58 10.430 $11.000 - 12.000$ 56 11.279 $2.000 - 13.000$ 47 12.572 $13.000 - 14.000$ 20 13.541 $14.000 - 15.000$ 151 14.965 $15.000 - 16.000$ 28 15.501 $16.000 - 17.000$ 16 16.471 $17.000 - 18.000$ 24 17.643 $19.000 - 20.000$ 74 19.950 $20.000 - 74$ 19.950 20.000 7 $21.000 - 22.000$ 7 21.753 22.000 23.000 $21.000 - 23.000$ 12 22.658 23.000 30 33.888 $35.000 - 40.000$ 25 38.611 42.47 $40.000 - 45.000$ 15 43.106 43.2377			
7.000 8.000 406 7.429 8.000 10.000 114 8.500 9.000 10.000 279 9.736 0.000 11.000 58 10.430 11.000 58 10.430 11.279 12.000 13.000 47 12.572 13.000 14.000 20 13.541 14.000 15.000 151 14.965 50.000 16.000 28 15.501 16.000 16 16.471 17.643 19.000 20.000 74 19.950 20.000 74 19.950 20.000 20.000 74 21.753 22.000 23.000 20.000 20.000 74 24.953 33.000 21.000 30.000 42 23.563 36.000 21.000 30.000 44 28.377 30.000 45.5000			5.629
8.000 9.000 114 8.500 9.000 10.000 279 9.736 10.000 12.000 13.000 43.30 11.000 12.000 13.000 47 12.572 13.000 14.000 20 13.541 14.965 14.000 15.000 151 14.965 15.001 16.000 16 16.471 17.633 17.000 18.000 24 17.633 18.000 14 9.950 20.000 7 19.950 20.000 24 17.633 18.713 19.950 20.000 7 17.733 19.000 20.000 7 21.753 22.658 23.000 40.000 4 23.756 24.000 24.960 25.000 30 33.888 35.000 40.000 44.98,377 30.000 35.000 30 33.888 35.000 40.000 45.000 15 43.106 45.000 45.000 45.000 45.000 16.55			
9,000-10,000 279 $9,736$ $10,000-11,000$ 58 $10,430$ $11,000-12,000$ 56 $11,279$ $12,000-13,000$ 47 $12,572$ $13,000-14,000$ 20 $13,541$ $14,000-15,000$ 151 $14,965$ $15,000-16,000$ 28 $15,501$ $16,000-17,000$ 16 $16,471$ $17,000-18,000$ 9 $18,713$ $19,000-20,000$ 74 $19,950$ $20,000-21,000$ 16 $24,475,43$ $19,000-20,000$ 74 $19,950$ $20,000-21,000$ 16 $24,460$ $21,000-20,000$ 7 $21,753$ $21,000-20,000$ 12 $22,668$ $23,000$ 12 $22,668$ $23,000$ 42 $23,756$ $24,0000$ 44 $28,375$ $24,000$ 4 $23,756$ $24,000$ 4 $23,756$ $24,000$ 4 $9,841$ $50,00$	7.000- 8.000	406	7.429
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		56	11,279
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12,000- 13,000	47	12.572
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13,000- 14,000	20	13,541
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14,000 15,000	151	14,965
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15.000- 16.000	28	15.501
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16,000- 17,000	16	16,471
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	17,000-18,000	24	17.643
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			18.713
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19,000- 20,000	74	19,950
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20.000- 21.000	16	20,445
23.000-24.000 4 23.756 24.000-25.000 70 24.960 24.000-35.000 64.4 28.756 24.000-35.000 44 28.756 30.000-35.000 30 33.888 35.000-30.000 25 38.610 40.000-45.000 15 43.106 40.000-45.000 15 43.106 40.000-55.000 40 49.834 50.000-60.000 8 59.813 60.000-65.000 4 64.247 65.000-70.000 1 70.000 75.000-80.000 2 78.618 80.000-85.000 1 20.000 75.000-80.000 1 120.000 75.000-80.000 1 120.000 75.000-100.000 1 124.463 140.000-150.000 4 150.000 120.000-120.000 2 173.398 90.000-200.000 2 133.449 100.000-250.000 1 250.000 10.000-250.000 1	21.000- 22.000	7	21,753
23.000-24.000 4 23.756 24.000-25.000 70 24.960 24.000-35.000 64.4 28.756 24.000-35.000 44 28.756 30.000-35.000 30 33.888 35.000-30.000 25 38.610 40.000-45.000 15 43.106 40.000-45.000 15 43.106 40.000-55.000 40 49.834 50.000-60.000 8 59.813 60.000-65.000 4 64.247 65.000-70.000 1 70.000 75.000-80.000 2 78.618 80.000-85.000 1 20.000 75.000-80.000 1 120.000 75.000-80.000 1 120.000 75.000-100.000 1 124.463 140.000-150.000 4 150.000 120.000-120.000 2 173.398 90.000-200.000 2 133.449 100.000-250.000 1 250.000 10.000-250.000 1	22,000-23,000	12	22.658
34.000-25.000 70 24.960 25.000-30.000 44 28.377 30.000-35.000 30 33.888 35.000-40.000 25 38.610 40.000-45.000 15 43.106 45.000-50.000 40 49.834 50.000-60.000 8 59.813 60.000-65.000 4 64.247 65.000-70.000 1 70.000 75.000-80.000 2 78.618 80.000-55.000 3 51.146 60.000-65.000 4 64.247 65.000-70.000 2 78.618 80.000-75.000 8 75.000 75.000-80.000 2 99.404 95.000-100.000 1 120.000 100.000-130.000 5 124.463 40.0001-150.000 4 155.128 60.000-10.000 2 173.398 90.000-20.000 1 250.000 10.000-180.000 2 133.49 40.000180.100.000 1 <td< td=""><td></td><td></td><td></td></td<>			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24,000- 25,000		
30.000-35.000 30 33.888 35.000-40.000 25 38.610 40.000-45.000 15 43.106 45.000-50.000 40 49.834 55.000-60.000 3 51.146 55.000-60.000 8 59.813 60.000-70.000 8 59.813 60.000-70.000 1 70.000 70.000-70.000 1 70.000 70.000-70.000 1 70.000 70.000-70.000 1 70.000 70.000-70.000 1 20.000 70.000 1 70.000 70.000-70.000 1 20.000 70.000-70.000 1 20.000 100.000-75.000 1 20.000 100.000-75.000 1 120.000 100.000-100.000 1 120.000 100.000-150.000 4 150.000 100.000-170.000 1 120.000 100.000-170.000 1 120.000 100.000-170.000 1 120.00			
35.000 40.000 25 38.610 40.000 45.000 15 43.106 45.000 50.000 40 49.834 50.000 3 51.146 55.000 3 51.145 60.000 60.000 8 59.813 60.000 60.000 4 64.247 65.000 1 70.600 70.600 70.000 1 70.600 70.600 75.000 8 75.000 75.000 75.000 2 78.618 80.000 75.000 12 99.404 14.556 100.000 1 120.000 1 120.000 100.000 5 124.463 150.000 1 60.000 1 155.128 60.000 2 173.398 90.000-10.000 2 197.495 30.425 197.495 50.000-20.000 1 250.000 1 250.000 50.000-260.000 1			
45.000-50.000 40 49.834 50.000-60.000 3 51.146 50.000-60.000 8 59.813 60.000-65.000 4 64.247 60.000-65.000 4 64.247 65.000-70.000 1 70.000 70.000 1 70.000 75.000-80.000 2 78.618 80.000-85.800 5 82.425 95.000-100.000 12 99.404 000.000-100.000 1 120.000 10.000-150.000 4 150.000 10.000-150.000 4 150.000 10.000-150.000 4 150.000 10.000-150.000 4 150.000 10.000-150.000 1 161.000 70.000-180.000 2 173.398 90.000-20.000 1 250.000 10.000-250.000 1 250.000 50.000-260.000 1 253.800 50.000-290.000 1 273.747 80.000-290.000 1 2			
45.000-50.000 40 49.834 50.000-60.000 3 51.146 50.000-60.000 8 59.813 60.000-65.000 4 64.247 60.000-65.000 4 64.247 65.000-70.000 1 70.000 70.000 1 70.000 75.000-80.000 2 78.618 80.000-85.800 5 82.425 95.000-100.000 12 99.404 000.000-100.000 1 120.000 10.000-150.000 4 150.000 10.000-150.000 4 150.000 10.000-150.000 4 150.000 10.000-150.000 4 150.000 10.000-150.000 1 161.000 70.000-180.000 2 173.398 90.000-20.000 1 250.000 10.000-250.000 1 250.000 50.000-260.000 1 253.800 50.000-290.000 1 273.747 80.000-290.000 1 2	40,000-45,000	15	43-106
\$0.000-55.000 3 \$1.146 \$5.000-60.000 8 \$9.813 \$6.000-60.000 4 \$64.237 \$6.000-70.000 1 70.000 \$7.000-70.000 1 70.000 \$7.000-70.000 2 78.618 \$80.000-85.000 2 99.404 \$80.000-85.000 12 \$9.404 \$100.000-100.000 1 \$20.000 \$100.000-100.000 1 \$20.000 \$100.000-100.000 1 \$20.000 \$100.000-100.000 4 \$150.000 \$100.000-150.000 4 \$150.000 \$100.000-170.000 1 \$10.000 \$20.000-170.000 1 \$250.000 \$20.000-200.000 2 \$23.349 \$20.000-250.000 1 \$25.000 \$20.000-260.000 1 \$25.800 \$20.000-270.000 1 \$27.540 \$20.000-290.000 1 \$27.540	45,000- 50,000		
55.000 60.000 8 59.813 60.000 60.000 4 64.247 65.000 70.000 1 70.000 70.000 2 78.618 75.000 8 75.000 75.000 8 75.000 75.000 8 75.000 75.000 1 78.618 80.000 2 78.618 90.000 12 99.404 60.0000 1 120.000 100.000 5 124.463 40.0001 100.000 4 150.000 40.0001 5 124.463 450.000 50.000-100.000 4 155.128 60.000 40.0001 1 161.000 70.0001-180.000 2 197.495 30.000 50.000-250.000 1 252.800 30.000 50.000-260.000 1 252.800 30.000 50.000-260.000 1 273.747 80.000 50.0	50.000- 55.000		
60.000-65.000 4 64.247 65.000-70.000 1 70.000 70.000-75.000 8 75.000 75.000-80.000 2 78.618 75.000-80.000 2 78.618 80.000-80.000 1 29.404 100.000-100.000 12 99.404 100.000-100.000 1 120.000 100.000-100.000 3 104.556 100.000-100.000 4 150.000 100.000-150.000 4 150.000 100.000-150.000 4 150.000 100.000-180.000 2 173.398 90.000-200.000 2 233.449 40.000-250.000 1 250.000 50.000-260.000 1 253.000 50.000-260.000 1 237.347 60.000-270.000 1 253.000 50.000-260.000 1 237.347 60.000-37.000 1 237.347 60.000-30.000 1 237.347 60.000-30.000 1 <td></td> <td></td> <td></td>			
65.000-70.000 1 70.000 70.000-75.000 8 75.000 70.000-75.000 2 78.618 80.000-85.000 2 99.400 80.000-85.000 12 99.404 100.000-100.000 1 120.000 100.000-110.000 3 104.556 100.000-120.000 1 120.000 10.000-150.000 4 150.000 20.000-150.000 4 155.128 60.000-170.000 1 161.000 70.000-180.000 2 197.495 30.000-20.000 1 250.000 50.000-20.000 1 250.000 50.000-250.000 1 250.000 50.000-250.000 1 252.800 50.000-260.000 1 273.747 80.000-270.000 1 273.747 80.000-270.000 1 273.747			
70.000-75.000 8 75.000 75.000-80.000 2 78.618 75.000-80.000 2 78.618 80.000-85.000 5 82.425 95.000-100.000 12 99.404 000.000-85.000 1 120.000 10.988-120.000 1 120.000 10.988-120.000 4 150.000 40.000-150.000 4 150.000 40.000-150.000 4 155.128 60.000-170.000 1 161.000 70.000-180.000 2 173.398 90.000-20.000 1 250.000 50.000-20.000 1 250.000 50.000-250.000 1 253.800 70.000-280.000 1 273.747 80.000-290.000 1 273.747 80.000-290.000 1 273.747			
75.000 80.000 2 78.618 80.000 85.000 5 82.425 95.000 12 99.404 00.000 12 99.404 00.000 12 99.404 00.000 12 99.404 00.000 1 120.000 10.000 1 120.000 10.000 4 150.000 40.000 10.000 4 50.000 1 161.000 50.000 2 173.398 90.000-200.000 2 197.495 80.000-250.000 1 250.000 50.000-250.000 1 252.800 70.000-80.000 1 252.800 70.000-80.000 1 257.540 80.000-290.000 1 287.540 80.000-290.000 1 287.540			
80.000-85.000 5 82.425 95.000-100.000 12 99.404 100.000-110.000 3 104.556 100.000-110.000 1 120.000 100.000-100.000 5 124.463 100.000-150.000 4 150.000 100.000-150.000 4 155.128 60.000-170.000 1 161.000 70.000-180.000 2 197.495 90.000-200.000 2 233.449 40.000-250.000 1 250.000 50.000-260.000 1 250.000 50.000-260.000 1 253.734 80.000-270.000 1 250.000 50.000-260.000 1 257.540 80.000-30.000 1 273.747 80.000-30.000 1 273.747			
95.000-100.000 12 99.404 100.000-110.000 3 104.556 10.000-120.000 1 120.000 10.000-120.000 1 120.000 20.000-130.000 5 124.463 40.000-150.000 4 150.000 50.000-160.000 4 151.28 60.000-170.000 1 161.000 70.000-180.000 2 197.495 30.000-20.000 2 197.495 30.000-20.000 1 250.000 50.000-20.000 1 250.000 50.000-250.000 1 252.000 50.000-260.000 1 253.747 80.000-290.000 1 287.540 00.000-000 1 287.540 00.000-000 1 287.540			
10.000-120.000 1 120.000 120.000-130.000 5 124.463 120.001-130.000 4 150.000 50.000-160.000 4 155.128 60.000-170.000 1 161.000 70.000-180.000 2 173.398 90.000-200.000 2 197.495 30.000-200.000 1 250.000 10.000-200.000 1 250.000 10.000-200.000 1 250.000 10.000-200.000 1 250.000 10.000-200.000 1 257.800 70.000-180.000 1 257.800 70.000-200.000 1 273.747 80.000-200.000 1 287.540 80.000-200.000 1 287.540			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	00.000-110.000	1	101 556
120.000-130.000 5 124.463 140.000-150.000 4 150.000 140.000-150.000 4 155.128 60.000-170.000 1 161.000 70.000-170.000 1 161.000 90.000-170.000 2 173.398 90.000-200.000 2 197.495 30.000-250.000 1 250.000 50.000-250.000 1 250.000 50.000-260.000 1 252.800 70.000-280.000 1 273.747 80.000-290.000 1 273.743 80.000-290.000 1 273.743			
140.000-150.000 4 150.000 50.000-150.000 4 155.128 60.000-170.000 1 161.000 70.000-180.000 2 173.398 90.000-200.000 2 197.495 30.000-200.000 2 233.449 40.000-250.000 1 250.000 50.000-260.000 1 252.800 70.000-280.000 1 253.747 80.000-290.000 1 253.747 80.000-290.000 1 237.747 80.000-290.000 1 287.540 00.000 and over 10 300.000			
50,000-160,000 4 155,128 60,000-170,000 1 161,000 70,000-180,000 2 173,398 90,000-200,000 2 197,495 20,000-250,000 2 233,449 90,000-250,000 1 250,000 10,000-250,000 1 252,800 150,000-260,000 1 252,800 150,000-260,000 1 273,747 70,000-80,000 1 287,540 10,000 and over 10 300,000			
60.000-170.000 1 161.000 70.000-180.000 2 173.398 90.000-200.000 2 197.495 30.080-240.000 2 233.449 40.000-250.000 1 250.000 50.000-260.000 1 252.800 70.000-280.000 1 237.747 80.000-290.000 1 237.540 80.000-290.000 1 287.540 80.000-30.000 1 267.540			
70.000-180.000 2 173.398 90.000-200.000 2 197.495 90.000-200.000 2 197.495 90.000-200.000 2 233.449 40.000-250.000 1 250.000 10.250.000 1 252.800 50.000-260.000 1 273.747 80.000-280.000 1 287.540 10.000-000 1 287.540			
440.000-250.000 1 250.000 50.000-260.000 1 252.800 70.000-280.000 1 273.747 80.000-290.000 1 287.540 10.000-000 300.000 300.000		1	
440.000-250.000 1 250.000 50.000-260.000 1 252.800 70.000-280.000 1 273.747 80.000-290.000 1 287.540 10.000-000 300.000 300.000		-	
440.000-250.000 1 250.000 50.000-260.000 1 252.800 70.000-280.000 1 273.747 80.000-290.000 1 287.540 10.000-000 300.000 300.000		-	
50,000-260,000 1 252,800 70,000-280,000 1 273,747 80,000-290,000 1 287,540 10,000-and over 10 300,000			
270,000-280,000 1 273,724 280,000-290,000 1 287,540 100,000 and over 10 300,000	50 000 360 000		
80.000-290.000 1 287.540 00.000 and over 10 300.000			
0.000 and over 10 300.000			
Total 24,411 2,279	w.ouo and over	10	300,000
	Total	24.411	2.279

APPENDIX E

ISO Owners, Landlords and Tenants Bodily Injury Liability

Loss Amount Data: Policy Year 1976 as of March 31, 1978 Policy Limit \$300,000

	K-S Test			EVC Test		
				M	Means	
x	Pareto CDF F(X)	Sample CDF S(X)	Maximum Difference	Pareto	Sample	Statistic
8.000	.000	.000	.000	0	0	.00
8,500	.072	.093	.072	481	500	-3.82
9.736	.217	.322	.124	1.534	1,620	~ 5.60
10,430	.283	.370	087	2,054	2,091	-1.77
11,279	.351	.416	065	2.633	2,626	.29
12,572	.436	.454	.021	3.415	3.381	.99
13,541	.488	.470	.034	3,936	3,910	.65
14,965	.551	.594	.081	4,618	4,664	~1.00
15,501	.572	.617	045	4.853	4,882	60
16,471	.605	.630	025	5,252	5,253	03
17,643	.640	.650	010	5.694	5.686	.13
18.713	.667	.657	.017	6,064	6,061	.05
19,950	.695	.718	.037	6.458	6,485	41
20,445	.705	.731	026	6.607	6,624	26
21,753	.729	.737	008	6,977	6,976	.02
22.658	.743	.747	.006	7.216	7,214	.03
23,756	.759	.750	.013	7.489	7,492	04
24,960	.775	.807	032	7.769	7,793	31
28.377	.812	.843	032	8,472	8,451	.24
33,888	.853	.868	015	9,389	9,314	.80
38,610	.877	.889	011	10.024	9,937	.86
43.106	.895	.901	.006	10,535	10.438	.91
49,834	.914	.934	019	11,173	11.106	.60
51,146	.917	.9.36	019	11,284	11,193	.81
59,813	.934	.943	009	11.924	11.747	1.49
64,247	.940	.946	006	12.204	12,001	1.66
70,000	.947	.947	.001	12,527	12,313	1.71
75,000	.952	.953	.005	12.779	12,579	1.57
78.618 82.425	.955	.955 .959	.002 .003	12.947 13.113	12,748	1.54 1.47
99,404	.968	.969	.009	13,735	13,616	.87
	.908	.909	.009	13,895	13,776	.85
104,556	.975	.972	.004	14,312	14,219	.65
120.000 124.463	.973	.972	.005	14,419	14,343	.52
124,485	.982	.980	.005	14,937	14.950	09
155,128	.982	.983	.004	15,026	15,056	20
	.984	.984	.004	15,123	15,157	22
161,000 173,398	.986	.985	.002	15.312	15,360	31
197,495	.988	.985	.002	15,628	15,715	56
233,449	.991	.989	.003	16,009	16,187	-1.11
250,000	.991	.989	.003	16,157	16.377	-1.36
252,800	.992	.990	.002	16,181	16,407	-1.40
273.747	.993	.991	.002	16,346	16,613	-1.63
287,540	.993	.992	.002	16,446	16,737	-1.77
300,000	1.000	1.000	.000	16,530	16,839	-1.87

Beta is 1462.8

Delta is 1.4532

The Truncation Point is 8,000

The Censorship Point is 300,000

The Sample Size is 1,220

Kolmogorov-Smirnov Test Statistic is 0.1236

APPENDIX E

Part 3

ISO Owners, Landlords and Tenants Bodily Injury Liability

Loss Amount Data: Policy Year 1976 as of March 31, 1978 Policy Limit \$300,000

		K-S Test			EVC Test	
	Pareto CDF	Sample CDF	Maximum	м	eans	EVC Statistic
x	F(X)	S(X)	Difference	Pareto	Sample	(%)
88	.180	.413	233	79	88	10.68
374	.473	.538	065	265	255	3.59
783	.645	.671	.107	440	444	91
1.490	.768	.781	.097	642	677	5.50
2,543 3,521	.844	.843 .882	.063 .036	840 974	907	-7.94
4,777	.879	.882	.036		1,061	-8.89
5,629	.900	.915	008	1,108	1,209	-9.09
6,600	.928	.928	006	1,183	1,281	-8.29 -7.59
7,429	.935	.950	01 6	1,315	1,409	-7.12
8,500	.942	.955	013	1,381	1,462	-5.86
9,736	.948	.966	018	1,449	1,518	-4.74
10,430	.951	.968	018	1,485	1,542	-3.85
11,279	.954	.971	017	1,525	1,568	-2.85
12,572	.958	.973	015	1,582	1,606	1.55
13,541	.961	.974	013	1,621	1,633	71
14.965	.964	.980	016	1.675	1,670	.27
15.501	.965	.981	016	1.694	1,681	.75
16,471	.967	.982	015	1,727	1,700	1.58
17,643	.969	.983	014	1,765	1,721	2.47
18,713	.970	.983	013	1,798	1,740	3.20
19,950	.972	.986	014	1,834	1,761	3.94
20,445	.972	.987	014	1,847	1,768	4.28
21,753	.974	.987	013	1,883	1,786	5.14
22,658	.975	.987	013	1,906	1,798	5.68
23,756	.976	.988	012	1,933	1,812	6.29
24,960	.977	.990	014	1,962	1,827	6.89
28,377	.979	.992	013	2,037	1,860	8.71
33,888	.982	.993	011	2,143	1,903	11.22
38,610	.984	.994	010	2,223	1,934	12.99
43,106	.986	.995	010	2,291	1,959	14.49
49,834	.987	.997	009	2,382	1,992	16.38
51,146	.988	.997	009	2,399	1,997	16.77
59,813	.989	.997	008	2,500	2,024	19.03
64,247	.990	.997	008	2,547	2,037	20.01
70,000	.991	.997	007	2,604	2,053	21.16
75,000	.991	.998	007	2,650	2,066	22.03
78,618 82,425	.991 .992	.998 .998	006 006	2,681	2,074	22.63
82,423	.992	.998	008	2,713	2,083	23.23
99,404	.993	.998	005	2,842	2,118	25.48
104,556	.993	.999	005	2,877	2,126	26.11
120,000	.994	.999	005	2,974	2,148	27.78
124,463	.994	.999	005	3,000	2,154	28.20
150,000	.995	.999	004	3,135	2,184	30.33
155,128	.995	.999	004	3,160	2,190	30.70
161,000	.995	.999	004	3,187	2,195	31.14
173,398	.996	.999	004	3,242	2,205	32.00
197,495 233,449	.996 .997	.999 .999	003 003	3,340	2,223 2,246	33.45
200,777	.771	.777	005	3,468	2,240	35.23
250,000	.997	.999	003	3,521	2,256	35.94
252,800	.997	1.000	~ .003	3,530	2,257	36.05
273,747	.997	1.000	002	3,593	2,267	36,88
287,540	.997	1.000	002	3,631	2,274	37.39
300,000	1.000	1.000	.000	3,665	2,279	37.82

Beta is 347.2 Delta is 0.8768

.

APPENDIX F

ISO Owners, Landlords and Tenants Bodily Injury Liability Loss Amount Data: Policy Year 1976 as of March 31, 1978 Policy Limit \$500,000

Loss Amount	Number of Losses	Average Loss Amount
0- 250	3,977	83
250- 500	1.095	374
500- 1,000	1,055	774
1,000- 2,000	991	
2,000- 3,000	594	1,488
-,		2,520
3,000- 4,000	339	3,538
4,000- 5,000	307	4,770
5,000- 6,000	103	5,542
6,000- 7,000	79	6,477
7,000- 8,000	141	7,568
8,000- 9,000	52	8,674
9,000- 10,000	89	9,853
10,000- 11,000	23	10,420
11,000- 12,000	22	11,744
12,000- 13,000	23	12,551
13,000- 14,000	6	13,733
14,000- 15,000	51	14,960
15,000- 16,000	6	15,374
16,000- 17,000	5	16,700
17,000- 18,000	9	17,634
18,000- 19,000	3	18,801
19,000- 20,000	31	19,973
20,000- 21,000	2	20,502
21,000- 22,000	2	21,926
22,000- 23,000	5	22,530
23,000- 24,000	4	23,745
24,000- 25,000	31	24,968
25,000- 30,000	11	29,391
30,000- 35,000	18	34,249
35,000- 40,000	9	38,564
40,000- 45,000	4	43,718
45,000- 50,000	11	49,814
50,000- 55,000	3	52,333
55,000- 60.000	2	60,000
70,000- 75,000	9	74,750
	9	
75,000- 80,000	4	75,003
95,000-100,000		99,913
120,000-130,000	2	125,000
140,000-150,000 190,000-200,000	3	150,000 200,000
200 000 210 000	2	202 452
200,000-210,000	2	202,453
220,000-230,000	2	225,000
240,000-250,000		250,000
260,000-270,000	1	270,000
280,000-290,000	1	290,000
290,000-300,000	2	300,000
340,000-350,000	1	350,000
10,000-420,000 00,000 and over	2 0	414,619 500,000
Total	9,232	2,410
. otal	7,636	4,410

APPENDIX F

Part 2

ISO Owners, Landlords and Tenants Bodily Injury Liability

Loss Amount Data: Policy Year 1975 as of March 31, 1978 Policy Limit \$300,000

Loss Amount	Number of Losses	Average Loss Amount
0- 250	12.075	83
250- 500	3,420	381
500- 1,000	3,245	771
1,000- 2,000	2,623	1,509
2,000- 3,000	1,546	2,535
3,000- 4,000	877	3,557
4,000- 5,000	823 308	4,710 5,471
5,000- 6,000 6,000- 7,000	225	6,526
7,000- 8,000	384	7,451
8,000- 9.000	142	8,489
9,000-10,000	279	9,792
10,000- 11,000	69 76	10.473
11,000- 12,000	76 69	12,141
12,000- 13,000 13,000- 14,000	30	13,750
14,000- 15,000	154	14,937
15,000- 16,000	32	15,574
16,000- 17,000	17	16,617
17,000- 18,000	33	17,601
18,000- 19,000	17	18,626
19,000- 20,000	91	19,907
20,000- 21,000	17	20,578
21,000- 22,000 22,000- 23,000	19	21,900 22,758
23,000 24,000	12	23,667
24,000- 25,000	88	24,963
25,000- 30,000	65	28,364
30,000- 35,000	45	31,998
35,000- 40,000	41	39,018
40,000- 45.000	18	42,848
45,000- 50,000 50,000- 55,000	61 9	49,721 52,953
55,000- 60,000	6	59,568
60,000- 65,000	6	63,489
65,000- 70,000	6	67.598
70,000-75,000	14	74.920
75,000 80,000	2	78.260
80,000- 85,000	4	83,890
85,000- 90,000	7	88,705
90,000- 95,000	3	94,196
95,000-100,000	7	99,857
100,000-110,000	6 2	105,439 120,000
110,000-120,000 120,000-130,000	5	125,391
130,000-140,000	4	136,889
140,000-150,000	3	149,882
150,000-160,000	3	154,748
160,000-170,000	1	168.140
170,000-180,000	3	175,000
180,000-190,000	1 2	185,000 200,000
190,000-200,000 200,000-210,000	1	203,765
210,000-220,000	2	212,017
220,000-230.000	1	225,000
250,000-260,000	i	260,000
270,000-280,000	1	275,146
290,000-300,000	1	294,054
300,000 and over	6	300.000
Total	27,017	2.329

APPENDIX F

ISO Owners, Landlords and Tenants Bodily Injury Liability

Loss Amount Data: Policy Year 1975 as of March 31, 1978 Policy Limit \$500,000

Loss Amount	Number of Losses	Average Loss Amount
0- 250	3,286	78
250- 500	837	389
500- 1,000	928	774
1,000- 2,000	687	1,498
2,000- 3,000	412	2,577
3,000- 4,000	267	3,593
4,000- 5,000	263	4,757
5,000- 6,000	89	5,569
6,000- 7,000	64	6,631
7,000- 8,000	108	7,543
8,000- 9,000	35	8,563
9,000- 10,000	83	9,904
10,000- 11,000	15	10,432
11,000- 12,000	22	11,667
12,000- 13,000	22	12.624
13,000-14,000	15	13,517
14,000- 15,000	52	14,945
15,000- 16,000	ii ii	15,364
16,000- 17,000	5	16,749
17,000- 18,000	15	17,650
18,000- 19,000	1	19,000
19,000- 20,000	27	19,918
20,000- 21,000	7	20,351
21,000- 22,000	1	22,000
22,000- 23,000	4	22,487
23,000- 24,000	1	24,000
24,000 25,000	33	24,980
25,000- 30,000	11	27,915
30,000- 35,000	9	33,655
35,000- 40,000	18	38,794
40,000- 45,000	7	43,611
45,000- 50,000	6	49,917
55,000- 60,000	2	60,000
60,000- 65,000	5	63,075
65,000- 70,000	2	67,090
70,000- 75,000	9	74,294
75,000- 80,000	3	75,900
80,000- 85,000	3	82,016
85,000- 90,000	2	87,505
95,000-100,000	5	98,586
110,000-120,000	3	116,177
120,000-130,000	1	123,528
140,000-150,000	1	150,000
150,000-160,000	2	150,100
240,000-250,000	1	250,000
290,000-300,000	1	300,000
300,000-310,000	1	309,000
330,000-340,000	1	335,675
340,000-350,000	1	349,910
480,000-490,000	1	483,840
00,000 and over	3	500,000
Total	7,388	2,849

APPENDIX G

Part 1

ISO Owners, Landlords and Tenants Bodily Injury Liability

Loss Amount Data: Policy Year 1975 as of March 31, 1978 Policy Limit \$300,000 Trended to July 1, 1980 by 18.9% per annum

	K-S Test			EVC Test		
				Me	EVC	
x	Pareto CDF F(X)	Sample CDF S(X)	Maximum Difference	Pareto	Sample	Statistic (%)
17,434	.000	000	.000	0	0	.00
18,499	.066	.095	.066	1,028	1,064	-3.49
21.339	.211	.281	.116	3,466	3,635	-4.88
22,825	.272	.328	055	4,591	4,702	-2.42
25,523	.365	.378	.038	6.425	6,517	-1.43
26,460	.393	.424	032	7,006	7,099	-1.32
29,965	.480	.445	.056	8,975	9,116	-1.58
31,945	.521	.467	.076	9,962	10,216	-2.54
32,553	.532	.570	.065	10,250	10,540	-2.83
36,213	.592	.582	.022	11.848	12,113	- 2.24
38,358	.622	.604	.040	12,691	13,011	-2.52
40,593	.649	.615	.045	13,506	13,897	-2.90
40,393	.678	.676	.063	14,444	14,971	-3.65
44,846	.692	.687	.016	14,905	15,445	-3.63
44,840	.716	.693	.029	15,756	16,347	-3.75
47.727	.731	.706	.037	16,273	16,920	3.98
49,397 51,579	.744	.700	.039	16,793	17,503	-4.23
	.762	.773	.048	17,489	18,311	-4.70
54,401			.027		19,995	-4.66
61,814 69,734	.800 .830	.816 .846	016	19,105 20,563	21,451	-4.00
		074		22,022	23,802	-4.30
85,031	.871	.874	.025	22,822	23,803	-4.30
93,379	.887	.886	.013	23,830	24,858 26,570	-4.79
108.357	.908	.926	.023	25,355		-4.79
115,401	.916	.932	016	25,973	27,088	
129.817	.929	.936	008	27,087	28,061	-3.60
138.363	.935	.941	005	27,668	28,604	- 3.38
147,316	.941	.945 .954	.004 ~.005	28,223 29,104	29,136 30.022	-3.15
163,273						
170,553	.952	.955 .958	003 ~ .002	29,466 30,028	30,357 30,907	- 3.03 - 2.93
	.960	.963	003	30,468	31,349	-2.89
193,316			003	30,929	31,797	-2.89
205.281	.963	.965				
217,619	.966	.969	003	31,366	32,234	-2.77
229,784	.969	.973	005	31,763	32,608	-2.66
261,517	.974	.975	.001	32,671	33,456	-2.41
273.266	.976	.978	002	32,967	33.755	-2.39
298,323	.978	.981	002	33,542	34,308	-2.28
326,640	.981	.983	001	34,112	34,856	-2.18
337.243	.982	.985	003	34,308	35,041	-2.14
366,429	.984	.985	001	34,803	35,489	-1.97
381,379	.985	.987	002	35,035	35,709	-1.92
403,172	.986	.988	002	35,351	35,986	-1.80
435,861	.988	.989	002	35,780	36,379	-1.68
444.066	.988	.990	002	35,880	36,467	~1.64
462,049	.989	.991	003	36,092	36,647	-1.54
490,344	.990	.992	002	36,400	36,893	-1.35
566,620	.992	.993	001	37,117	37,505	-1.04
599,628	.992	.993	001	37,386	37,748	97
640,834	.993	.994	001	37,692	38,023	88
653,792	1.000	1.000	.000	37,782	38,101	85

Beta is 4955.2 Delta is 1.4728 The Truncation Point is 17.434 The Censorship Point is 653.792 The Sample Size is 1.496 Kolongorov-Smirnov Test Statistic is 0.1159

APPENDIX G

ISO Owners, Landlords and Tenants Bodily Injury Liability

Loss Amount Data: Policy Year 1975 as of March 31, 1978 Policy Limit \$500,000 Trended to July 1, 1980 by 18.9% per annum

	K-S Test			EVC Test		
	Pareto CDF	Sample CDF	·····	Means		EVC
x	F(X)	S(X)	Maximum Difference	Pareto	Sample	Statistic (%)
17,434	.000	.000	.000	0	0	.00
18,661	.076	.078	.076	1,179	1,227	-4.02
21.584	.222	.263	.143	3,657	3,921	-7.20
22,734	.269	.297	028	4,525	4,768	-5.37
25.425	.362	.346	.065	6,363	6,660	-4.67
27,510	.421	.395	.075	7,629	8,024	-5.17
29,457	.469	.429	.074	8,708	9,201	-5.67
32,569	.533	.545	.104	10,258	10,979	-7.03
33,482	.549	.569	020	10,677	11,396	-6.73
36,501	.596	.580	.027	11,965	12,696	-6.11
50,501	.590	.560	.027	11,905	12,090	-0.11
38,465	.623	.614	.043	12,731	13,520	-6.20
41,407	.658	.616	.044	13,788	14,656	-6.30
43,408	.678	.676	.062	14,452	15,424	-6.73
44,352	.687	.692	.011	14,751	15,730	-6.63
47,945	.718	.694	.026	15,818	16,837	-6.44
49,006	.726	.703	.032	16,112	17,161	-6.51
52,303	.749	.705	.046	16,976	18,140	-6.86
54,438	.762	.779	.057	17,498	18,769	-7.27
60,836	.796	.804	.017	18,907	20,183	-6.75
73,344	.842	.824	.038	21,154	22,640	-7.02
84,544	.870	.864	.046	22,759	24,615	-8.15
95.042	.890	.879	.026	24,016	26,044	-8.45
108,784	.909	.893	.029	25,394	27,701	-9.08
130,758	.930	.897	.037	27,153	30,055	-10.69
137,460	.934	.908	.037	27,609	30,743	-11.35
146.210	.940	.913	.031	28,157	31,544	-12.03
161.910	.940	.933	.031	29,034	32,911	-12.03
165,409	.950	.940	.017	29,213	33,145	-13.35
178,737	.955	.946	.015	29,847	33,948	-13.40
190,700	.959	.951	.013	30,362	34,589	-13.92
214,849	.965	.962	.015	31,271	35,775	-14.40
253,186	.973	.969	.011	32,448	37,230	-14.74
269,205	.975	.971	.006	32,867	37,730	-14.80
326,896	.981	.973	.010	34,117	39,404	15.50
327,114	.981	.978	.008	34,121	39,410	-15.50
544,827	.991	.980	.013	36,928	44,270	- 19.88
653,792	.993	.982	.013	37,782	46,459	- 22.97
673,406	.993	.984	.011	37,914	46,809	-23.46
731,539	.994	.987	.010	38,274	47,718	- 24.67
762,561	.995	. 989	.008	38,449	48,133	- 25.19
054.436	.997	.991	.008	39,707	51.391	29.42
034,430	1.000	1.000	.000	39,825	51,705	- 29.42

Beta is 4955.2 Delta is 1.4728 The Truncation Point is 17,434 The Censorship Point is 1,089,653 The Sample Size is 448

Kolmogorov-Smirnov Test Statistic is 0.1433

APPENDIX G

ISO Owners, Landlords and Tenants Bodily Injury Liability

Loss Amount Data: Policy Year 1976 as of March 31, 1978 Policy Limit \$300,000 Trended to July 1, 1980 by 18.9% per annum

<u>_x</u>	K-S Test			EVC Test		
		Sample CDF S(X)	Maximum Difference	Means		EVC
	Pareto CDF F(X)			Pareto	Sample	Statistic
14,663	.000	.000	.000	0	0	.00
15,580	.065	.094	.065	886	916	-3.43
17,845	.199	.324	125	2,846	2,969	-4.31
19,118	.260	.371	111	3,826	3,829	09
20,673	.325	.418	092	4,924	4,807	2.39
23,044	.408	.456	~.049	6,423	6,188	3.66
24,819	.459	.473	014	7.427	7,153	3.70
27,430	.522	.597	075	8.754	8.529	2.57
28,412	.543	.620	078	9,214	8,925	3.14
30,189	.576	.633	057	9,996	9,600	3.97
32,338	.612	.653	041	10,867	10,387	4.42
34.298	.640	.661	021	11,600	11,067	4.60
36,565	.669	.722	053	12,383	11,836	4.42
37,473	.679	.735	056	12,679	12,089	4.66
39.871	.704	.741	037	13,419	12,725	5.17
41,530	.719	.750	031	13,897	13,156	5.34
43,542	.736	.754	017	14,444	13,658	5.45
45,749	.753	.811	058	15,008	14.201	5.37
52,011	.792	.848	~.056	16,426	15,383	6.35
62,113	.836	.872	036	18,288	16.922	7.47
70,768	.863	.893	030	19.582	18,027	7.94
79,008	.883	.905	023	20,627	18,909	8.32
91,340	.904	.938	.034	21,936	20,078	8.47
93,746	.907	.941	033	22,163	20,226	8.74
109,630	.926	.947	022	23,479	21,168	9.84
117,757	.933	.951	018	24,054	21.597	10.21
128,302	.940	.951	011	24,720	22,118	10.53
137,467	.946	.958	012	25,239	22,563	10.60
144,098	.950	.960	010	25,585	22,842	10.00
151.076	.953	.964	011	25,926	23,124	10.81
182,197	.964	.974	010	27,208	24,252	10.87
191,640	.966	.976	010	27,537	24,500	11.03
219.947	.972	.977	004	28,397	25,177	11.34
228,127	.974	.981	007	28,616	25,365	11.36
274,934	.980	.984	004	29,683	26,252	11.56
284,333	.981	.988	007	29,866	26,399	11.63
295,095	.982	.988	006	30,065	26,532	11.75
317,820	.984	.990	006	30,453	26,794	12.01
361,987	.987	.992	005	31,102	27,231	12.45
427,886	.990	.993	004	31.883	27,774	12.89
458,223	.991	.994	004	32,186	27,974	13.09
463,355	.991	.995	004	32,234	28,003	13.13
501,748	.992	.996	004	32.572	28,193	13.45
527,029	.992	.997	004	32,775	28,297	13.66
549,867	1.000	1.000	.000	32,947	28,372	13.88

Beta is 4955.2

Delta is 1.4728

The Truncation Point is 14,663

The Censorship Point is 549,867 The Sample Size is 1,214

Kolmogorov-Smirnov Test Statistic is 0.1251

APPENDIX G

ISO Owners, Landlords and Tenants Bodily Injury Liability

Loss Amount Data: Policy Year 1976 as of March 31, 1978 Policy Limit \$500,000 Trended to July 1, 1980 by 18.9% per annum

	K-S Teat			EVC Test		
<u>x</u>		Sample CDF S(X)	Maximum Difference	Mcans		EVC
	Pareto CDF F(X)			Pareto	Sample	Statistic (%)
14.663	.000	.000	.000	0	0	.00
15,899	.086	.114	.086	1,181	1,235	-4.61
18,060	.210	.309	100	3,017	3,150	-4.41
19,099	.259	.360	100	3,812	3,867	-1.46
21,526	.357	.408	051	5,486	5,422	1.17
23,005	.407	.458	052	6,400	6,298	1.59
25,172	.468	.471	.010	7,616	7,471	1.91
27,420	.522	.583	062	8,750	8.659	1.03
28,179	.538	.596	~ .059	9,107	8,976	1.44
30,609	.584	.607	024	10,172	9,956	2.13
32,322	.611	.627	016	10,861	10,628	2.14
34,460	.642	.634	.015	11,658	11,426	2.00
36,608	.669	.702	.035	12,397	12,212	1.49
37,578	.680	.706	026	12,713	12,502	1.66
40,187	.707	.711	004	13,512	13,268	1.80
41,294	.717	.721	.007	13,831	13,589	1.75
43,522	.736	.730	.015	14,439	14,209	1.59
45,763	.753	.798	045	15,011	14,814	1.31
53,871	.802	.822	021	16,804	16,450	2.11
62,775	.839	.862	023	18,396	18,031	1.98
70,684	.863	.882	019	19,571	19,124	2.28
80,130	.885	.890	006	20,757	20,242	2.48
91,304	.904	.914	.014	21,932	21,468	2.12
95,921	.910	.921	011	22,361	21,863	2.23
109,973	.926	.925	.005	23,505	22,972	2.27
137,009	.946	.945	.020	25,215	24,988	.90
137,472	.946	.947	001	25,240	25,013	.90
183,129	.964	.956	.017	27,242	27,416	64
229,111	.974	.961	.018	28,642	29,433	-2.76
274,934	.980	.967	.020	29,683	31,242	-5.25
366,578	.987	.969	.020	31,163	34,256	-9.93
371,074	.987	.974	.018	31,222	34,394	- 10.16
412,400	.989	.976	.015	31,716	35,482	-11.87
458,223	.991	.980	.015	32,186	36,587	-13.68
494,880	.992	.982	.011	32,515	37,311	-14.75
531,538	.992	.985	.010	32,810	37,954	-15.68
549,867	.993	.989	.008	32,947	38,235	- 16.05
641,512	.994	.991	.005	33,543	39,240	- 16.99
759,951	.995	.996	.004	34,150	40,279	-17.95
916,445	1.000	1.000	.000	34,769	40,965	-17.82

Beta is 4955.2 Delta is 1.4728 The Truncation Point is 14,663 The Censorship Point is 916,445 The Sample Size is 456 Kolmogorov-Smirnov Test Statistic is 0.1003

BIBLIOGRAPHY

- Aitchison, J. and Brown, J. A. C. (1957). The Lognormal Distribution. Cambridge University Press.
- Almer, Bertil (1957). "Risk Analysis in Theory and Practical Statistics," Transactions 15th International Congress of Actuaries, Vol. 2, pp. 314–353.
- Andersson, Hans (1971). "An Analysis of the Development of the Fire Losses in the Northern Countries after the Second World War," *The Astin Bulletin*, Vol. 6, Part I, pp. 25–30.
- Barr, Donald R. and Davidson, Teddy (1973). "A Kolmogorov-Smirnov Test for Censored Samples," *Technometrics*, Vol. 15, No. 4, pp. 739–757.
- Beard, R. E. (1957). "Analytical Expressions of the Risks Involved in General Insurance," *Transactions 15th International Congress of Actuaries*, Vol. 2, pp. 230–243.
- Beard, R. E. (1963). "Some Notes on the Statistical Theory of Extreme Values," *The Astin Bulletin*, Vol. 3, Part I, pp. 6–12.
- Beard, R. E., Pentikäinen, T. and Pesonen, E. (1977). Risk Theory, The Stochastic Basis of Insurance, (2nd ed.). Chapman and Hall.
- Benckert, Lars-Gunnar (1957). "The Premium in Insurance Against Loss of Profit Due to Fire as a Function of the Period of Indemnity," *Transactions* 15th International Congress of Actuaries, Vol. 2, pp. 297–305.
- Benckert, Lars-Gunnar (1962). "The Lognormal Model for the Distribution of One Claim," *The Astin Bulletin*, Vol. 2, pp. 9–23.
- Benckert, Lars-Gunnar and Jung, Jan (1974). "Statistical Models of Claim Distributions in Fire Insurance," The Astin Bulletin, Vol. 8, Part I, pp. 1– 25.
- Benckert, Lars-Gunnar and Sternberg, Ingvar (1957). "An Attempt to Find An Expression for the Distribution of Fire Damage Amount," *Transactions 15th International Congress of Actuaries*, Vol. 2, pp. 288–294.
- Benktander, Gunnar and Segerdahl, Carl-Otto (1960). "On the Analytical Representation of Claim Distributions with Special Reference to Excess of Loss Reinsurance," *Transactions 16th International Congress of Actuaries*, Vol. 1, pp. 626–646.

- Bickerstaff, David R. (1972). "Automobile Collision Deductibles and Repair Cost Groups: The Lognormal Model" and discussions, *Proceedings of the Casualty Actuarial Society*, LIX, pp. 68-117.
- Bryson, Maurice C. (1974). "Heavy-tailed Distributions: Properties and Tests," *Technometrics*, Vol. 16, No. 1, pp. 61-68.
- Bühlmann, Hans (1970). Mathematical Methods in Risk Theory. Springer-Verlag.
- Conover, W. J. (1971). Practical Non-Parametric Statistics. J. Wiley & Sons, Inc.
- Conte, S. D. and de Boor, C. (1972). Elementary Numerical Analysis: An Algorithmic Approach. McGraw-Hill.
- Dickerson, O. D., Katti, S. K. and Hofflander, A. E. (1961). "Loss Distributions in Non-Life Insurance," Journal of Insurance, Vol. 28, pp. 45–54.
- Dropkin, Lester B. (1964). "Size of Loss Distributions in Workmen's Compensation Insurance" and discussions by Roy H. Kallop and LeRoy J. Simon, *Proceedings of the Casualty Actuarial Society*, LI, pp. 198-259.
- Dudewicz, Edward J. (1976). Introduction to Statistics and Probability. Holt, Rinehart and Winston.
- DuMouchel, William H. and Olshen, Richard A. (1974). "On the Distributions of Claims Costs," *Credibility: Theory and Application*, P. M. Kahn editor, Academic Press, pp. 23–46.
- Edwards, Paul (1967). The Encyclopedia of Philosophy, Vol. 2. MacMillian Publishing Co., Inc. & the Free Press, N.Y.
- Finger, Robert J. (1976). "Estimating Pure Premium by Layer—An Approach" and discussion by Lee R. Steeneck, *Proceedings of the Casualty Actuarial Society*, LXIII, pp. 34–55.
- Gödel, Kurt (1931). "Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme, I," Monatshefte für Mathematik und Physik, Vol. 38, pp. 173-198.
- Gödel, Kurt (1934). On Undecidable Propositions of Formal Mathematical Systems, lecture notes by S. C. Kleene and J. B. Rosser, Princeton.

Gumbel, E. J. (1958). Statistics of Extremes. Columbia University Press.

- Hagstroem, K. G. (1960). "Remarks on Pareto Distributions," Skandinavisk Aktuarietidskrift, Vol. 43, pp. 59-71.
- Hanson, Norwood R. (1971). Observation and Explanation: A Guide to Philosophy of Science. Harper Torehbooks, Harper & Row, Publishers.
- Harding, V. (1968). "The Calculation of Premiums for Excess of Loss Reinsurance of Motor Business," *Transactions 18th International Congress of Actuaries*, Vol. 2, pp. 445–457.
- Head, George L. (1971). Insurance to Value. Richard D. Irwin, Inc.
- Herstein, I. N. (1964). Topics in Algebra. Blaisdell Publishing Co.
- Hewitt, Charles C., Jr. (1970). "Credibility for Severity," Proceedings of the Casualty Actuarial Society, LVII, pp. 148–171; discussions by Hans U. Gerber and Hans Bühlmann (1971), Proceedings of the Casualty Actuarial Society, LVIII, pp. 25–31.
- Hewitt, Charles C., Jr. and Lefkowitz, Benjamin (1979). "Methods for Fitting Distributions to Insurance Loss Data," *Proceedings of the Casualty Actuarial Society*, LXVI, pp. 139–160.
- Hill, Bruce M. (1974). "A Simple General Approach to Inference About the Tail of a Distribution," University of Michigan, Dept. of Statistics, Technical Report No. 39.
- Johnson, Norman L. and Kotz, Samuel (1970). Continuous Univariate Distributions—1. Houghton Mifflin Co.
- Jung, Jan (1963). "On the Use of Extreme Values to Estimate the Premium for an Excess of Loss Reinsurance," *The Astin Bulletin*, Vol. 3, Part II, pp. 178–184.
- Kendall, M. G. and Stuart, A. (1967). The Advanced Theory of Statistics, Vol. 2. (2nd ed.) Mafner Publishing Co.
- Koziol, James A. and Byar, David P. (1975). "Percentage Points of the Asymptotic Distributions of One and Two Sample K-S Statistics for Truncated or Censored Data," *Technometrics*, Vol. 17, No. 4, pp. 507–510.
- Kuhn, Thomas J. (1970). The Structure of Scientific Revolutions. (2nd ed.) Vol.
 2, No. 2 of International Encyclopedia of Unified Science. The University of Chicago Press.

- Lange, Jeffrey T. (1969). "The Interpretation of Liability Increased Limits Statistics," Proceedings of the Casualty Actuarial Society, LVI, pp. 163– 173.
- Lilliefors, H. W. (1969). "On the Kolmogorov-Smirnov Test for the Exponential Distribution with Mean Unknown," *Journal of the American Statistical Association*, Vol. 64, pp. 387–389.
- Mandelbrot, Benoît (1964). "Random Walks, Fire Damage Amount and Other Paretian Risk Phenomena," *Operations Research*, Vol. 12, pp. 582–585.
- Massey, Frank J., Jr. (1951). "The Kolmogorov-Smirnov Test for Goodness of Fit," Journal of the American Statistical Association, Vol. 46, pp. 68– 78.
- Miccolis, Robert S. (1977). "On the Theory of Increased Limits and Excess of Loss Pricing" and discussion by Sheldon Rosenberg, Proceedings of the Casualty Actuarial Society, LXIV, pp. 27-73.
- Ramachandran, G. (1974). "Extreme Value Theory and Large Fire Losses," The Astin Bulletin, Vol. 7, Part III, pp. 293-310.
- Shpilberg, David C. (1977). "The Probability Distribution of Fire Loss Amount," Journal of Risk and Insurance, Vol. XLIV, No. 1, pp. 103– 115.
- Straub, E. (1971). "Estimation of the Number of Excess Claims by Means of the Credibility Theory," *The Astin Bulletin*, Vol. 5, Part III, pp. 388–392.
- Verbeek, H. G. (1972). "An Approach to the Analysis of Claims Experience in Motor Liability Excess of Loss Reinsurance," *The Astin Bulletin*, Vol. 6, Part III, pp. 195–202.
- von Lanzenauer, Christoph H. and Wright, Don (1977). "Multistage Curve Fitting," The Astin Bulletin, Vol. 9, Parts I and II, pp. 191-202.
- Wagner, Harvey M. (1969). Principles of Operations Research with Applications to Managerial Decisions. Prentice-Hall, Inc.
- Weissner, Edward W. (1978). "Estimation of the Distribution of Report Lags by the Method of Maximum Likelihood," *Proceedings of the Casualty Actuarial Society*, LXV, pp. 1–9.