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A STUDY OF RISK ASSESSMENT 

RICHARD G. WOLL 

Much attention has recently been directed towards the subject of risk assess- 
ment in private passenger automobile insurance. 

In 1975, SRI International, a research organization, was commissioned to do a 
major study of insurance classification, or risk assessment. They defined a mea- 
sure of its efficiency and developed a procedure to utilize this measure for automo- 
bile accident frequencies based on the assumption that individual accident experi- 
ence was Poisson distributed. Based on this analysis they concluded that current 
pricing and selection practices in automobile insurance did a poor job of creating 
homogeneous groups of risks [ I I. 

Shortly after the release of the SRI Report, the Massachusetts State Rating Bu- 
reau (SRB) addressed the same subject and concluded that current automobile risk 
assessment practices were not only ineffective but that their use generated side ef- 
fects that were detrimental to society. They recommended that traditional actuarial 
rates, based on expected costs, should be modified on the basis of subjective judg- 
ments about what was “fair” or what would contribute to the welfare of society 
VI. 

Even more recently, changing social values and arguments like those above 
helped to create a situation where an NAIC task force condemned present automo- 
bile risk assessment practices and concluded that: 

‘6 . . . sex and marital status are seriously lacking in justification and 
are subject to strong public opposition, and should therefore be pro- 
hibited as classification factors.” [ 31 

The fact that such an essential aspect of insurance has come into question indi- 
cates a need for more knowledge and a better understanding of how we can mea- 
sure class homogeneity. It is the contention of this paper that the SRL procedure is 
based on an oversimplified model of reality and will understate the effectiveness of 
any risk assessment system because it assumes that no random or stochastic ele- 
ments affect an individual’s exposure to loss. An alternative model of the loss gen- 
erating process is suggested and a more general measure of class homogeneity is 
developed which makes use of individual risk experience and the findings of credi- 
bility theory. 
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RISK ASSESSMENT MODELS 

The purpose of risk assessment is to partition a risk population into groups 
whose members have a simiiar expectation of loss. This requires the assumption 
that such groups exist and that it is possible to distinguish them. 

The best indication that these assumptions are reasonable is the fact that per- 
sistent classification differentials do exist and form the basis for present risk as- 
sessment systems. This attests to the fact that insureds differ from each other in 
consistent and predictable ways. 

In order to study risk assessment, it is necessary to focus on the loss generating 
process. In this paper, the analysis will concentrate on that process as it affects the 
frequency of automobile accidents. 

INDIVIDUAL RISK MODEL 

We begin by assuming that the probability of loss for an individual within any 
period of time is determined by the nature and quality of that individual’s driving 
experience. We will call the expected number of accidents resulting from any set of 
circumstances, exposure, and will use 4; to denote the exposure for an individual 
i associated with a particular set of circumstances. We consider d+ to be a func- 
tion of driving environment, amount of driving, and driver characteristics. 

More formally, we designate the function: 

4; = W(E,A,C) 

where: 

( I) E = Driving environment 
(2) A = Amount of driving 
(3) C = Driver characteristics 

Since the value of d+ is determined by individual circumstances which, in 
turn, are affected by all the uncertainties of daily life, we consider $J; itself to be 
the result of a stochastic process which is independent with respect to time. 

We assume further that the actual number of accidents arising from a particular 
value of 4; is determined by a Poisson process with a parameter equal to +i [4]. 
This means that the conditional distribution of claims for the ith individual is: 

&Xi1 4i) = +!f! e -& 
, . 
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where Xi is a random variable denoting the actual number of accidents, given a 
particular value of .4i, and g(Xi( 4;) is the conditional probability density function 
(pdf) of Xi given d+ If we denote the distribution function of & as V(r#+), we can 
write the unconditional pdf of Xi as: 

g(XJ = s (4i) xi e- 4 
xi ! 

dV( 4) 

4 

It can be seen, given these assumptions, that the actual distribution of accidents 
for the ith individual is compound-Poisson with moments which can be expressed 
in terms of the exposure function as follows [5]: 

EfXi) =E(4i) (1) 

Vat-(X,) = E(~i) + Vur(4;) (2) 

Since the exposure function is independent in time, it is also possible to express 
the mean and variance of 4; for different time intervals as follows: 

Et (4i) = t X E(h) (3) 

Var, (4;) = t X Var (4;) (4) 

where t represents the ratio of the time interval of interest to that used to define +i. 
The mean and variance of Xi for such a time interval are thus: 

Er fxi) = t X E(h) (3 

Var, (Xi) = t X [E(+i) + Var (4i)] (6) 

GROUP RISK PROCESS 

When we consider a group of individuals, we are interested in the uncondi- 
tional distribution of X which can be thought of as the actual number of accidents 
happening to an individual selected at random from the group. This requires 
knowledge about the individual risk process,,and the distribution of individual 
expected losses, the distribution of E(Xi). 

We begin by using the random variable M to denote the distribution of ex- 
pected losses between individuals and define its distribution function as U(m). The 
function U(m) has been designated the “structure” function and can be thought of 
as a description of the structure of expected loss differences throughout the given 
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population [6]. It should be evident that the value of M for a particular individual is 
equal to E(4/), the expectation of the individual’s exposure function. That is: 

M = E(4i) 

In this context the distribution of Xi, the accident frequency for the i th risk, is 
conditional on the value of M and we denote its pdf as follows: 

MXlmiJ = gtxi) 

The unconditional pdf of X is thus: 

h(X) = j h(Xlm) dU(m) 
m 

The mean of this distribution is equal to E(M) and the variance is equal to the 
variance of the expected accident frequencies, Vat-(M). plus the expected value of 
the variance for each individual, E(Vur(Xlm;)) [7]. Thus: 

E(X) = E(M) (7) 

Var (X) = Var (M) + E(Vir(Xlmi)) (8) 

= Var (M) + E[E(+t) + Var(4t)l 

= Var(M) + E(M) + E[Var(4t)] (9) 

Thus the unconditional variance of X is equal to the sum of the mean and variance 
of the structure function plus the average variance of the individual exposure 
functions. 

We can observe the effect of time on the moments of the accident distribution 
by noting first that it acts as a scaling factor with respect to the moments of the 
expected loss distribution [8]. That is: 

E,(M) = t x E(M) (10) 

Var, (M) = t2 X Var(M) (11) 

When we consider the moments of X, the distribution of actual accident frequen- 
cies for different time intervals, we get the following: 

E, (X) = E, CM) (12) 

Var, (X) = Vat-, (M) + E[Var, (Xlmi)] (13) 

= t2 X Var (M) + t X E[E (40 + Var (pi)] 

= t2 X Var (M) + t X [E(M) + E(Var (+t)] (14) 
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Thus the variance of accidentfrequencies for a group of individuals is a quad- 
ratic function of time with iespect to the structure function variance and a linear 
function of time with respect to the expected vuriunce of individual accident fre- 
quencies! 

EFFICIENCY STANDARDS 

In 1960, R.A. Bailey introduced the idea of evaluating risk assessment sys- 
tems by comparing the coefficient of variation for classification relativities to the 
coefficient of variation of the distribution of individual expected losses 191. L.H. 
Roberts suggested, in turn, that a ratio of variances resulting in what he called a 
“coefficient of determination.” rather than a ratio of coefficients of variation, 
might be preferable [ IO]. Both Bailey and Roberts were interested in what is now 
termed “class plan efficiency” from the viewpoint ofcompetition. 

Sixteen years later, SRI International suggested using the variance measure 
proposed by Roberts as a way of measuring what percentage of what is ultimately 
possible has been achieved 1 I I]. It is a measure of how well the system does rela- 
tive to the ideal situation where the value of M for each individual is known. 

It is important to realize that risk assessment represents a partition of the struc- 
ture function and that the variance of M can be separated into two components 
related to such a partition: 

(a) Between cell variance = BVAR,, 

(b) Within cell voricmce = WVAR,,, 

Thus: 

Var (M) = BVAR,,, + WVAR,,, 

In these terms, the SRI measure can be expressed as: 

ESJiciency = BVAR,,, I 
. BVAR,,, + WVAR,,, =! + WVAR,,, 

B VW,, 
(15) 

SRI International uses the variance produced by the risk assessment system parti- 
tion to estimate BVAR,. To estimate Vur(M), they assume that the distribution of 
claims for an individual risk, g(Xi) is Poisson and that U(m) is gamma distrib- 
uted. This in turn leads to the conclusion that: 

ifar(hf) = &w(X) - E(X) 
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Thus the SRI procedure consists of measuring classification variance and dividing 
it by the difference between the estimated mean and variance of the actual claims 
distribution I 121. 

Note that the terms BVAR, and WAR,,, at this point refer to partitions within 
the structure function. The within class variance term, WVAR,,, refers to the av- 
erage variance of M within the cells of the partition produced bythe risk assess- 
ment system, while the between class variance term, BVAR,, refers to the vari- 
ance of expected loss frequencies between the cells. They refer to the variance of 
expected loss, not actual loss. 

The SRI measure is not the only one which can be used for this purpose. 
Millicent Treloar, a statistical research analyst with the NAII. has noted: 

“If efficiency were expressed as: 

BVAR,, 

WVAR,,, 

we would have a measure which increases as the spread of class relativities and 
class homogeneity increase. We would also have a quantity of known distribu- 
tion (an F distribution) by which we could make inferences about the extent of 
spread of class relativities (and homogeneity). Further, this quantity is that 
which is employed in classic statistics applications to classification problems 
dating back to R. Fisher ( 1936). 

“It is most desirable to utilize a measure of efficiency which has a known dis- 
tribution when one desires to make statements of confidence about a particu- 
lar value.” [ 131 

MEASURING RISK ASSESSMENT EFFICIENCY-AN EXAMPLE 

Before proceeding further with this exposition, a simple example may help to 
clarify what is meant by risk assessment efficiency. Suppose we have a risk popu- 
lation with the following structure function: 

U(m) = 
j IOm m = .Ol, .02, .03, . , .I0 

10 otherwise 

E(M) in this case is .055 and Var (M) is .000825. 
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We can illustrate this structure as follows: 

Group 
I 2 3 4 5 6 7 8 9 IO 

Accident Frequency: .Ol .02 .03 .04 .05 .06 .07 .08 .09 .I0 

Suppose that we decide to partition this population into two classes and that our 
first attempt to do so assigns groups I, 3, 5, 7, and 9 to the first class and the re- 
mainder to the other class. The two classes would look as follows: 

Group 
Class I I 3 5 7 9 
Class 2 2 4 6 8 IO 

This is not a very impressive partition, and the statistics show it: 

Variance 

Weight Mean Within Group Between Group Eff. 

Class 1 .5 .oso .000800 xx xx 
Class 2 .5 ,060 .000800 xx xx 

Total I.0 ,055 .000800 .000025 3% 

We learn more about our population, and succeed in producing a better parti- 
tion: 

Group 
Class I I 2 5 7 8 
Class 2 3 4 6 9 IO 

The statistics for this group verify the fact that it is better: 

Variance 

Class I 
Class 2 

Total 

Weight Mean 

.5 ,046 

.5 ,064 

1.0 ,055 

Within Group 

.000744 

.000744 

.000744 

Between Group 

xx 
xx 

.00008 I 

Eff. 

xx 
xx 

10% 

Continuing our efforts, we come up with a further improvement: 

Group 
Class I 1 2 3 5 7 
Class 2 4 6 8 9 IO 
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The statistics on this partition are as follows: 

Variance 

Weight Mean Within Group Between Group Eff. 

Class I .5 ,036 .000464 xx xx 

Class 2 .5 ,074 .000464 xx xx 

Total I.0 ,055 .000464 .000361 44% 

Finally, one more plan is produced which divides the risk popul’ation as fol- 
lows: 

Group 
Class I 1 2 3 4 5 

Class 2 6 7 8 9 10 

The statistics for this two partition set are quite impressive: 

Variance -... 
Weight Mean Within Group Between Group 

Class I .5 ,030 .000200 xx 
Class 2 .5 ,080 .000200 xx 

Total I.0 ,055 .000200 .000625 

Eff. 

xx 
xx 

76% 

This set of partitions provides a qualitative idea of what risk assessment 
efficiency means. It shows that greater efficiency, given the s<me numberof parti- 
tions, generally means a greater spread of expected class relattvtties. This can be 
seen if one observes the class relativities which result from the partitions just pre- 
sented: 

Lower Class 
Higher Class 

I 

.91 
1.09 

Pattition 
2 3 4 

.84 .65 .55 
1.16 1.35 1.45 

USING RELATIVITIES 

In many situations, the variance of expected loss relativities produced by a par- 
ticular risk assessment partition is more convenient to calculate than the variance 
of the actual expected loss estimates themselves. It would be convenient to express, 
Vur (M) in terms of relativities as well, so that direct comparisons can be made. 
Expected loss relativities are calculated by dividing the value of the random varia- 
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ble M by E(M) and will be‘denoted by the symbol R. We can express the variance 
of R in terms of the variance of M as follows: 

Var (M) VarfR) = Var (+) = (E(M),2 

We can determine the efficiency of any risk assessment partition by calculating 
the variance of the cell relativities produced by that system and then dividing by 
Var (R). This, in turn is the same as multiplying by the squared mean of M divided 
by the variance of M. This quantity will henceforth be designated by the symbol 
BK such that: 

BK= ’ = (E(M,,2 = t2 x fEtM,j2 + (E, (M,j2 (16) 
Var (R) Var (M) t2 x Var (M) Var, fM) 

Thus BK is independent of time. It can also be seen that: 

Var (M) = fEiy)2 (17) 

It should be noted that BK is the inverse of the normalized variance of the struc- 
ture function. Since we define homogeneity as the degree of similarity in expected 
losses for the members of any group, BK is a direct measure of the homogeneity of 
such a group. A high value of BK indicates a homogeneous group while a low 
value of BK indicates a relatively heterogeneous group. 

It is easy to calculate the efficiency of the different partitions shown in the ex- 
ample above when we know BK. Since we know that E(M) = .055 and 
Var (M) = .000825, we have: 

BK = (.o-)* = 3.67 
.000825 

Since BK is 3.67, we can determine the efficiency of these partitions by calculating 
the variance of the class relativities that they produce and multiplying the result by 
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3.67. Shown below are the efficiency estimates for each of these partitions calcu- 
lated in this manner. 

Partition 

I 2 3 4 

(I) Class Relativities 

Lower Class .91 .84 .65 .55 

Higher Class I .09 1.16 1.35 I .45 

(2) Variance of (I) .0081 .0268 .I193 .2066 

(3) Efficiency 

(2) x 3.67 x 100 3% 10% 44% 76% 

The value of BK can also be calculated within each class wherein it measures 
the variance between individuals within that class. In this case, it is a direct mea- 
sure of class homogeneity! 

We can observe the improvements in class homogeneity in the example by cal- 
culating the average value of BK for each class within each partition. It should be 
noted that since the average value of BK is the inverse of the average of the normal- 
ized variance for each class, one first obtains the normalized variance for each 
class by taking the inverse of BK. These values are then averaged and the inverse 
of the result is then taken. This point becomes more intuitive if one notes that if any 
single class were perfectly homogeneous, the variance in expected losses for mem- 
bers of that class would be zero and BK would be infinite. Clearly, a direct average 
of BK itself could lead to absurd results. 

Shown below are the average BK values for each partition; these values are 
calculated in the appropriate manner: 

Partition 

Population I 2 3 4 

BK Value 3.67 3.69 3.75 4.52 7.89 

Efficiency 0% 3% 10% 44% 76% 

We can see that more efficient partitions produce more homogeneous class cells. 

THE SRI MEASURE OF RISK ASSESSMENT EFFlClENCY 

In the example given above, the structure function, U(m), was known. In real- 
ity, U(m) cannot be observed and must be estimated. Only the mean and variance 
of M, however, are necessary for measuring risk assessment efjcienq and class 
homogeneity. 
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It is possible to estimate the moments of X, the actual claims distribution, by 
observing actual data. These estimates are of use in estimating the moments of M. 
It was shown earlier in formula (12) that: 

Var, (X) = E,(M) + Var, (M) + t X E[Var(&)] 

Thus: 

Var, (M) = Var, (X) - E,(X) - t X E[Var ($J] (18) 

Both the SRI Report and the Massachusetts Rating Bureau studies assumed 
that the distribution of Xi was Poisson and thus Var (Xi) = ,5(X,) = E’(@; ). Since 
Var (Xi) is also equal to E(‘4;) + Var (&, this necessarily implies that Var (4;) is 
equal to zero in all cases. In other words, these models assume that there are 
no elements of chance affecting exposure to loss. This assumption makes it possi- 
ble to simplify the fotmula for Var (M) given above, since E[Var c#+)] is also equal 
to zero. 

Thus: 

Var, (Ml = Var, (X) - E,(X) 

We can express this result in terms of BK: 

Var, (M) = ‘Els(KM)‘2 = Var, (X) - E, (X) 

= Var, (X) - E,(M) 

, 

Thus: 

Var, W = E, (M) + 
fE, (M),’ 

BK 

If we look at the SRI terminology, we see that they write Var, (X) as 
follows: 

(mt)’ 
Var, (X) = mt + K 

where mt = E, (M). It can be seen that in this case, BK and K are equal 1141. 
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K can be expressed in all cases (not just the Poisson case) as a function of 
“excess” variance, the difference between the mean and variance of X, as 
follows: 

(4 fX))* 
K = var, fX) - E, (x) (19) 

since E, (M) = E, (X). 

Given these assumptions, the SRI procedure for assessing the efficiency of 
a risk assessment system is to calculate the observed mean and variance of the 
distribution of actual losses for the risk population, Var, (X). and then to es- 
timate the variance of expected losses, the variance of the structure function, 
by subtracting the population mean from the population variance: -. 

Var, (M) = OV - OM 

where OM and OV are the observed mean and variance of the actual claim 
distribution. 

The SRI method thus “solves” the problem of measuring Var, (M) by as- 
suming that E[Var, (Xlmt)] = E, (M) = E, (X) and thus that all of the “ex- 
cess variance” is due to the variance of expected losses. That is: 

Var, (M) = Var, (X) - E[Var, (Xlmi)] 

= Var, (X) - E, (X) 

If, in fact, E[Var, (Xlmi)] ts not equal to E, (X) then the SRI method will not 
work! 

MASSACHUSSETTS DEVELOPMENTS 

In 1977, the State Rating Bureau disregarded the preliminary nature of the 
SRI conclusions and made them the basis for a severe indictment of current 
risk assessment practices. They declared that pricing groups of risks according 
to their expected loss costs was improper and should be prohibited [ 151. In 
doing so they relied heavily on the SRI conclusions about the efficiency of the 
risk assessment process: 

“current risk assessment schemes in automobile insurance resolve only a small 
fraction of the uncertainty about individual expected losses.” [ 161 
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They pointed out, further, that the SRI study claimed that the “fraction ex- 
plained” was about 30% and observed that: 

“with so much of the difference in expected loss among individuals unresolved, 
heterogeneous classes are unavoidable.” [ 171 

Finally, they threw cold water on the idea that the way to improve the sit- 
uation is to improve the class plan. They did this on both practical grounds and 
because they felt that using certain kinds of information in risk assessment 
might be socially undesirable [ 181. 

A significant part of the SRB’s effort in 1977 was a study of Massachusetts 
data in order to gain some idea of the expected loss variance in each rating 
class. Data pertaining to collision coverages was published in a paper on merit 
rating and is included in this paper as Exhibit I [ 191. 

This data is more suitable than the data used by the SRI to examine the 
process of risk assessment in insurance because: 

(1) It is insurance data. 
(2) It represents a complete cross section of insurance business. 
(3) It shows differences in homogeneity by class. 

MERIT RATING 

The intent of the exhibit published by the SRB was to show that class and 
territorial relativities in Massachussetts should be modified because of the im- 
pact of merit rating. In making this point, merit rating data had to be generated 
through a simulation process since no actual data about individual risk experi- 
ence existed in Massachussetts at that time. 1 generated the same data through 
a computer simulation of the following formula: 

P(X = x) = $ m g(xlm) dU(m) 
m 

, 

where U(m) is a gamma distribution function and g(xlm,) is the Poisson prob- 
ability of having X claims given the parameter m;. See the Appendix for a fur- 
ther description of the simulation process. 
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It is worth noting that the pdf: 

JPfX=xlm,) iiJ(m,) 

P(M=mdx) = mi 

s P(X = xlm) dU (m) 
m 

where x is a discrete number of claims, represents the accident likelihood dis- 
tribution for risks which have had x claims and is also a gamma distribution. 
This fact has been pointed out by several commentators including the SRI [20]. 

It is particularly important to note that the ratio: 

Wfb 
E(Mo= 

f tn P(M = mix) d(m) 
f m P(M = m(0) d(m) 

or the ratio of expected loss frequencies for risks who have had x losses and 
those who have had none, given the assumption that the structure function is 
gamma, is: 

a(x)lci(O) = I + slK 

where a(x) is the expected mean for those risks with x claims. In particular, the 
ratio of expected means for risks with one claim during this interval’of time, 
and those with none, is: 

a(l)la(O) = I + IIK 

which is dependent only upon the coefficient of variation of expected losses for 
the subpopulation under consideration. 

Exhibit II shows a grid of data by class by merit rating category generated 
by the simulation process mentioned above. Part 3 of Exhibit 11 shows the ratio 
of expected means for risks with X claims divided by the expected mean for 
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risks with 0 claims. The following table reproduces these ratios for risks with 
one claim: 

Class M’MO) 
00 1.98 
10 I .57 
12 1.46 
15 1.48 
20 1.54 
22 1.54 
24 1.58 
26 1.37 
30 1.35 
31 2.76 
40 1.37 
42 1.29 
50 1.44 

Using these ratios, it is easy to compute BK values for each class using the 
formula: 

BK = MO) 
Ml’ - MO) 

(22) 

The following table shows the BK values estimated in this manner compared 
to those underlying the simulation: 

Class BK 
00 1.03 
10 1.75 
12 2.15 
15 2.06 
20 1.96 
22 1.95 
24 1.77 
26 2.72 
30 2.83 
31 0.58 
40 2.76 
42 3.51 
50 2.28 

Estimate 
I .03 
1.75 
2.16 
2.06 
1.91 
1.90 
1.75 
2.72 
2.83 
0.58 
2.74 
3.51 
2.27 
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These results show that it is possible to use accident history data rather 
than the SRI assumptions to estimate class homogeneity. 

AN ALTERNATIVE RISK ASSESSMENT MODEL 

The SRI method for estimating class plan efficiencies carries with it the 
implication that the purpose of risk assessment is to determine each risk’s exact 
exposure to loss. 

If one considers the nature of the events that determine exposure to loss, it 
seems more reasonable to assume that exposure is only determinable in a sto- 
chastic sense. It was stated earlier that exposure to automobile accidents is de- 
termined by the following elements: 

(I) Driving environment 
(2) Amount of driving 
(3) Driver characteristics 

Each of these elements is affected by the uncertainties of daily life and 
should be regarded as random in nature. There are differences in exposure ex- 
pectations between risks-the success of the current risk assessment system is 
ample evidence of that-but it seems clear that Var (c#+), the variance of the 
exposure function of the individual risk, is likely to be significantly greater 
than zero and thus the variance of the individual accident distribution, 
Var (Xil+J, has to be greater than its mean. This follows from formula (2), the 
formula for the variance of the individual claims distribution given earlier: 

VAR (XJ = E(c#+) + Var(4i) 

In order to estimate the impact that exposure variance might have on the 
SRI method for estimating risk assessment efficiency, a comparative set of es- 
timates will be calculated, assuming: 

(1) Var(+J = 0 
(2) Var(+i) = .0625 X (E(&))2 

For each case, we can calculate the moments of X given these assumptions 
about Var (+J and the facts about the structure function used in the example 
given earlier in this paper. In the example, E(M) was .055 and Var (M) was 
.000825. 
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In the first case, using formula (8): 

Var(X) = Var (M) + E[Var(XIm,)] 
= Var(M) + E(M) + E[Var(#+)l 
= .000825 + ,055 + 0 
= .055825 

Using the SRI method: 

Var(M) = Var(X) - E(X) 
= .055825 - .055 = .000825 

and: 

BK = s, 

= .05j2 + .000825 = 3.67 

We can estimate the efficiency of the various partitions in the example, given 
the SRI assumptions, by multiplying the variance of the class relativities they 
produce by 3.61. 

In the second case, we have: 

Var(X) = Var(M). + EIVarfXh)l 
= Var(M) + E(M) + E[Var(+i)] 

Since Var(4J = .0625 X (E(c#+))z and E(c$~) = M we have: 
E[Var(c#+)] = .0625 X E(M’) 

= .0625 X [Var(M) + (E(M))2/ 
= .0625 x (.OOOSZS + .055’) 

Thus: 

Var(X) = .000825 + ,055 + .00024/ 
= .056066 

Again applying the SRI method, we calculate Var (M) and BK: 

Var(M) = .056066 - .055 = .001066 
BK = .055* + .001066 = 2.84 

Since Var (M) is really .000825 and BK is really 3.67, it can be seen that the 
use of the SRI method does not provide an accurate picture of the effectiveness 
of risk assessment. If we were to use the BK estimate of 2.84 to evaluate the 
efficiency of the partitions used in the example, we would be 23% too low! 
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The fact is that the SRI method is not really an estimate of risk assessment 
efficiency at all. It is, in fact, an estimate of the lower bound of that efficiency. 
If Var (#+) for any risk is greater than zero, then the SRI estimate will be too 
low. 

It is not the SRI measure that fails, but the assumption that it is possible to 
estimate the variance of expected losses, Var, (M). by subtracting the mean of 
the actual loss distribution, E, IX), from its variance, Var, (Xl. What is needed 
is some other method for estimating Var, (M). 

Since the structure function itself cannot be directly observed, any infer- 
ences that can be made about its characteristics must come from observation of 
actual claims experience. We know that for any group: 

Var, (X) = Var, (M) + E[Var, (X(m,)l 

or, since we have a partition of the risk population achieved by the expected 
losses for each member: 

TVAR,v = BVAR, + WVAR,, 

where BVAR,r is the variance between risks and WVAR,, is the expected value 
of the within risk variance. 

It is particularly important to avoid confusing the concepts of between var- 
iance and within variance as used here with their use in the SRI efficiency 
measure. The total variance term used above refers to the variance of actual 
losses, Var, (X), while the total variance term used in the SRI measure refers 
to the variance of expected losses, Var, (M). The within variance term used 
above refers to the variance of individual losses while the within variance term 
used in the SRI measure is the variance in expected losses remaining within 
each partition created by a risk assessment system. It is interesting to note that 
BVAR., taken with respect to the distribution of actual losses is identical to 
TVAR,, taken with respect to the distribution of expected losses. That is: 

BVAR,v = TVAR, = Vat-, (M) 

Since BVAR,r = Var, (M), it can also be expressed in terms of BK by us- 
ing formula (17) as follows: 

(E, (M))’ BVAR,v = BK 
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and can continue to express the variance of X, or TVAR,, in terms of “excess 
variance,” as follows: 

TVAR, = Var, (X) = E, (M) + K 
(6 CM))’ 

(24) 

See formula (19) for the definition of K as a function of “excess variance.” 

We know that Var, (X,) for any individual is either equal to or greater than 
E, (X,). Thus we also know that WVAR,,, or E[Var, (X,)], is greater’ than or 
equal to E, (M) since: 

EiVar,WJl 3 WE, (XJl = E, CM) 

We can, therefore, express WVAR,, in terms of “excess variance” as well, us- 
ing the quantity WK as the index of the degree to which WVAR,T exceeds 
ELM): 

(4 CM))’ 
wK = WVAR,r - E, (M) 

and thus: 

WVAR,r = E, (M) + EIVariCd+)I = E, (M) + tE’Lf”2 (25) 

We can now write: 

TVAR., = WVAR,r + BVAR,, 

E,(M) + 
(6 rjJ2 = ( E, fM, , W;V ) + ( W,;;J)’ ) 

and thus: 

I -= L+L 
K WK BK 

K = WK x BK 
WK + BK 

WK = BK ’ K 
BK - K 

BK = WK x K 
WK - K 
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These formulae provide insight into the limits of both BK and WK. We know 
that K, WK and BK must all be positive (since we have concluded that 
Var, (Xi) 2 E, (X,) and Var, (X) 5 E, (X),) and we see that as either WK or BK ap- 
proaches K, the other increases without bound. Thus we conclude that K is a lower 
bound for both variables, and there is no upper bound. It is interesting to note that 
when WK increases without bound, WVAR,r becomes equal to E, (M), and BVAR,C to: 

(6 (M”’ 
K 

When these conditions obtain, g, (Xi) becomes a Poisson distribution 

We see, therefore, that the Poisson case is a limiting ca,se of the class of 
all compound-Poisson individual risk distributions. 

Since WVAR,r is at a minimum when the simple Poisson case obtains, 
BVAR,, is at a maximum, BK is at a minimum, and estimates of risk assessment 
efficiency are minimized. When WK possesses a finite value, estimates based 
on the simple Poisson assumption will invariably be understated. 

A GAMMA-NEGATIVE BINOMIAL SIMULATION 

It was found in studying the Massachussetts data under the Poisson as- 
sumptions that claims history data gave a good estimate of BK, the index of 
population or subpopulation homogeneity. A simulation was run under the as- 
sumption that Var (4J was not equal to zero in order to find out whether it was 
still possible to use the ratio method to get a good estimate of BK and thus of 
the variance of expected losses. In the simulation, g, (Xi) was assumed to be 
negative binomial with a variance equal to: 

Var, [XlE(4;)] = { t X E(4i) I + I (t x~~4i”z 1 

Thus: 
(t X Ef4i)j2 

Var,f4;) = ,. 

The results of this simulation are shown in Exhibit Ill. The value IO was cho- 
sen for the denominator of the second term in the above equation because it 
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seemed to provide results that were reasonably similar to those achieved in the 
Poisson simulation but which differed enough to provide a reasonable picture 
of how exposure variance might affect the observable characteristics of the risk 
population. 

The results of this simulation compared with the gamma-Poisson case are 
as follows: 

(1 ) The number of risks with 0. 1, 2, . . claims in a three year period 
is virtually the same in both instances! Part 2 for both Exhibits II and 
111 shows this distribution within each class for both cases. Shown be- 
low are the statewide claims distributions for each case along with neg- 
ative binomial distributions possessing the same mean and variance. 

Number of 
Claims 

0 
I 
2 
3 
4 
5 

Compound Distributions 
Gamma/Poisson Gamma/Neg. Bin. 

Actual Neg. Binomial Actual Neg. Binomial 

.652 .652 ,653 .652 
,247 .246 ,249 .246 
,074 .074 .073 ,074 
,020 ,020 .020 .020 
,005 ,005 .005 .005 
.OOl .OOl ,001 ,001 

(2) The ratio of expected losses for groups having x accidents in a three 
year period, a(x), to those having none, CL(O). is substantially lower in 
the negative binomial case than it is in the Poisson case. Part I of Ex- 
hibits 11 and 111 shows the values of o(x) within each class for the two 
simulations, while Part 3 shows their relativity to the 0 accident class. 
Part 4 shows the relativities to the class mean frequency. It is interesting 
to note that in both cases the frequency of claims in classes 20 and 22 
is so high that even risks with one claim are better than the average for 
the class and should be charged a rate below the class average! 
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Shown below are the statewide expected frequencies and their relativi- 
ties to the expected frequency of the group with zero accidents: 

Compound Distributions 

Number of Gamma/Poisson Gamma/Neg. Bin. 

Claims Frequency Relativity Frequency Relativity 

X 4X’ ~(X’WO’ 4X) uW)ldO) 
0 .I26 I.00 .I35 1.00 
I ,199 I .58 .I91 I .42 
2 .274 2.16 .247 I.83 
3 .35l 2.78 .304 2.26 
4 ,433 3.43 ,363 2.69 
5 ,522 4.13 .425 3.15 

These results can be explained by the fact that the expected loss distri- 
bution underlying the negative binomial case has less variance than that 
underlying the Poisson case. This is consistent with a model which as- 
sumes that more of the total population variance is explained by the var- 
iance of the individual risk processes, and less by the variance between 
risks. This is also evident in the K and BK values resulting from each 
case. Column I from Part I of Exhibits II and III shows the BK values 
underlying the class expected loss distributions in each case, while col- 
umn 2 shows the K value underlying the actual distribution of claim fre- 
quencies. These two columns should be identical in Exhibit II, the Pois- 
son case, but the limitations of the simulation process resulted in slight 
differences. 

In .Exhibit 111, the value BK of the expected loss distribution over the 
entire state is 2.22 while the value K of the claim frequency distribution 
is 1.68. Thus it can be seen that if the negative binomial assumption 
used in the example is a better picture of reality than the Poisson as- 
sumption, a given class plan will actually be 32% more efficient than 
the SRI methodology would indicate. This difference in class plan efh- 
ciency estimates can be observed when we test the efficiency of rates 
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based on the claim frequencies shown in the SRB exhibit (Exhibit I). 
Shown below are the class relativities and their variance: 

Class Relativity Distribution Variance 
CR/) V’rob (4)) 

00 I.067 3.5% xx 
IO 0.938 58.0 xx 
I2 0.889 10.2 xx 
I5 0.726 9.3 xx 
20 2.213 0. I xx 
22 2.192 0.2 xx 
24 I.514 1.0 xx 
26 I.313 7.4 xx 
30 I.067 2.8 xx 
31 0.807 1.3 xx 
40 I.621 1.9 xx 
42 1.800 2.9 xx 
50 I.319 1.3 xx 

Total I.000 100.0% ,053 

From the formula given earlier for estimating the efficiency of a risk 
assessment system: 

EfJiciency = BK x 2 [(Ri - 1)2Prob (R,)] 

we see that this class plan would be 8.9% efficient if BK were equal to 
1.68, (the Poisson case), and 11.8% efficient if BK were equal to 2.22 
(the negative-binomial case). 

(3) The efJiciency of a merit rating plan is reduced in the negative binomial 
case, compared with the Poisson case. The total efficiency of rates 
based on the indicated frequencies shown in Exhibit III Part I is 26.4%, 
while it would be 28.9% if rates were based on Exhibit II Part l,‘gen- 
erated from the gamma-Poisson model. This is all the more surprising 
since the class plan by itself (without claims history) is more effective 
in the negative binomial case. This effect is due, of course, to the re- 
duced variance underlying the accident likelihood distribution shown in 
Exhibit III. The efficiency contribution of the claims history portion of 
such a rating plan is 14.6% in the negative binomial case and 20.0% in 
the Poisson case! 
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(4) The ratio of expectedfrkquencies for risks with one claim in three years to 
those with none is still a good indicator of class homogeneity, but not 
quite as good as in the Poisson case. Shown below are the ratios for each 
class, the indicators of class BK values based on them, and the actual BK 
values underlying the simulation: 

Class (*(I MO’ BK (Est) BK (Actual) 
00 I .770 1.30 1.25 
IO I.410 2.44 2.33 
I2 I.317 3.15 3.02 
I5 I .338 2.96 2.85 
20 I .378 2.65 2.48 
22 I .380 2.63 2.47 
24 I.412 2.43 2.30 
26 I .230 4.35 4.09 
30 I.219 4.57 4.34 
31 2.462 0.68 0.66 
40 I .227 4.40 4.12 
42 I.158 6.34 5.88 
50 1.294 3.41 3.22 

Total I.419 2.39 2.22 

These ratios give a reasonably good estimate of the BK values underly- 
ing the accident likelihood distribution, byt are definitely biased. 

CREDIBILITY THEORY AND RISK ASSESSMENT 

It seems evident that dividing risks into groups according to the number of 
claims they have experienced over a particular period of time and then observing 
the results over a subsequent period can provide insight into class homogeneity and 
the efficiency of risk assessment. 

There is a need, however, for a better understanding of the way that indi- 
vidual experience and expected loss distributions relate to each other. 

It has long been recognized that in many instances greater rate accuracy can 
be gained by utilizing both group information and individual risk experience. 
Credibility theory was developed, in part, as a tool for combining these two 
sources of information. 

In Mathematical Models in Risk Theory H. Buhlmann discussed Bayesian 
methods for estimating the expected losses for an individual risk given its ac- 
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tual losses. He pointed out that most such methods require knowledge of the 
parametric distributions of the individual risk processes and of the structure 
function. Since such knowledge is lacking in most practical applications, 
Buhlmann suggested the use of formulae based on linear approximations of the 
theoretically correct quantities. In effect, he suggested that the theoretically 
correct quantities could be approximated by a straight line fitted to the regres- 
sion of expected losses over actual losses, using the method of least squares. 

We can represent such a line as follows: 

E (M(x) = a + bx 

where the linear expression on the right side of the equation represents the line 
of best fit of the regression of expected losses over actual losses [2l]. 

It is well known that the slope of such an equation is equal to the covari- 
ante of the dependent and independent variables divided by the variance of the 
independent variable [ 221. 

Thus: 

b = cov (M. X) 
Vur (X) 

In turn: 

Cov (M. X) = E (M, X) - E(M) E (X) 
= E (M, X) - (E(M))’ 

(26) 

since E(X) = E(M). (See formula (7).) Furthermore: 

E (M. X) = J 2 M X, P(M, Xi) dM 
0 j=O 

= mM m x, P(M) P(X,IM) dM 
l-2 
” j = 0 

= -M P(M) E(XlM) dM s 
0 

(27) 

= - M’ P(M) dM 
s 
0 

= E(M’) 
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since E(X(m) = m. (Note that m = E(4J, and see formula (1):) Thus:. :.. . , .*: .n 

cov (M, X) = E(M’) - (E(M))’ 
= Vrrr (M) 

i28) 

and the slope of the credibility equation is: 

b = Vcrr fM) 
Vur (X) 

(2% 

Since the constant in a least squares regression line is equal to the mean of 
the dependent variable minus the slope of the line times the mean of the inde- 
pendent variable, we can express the constant in this case as (see note [22]): 

a = E(X) - b x E(X) 

= E(X) - E(X) x w 

= E(X) x { I - s > (30) 

Thus the linear Bayesian formula for estimating expected losses:for an individ- 
ual risk, EL, given its actual experience, X, is the familiar credibility equation: 

EL = E(X)x(I-Z) .+ XxZ (31) 

where X is the observed experience for the risk and: 

(32) 

If we interchange the order of integration and summation in formula (27), we 
can express E (M. X) as follows: 

E (M. X) = f$ JXi M P(Xjv M) dM 
j=O 

= 2 ij P(Xj)J M P(MJXj) dM 
J=o 0 

= 2 X, P(Xj) E(MIX,) 
j-0 

(33) 
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The importance of this last expression lies in the fact that all of its com- 
ponents can be estimated from observable data. The quantity P(Xj) can be esti- 
mated from the number of risks having X, losses during any given observation 
period, while E (MIX,) can be estimated by observing those risks with X, losses 
during a subsequent observation period. It should also be noted that since 
Cov (M, X) = Var (M): 

Var (M) = E(M,X) - E(M)E(X) 

= { sXj P(Xj) E(MIX,) } - (E(X))’ 
j=O 

(34) 

Thus Var (M) can be estimated by making two observations of a risk popula- 
tion, estimating P(x,) for all j from the first observation, E(MIX,) from the sec- 
ond, summing over all j, und then subtracting the square of the population 
mean. It should be noted that since the second observation is being used to 
estimate conditions prevailing during the first period, adjustments should be 
made to reflect any changes in conditions between the first and second periods, 
such as differences in the underlying population mean [23]. 

At this point we will define new terms which are helpful in estimating 
Var (M) using the covariance method: 

a(Xj) = EfMIXj) 

and: 

r ffffx)j)) = pfxj) 

We further define the term t as the adjustment factor reflecting those differ- 
ences between the observation periods which affect the group as a whole. 

Using these identities, we can estimate Var (M) as follows: 

Var (M) = E(M,X) - E(M)E(X) 

= { $Xj r(a(Xj)) (a(X,) + t) } - (E(X))’ (35) 
j=O 

where a(Xj) is calculated from a subsequent observation period and is adjusted 
to conditions prevailing during the first. Note that: 

E(X) = 2 X, r(olfX,)) 
j=O 

Var (X) = { 2 Xi2 r(a(Xj)) } - (E(X))? 
j=O 
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C. Hewitt provided a useful example of a loss generating process and its 
relationship to Bayesian credibility theory which will be used to illustrate 
the relationships just discussed (241. Mr. Hewitt’s example used a die and 
spinner to create a population with four loss processes, all equally represented 
in the population. The following matrix shows the joint probability of each 
process and its outcome [25): 

State 0 
*A .83333 

44 .83333 
*A .50000 
*A .50000 

Outcome 

2 
.I3889 

.08333 

.41667 

.25000 

14 
.02778 
.08333 
.08333 
.25000 

Suppose that we have been able to observe this population for three repeti- 
tions of this process (three “years”) and wish to estimate the variance of ex- 
pected losses by comparing the last repetition to the first two. We obtain the 
following matrix of joint probabilities: 

Joint Probabilities of Loss-(P(X,X,)) 

3rd Year 2 Year Losses (X,) 

Losses (X,) 0 2 4 14 16 28 
0 .35185 .16049 .03498 .08025 .0288 I .01029 
2 .08025 .06996 .0228 I .0288 I .01560 .00480 

14 .04012 .0288 1 .00780 .02058 .00960 .00420 

r(MXJ) .47222 .25926 .06559 .I2963 .OS?Ol .01929 

a(XJ 1.5294 2.0953 2.3608 2.6667 3.0667 3.5467 

where the subscripts refer to observations made from the first and second pe- 
riods respectively. 

We can use this information to compute the mean, variance, and covariance 
of these outcomes and can estimate Vur (M) by recognizing that the mean for 
the group during the second observation period will be only half of that during 
the first, since only one period of time is utilized for the second observation 
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while two are utilized-for the first. Thus t, in this case, will be .50 and using 
formula (35) we have: 

I. E(X) 4.000 
2. Var(X) 40.444 
3. t ,500 
4. E(M,X) 22.222 
5. Var(M) 6.222 
6. Z .I54 
7. BK 2.571 

We can compare the estimates of E(M($,) generated by formula (31), the 
credibility equation, 

E(MIX,) = (4.000 x (I - .154) } + Xj x .1.54 

to the results obtained using Bayes theorem (since we have the necessary in- 
formation in this simulation). 

x1 Bayesian Credibility Difference 
0 3.0588 3.3846 0.3258 
2 4.1906 3.6922 - 0.4984 
4 4.7216 4.0000 -0.7216 

14 5.3334 5.5384 0.2050 
16 6.1334 5.8460 -0.2874 
28 7.0934 7.6922 0.5988 

Total 4.0000 4.0000 0.0000 

Hewitt made several observations about the nature of the credibility esti- 
mate compared to the true, or Bayesian, estimate1 which are particulary cogent 
at this point. He observed that: 

I. Credibility does not (necessarily) produce the optimum estimate while 
the Bayesian estimate is optimum. 

2. Credibility does produce the “least-squares” fit to the optimum (Bayes- 
ian) estimates for all possible outcomes weighted by the respective 
probabilities of those outcomes. 

3. Both estimates-credibility and Bayesian-are “in-balance” for all 
possible outcomes [26]. 
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It can be seen from this example how these points apply. The credibility 
estimates are quite biased in most cases and thus are not optimum. They are in 
balance, however, since the expectation of the credibility estimates is equal to 
E(X)! 

It is clear, therefore, that Var (M) can be estimated using observuble data 
us long us ut least two observations of the risk population cun be made. These 
estimutes ure unbiased and do not require any assumptions ubout the nature 
of the loss processes for individual risks, or about the distribution of expected 
losses! 

RATIO ESTIMATES 

It was pointed out earlier in the paper that a reasonably accurate estimate 
of BK, and thus Var (M), was obtained by the simple ratio of merit rating fre- 
quencies for risks with one accident to that for risks who were claim free. That is 
(see formula (22)): 

BK = 
40) 

Ml) - dOI 

The credibility estimate for a(n) is: 

a(n) = {E(X) X (I-Z)} + {Z X n} 

Thus: 

41) 
a0 

=LWO x f~--Zl) + lZ).=, + {LX L) 
E(X) x (I-Z) I-Z E(X) 

and: 

a(l) - MO) = Vur (M) 

atO) E(X) X {E(X) + W’arf&)I~ 

Var (M) 
= (E(X))* + E(X) X E[Var (&)I 

E(X) 
= BK x { E(X) + ElVar(&Jl) 

Thus: 

41) I E(X) 
do) - = ’ + ’ i??? ’ E(X) + E[Var (4J ) 
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Since the Poisson assumption is only valid when E[Vur (&)I is equal to zero, 
this simplifies to: 

It can be seen that this ratio test does produce unbiased estimates of BK when 
the Poisson assumptions hold. It is interesting to note that the ratio test is exact 
in the gamma-Poisson case, since it was shown earlier (see formula (20)) that 
the ratio of a(f) to a(O) was equal to one plus the inverse of BK (since in the 
Poisson case, K is equal to BK). 

If the individual risk process is not Poisson, the ratio test will be biased by 
the amount: 

E(X) + War (+;)I 
E(X) 

This explains why the results were biased when this test was applied to the 
negative binomial simulation where E[Vur (r#+)] was greater than zero. 

CLAIM FREE DISCOUNT 

If the regression of expected losses over actual losses is reasonably linear, 
which it usually is when only accident frequencies are involved, there is an- 
other convenient way to estimate Vur (M) using merit rating data. 

To begin with, we note that: 

a(O) - E(X) X f/ - z) 

Therefore: 

E(X) - (Y(O) = 
E(X) x Vur (M) 

Vur (X) 

and: 
40) Var (M) = Var (X) x { I - - 
E(X) ’ 

The quantity a(O) + E(X) represents the ratio of expected losses for risks with 
claim free experience to the ratio of losses for all risks and thus the quantity in 
braces represents the claim free discount. We can see, therefore, that the vari- 
ance of expected losses can be estimated by multiplying the variance of actual 
losses, Vur (X+,by the-claim free discount! 
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NORTH CAROLINA EXPERIENCE 

The methods outlined above can be applied to actual data by assuming that 
the observed frequency of the events, X, and X, are unbiased estimators of the 
true joint probabilities of these events. The following table shows the experi- 
ence of North Carolina drivers over a four year period, split between the first 
three years and the fourth year [27]. 

Second 
Period 

f&l 
0 
I 
2 
3 
4 
5 

rfMXj)) 

0 I 2 
2002577 295414 45203 

104048 26776 6255 
5931 2362 811 

438 231 102 
30 16 12 

5 9 3 

.8445 .I298 .0209 

Number of Losses 
First Period (X,) 

3 4 5 6 
7666 1441 300 82 
1577 375 83 20 
247 80 30 13 

34 11 IO 0 
2 3 I 0 
2 0 0 0 

.0038 .0008 .0002 .oooo 

7 
25 
4 
7 
3 
I 
0 

.oooo 

afxj) .0555 .0994 .I574 .2300 .3037 .4175 .4000 .7750 

We note the following facts: 

I. First period mean .I874 
2. Second period mean .0643 
3. Var(X) .2316 
4. t {Quotient of means for two periods} .3432 
5. E(M,X) .0688 
6. Var(M) .0337 
7. Claim Free Discount (I.0 - (.0555+(2))} .1369 
8. Var(M) from Claim Free Discount ((7) x (3)) .0317 
9. z ((6) + (3)) .I455 

10. BK {from covariance formula} 1.0421 
Il. K .8656 

We see therefore, that we have been nble to estimate the homogeneity of 
the North Carolina driving population without having to make any estimates 
about u gamma-Poisson process. We note further that there is a significant dif- 
ference between the two estimates of BK (since K is the SRI estimate of BK) 
and thus there is a clear indication that the SRI method does not accurately 
measure the homogeneity of the North Carolina population! 
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The following table shows merit rating relativities from actual experience, 
the credibility indicated relativities, and the relativities indicated by the Pois- 
sonmodel (using the four year K value of .8656 [28]): 

'j rfMXj)I Actual 
0 .845 .864 
I .I30 1.546 
2 .021 2.448 
3 .004 3.576 
4 .ool 4.722 
5 .OOO 6.492 
6 .ooo 6.220 

Merit Rating Relativities 

Credibility Poisson 
,855 .822 

1.630 I .772 
2.406 2.722 
3.182 3.672 
3.958 4.622 
4.733 5.571 
5.509 6.521 

Total 1.000 1.000 I .ooo I .ooo 

It can be seen that a merit rating procedure based on the Poisson assumptions 
would undercharge the 84.5% of the population who were claim free and 
would substantially overcharge the 15. I% with one or two claims. 

The actual data also shows a noticeable departure from linearity for those 
groups with three or more claims, which suggests that the gamma distribution 
may not be an appropriate description of ‘the structure of the distribution of 
expected losses for the North Carolina driving population! 

MEASURING HETEROGENEITY 

Various ways of estimating the variance of expected losses within an in- 
surance population or subpopulation have been explored in this paper. In all 
cases, attention has been focused on estimating the variance of the structure 
function, Vur (M), since it is the measure of how much heterogeneity there 
actually is in the population. If one can measure Vur (M) for any given group, 
one has a direct measure of the homogeneity of that group. 

The first measure explored was that used by the SRI study which consisted 
of estimating Vur (M) by substracting the mean of the actual loss experience, 
E(X), from its variance. This measure can be thought of as the “excess vari- 
ance” method. It has been shown that the use of this method requires the as- 
sumption that there are no random or stochastic elements affecting exposure to 
loss, r#+. If, in fact, this assumption is invalid then any conclusions about the 
effectiveness of current risk assessment practices based on this measure are 
not appropriate. 
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The second measure consisted of estimating BK (and thus Vur (M) indi- 
rectly) by calculating the ratio of merit rating experience for risks with one 
accident and zero accidents respectively. This method was termed the “ratio 
method” and proved reasonably effective even when the Poisson assumption 
was not made. It was shown, however, that it would be biased by the ratio of 
the average within risk variance to the population mean: 

E(X) + EiVarf&)l = E[E (&)I + EIVar f+i)I 
E(X) ElEC +;)I 

A third method for estimating Var (M) is to multiply the indicated claim 
free discount by the variance of the claims experience. That is: 

Var (M) = CFD x Vu-(X) 

where CFD is the claim free discount. This measure was shown to be inde- 
pendent of the Poisson assumption, but it is dependent on the linearity of the 
regression of expected loss over actual loss. It gives reasonable results if the 
departure from linearity is not too great but can give poor results as in the 
Hewitt example where the difference between the actual and linear estimate of 
the claim free discount is approximately 10%. This situation is likely to exist 
in most pure premium applications. 

The fourth method uses the relationship 

E(M, X) = 2 X P(X,) E(MlX,) 
j=o 

and the fact that the expression on the right can be estimated from observable 
data taken over to successive periods of time to estimate Var (M). 

This measure is unbiased, is not affected by the linearity of the regression 
of expected losses over actual losses, and requires no assumptions about the 
distribution of losses for individual risks or the distribution of expected loss 
between members of the risk population. It is, however, subject to sampling 
variance and the possibility that the characteristics of groups selected on the 
basis of their loss experience may change with respect to the rest of the popu- 
lation from one period to the next. This would occur, for instance, if individual 
risk experience were not independent over time. 

This method also provides a measure of heterogeneity of the distribution of 
expected losses over the entire period observed. If each observation period is 
two years, then the measure estimates Var (M) where M = E (+J is the ex- 
pected loss for the ith risk over the entire four year period. 
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CONCLUSIONS 

This paper has explored questions of risk assessment efficiency and class 
homogeneity. It has been shown that: 

I. The SRI efficiency measure itself is an intuitively reasonable way to 
gain an overall idea of the effect of risk assessment on the variance 
within and between classes. 

2. Since it is impossible to observe the structure function directly, it is nec- 
essary to make inferences about its nature using data which can be 
observed. 

3. SRI International and the SRB “solve” the problem of estimating 
Vur (M) by making use of the following relationship: 

Vur, (M) = Vur, (X) - E, (X) - t X E[Var (4J] 

(see formula (18)). They assume that there are no random, or stochastic, 
elements affecting exposure to loss and thus conclude that E[Var (~i)I 
is equal to zero. This conclusion makes it possible to use the “excess 
variance” method of determining Vur (M) which consists of subtracting 
the observed mean of the actual loss experience from the variance. That 
is: 

Var (M) = OV - OM 

If there are, in fact, random elements associated with exposure, esti- 
mates using the “excess variance” method will be biased and 
misleading. 

4. It is possible to estimate Var (M) without making arbitrary assumptions 
about the variance of exposure, c#+, or the nature of the loss process and 
the shape of the structure function by observing actual experience over 
more than one period of time and utilizing the fact that: 

Vur (M) = { 2 Xi r (a(X)) (a(XJ + t) } - (E(X))’ 
j=O 

where t represents the ratio of the average loss frequency for the first 
observation to that of the second observation, r(cw(X,)) represents the 
probability that a risk will have Xj losses, and a(XJ represents the ex- 
pected losses of that group as estimated from a second observation 
period. 
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The purpose of risk assessment is to create homogeneous groups of in- 
sureds. The covariance method provides a readily available tool to measure 
group homogeneity directly, as long as credible subgroups are the object of 
measurement, and thus provides a way of measuring and monitoring the effec- 
tiveness of risk assessment. It provides an objective methodology for defining 
partitions of the insurance population and also builds in a mechanism for re- 
sponding to changes in circumstances which might indicate a need for a differ- 
ent type of partitioning system. 

The consequences of a lack of class homogeneity were pointed out by the 
Massachusetts State Rating Bureau: 

“If. . . classes are homogeneous, then each such class average is indeed typ- 
ical of the expected loss associated with all policies in that class. 

“But when classes are heterogeneous, the mean expected loss for each 
class-however accurately it is estimated-is not at all typical of what each 
policy is expected to cost.“[29] 

In the future, actuaries will no longer be allowed to focus their attention 
exclusively on mean class rates without explicit concern about the types of 
classes that they are defining and working with. There is valid public concern 
about the possibility that’t;good” risks may be paying more than they should 
for their insurance, while “bad” risks are paying less. There is no evidence 
whatsoever that this is taking place, but our past inability to demonstrate that 
our classes are relatively homogeneous has troubled many reasonable people. 
Actuaries can hope to provide this reassurance only by developing objective 
measures and standards for class homogeneity. The methods and analyses pre- 
sented in this paper should provide the basis for such objective measures and 
standards, and it is up to practicing actuaries to determine how they may be 
developed and applied. 
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APPENDIX 

SIMULATING PRIVATE PASSENGER AUTOMOBILE EXPERIENCE RATING 

FREQUENCIES 

The purpose of these simulations was to produce annual expected loss fre- 
quencies for groups of risks partitioned on the basis of the number of losses 
experienced during the prior three years. This can also be thought of as a way 
of generating the actual loss frequency expected during a fourth year, in which 
case it represents a simulation of the results of two observations of the popu- 
lation of interest. 

The simulation procedure consists of the following steps: 

I. Create a discretized structure function for the group or subgroup being 
analyzed. 
In this paper, gamma distributions were generated on the computer for 
each class shown on Exhibit I. The means of these gamma distributions 
were set equal to the means of the various classes. In the Poisson sim- 
ulation, the variance of the gamma distributions was set equal to: 

mi2 
K 

where the subscript refers to the class. In the negative-binomial simu- 
lation, the variance of X for each class was set equal to the variance of 
X in the Poisson simulation, so the variance of the gamma structure 
function was set equal to the following: 

( 10 - K ) 
II 

This adjustment reflects the fact that for each class: 

Var (4J = fr x E(4A2 
IO 

as shown on page 103 of the text. 
The result of this procedure for each simulation was a 62 by I3 matrix. 
The rows represent a partition of the domain of the structure function and 
the columns represent the 13 classes. Exhibit IV shows selected values 
from these matrices for each simulation. It can be seen, for example, that 
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that members of Class 10 had a 4.7% probability of having expected 
losses, E (4i), between .05 and .06. Note that in terms of the distribu- 
tions discussed in the paper, each column of the matrix represents the 
discrete density function of the structure function, U(mi). 

2. Calculate for each discrete value of in,, the Poisson and negative binom- 
ial conditional probabilities of X losses given t x mj. This results in a 62 
by 6 matrix where the rows represent the discrete values of m;, as be- 
fore, and the columns represent the values of X, X = 0, 1 . . ., 5. 
The values in this matrix represent the probability of X accidents in 
three years, given an annual frequency rate, E f&j, equal to mi. These 
values are shown in Exhibit V. If one refers to Exhibit V, Part 2, it can 
be seen that the negative binomial probability of being claim free for 
three years, given an annual expected frequency of .0.55, is 84.9%, 
while the Poisson probability for the same event shown on Part I of Ex- 
hibit V is 84.8%. 
Calculate the matrix of r(a(X)) values as follows (using matrix notation): 

r (a(X)) = (I’ x H 

where H is the matrix of conditional probabilities of X accidents given 
mj and h(XI m,), and U’ is the transpose of the structure function ma- 
trix, U. 
Calculate the matrix of a(X) values by first defining the matrix W as 
being the product of the ith row of U and the scalar mi t r(a(Xi)) 
and then taking the matrix product: 

IX(X) = W’ x H 

Clearly a(X) represents the following expectation: 

a(X) = E(m,lX) 

where X represents the accident experience during the prior three years. 

Part I of Exhibits II and 111 shows the matrix of o(X) values while Part 2 
I shows the matrix of values of r(cx(X)). Shown below for illustrative purposes is 
data which can be used to generate values of (Y(X) and r(a(X)) for the structure 
function provided in the partitioning example used in the paper. It will be re- 
called that the only possible values of mi were .Ol, .02, .03, . . . ,. IO and that 
the third partition was 44% efficient. The probability of any particular value of 
mi within each partition was .2. Thus we have the matrix U reflecting the struc- 

/ ture function within each class and within the overall population, as follows: 
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.z 

.02 

.03 

.04 

.05 

.06 

.07 

.08 

.09 

.I0 

Total 

I 
.2 
.2 
.2 
.O 
.2 
.O 
.2 
.O 
.O 
.o 

I.0 

Structure Function: (U) 

Class Population 

2 
.O .I 
.O .I 
.O .I 
.2 .I 
.O .I 
.2 .I 
.O .I 
.2 .I 
.2 .I 
.2 .I 

I .o I.0 

Assuming that g(x,) is negative binomial with an exposure variance equal to: 

.0625 x fEfdi))2 

as discussed earlier (see page 99), the conditional probability matrix, H, assum- 
ing an initial three year observation period, is as follows: 

.Z 

.02 

.03 

.04 

.05 

.06 

.07 

.08 

.09 

.I0 

0 
.97045 
.94180 
.91401 
.88705 
.8609 I 
.83555 
.81096 
.78710 
.76396 
.74151 

Probability of X claims given mi: (H) 
Number of Claims (X) 

I 2 3 4 
.02910 .00045 . 00000 . 00000 
.05644 .00173 .00004 . 00000 
.0821 I .00376 .00012 . 00000 
.I0618 .00649 .00027 .OOOOl 
.I2873 .00983 .0005 I .00002 
.14984 .01371 .00085 .00004 
.I6956 .01810 .00131 .00007 
.I8796 .0229 I .00190 .00012 
.20511 .028 I I .00262 .00019 
.22107 .03364 .00348 .00028 

5 
. 00000 
. 00000 
00000 
. 00000 
00000 
.ooooo 
.ooooo 
.00001 
.00001 
.00002 



RISK ASSESSMENT 123 

With this information, we begin by calculating the matrix of values of a(X): 

fffX) 
Class 0 I 2 3 4 5 

I .03463 .04762 .0564 I .06144 .06433 .06610 
2 .07260 .07911 .0840 I .08745 .08985 .09156 

Total .05254 .06813 .07727 .0828 I .08647 .08905 

Next we calculate the matrix of values of r(a(X)): 

rfafx)) 

Class 0 I 2 . 3 4 5 
1 .89963 .09319 .00677 .00040 .00002 . 00000 
2 .80303 .I7403 .02097 .00183 .00013 . 0000 I 

Total .85133 .I3361 .01387 ,001 I I .00007 . 00000 

From these two matrices it is now possible to make the following series of 
calculations: 

Class 

I 2 Total 
1. EfX,) I0800 .22200 .I6500 
2. EfX,) .03600 .07400 .05500 
3. t .33333 .33333 .33333 
4. E(M,X) .00528 .01782 .Ol I55 
5. Cov(M,X) .00139 .00139 .00247 
6. Vur(M) .00046 .00046 .00082 
7. Var, (X) .I1250 .22728 .I7314 
8. EIVar(4Jl .OOOl I .00037 .00024 

The value of E[Vur (4i)J is calculated using the following formula: 

E[ Var (&)I = { Vur, (X) - ( E, (X) + Var, (M)] } / t 

In the above table, E(X,) is equal to E, (X), and the three year variance of the 
structure function, Var, (M), is nine times the one year variance (see pages 
85-88). The details on how the values of a(X) and r(a(X)) are put to use can 
be found on pages 107-116. 
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SRI International, The Role of Risk Classification in Property and Cas- 
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geneity and risk assessment efficiency is found on pp. 81-82. of the Final 
Report: “within each group there remains a wide range of accident like- 
lihoods. The risk assessment process is still imprecise for individual in- 
sureds . . . ” 
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Stone. 
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what he calls “infinitely divisible” probability distributions and makes the 
statement that for distributions defined on the non-negative integers, every 
infinitely divisible characteristic function is compound-Poisson! (See pp. 
69-73) 

Intuitive support for the Poisson assumption can be derived by considera- 
tion of the fact that the limit of a binomial process taken over shorter and 
shorter time intervals is Poisson. 
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[5] The moments of the compound-Poisson process can be derived from the 
fact that the unconditional expectation of a random variable can be ex- 
pressed in terms of conditional expectations. If we let pi represent the con- 
ditional mean of the ith state, we can express the unconditional variance 
of such a random variable, X, as: 

Var (X) = E { E(X’I)L;) } - { ELE (XJCIOI I’ 

= E { Var (XlpJ + I E (X(piI12 ) - { E[E (XIc~i)l I’ 

= E lVarfXltJJ1 + E(Fi)” - tE(~l.;))” 

= E [Var (XlkJ] + Vur(pJ 

since E(XIpJ = pi. In the compound-Poisson distribution, the mean and 
variance of the conditional Poisson process are both equal to the parameter 
of the process, &, and thus: 

Var (Xl = E(c$J + Var 

[6],Biihlmann, p. 65. 

[7] See note [5]. In this case the conditional mean is mi. 

[8] If mi represents the average losses for the ith risk during a single period 
of time, then t x m, will represent the average losses for t units of time. 
If Vur (M) represents the variance of the structure function for a single 
period of time, then Var (t xM) will represent that variance for t units 
time. Thus: 

Var, (M) = t2 X Vur (M) 

[9J R.A. Bailey, “Any Room Left for Skimming the Cream’?” PCAS XLViI 
(1960), p. 30. 

[IO] See discussion by L.H. Roberts of Bailey, op. cit. p. 213. 

[ 111 SRI Final Report pp. 46-55, and Supplement pp. 200-203. 

[ 12 ] The SRI procedure is discussed further on pages 93-95 of this paper. 

[13] Private letter from M. Treloar to R.G. Woll, June 1978. 

[ 141 The mean and variance of the accident distribution are defined in the SRI 
Supplement, p. 177. 
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[ 151 Ferreira, p. 1 IO. Dr. Ferreira states: “. . . it is recommended that the fac- 
tors other than class means be considered in setting 1978 auto insurance 
rates in Massachusetts. It is further recommended that consideration be 
given to the homogeneity of such classes and that either the method incor- 
porated in this paper or an approach incorporating its basic principles be 
used in place qf the traditional actuarial method for determining class and 
territorial diflerentials.” (Emphasis added) 

[ 161 Ibid. p. 85. 

[l7] Ibid. 

[ 181 Ibid. p. 86. 

[I91 J. Ferreira, Jr. “Merit Rating and Automobile Insurance,” Automobile 
Insurance Clussijkation: Equity and Accuracy, Chapter 111, p. 69. 

[20] SRI Supplement, pp. 20’5-206. 

[21] Biihlmann, pp. 100-103. 

, [22] For example, see Hoel, Port, and Stone, Introduction to Stutistical The- 
ory, (Houghton Mifflin, 1971), p. 115. They show that if we write the 
regression equation as: 

Y = a + b(X - x, 

then: 

Cl=Y 

and: 

where sy and sx are the standard deviations of Y and X respectively, and p 
is the correlation coefficient of Y and X. Thus: 

b= 
cov (Y, X) ViGpj 

VVar (Y) Vur (X) xdGjg 

= Cov(Y,X) 
Var (X) 

Note that the constant term becomes: 

a=?- cov (Y. X) x x 
Var (X) 
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In other words, the constant term is equal to the mean of the dependent 
variable minus the mean of the independent variable times the slope of the 
regression line. 

[23] I am indebted to Dr. D. Rosenfield of Arthur D. Little (ADL) who helped 
me realize how the covariance of M and X could be utilized to estimate 
Var (M). 

1241 C. C. Hewitt, Jr., “Credibility for Severity,” PCAS LVII (1968), 
pp. 148-171. 

[25] Ibid. p. 150. 

[26] Ibid. p. 152. The probabilities shown in the table are taken from the de- 
scription of the die and spinner probabilities assuming independence. 

[27] R. Stewart and R.J. Campbell, “The Statistical Association between Past 
and Future Accidents and Violations,” (1970). This study is very useful 
for analyzing the concepts discussed in this paper, since it contains the 
data used in this paper along with other combinations of observation pe- 
riods and driver groups. It is not insurance data, and it is hard to know 
how indicative results based on such data might be of actual insurance 
results. 

[28] This value of K was calculated by estimating the values of r(a(X;)) from 
four year North Carolina data. First, values of E(X) and Vur (X) were 
calculated: 

E(X) = 2 Xj r t&X,)) 
,=o 

Vur (X) = {2 X,? r(cu(Xj)) } - (E(X)j2 
j=O 

and then K was set equal to the following: 

fEfXJ12 
K = Vur (X) - E(X) 

.251 72 
= .3249 - .2517 
= .8656 

[29] J. Ferreira, Jr. “Identifying Equitable Insurance Premiums for Risk 
Classes: An Alternative to the Classical Approach,” p. 82. 



EXHIBIT I 

Emcr OF MERIT RATING ON CLASS RELATIVITIES* 

‘Observed 
1975 

Average 
Claim 

Frequency k** 
(X 100) Value 

(3) (4) 
17.31 I.025 
15.21 1.752 
14.42 2. I60 
I I .78 2.066 
35.90 I .902 
35.56 I .894 
24.55 I.747 
21.30 2.720 
17.31 2.842 
13.09 0.570 
26.30 2.739 
29. I9 3.493 
21.40 2.272 

Observed 
1975 

Driver-Class 
Relativity 
(before) 

(5) 
I .067 
,938 
.889 
.726 

2.213 
2.192 
I.514 
I.313 
1.067 
.807 

I.621 
1.800 
I.319 

E 

Driver 
Class 

(I) 
00 
IO 
I2 
15 
20 
22 
24 
26 
30 
31 

.M 
42 
50 

State 
-wide 

Average 

1975 
Exposure 

% 

(2) 
3.55 

58. I I 
10.27 
9.34 

.07 

.24 
1.00 
7.37 
2.77 
I .28 
I .92 
2.94 
I .33 

100.0 16.22 I .969*** 1.00 

Predicted 
Driver-Class 

Relativity 
(after 3 years 

of Merit 
Rating) 

(6) 
1.016 
.952 
.924 
.780 

I .770 
I.759 
I.362 
I .272 
I.085 
,745 

I .48& 
1.650 
1.262 

1.00 

Percent 
Change 

(6) - (5) x 100 

(7) 
- 4.8% 
+ 1.5% 
+ 3.9% ?I! 
+ 7.4% R 

- 20.0% & 
- 19.8% 
- 10.0% I 

- 3.1% 2 
+ 1.7% 
- 7.7% 
- 8.3% 
- 8.3% 
- 4.3% 

0.0% 

*Reproduced by permission of Massachusetts State Rating Bureau. 
**The value of k is an estimate of class homogeneity. (The square root of the reciprocal of k is the coefficient of variation of 
the claim frequency distribution underlying the class.) 
***The actual statewide value of k is I .685 (See Exhibit II, Part I). 
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Class 
00 
10 
I2 
I5 
20 
22 
24 
26 
30 
31 
40 
42 
50 

Total 

Class 
00 
IO 
12 
I5 
20 
22 
24 
26 
30 
31 
40 
42 
50 

Total 

EXHIBIT II 

MASSACHUSETTS: POISSON SIMULATION 

PART I 

Expected Claim Frequencies: a(X) 

BK K E(X) 0 I 
1.022 I.025 .I73 .I15 .227 
1.753 I .752 .I52 .I21 .I90 
2.162 2.160 .I44 .I20 .I76 
2.068 2.066 .I18 .lOl ,149 
I .872 1.904 .359 .227 ,349 
1.865 I .895 .356 ,225 ,347 
1.739 I.747 .245 .I72 ,272 
2.722 2.720 .213 .I73 ,236 
2.845 2.842 . 173 .I46 .I98 
0.568 0.570 .I31 .077 .214 
2.734 2.739 .263 ,204 ,279 
3.488 3.493 .292 ,233 ,300 
2.271 2.272 .214 ,167 ,240 

I .684 I .685 .I62 .I26 .I99 

a(X) 
2 3 

,340 ,451 
.258 .327 
.231 ,287 
.I98 ,247 
.47 I .592 
,468 ,589 
.37l .469 
,299 ,363 
.249 .3Ol 
.350 .486 
.354 ,428 
.367 ,434 
.314 .387 

.274 .351 

4 5 
,563 .675 
.396 .464 
,343 ,398 
.296 .345 
,714 ,837 
.711 .833 
568 ,667 
.426 .488 
.352 ,404 
.622 ,758 
.502 .576 
.500 .567 
.460 .533 

.433 522 

PART 2 

Distribution within Class and Merit Rating Category: r(a(X)) 

r(dW) 
0 I 2 3 4 5 Weight 

,657 ,226 .077 .026 .009 .003 .035 
.667 ,241 .069 .Ol8 ,004 .OOl .580 
,674 .243 .064 .015 .003 .OOl .I02 
.722 .218 .049 .d’lO .002 .ooo .093 
,428 ,292 .I53 .072 ,032 ,014 .ooi 
.43l .291 .I52 .07 I .031 .Ol3 St02 
,542 ,280 .I14 ,042 .015 ,005 .OlO 
.563 .292 .I03 .031 .008 .002 .074 
,621 .273 .08 I .028 .005 ,001 ,028 
,742 .172 .055 .Ol9 .007 ,003 ,013 
,500 ,306 .I28 .045 .Ol5 ,004 ,019 
,458 .320 .I44 .053 .017 ,005 .029 
.568 .284 ,103 .032 .009 .003 .Ol3 

.652 .247 .074 .020 .005 .OOl 1.000 
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Class 
00 
IO 
I2 
I5 
20 
22 
24 
26 
30 
31 
40 
42 
50 

Total 

0 I 2 3 4 
I.000 I .982 2.963 3.936 4.908 
l.ooO I.571 2.141 2.71 I 3.279 
1.000 .462 I .925 2.388 2.850 
1.000 ,483 1.966 2.45 I 2.937 
1.000 .540 2.076 2.610 3.147 
l.ooO .542 2.080 2.616 3.156 
1.000 ,579 2.154 2.726 3.297 
1.000 I.368 1.735 2.102 2.467 
1.000 I.351 I .702 2.054 2.406 
I.000 2.758 4.526 6.278 8.028 
1.000 1.368 I .734 2.098 2.460 
1.000 I .288 I .575 1.859 2.143 
l.ooo I.441 I .882 2.320 2.756 

1.000 I.576 2.164 2.777 3.425 

Merit Rating Relativities to Class Mean: a(X) +./Z(X) 

Class 0 I 
00 0.663 I.313 
IO 0.793 1.246 
I2 0.833 I.219 
I5 0.854 I .267 
20 0.634 0.976 
22 0.635 0.979 
24 0.702 I.108 
26 0.810 I.108 
30 0.846 I.143 
31 0.591 1.631 
40 0.776 I .06l 
42 0.799 I.029 
50 0.779 1.123 

Total 0.779 I .228 
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EXHIBIT II 

MASSACHUSETTS: POISSON SIMULATION 

PART 3 

Merit Rating Relativities to Claim Free Rate: a(X) + a(O) 

a(X) f a(O) 

5 
5.887 
3.844 
3.309 
3.425 
3.691 
3.701 
3.873 
2.831 
2.75’6 
9.793 
2.823 
2.430 
3.193 

4. I25 

PART 4 

a(X) + E(X) 

2 3 
I .963 2.608 
I .699 2.151 
1.604 I .990 
I .679 2.093 
I.315 1.654 
1.321 1.661 
I.512 1.913 
I .405 I .702 
1.440 I .737 
2.676 3.712 
I .345 I .627 
I .258 I.486 
I .467 1.809 

I .686 2.164 

4 5 
3.252 3.901 
2.601 3.050 
2.375 2.757 
2.508 2.925 
I .995 2.339 
2.004 2.350 
2.314 2.719 
I .997 2.293 
2.035 2.331 
4.747 5.791 
1.908 2.189 
I.713 I.941 
2.148 2.489 

2.669 3.214 
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EXHIBIT III 

MASSACHUSETTS: NEGATIVE BINOMIAL SIMULATION 

PART I 

Expected Claim Frequencies: a(X) 

131 

Class 
00 
IO 
12 
I5 
20 
22 
24 
26 
30 
31 
40 
42 
50 

Total 

Class 
00 
IO 
12 
15 
20 
22 
24 
26 
30 
31 
40 
42 
50 

Total 

BK K E(X) 0 
1.245 1.017 .I73 .I24 
2.331 1.748 ,152 ,128 
3.019 2.153 .I44 ,127 
2.853 2.059 .I18 .I05 
2.473 1.836 ,359 .257 
2.462 1.830 ,356 .255 
2.299 I.722 ,245 ,189 
4.094 2.712 .213 .I86 
4.344 2.831 ,173 .I56 
0.658 0.565 .I31 .084 
4.125 2.727 ,263 ,224 
5.888 3.487 .292 .257 
3.221 2.265 .214 .I80 

2.219 1.679 .I62 .I35 

I 
.220 
,181 
.I67 
.I41 
.354 
.351 
,267 
.229 
,190 
,207 
,274 
.298 
.233 

.I91 

PART 2 

a(X) 

2 3 
.312 ,400 
,232 ,283 
.207 .245 
.I76 ,210 
,447 .536 
.444 ,533 
.342 .415 
.271 ,312 
,223 .256 
.325 .437 
,324 .372 
.337 ,376 
,285 ,336 

.247 .304 

4 5 
.485 .568 
.332 .380 
.284 ,321 
,244 .277 
.622 .707 
.619 .704 
.485 .553 
.353 .393 
.289 .322 
.545 .650 
.420 .465 
.415 .452 
.385 .433 

.363 .425 

Distribution within Class and Merit Rating Category: r(a(X)) 
da(W) 

0 I _ 
,656 ,229 
.666 .243 
.674 ,244 
.72l .219 
.426 .297 
.429 .296 
,540 ,283 
,562 ,294 
.620 .274 
.740 .I75 
.498 .309 
,456 .323 
,567 .287 

.651 .249 

.OL76 

.068 

.063 
,048 
.I53 
.I52 
.I13 
.I02 
.080 
.055 
.I27 
.I44 
.I02 

.073 

3 
,025 
.Ol7 
.Ol5 
.OlO 
.070 
.070 
a41 
.030 
.020 
.Ol9 
.045 
.052 
.032 

.020 

4 
.009 
.004 
.003 
.002 
.03l 
.030 
.Ol5 
.008 
.005 
.007 
.014 
.Ol7 
.009 

.005 

5 
.003 
,001 
.OOl 
.ooo 
.031 
,013 
.005 
.002 
,001 
.003 
.004 
.oos 
.003 

.OOl 

Weight 
.oj5 
.580 
.I02 
.093 
.ool 
a02 
,010 
,074 
.028 
,013 
.Ol9 
.029 
.Ol3 

1.000 



132 RISK ASSESSMENT 

EXHIBIT Ill 

MASSACHUSETTS: NEGATIVE BINOMIAL SIMULATION 

PART 3 

Merit Rating Relativities to Claim Free Rate: a(X) f a(O) 

Class 
00 
IO 
12 
15 
20 
22 
24 
26 
30 
31 
40 
42 
50 

Total 

0 I 
1.000 I .770 
1.000 I.410 

a(X) + a(O) 

2 3 
2.510 3.221 
I.811 2.203 

4 5 
3.906 4.569 
2.586 2.959 

l.ooO 

1.000 

2.462 

I.317 
1.000 I .338 
1.000 1.378 
1.000 

1.000 

I .380 

I .227 

1.000 I.412 
1.000 1.230 
1.000 

1.000 I.158 

I.219 

1.000 I.294 

1.000 I.419 

I ,628 I .934 

3.868 

2.235 

5.209 

2.531 
.669 

6.497 

I.996 

7.744 

2.317 2.635 

1.449 

.740 2.087 

I .666 

2.425 

I .876 2.081 

2.756 
,743 2.092 

I.313 

-2.&32 

1.464 

2.764 
.809 

I.613 

2.193 

1.757 

2.563 2.923 

I .580 

.456 

I.860 

I.678 

2.133 

1.896 

2.398 

2.1 I2 
.434 1.646 

I.834 

I.858 

2.256 

2.070 

2.691 3.150 

PART 4 

Merit Rating Relativities to Class Mean: a(X) + E(X) 

a(X) + E(X) 

Class 0 I 2 3 4 5 
00 0.718 I.272 1.803 2.314 2.806 3.283 
IO 0.843 I.189 I.527 I .858 2.181 2.495 
I2 0.880 I.159 I .433 I .702 I .967 2.227 
I5 0.894 I.196 I .492 I.784 2.071 2.355 
20 0.718 0.989 I.249 I.499 I.741 1.979 
22 0.719 0.992 I .253 I .504 I.748 I .987 
24 0.771 I .088 I .395 I.690 I .976 2.253 
26 0.873 I.073 I.270 1.464 I .655 I.843 
30 0.898 1.095 I .288 1.479 I .669 1.860 
31 0.640 I .574 2.474 3.332 4. I56 4.954 
40 0.850 I .043 I.231 I.415 I .594 1.768 
42 0.880 I.018 I.155 I .288 I.419 I.546 
50 0.843 I.090 I.332 I.567 I.797 2.021 

Total 0.83 I I.179 I.523 1.873 2.235 2.616 



.c205 

.cQo55 

.00550 

.01500 

.02500 

.03500 

.@4500 

.05500 

.O6500 

.07500 

.08500 

.095Ou 

.I0500 

.I1500 

.I2500 

.I3500 

.I4500 

.I5500 

.I6500 

.I7500 

.I8500 

.I9500 

.20500 

.21500 

.22500 

.23500 

.24500 

.25500 

.26500 

.27500 

.28500 

.29500 

.30500 

.31500 

.32500 

.33500 

.34500 

.35500 
..36500 
.74000 
.84ooo 
.94ooo 

RISK ASSESSMENT 

EXHIBIT IV 
PART IA 

MASSACHUSETTS: POISSON SIMULATION 

Gamma Structure Function Probabilities: U(y) 

Class 

00 IO 
.00052 .ooooO 
.00483 .00024 
.04873 .01276 
.05215 .02783 
.04960 .03663 
.04702 .04213 
.04452 .04542 
.04212 .047l I 
.03983 .04763 
.03764 .04729 
.03557 .04632 
.03360 .04489 
.03 174 ,043 I4 
.02997 ,041 I8 
.02830 .03908 
.02672 .03690 
.02523 .0347 I 
.02381 .03252 
.02248 .03038 
.02122 .02830 
.02003 .02630 
.01890 .02438 
.01784 .02256 
.01683 .02084 
.01588 .01922 
.01499 .01769 
.01414 .01627 
.01335 .01494 
.01259 .01371 
.Oll88 .01256 
.Ol I21 .Ol I50 
.01058 .01051 
.00998 .0096l 
.00942 .00877 
.00888 .00800 
.OO838 .00729 
.00791 .00665 
.00746 .00605 
.00704 .0055 I 
.00754 .ooll7 
.00420 .00041 
.00234 .00014 

I2 
.oomo 
.OOc05 
.00629 
.01937 
.0303 I 
.03866 
.04463 
.04856 
.05080 
.05167 
.05146 
.05043 
.04877 
.c4667 
.04427 
.@I168 
.03898 
.03626 
.03356 
.03093 
.02840 
.02599 
.0237 I 
.02157 
.01957 
.01772 
.01600 
.Ol443 
.01299 
.Oll67 
.01047 
.00938 
.@I839 
.00750 
.00669 
.00596 
.0053 I 
.00472 
.00420 
.OOQ32 
.00008 
.cucO3 

I5 
.ooom 
.oool I 
.Ol I21 
.03109 
.04525 
.05454 
.05995 
.06239 
.06262 
Ml25 
.05876 
.05554 
.05187 
.04796 
.04399 
.04OQ7 
.03629 
.03269 
.02932 
,026 I9 
.02332 
.02069 
.01831 
.Ol616 
.01423 
.Ol251 
.01097 

.00839 

.00732 

.00638 

.00555 

.@I483 

.00419 

.00363 

.00315 

.00273 

.00236 

.00204 

.OwO5 

.oooo2 

20 22 
.ooooO .ooooO 
.OwO3 .cKmo4 
.00228 .00237 
.00573 .0059 I 
.00842 .00864 
.OlQ64 .01089 
.O I250 .01278 
.01408 .01436 
.Ol541 .01570 
.01652 .01681 
.01745 .017!3 
.Ol821 .01849 
.O I883 .01910 
.01932 .01957 
.01969 .01993 
.01997 .02019 
,020 I5 .02036 
.02025 .02045 
.02028 .02046 
.02025 .02042 
.02016 .0203 I 
.02002 ,020 I6 
.01984 .01997 
.01962 .01973 
.01937 .o I947 
.01909 .01917 
.01878 .01886 
.01846 .01852 
.Ol81 I .01816 
.01775 .01779 
.01738 .01741 
.Ol700 .01701 
.Ol661 .01662 
.Ol621 .01621 
.Ol581 .01580 
.Ol541 .o I539 
.01500 .O I498 
.Ol460 .01457 
.01420 .01416 
.03628 .03561 
,024 I3 .02359 
.01586 .Ol545 

133 



RISK ASSESSMENT 

EXHIBIT IV 
PART IB 

MASSACHUSETTS: POISSON SIMULATION 

Gamma Structure Function Probabilities: U(m,) 

.OGOs 

.00055 

.00550 

.01500 

.02500 

.03500 

.04500 

.05500 

.06500 

.07500 

.08500 

.09500 

.10500 

.I1500 

.I2500 

.I3500 

.I4500 

.I5500 

.I6500 

.I7500 

.I8500 

.I9500 

.20500 

.21500 

.22500 

.23500 

.24500 

.25500 

.26500 

.27500 

.28500 

.29500 

.30500 

.31500 

.32500 

.33500 

.34500 

.35500 

.365Oil 

.74000 

.84OOCI 

.94000 

Class 

24 

.OoOl2 

.00605 

.01339 

.01817 

.02166 

.02426 

.02617 

.02756 

.0285 I 

.029l I 

.02942 

.02949 

.02937 
.02909 
.02868 
.02816 
.02755 
.02687 
.02614 
.02537 
.02457 
.02375 
.02292 
.02208 
.02 I24 
.02041 
.Ol958 
.O I877 
.o I797 
.01719 
.01643 
.O I569 
.01497 
.01428 
.01360 
.01295 
.01233 
.Oll72 
.01337 
.00725 
.00389 

26 30 31 40 42 50 
.m .ooooO .01429 .ooooo .oQooo .twOoO 
.oomo .ooooO .03789 .ooooo .oQooo .OOOOl 
.00078 .OillO3 .I3601 .00045 .lMOO5 .00219 
.00393 .00558 .08564 .0023 I .00045 .00765 
.00827 .01204 .06508 .00497 .00138 .01315 
.01297 .01902 .05369 .00798 .00279 .01812 
.01760 .02568 .04604 .Ol I08 .00460 .02243 
.02188 .03 I59 .04038 .Ol4l I .00670 .02603 
.02569 .03652 .03595 .O I696 .00899 .02894 
.02893 .04039 .03234 .01957 .Oll37 .03 I22 
.03160 .04320 .02933 .02 I89 .01376 .03292 
.03368 .04503 .02676 .0239 I .Ol609 .03410 
.03523 .04597 .02453 .0256 I .Ol831 .03482 
.03627 .04615 .02258 .0270 I .02036 .03516 
.03685 .04569 .02086 .02812 .02222 .03515 
.03703 .04469 .01932 .02895 .02387 .03486 
.03686 .04327 .o I793 .02952 .02529 .03433 
.03639 .04152 .O I669 .02986 .02649 .03360 
.03567 .03954 .01555 .02998 .02745 .03272 
.03474 .03740 .01452 .02992 .02819 .03171 
.03364 .03516 .o I357 .02969 .02872 .0306 I 
.03242 .03287 .01271 .02931 .‘02905 .02943 
.03llO .03058 .Ol I91 .0288 I .02919 .02820 
.0297 I .02833 .Ol I I7 .02819 .02916 .02695 
.02827 .02614 .01049 .02749 .02897 .02568 
.02682 .02403 .00986 .02672 .02864 .02440 
.02535 .02201 .00927 .02588 .02819 .02314 
.02390 .02010 .00873 .02500 .02763 .02190 
.02248 .Ol831 .00822 .02409 .02698 .02068 
.02108 .01663 .00775 ,023 I5 .02625 .01950 
.01973 .01507 .0073 I .02220 .02546 .01835 
.O I843 .01362 .@I690 .02 I24 .02462 .01724 
.01717 .01229 .00651 .02029 .02374 .Ol618 
.O I598 .OllO6 .00615 .o I934 .02282 .Ol516 
.01484 .OO994 .00581 .O I840 .02189 .01418 
.O I376 .OO892 .00549 .O I748 .02095 .01326 
.01273 .00799 .00519 .01658 .02000 .01238 
.Oll77 .00714 .00491 .Ol570 .O I906 .Ol I54 
.01087 .00638 .00465 .01485 .01812 .OlO75 
.00285 .00046 .00655 .00979 .Ol I31 .00467 
.00099 .ooo10 .00403 .CKI432 .00470 .00190 
.00033 .00005 .00250 .cal86 .OOl89 .00076 



RISK ASSESSMENT 

EXHIBIT IV 
PART 2A 

MASSACHUSETTS: NEGATIVE BINOMIAL SIMULATION 

Gamma Structure Function Probabilities: U(m,j 

Class 

135 

.0&5 00 IO I2 
.cMll I .ooooO .ooooO 

.00055 .00182 .OOoO2 .ooml 

.00550 .03052 .00404 .00122 

.Ol500 .04128 .01436 .00730 

.02500 .04356 .02435 .01642 

.03500 .o4400 .03275 .02625 

.04500 .04352 .0393 I .03539 

.05500 .04252 .04409 .04309 

.06500 .04120 .04728 .04902 

.07500 .03970 .049lO .05312 

.08500 .03808 .04979 .0555 I 

.09500 .0364 I .04955 .05639 
IO500 .03472 .04858 .05601 

.I1500 .03303 .04705 .0546l 

.I2500 .03137 .045l I .05243 

.I3500 .02975 .04289 .04968 

.I4500 .Q2817 .04047 .04656 

.I5500 .02664 .03795 .0432l 

.I6500 .02518 .03538 .03977 

.I7500 .02377 .03283 .03633 

.I8500 .02242 .03033 .03296 

.I9500 ,021 I4 .02791 .02973 

.20500 .01991 .02559 I2668 

.21500 .01875 .02339 .02382 

.22500 .O I765 .02132 ,021 I8 

.23500 .01660 .01938 .01875 

.24500 .Ol561 .01757 .01654 

.25500 .01467 .0159O .01454 

.26500 .01378 .Ol435 .01275 

.27500 .01294 .01294 .Olll4 

.28500 .01215 .Ol I64 .0097l 

.29500 .Oll40 .OlO45 .00844 

.30500 .01070 .00937 .00732 

.31500 .01004 .00839 .00634 

.32500 .OQ941 .0075 I .00547 

.33500 .00883 .00670 .00472 

.34500 .00827 .OO598 .OQ406 

.35500 .00776 .00533 .00349 

.36500 .00727 .00474 .00299 

.74000 .00558 .00036 .OoOO7 

.84000 .0028 I .oooo9 .ooooO 

.94cKxl .OQl41 .oooo4 .oocm 

I5 20 12 
oooo0 .ooooO .ooooO 
.x)ooo .ooom .ooooO 
.00289 .00042 .ooo44 
.Ol472 .00177 .OOl84 
.02958 .00345 .00358 
.04334 .@I525 .00542 
.05426 .00706 .00727 
.06184 .00882 .00907 
.0662l .o I050 .01078 
.06780 .01208 .01237 
,067 I5 .01353 .01383 
.06480 .01485 .Ol516 
.06 I25 .01604 .01636 
.05692 .01710 .01741 
.05215 .01803 .01833 
.0472l .O I883 .01913 
.0423 I .01951 .01979 
.03757 .02007 .02034 
.033l I .02052 .02079 
.02898 .02088 ,021 I2 
.02522 ,021 I4 .02136 
.02 I82 .02131 .02152 
.01879 .02140 .02159 
.Ol610 .02141 .02 I59 
.o I375 .02 I36 .02152 
.Oll69 .02 I25 .02139 
.00991 .02108 .02120 
.00838 .02087 .02097 
.00706 .02061 .02069 
.00593 .0203 I .02038 
.00498 .o I997 .02003 
.00416 .01961 .01965 
.00347 .Ol922 .Ol925 
.00289 .Ol881 .01882 
.0024 I .Ol838 .Ol838 
.00200 .01794 .01793 
.00165 .01748 .01746 
.00137 .01702 .01698 
,001 I3 .01655 .O I650 
.ooooO .03403 .03323 
.coooo .0206a .02002 
.oocclo .01222 .Ol I81 



136 RISK ASSESSMENT 

EXHIBIT IV 
PART 2B 

MASSACHUSEITS: NEGATIVE BINOMIAL SIMULATION 

Gamma Structure Function Probabilities: l&m,) 

.0&s 

.00055 

.00550 

.01500 

.02500 

.035Ou 

.04500 

.05500 

.06500 

.07500 

.08500 

.09500 
II0500 
.I1500 
.I2500 
.I3500 
.I4500 
.15500 
.I6500 
.I7500 
.I8500 
.I9500 
.20500 
.21500 
.22500 
.23500 
.24500 
.25500 
.26500 
.27500 
.28500 
.29500 
.30500 
.31500 
.32500 
.33500 
.34500 
.35500 

,365OO 
.74pl 
.84ooo 
.940@0 

24 26 30 31 40 42 
.ooQoo .caooo .ooooO .00773 .oocoo .oomo 
.ocnol .oomo .ooooo .02699 .m .ooooO 
.00154 .00003 .oc!OO5 .I1876 .oooOl .oomo 
.00554 .00048 .00075 .08325 .0002l .OOC@l 
.0097p .OOl82 .00302 .06593 .00083 .OOGO5 
.01369 .00422 .00716 .05572 .00199 .00019 
.01724 .00756 .Ol287 .04855 .00372 .00051 
.02035 .Oll62 .Ol960 .04307 .00593 :OOlll 
.02300 .01610 .02670 .03866 .00854 .OC205 
.02520 .0207 I .03356 .03500 .Ol I41 .00337 
.02698 .02521 .03974 .03188 .Ol442 .00507 
.02837 .02938 .04490 .02918 .Ol744 .00714 
.0294 I .03308 .04886 .02682 .02039 .OW52 
.03012 .03620 .05158 .02472 .02316 .01215 
.03056 .03870 .05307 .02285 .02569 .01493 
.03074 .04055 .05344 ,021 I7 .02794 .01779 
.0307 I .04176 .05283 .01965 .02986 .02063 
.03049 .04238 .05 139 .O I826 .03 144 .02337 
.03010 .04245 .04929 .Ol700 .03268 .02594 
.02958 .04203 .04670 .01585 .03358 .02828 
.02895 .04120 .@I376 .01479 .03416 .03035 
.02823 .04002 .04060 .01382 .03442 .03209 
.02743 .03856 .03734 .01292 ,034 I .0335 I 
.02657 .03687 .03407 .01209 .03414 .03458 
.02566 .03502 .03085 .Oll33 .03364 .0353 I 
.02472 .03306 .02776 .OlO61 .03295 .03570 
.02377 .03103 .02482 .00995 .03208 .03578 
.02279 .02898 .02207 .00934 .03 I08 .03557 
.02182 .02693 .01952 .00877 .02996 .03509 
.02085 .02492 .01719 .00824 .02876 .03438 
.01989 .02296 .O I506 .00774 .02749 .03347 
.01894 .02108 .01315 .00728 .02618 .03238 
.01801 .01928 .Oll43 .00684 .02484 .03116 
.01710 .01757 .00990 .00644 .02348 .02982 
.01622 .01597 .00855 .oo606 .02214 .02840 
.01537 .Ol447 .00736 .0057 I .02080, .02692 
.01454 .01307 .OQ63 I .00537 .01950 .02540 
.01374 .Oll78 .OQ540 .00506 .01822 .02388 
.O I297 .OlO59 .OQ461 .00477 .01699 .02235 
.00925 .00063 .ooOl8 .00553 .00406 II0342 
.00428 .cUOO3 .omoo .00322 .00125 .00078 
.00195 .00016 .lxlooO .OOl88 .00036 .00032 

50 
.cQooo 
.ooooO 
.OGO25 
.00182 
.00477 
.00862 
.01295 
.Ol740 
.02170 
.02567 
.02917 
.03214 
.03455 
.03639 

.03880 

.0387 I 

.03752 

.03653 

.03532 

.03396 

.03248 

.0309 I 

.02764 

.02599 

.02275 
,021 I8 
.01967 
.01823 
.01684 
.01553 
.01429 
.01312 
.01203 
.Ol IO1 
.00175 
.00051 
.OOOl3 



.0&5 

.00055 

.00550 

.Ol500 

.02500 

.03500 

.04500 

.05500 
Lx500 
.07500 
.08500 
.09500 
.10500 
.I1500 
.I2500 
.I3500 
.I4500 
.I5500 
.I6500 
.I7500 
.I8500 
.I9500 
.20500 
.215OU 
.22500 
.23500 
.24500 
.25500 
.26500 
.27500 
.28500 
.29500 
.305cxl 
.31500 
.32500 
.33500 
.345OO 
.35500 
.36500 
.74ooo 
.84ooo 
.94000 

RISK ASSESSMENT 

EXHIBIT V 
PART I 

MASSACHUSFITS: POISSON SIMULATION 

Probability of X Claims Given mi: (H) 

Number of Claims: (Xj 

0 
.99985 
.99835 
.98364 
.956cO 
.92774 
.90032 
.87372 
.84789 
.82283 
.79852 
.77492 
.75201 
.72979 
.70822 
.68729 
.66698 
.64726 
.62814 
.60957 
.59156 
.57407 
.557l I 
.54064 
.52466 
.50916 
.4941 I 
.4795 1 
.46533 
.45 I58 
.43823 
.42528 
.4127l 
.40052 
.38868 
.37719 
.36604 
.35523 
.34473 
.33454 
.I0861 
.08046 
.05%l 

I 2 
.OilO15 .m 
.00165 .oooQo 
.01623 .00013 
.04302 .00097 
.06958 .00261 
.09453 .00496 
.I1795 .00796 
.I3990 .Ol I54 
.I6045 .01564 
I7967 .0202 I 

.I9760 .02519 

.21432 .03054 

.22988 .b362 I 

.24434 .04215 

.25773 .04833 

.27013 .05470 

.28156 .%I24 

.29208 .06791 

.30174 .07468 

.31057 .08152 

.31861 .08841 

.32591 .09533 

.33249 .I0224 

.33841 .I0914 

.34368 .I1599 

.34835 .I2279 

.35244 .I2952 

.35598 .I3616 

.35901 .I4271 

.36154 .I4914 

.36362 .I5545 

.36525 .I6162 

.36647 I6766 
:36730 .I7355 
.36776 .I7928 
.36787 I8486 
.36766 I9026 
.36714 .I9550 
.36632 .20056 
.24lll .26763 
.20276 .25548 
.I6809 .23701 

3 4 5 
.oocao .lxlooO oooo0 
.oocm .m oooo0 
.ooooO .ooooO oooo0 
.OOOOl .ooooO oouou 
.OOw7 .ooooO olmo 
.00017 .ooooo oooo0 
.00036 .OOOOl .3oooo 
.OGQ63 .00003 .m 
.00102 .Ooc!O5 .xKloo 
.OOl52 .00009 .ooooo 
.C0214 .00014 .C0001 
.00290 .0002 I .OOOOl 
.00380 .00030 .00002 
.00485 xc042 .OculO3 
.00604 .00057 .oom4 
.00738 .tMO75 .oooo6 
.00888 .00097 .OWO8 
.01053 .OOl22 .OOOl I 
.01232 .OQl52 .OOOl5 
.01427 .00187 .00020 
.01636 .00227 .OOO25 
.01859 .00272 .OQO32 
.02096 .00322 .CCO40 
.02346 .00378 .00049 
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.03173 .00583 .00086 
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RISK ASSRSSMENT 

EXHIBIT V 
PART 2 

MASSACHUSETTS: NEGATIVE BINOMIAL SIMULATION 

Robability of X Claims Given mi: (H) 

Number of Claims: (XJ 
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.45261 .34494 .I4459 
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.Ol212 .00267 
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.02067 00543 
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