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METHODS FOR FITTING DISTRIBUTIONS 
TO INSURANCE LOSS DATA 

CHARLES C. HEWITT, JR. AND BENJAMIN LEFKOWITZ 

SUMMARY 

The methods described in this paper can be used to fit five types of distri- 
bution to loss data: gamma, log-gamma, log-normal, gamma + log-gamma, 
and gamma + log-normal. The paper also discusses,applications of the fitted 
distributions to estimation problems; e.g., computing the effects of inflation 
on the loss portion of deductible credits and increased limits charges, and de- 
termining changes to claim frequencies and severities brought about by 
changes in deductibles and limits. A computer program carries out all the 
calculations. 

INTRODUCTION 

Casualty actuaries frequently wish to extract information from insurance 
loss data. Generally, an actuary will group individual losses by size of loss and 
then fit a continuous positive distribution to the aggregated data. In this way, 
he can characterize the universe from which the sample was selected. For ex- 
ample, a distribution fitted to one month’s losses could be used to characterize 
the distribution of annual losses. 

Bickerstaff and Dropkin have shown that the log-normal distribution 
closely approximates certain types of homogeneous loss data [I], 121. Hewitt 
showed that two other positive distributions, the gamma and the log-gamma, 
also give good fits [3], 141. Used alone, each of these distributions assumes 
that the observed losses are generated by a single underlying process. This may 
not always be the case. For example, a sample of observed losses may contain 
some that involved litigation and others that did not. In this situation, a single 
distribution may not fit the aggregate data as well as a combination of two (or 
more) distributions added together.1 Herein, such combinations are called com- 
pound distributions. This paper describes algorithms for fitting two particular 
compound distributions, gamma + log-gamma, and gamma + log-normal, 
and three simple distributions: gamma, log-gamma and log-normal. 

‘Each component distribution has its own form, i.e., gamma, log-gamma or log-normal, and its 
own parameters, e.g., mean, variance. If the proportion of losses (either claim count or amount) 
in one distribution is P, then the proportion in the second distribution is I-P. 

. 
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The authors do not claim that all insurance loss data can be fitted by the 
methods described below or, in fact, by any. analytical methods. However, 
after many years’ experience, we are convinced that these methods will pro- 
duce useful results for most practical problems. 

ALGORITHMS FOR FI’ITING DISTRIBUTIONS 

The usual method for fitting a distribution to observations involves esti- 
mating the distribution’s parameters or moments from a sample of actual loss 
frequencies, and then using those parameters to compute the distribution’s den- 
sities, i.e., its theoretical loss frequencies. The normal distribution’s parame- 
ters, for example, are the mean and variance. Given their values, one can ob- 
tain loss frequencies by consulting tables of the normal distribution. 

This method cannot be applied to a compound distribution because its pa- 
rameters are not directly computable from the sample observations. Instead, an 
iterative procedure must be used to approximate them. The procedure, de- 
scribed in Appendix A, repeats the following steps: 

I. Split the data between the two distributions. 
2. Estimate each distribution’s parameters. 
3. Fit the distributions. 
4. Compare the computed frequencies to the actual frequencies. 

Each iteration attempts to adjust the data split and distribution fits so as to 
improve the correspondence between actual and theoretical frequencies. There 
is no guarantee that the correspondence will improve each iteration, or that the 
best fit will be obtained after a finite number of trials. Generally, it takes fewer 
than ten iterations to reach stability, by which we mean that the mean of the 
fitted compound distribution changes little from one iteration to the next. 

A problem common to fitting any distribution-single or compound-to 
aggregate loss data is the location of the “mass-point” of each loss interval.2 
A single value must represent all observations within an interval; very often, 
the interval midpoint is used for this purpose. The choice of mass-point influ- 
ences the distribution’s parameters and hence the quality of the resulting fit. In 
most distributions arising in casualty insurance applications, losses are skewed 
toward the upper boundary of their intervals. However, in the normal distri- 
bution and distributions like it, losses are skewed toward the lower boundary 

‘I.e.. the first two moments, loss amount and loss amount squared weighted by frequency. 
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in intervals lying to the left of the mode, and towards the upper boundary in 
intervals lying to the right of the mode. 

The algorithms described in Appendix A include calculations that correct 
the possible bias introduced by the exclusive use of the interval midpoint. The 
mass-points of the amount-of-loss and the square of the amount-of-loss must 
be adjusted at each successive iteration, because they are used to compute the 
moments needed to estimate the parameters of the individual distributions. In 
most instances, the correction substantially affects only the uppermost and low- 
ermost intervals. 

EXAMPLE 

The quality of compound distribution fits can be illustrated by an example. 
Table I contains automobile bodily injury loss data along with log-normal and 
gamma + log-normal fits to the data.3 

AS can be seen, the compound distribution, gamma + log-gamma, is su- 
perior to the log-normal alone because it better approximates the frequency of 
low value and high value losses. 

The goodness-of-fit can be measured by the Chi-square statistic, x2 [5]. 
The difference between actual and log-normal distribution has. a x2 = 28.7 
with 15 degrees of freedom. This means that there is about a 2.5% chance the 
log-normal explains the data. The difference between actual and the gamma + 
log-gamma distribution has ~2 = 3’.5 with I2 degrees of freedom. There is only 
about a I % chance that the agreement could arise by chance alone. 

DISTRIBUTION TABLE 

A distribution fitted to the number of losses can be used to compute the 
cumulative dollars of loss and the deductible credit or “buy back.” A deduct- 
ible credit is the proportional loss reduction caused by imposing a deductible.4 
Readers may be more familiar with the term “loss elimination ratio” [6]. No- 
tice thatfhelimits in Table 2 are not the same as the limits in Table I. 

‘The data is from a 1969 Department of Transportation study of automobile injuries. It shows gen- 
eral damages on serious injury cases in California. 

‘Purchasers of automobile collision insurance understand that they pay something less than full cost 
when they are willing to pay the first $50, $100, etc. of any loss. 
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To illustrate the use of the distribution table, refer to the limit of $10,000. 
The table shows that losses of $10,000 or less account for 82.15% of the losses 
by number but only 12.64% of the loss dollars. These loss dollars plus the first 
$10,000 on the 17.85% of the losses which exceed $10,000 account for 
25.88% of all loss dollars. Put another way, for a policy with no limit but with 
a $10,000 deductible, the table indicates a (loss dollar) credit of 25.88%. 

The distribution table also can be used to determine the loss portion of charges 
for increased limits. The formula is: 

(deductible credit for the increased limit 

Charge = 
- deductible credit for the basic limit) 

deductible creditfor the basic limit 

For example, to determine the loss portion of the charge for a layer of coverage 
between $10,000 and $100,000, compute 

.6029 - .2588 = I 33 
.2.588 

i.e., the loss portion of the increased limits charge is 133% of basic limits 
losses. (The increased limits factor is, of course, 2.33 if expenses remain 
proportionate.) 

EFFECT OF INFLATION 

It is possible to construct distribution tables that take into account the effect 
of inflation on loss settlements, thereby allowing actuaries to answer questions 
of the following type: What would happen to loss costs if future losses were 
distributed in a manner similar to past losses, but settlement costs were 100% 
higher? 

The answer is found in Table 3 which uses data from Table 2 but assumes 
a 100% inflation rate.5 Note the contrast between the two tables. Only 71.09% 
of the inflated losses (Table 3) are less than $10,000 and they account for only’ 
6Y83% of the loss dollars, whereas 82.15% of the uninflated losses (Table 2) 
are less than $10,000 and they account for 12.64% of the loss dollars. Simi- 
larly, under 100% inflation, the deductible credit decreases from 25.88% to 
17.54%. Inflation causes the loss portion of the increased limits charge for 
$100,000 limits to rise from 133% to 184%. 

‘I.e., a 100% increase in the value of each loss from the settlement date to the date for which losses 
are being used. 



RI-l-IN0 DISTRIBUTIONS 143 

The algorithm for measuring the effect of inflation is shown in Appendix 
B. 

FITTING TRUNCATED DISTRIBUTIONS 

Because insureds use deductibles or retentions in many lines of casualty 
insurance, data collected for use by the actuary may be incomplete in that noth- 
ing is available for losses below some fixed dollar amount (such as $100). The 
flexibility of the gamma, log-gamma and log-normal distributions is such that 
their moments (where they exist) also are distributed respectively as gamma, 
log-gamma and log-normal [I], [3], [4]. The missing portion of a truncated 
distribution may contain many losses, but often the missing loss dollars do not 
amount to a great deal. Therefore, it is suggested that the actuary initially use 
the dollar amount of losses to fit the distribution. The number of omitted losses 
resulting from the use of the deductible can then be estimated and used to fit 
the distribution of the number of cases. 

The method for obtaining the parameters of the distribution of cases after 
estimating the parametersof the distribution of loss dollars is shown in Appen- 
dix C. 

For large losses, the data collected by the actuary may be inaccurate be- 
cause of policy loss limits. Here there are no missing cases, but the arbitrary 
limit obscures the true (unbounded) value of these larger losses. 

This problem can be solved by calculating the “true” value6 for the mass- 
point of the uppermost interval in a manner that is independent of the reported 
values of the larger losses. The actuary selects the lower limit of the uppermost 
interval for the data to be fitted so that all cases which may have been arbi- 
trarily valued fall into the uppermost interval. Then, by fitting the number of 
cases and not their dollar value, the effect of policy limits is ignored. The 
method for calculating an interval mass-point is explained in Appendix A. 

Example: Suppose the raw data in Table 3 contains no losses under $100, 
because of the existence of a $100 deductible. One could fit a distribution to 
this data under the assumption that the interval $0-100 is empty. (This is 
equivalent to assuming that the cumulative frequency of loss dollars up to the 
$250 limit equals the frequency of loss dollars in the interval $100-250.) The 
error introduced by this assumption (0 cf. .0002), is less than the error intro- 

6As opposed to some arbitrary, a priori assumption, guess or inaccuracy in the raw data itself, 
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duced by postulating that there are no claims in the $0-100 loss interval (0 cf. 
.1433). 

After fitting a distribution to raw loss dollars, one can deduce the parame- 
ters of the distribution of claim counts as shown in Appendix C. These latter 
parameters can be used to calculate the hypothetical proportion of claims under 
$100. That proportion can be used to fit the augmented claim count 
distribution. 

RELATIVE FREQUENCIES AND SEVERITIES 

Changes in claim frequencies and severities can be determined when de- 
ductibles (or retentions) and limits are changed. Assume an insured has a re- 
tention of $1,000 per claim, then what are the relative frequencies when the 
retention is increased to $5,000 per claim? From Table 2, 

1 - .7109,i .471 
1 - .3862’- 

the new frequency is 47.1% of the old frequency. 

The relative severities under unlimited coverage are: 

1. - .1754 
I - .7109 2.852 
1 - .05$5/ 

= - = 1.852 
1.540 

I - .3862 

or the new severity is 185.2% of the old severity. 

Suppose limits are increased from $10,000 per claim to $100,000 per 
claim. What happens to the relative severities? From Table 2, 

.6629 
- = 2.330 
.2588 

that is, the new severity will be 233.0% of the old severity. 

Suppose a reinsurer has data collected on the basis of a retention of 
$10,000 and a limit of $100,000, and suppose loss costs have increased 100% 
since the period for which the data was collected. How will the relative frequencies 
and severities change? From Tables 2 and 3, the relative frequencies are: 

I - .7109 
I - .82/5 = ‘~20 
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that is, there will be 62.0% more claims at the same retention because of in- 
flation. The relative severities are: 

.4981 - .I754 
I - .7109 I.116 

.6029 - .2588 
= -= .579 

I .928 

1 - .8215 

The new severity is 57.9% of the old severity. 

PROGRAM HEWITZ 

All computations described in this paper were performed with a computer 
program called HEWITZ.7 This program fits five distributions to, input data: 
gamma, log-gamma, log-normal, gamma + log-gamma and gamma + log- 
normal. 

.HEWITZ has the following characteristics and capabilities: 

1. The user can select different intervals for the input data and the output 
distribution table. 

2. The user can halt the iterative algorithms in one of several ways, but 
usually by specifying the maximum number of iterations. 

3. The user can create a wholly new distribution by presetting any distri- 
bution’s parameters. 

4. The program computes the Chi-square goodness-of-fit statistic. 

‘Program HEWITZ is written in G-Level Fortran IV, and has been implemented on an IBM 370/ 
158 computer. The program occupies about IOOk bytes of core. The program took ten seconds to fit al1 
five distributions to the loss data described earlier. 
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TABLE 1 

Automobile Bodily Injury Loss Data 

Number of Cases 

Loss Amount ($1 Actual Log-Normal Gamma + Log-Gamma 

27 18 27 1- 50 
51- 100 

lOI- 150 
151- 200 
201- 250 
251- 300 
301- 400 
401- 500 
501- 750 
75 l-l ,000 

l,OOl-1,500 
1,501-2,000 
2,001-2,500 
2,501-3,000 
3,001-4,000 
4,001-5,000 
5,001-7,500 
Over 7,500 

TOTAL 

4 
1 
2 
3 
4 
5 
6 
3 
8 
6 
8 

1 

1 

11 
6 

12 
9 

14 
40 
- 
189 

10 4 
8 2 
6 2 
5 3 
4 3 
7 6 
6 5 

12 12 
8 10 

12 15 
9 II 
7 9 
5 7 
8 11 
6 8 

10 13 
48 41 

189 189 
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TABLE 2 

Distribution Table 

Upper Limit of 
Loss Amount ($) 

100 
250 
500 
750 

I ,000 
2,000 
2,500 
5,000 
7,500 

10,000 
20,000 
25,000 
50,000 

100,000 
250,000 
500,000 

1 ,oo&ooo 
Unlimited 

Cumulative 
Frequency 
of Cases 

Cumulative 
Frequency 
of Dollars 

Dedudtible 
Credit 

.1623 .0003 .0065 

.2008 .0008 .Ol56 

.2724 .0028 .0298 

.3344 .0057 .0427 

.3862 .0090 .0545 

.5271 .0242 .0943 

.5739 .0320 .I109 

.7109 .0683 .1754’ 

.7795 .0995 .2221 

.8215 .1264 .2588 

.8992 .2075 .3570 

.9176 .2380 .3908 

.9582 .3432 .4981 

.9803 .4570 .6029 

.9934 .6047 .7263 

.9973 .7040 .8028 

.9990 .7873 .8633 
1 .oooo 1 .oooo I .oooo 
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TABLE 3 

Distribution Table with 100% Inflation 

Upper Limit of 
Loss Amount ($) 

Cumulative Cumulative 
Frequency Frequency‘ 
of Cases of Dollars 

100 .I433 .0002 
250 .I676 .0004 
500 .2008 .OOOS 
750 .2373 .OOl7 

1,000 .2724 .0028 
2,000 .3862 ’ .0090 
2,500 ,429s $126 
5,000 .5739 .0320 
7,500 .6564 .0508 

10,000 .7109 .0683 
20,000 .8215 .I264 
25,000 .8501 .I501 
50,000 .9176 .2380 

100,000 .9582 .3432 
250,000 .9848 .4939 
500,000 .9934 .6047 

1,000,000 .9973 .7040 
Unlimited 1.0000 1 . 0000 

Deductible 
Credit 

.0034 

.OOS I 

.Ol56 

.0229 

.0298 

.0545 

.0655 

.I 109 

.I463 

.I754 
,258s 
.289l 
.3908 
.498l 
.6350 
.7263 
.8028 

1.0000 
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APPENDIX A 

The following symbols are used: 

Symbol 

a +1 
A 

2. 
Dtj 

DDj 

E(X) 
E,(X) 
E‘&) 
E,dxzJ 
&W) 

J; 
Fi 

FG, 

H(j) 
UY 9 WI 

N 
P 

P+l 
Q 
R 

Meaning 

Scale parameter of the log-gamma distribution 
Scale parameter of the gamma distribution 
Actual number of cases in the i-th loss (claim) interval 
Computed number of cases in the i-th loss (claim) interval 
Cumulative proportion of cases in the first j intervals of the 
distribution table 
Cumulative proportion of loss dollars in the first j intervals of the 
distribution table 
Deductible credit for the first j intervals of the distribution table 
Mean of X, gamma 
Mean of x2, gamma 
.Mean of x, log-gamma 
Mean of x2, log-gamma 
Estimate of E, (x) used in the first iteration of the gamma + log- 
gamma algorithm 
Mean of the compound distribution 
Mean of X, log-gamma. Equals (q) ‘+’ 
Mean of x, log-normal 
Mean of x2, log-normal 
Mean of X, log-normal. Equals exp (EN(X) + 02&?) 
Relative frequency of cases in the i-th loss (claim) interval 
Cumulative 0fJ;. 
Cumulative frequency of gamma distribution in the i-th interval 
Proportion of claims in j-th loss interval after allowing for.inflation 
Value of the incomplete gamma function ratio for the variable y 
and the parameter w. This is the cumulative density of the ratio up 
to and including y 
Index of last loss (claim) interval 
Proportion of total claims in log-gamma or log-normal distribution 
Shape parameter of the log-gamma distribution 
Proportion of total claims in gamma distribution. Equals 1 - P 
Shape parameter of the gamma distribution 
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xi 
xhi 
X 

‘i 
XH, 
XL, 

fl 

i 

Loge 'i 
Log, XH, 
Value of loss 
Midpoint of the i-th loss (claim) interval 
Upper boundary of the i-th loss (claim) interval 
Lower boundary of the i-th loss (claim) interval 
Log, rj 
Upper boundary of the j-th distribution table interval 
Inflation factor. Equals one plus the rate of inflation expressed as a 
fraction 
Normal curve cumulative density from - 03 to zi 
Variance of X in the gamma 
Variance of X in log-gamma 
Estimate of q used in the first iteration of the gamma + log- 
gamma algorithm 
Variance of x in log-normal 

I) Gamma Distribution 

The gamma distribution, actually the incomplete gamma function ratio, is 
the cumulative density function: 

’ 0, i=O 

Vi\/5 

I (vi, R- 1) = 1 
r(R) J 

Y(~-IJ e-y dy, 0 <i<N 

where 
vi = A l XH,, I fi 

In the k-th iteration, the distribution parameters 

A - the scale parameter 

R - the shape parameter 

are estimated as follows: 

A = EGfX)Ia& R =A l E,(X) 
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The k-th iteration values of E, (X) and a,2‘are: 

EG(X) = 2’ .s$ Xi t CT02 = iTi J; x; - gpj2 

Initially, Xi = Yz (XH, + XL,). After the k-th iteration, the repaired in- 
terval midpoints are: 

x, = g,‘E, fx) 
I 

gi 

where E, (X) is the mean of the gamma computed in the (k-l)st iteration, and 
gi* is the proportion of cases in the i-th interval computed using the gamma 
fitted in the k-th iteration. 

gi* = I (vi, R-l) - Ifvim,, R-l) 

The quantity gi’ is the proportion of dollar loss in the i-th interval computed 
using the gamma fitted in the k-th iteration 

gi =.I(v;, R) - I (ii’-, , R) 

v,.“= A l XHi 1’VG-T 

In the k-th iteration, the repaired values of Xf 

xi2 = g”- l E, (X2) 

gi 

where E, (X2) is the average of the squared midpoints computed in the (k-f) st 
iteration, and g/is the proportion of the X2-value in the i-th interval com- 
puted using the gamma fitted in the k-th iteration 

g,!‘- = I (VI’, R - I) -’ I(v:‘-, , R + I) 
Vi” = A l XH,Im 

The number of claims in the i-th interval computed using the fitted gamma 
distribution is: 

Ci =( [C* { /(vi, R- I) - f(v,-,, R- 1,) + .S] 
c*’ = 2’. 

The square brackets represent the greatest integer function. 
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2) Log-gamma Distribution 

The log-gamma distribution, actually the incomplete gamma function ratio 
applied to the logarithms of loss data, is the cumulative density function: 

0, i=O 

lfui, p) = j & j YP e - ydy. O<i<N 
0 

1 . i=N 

where 
ui = (a+l) l xhil m 

In the k-th iteration, the distribution parameters 

a + j - the scale parameter 

p + Z - the shape parameter 

are estimated as follows: 

a+1 = EL (x),1 uL2, p+l = max{ 0, (a+]) l EL(x)} 

The k-th iteration values of E,. (x) and a,-2are: 

EL(x) = 2 f,xi , uL’ = 2 J;xf - EL0 

Initially xi = log, (72 (XH, + XL,)} . After the k-th iteration, the repaired 
interval midpoints are: 

xi = E, (x) l jy I A.* , 

where EL (x) is the mean of X in the log-gamma computed in the (k-l)st itera- 
tion, andh* is the proportion of cases in the i-th interval computed using the 
log-gamma fitted in the k-th iteration. 

A* = I t”i! P) - I (‘,-I( PJ. 

The quantityf;’ is the proportion of x in the i-th interval 

f.’ = Q’j , p + 1) - I(&, p + I) 

ii; = (a+/) l xh, I m 
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In the k-th iteration, the repaired values of x,’ are: 

x ;. = fi ’ l E, (x2) 
.fi* 

where EL (x2) is the average squared log of the midpoints computed in the 
(k-l)st iteration, and f:’ is the proportion of the x-value in the i-th interval 

; computed using the log-gamma fitted in the k-th iteration. 

f i” = f(Ui:’ p+2) - Uu;T,. p+2) 

ui”= (a+l) l xh,l V$TT 

The number of claims in the i-th interval computed using the fitted log-gamma 
distribution is 

Cj = [C* {I(“i,p) - ‘C”j-,9P)j + ‘51 
c* = zc; 

The square brackets represent the greatest integer function. 

3) Log-normal Distribution 

The cumulative frequency of the log-normal distribution is: 

9 (z,) = & ; e- ; 2: dzi 

-m 

where 

z, = { xhi - EN (x) } /a, 

In the k-th iteration the distribution parameters 

EN (x) - the mean of the log-normal 
oN2 - the variance of the log-normal 

are estimated as follows: 

E, (x) = 2 A xi 

aPi2 = I;f,x$ - E,(x)’ 

Initially xi = log, ( % (XH, + XL,) ) . After the k-th iteration, the repaired 
interval midpoints are: 

Xi = fj’ /f’; 

whereJ;.* is the proportion of cases in the i-th interval. 
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In the k-th iteration, the repaired values of xi2 are: 

x,2 = f,“/f,* 

where 

fit’ = {fm2 + 0;) @ (z,) - (EJx) + xi) l <$ e 
-XZ:) 

- {(m2 + u$) @ (z,- J - (EJx) + Xi-,) l cz e - % z2i -‘I 

The number of claims in the i-th interval computed using the fitted log-nor- 
mal distribution is: 

c, = [c* {@Jo,, - @ (Zi-,,) + 31 
c* = x ci 

The square brackets represent the greatest integer function. 

4) Gamma + Log-gamma 

Fitting a compound distribution is a trial-and-error process. Initially, the 
log-gamma distribution is fitted to the data. Generally this will result in fewer 
computed claimants in the lower loss intervals than are actually there. The 
gamma distribution is fitted to the excess claimants. These calculations “split” 
the data between the gamma and log-gamma distributions. The compound dis- 
tribution is the weighted sum of the two distributions, the weights being: 

P - the proportion of total claims in the log-gamma 

Q = (I-P) - the proportion of total claims in the gamma. 

As before, the interval midpoints must be repaired to recognize intra-inter- 
val skewness. 
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The gamma plus log-gamma (GPLG) distribution is the‘cumulative density 
function: 

0 ,_ i=o 

GH,G; = Q . /(vi, R-I) + P l I(u,,p) , O< i < N 

I , i=N 

where 

vi = A l XH,I’fi 
ui = (a+]) l xh,/Y&? 

Two methods are used to estimate the log-gamma distribution parameters. 
One applies to the first iteration only, the other to the remaining iterations. On 
the first iteration: 

I$ (x) = zf,xj . xi 
i;.Lxi 

The mean of the compound distribution is: 

E(X) = P l EL (X) + Q l EG (X) 

where 

EL (X) = (+) M+/) and E, (X) = $ 

The formulas for repairing xi, x2, Xi and X,Z are shown earlier. 

The number of claims in the i-th interval is: 

C; = [C* {GPLG, - GPLG;-,} + .5] 

c* =zc, 

The square brackets represent the greatest integer function. 
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5) Gamma + Log-normal 

Fitting the gamma + log-normal (GPLN) distribution is analogous to fit- 
ting the gamma + log-gamma distribution. 

The GPLN distribution is the cumulative density function: 

0, i=O 

GPLNi = Q’ I(V,, R-1) + P l @(Z;) , O<i<N 

.l,i=N 

v, = A*XH,&/R, z; = {xhi - E,(x)} t aiv 

The formulas for estimating the parameters of the gamma and log-normal, A, 

R, EN f-4 and up,‘, are the ones used to fit the gamma and the long-normal sep- 
arately. Similarly, the procedure used to split the total loss data between the 
two distributions is the one used in fitting the gamma + log-gamma, but with 
the log-normal distribution substituted for the log-gamma distribution where 
appropriate. 

In all other iterations: 

a+] = !L!$! 
OL 

7 p+ I = max (0, (a + I) l E, (x)} 

The log-gamma is fitted to the intervals, yielding theoretical cumulative 
frequencies: 

DL, = I(Ui, p) 

The next step in the calculation splits the total distribution between the 
gamma and the log-gamma, and estimates the proportion of total claims in 
each distribution. The calculation consists of the following steps: 

Determine whether the data can be spiit 

1. Set the split proportion estimate’ = I, and the interval index j = 0 
2. Compute proportion of total claims in first interval of gamma 

GI = F,-DL, 
3. If G, < 0, then the gamma distribution cannot be fitted to the data. 

This can happen when small valued losses go unreported. 
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Split the data 

157 

4. Increase interval index j by one 

5. Compute approximate proportion of total claims in the log-gamma and 
in the gamma 

Hi = P’ l DLj 

Gj =Fj-Hi 

6. Compute estimate of P: 

P = 1 - Gj+, (Initially G, = G, ; see Step 2) 

7. Compute proportion of total claims in the j-th and (j+ list intervals of 
the log-gamma, and the gamma 

Hi = P l DLj 

‘j = F,-H, 

Hj+; = P l ‘DLj,, 

‘j+l = Fj+, - Hj+/ 

8. Compute the difference of successive intervals of the gamma 

A = Gj+r 7, Gj 

9. If A < 0, go to Step 10, otherwise set P’ = P and return to Step 4. 

IO. 
Compute Frequencies of the Gamma 

Fj - P l DL; , i < j 

Gj = 

1, . i3 j 
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After the data has been split, the parameters of the gamma distribution are 
estimated as follows: 

A = E,(X) I a; , R = A l EJX, 

where 

E,(X) = 2 G; l X; , u; = 2 Gi l Xf - EG(X) 

The formulas for repairing xi, xzi, Xf are shown earlier. 

The number of claims in the i-th interval is 

Ci = [C* {GPLN; - GPLN,-,} + .5] 

c* = 2 ci 

The square brackets represent the greatest integer function. 

The mean of the compound distribution is: 

E(X) = P l E,,,(X) + Q l EG(X) 

where 

KG) = exp C&x) + u$ ) and E, (x) = -$ 

APPENDIX B 

EFFECT OF INFLATION 

In the formulas given below the subscripts 1, 2 and 3 refer to the gamma, 
log-gamma and log-normal distributions respectively, and the index j runs over 
the Distribution Table loss intervals. The parameter A, is one plus the rate of 
inflation expressed as a fraction. 

F,(j) = t(v,, R - I) , vi = + . -$ 

F,(j) = ‘fujv p) . uj = v+ log 
Y, 

P T 

FJj) = @fZj) 
Yj 

, Zj = log A - EN(X) /u, 
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A 
G,(j) = I(vT, R) , v,l” = + . - 

vim- 

&(j) = Ifu*, p) , u; = v& - 

G3fj) = c&z,*) , z: = zj - a, 

'5 
H,(j) = G, fj) + h iI - F,(j)} 1 E, W 

H,(j) = G(j) + log + il - F,(j)} 1 EL (4 

H3fA = G,(j) + log : il - F,(j)) 14, f-4 

For the two compound distributions, we get 

Gamma + log-gamma 

F(j) = Q + F,(j) + P . F,(j) 

G(j) = .(I -’ S) . G,(j) + S . G2(j), where 

s= 
P-EL(X) 

E(X) 
alld E(X) = P . E,(X) + Q 

/ H(j) = G(j) + ,+ ’ {I - F(j)) I E(X) 

Gamma + log-normal 

F(j) = Q * F,(j) + P . Fdi) 

G(j) = (1 - S) . G, (j) + S . G3 (j). where 

s= 
P + EJW 

E(X) 
and E(X) = P . E,,,(X) + Q 
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E, fx) 

E, fx) 

H(j) = G(j). + + il - F(j)} I E(X) 
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APPENDIX C 

Parameter 

Shape 
Scale 

Shape 
Scale 

Fit on $ 

Gamma 
R-k1 

A 

Log-Gamma 

P+l 
a 

Fit on # 

R 
A 

P+l 
a+1 

Loa-Normal 

Mean &fW E,(X) - 0~2 
Variance (5’ UN2 

Example of the use of this Appendix: If a gamma distribution with parameters 
R and A is fitted to numbers of claim counts (#), then the parameters of the 
distribution of loss amounts ($) are R + 1 and A respectively. 
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