conditions will have on loss distributions during the period under study. For example, law amendments obviously can affect the characteristics of a loss distribution. Changes in wage level may also affect the shape of the distributional curve because of the maximum and minimum limitations on workmen's compensation benefits. A Supreme Court decision applicable to a particular type of injury is another factor to be taken into account. These changes may not appreciably affect a distribution over a short period of time such as Mr. Dropkin has used in his analysis of California data, but such changes could significantly affect loss distributions over a longer period of time which would be required if other states were being reviewed.

The California Unit Statistical Plan requires that all indemnity cases be listed separately regardless of amount. Under the present National Council rules, all claims which have a total loss (indemnity and medical combined) less than \$500 may be lumped together. A good percentage of temporary total cases are under \$500 and, are reported on a combined basis. In addition, there are a number of minor permanent partial cases under \$500. Hence, loss distributions that might be developed for other states would have as its first interval all claims under \$500. This means that a study of the other states would be useful if we are concerned only with the larger loss sizes. This suggests that a mathematical analysis of the upper parts of a loss distribution would involve the theory of extreme values. This could be a good subject for a future paper.

Development of losses beyond a first reporting basis can be significant, particularly for serious injuries. Unfortunately, Mr. Dropkin's analysis had to be confined to first reporting figures, since losses were not available on a per-claim basis on a subsequent reporting basis.

It is hoped that the problems to be faced in analyzing loss distributions for other states can be met with successfully in order that we can augment the very fine work that Mr. Dropkin has initiated in California.

DISCUSSION BY LEROY J. SIMON

We all know what to expect when we read a paper by Mr. Dropkin. We expect to get some new ideas, come interesting information and a careful, precise and correct presentation which mixes both the practical and the theoretical. In his paper, Size of Loss Distributions in Workmen's Compensation Insurance, we are not disappointed. The interesting information this time comes in the form of a series of ten actual distributions of losses in Workmen's Compensation. One of the significant new ideas that we get from the paper is an introduction to the Kolmogorov test. The blending of the theoretical and practical is quite evident in Mr. Dropkin's summary at the end of the paper. Hence, any comments I make will be either supplementary to what the author has said or will look into areas which are outside of the scope that the author set for himself in the original paper.

Basic distributions of losses of this sort are fundamental to the Theory of Risk. If we could have a theory with enough of an empirical basis, we could not only have better based "D" ratios but could also find it quite helpful in constructing Table M, determining excess of loss factors and in establishing S-Points. While the Theory of Risk may not be sufficiently advanced in the United States to make its use feasible at this time in the construction of Table M, the determination of excess of loss factors is a rather straightforward calculation which can be easily demonstrated. Exhibit A is a calculation based on policy year 1961 of the excess losses over six different levels of loss. It was necessary to assume that the Medical Only losses were all less than \$10,000 which is undoubtedly a safe assumption. It is unfortunate that Mr. Dropkin did not include a distribution of the Medical Only claims, even though he would have been forced to make the first interval extend from 0 to \$500. One must be careful when referring to these excess of loss factors to recall that the raw data is from first reports under the Unit Statistical Plan. This means that some of the losses have been evaluated with as little as six months or less (depending upon individual company processing methods) of elapsed time since the accident occurred. The maximum amount of time of evaluation would be 18 months. The general tendency is for certain claims to become more severe as they age and the excess of loss factors are influenced markedly by the presence of large losses. One must view these figures as minimum indications and recognize that they apply only to California in policy year 1961. Extensions beyond this scope can be made, of course, subject to the use of sound actuarial judgment. Both curve fitting tech-niques and statistical tests of significance could be used in this area to smooth out the irregularities in the raw data and to help decide when a set of excess of loss factors have need of revision.

In our experience rating plans in Workmen's Compensation we attempt to establish a point at which the insured will become entirely selfrated (the S-Point). Any system for determining S will have a set of controls which will attempt to minimize any sharp variation from one year to the next. One typical technique is to use two or more years of data, dropping out the earliest and adding in the latest year each time. Ignoring these types of controls, one system in use in the past for determining S was

to make it a function of the average Death and Permanent Total loss in the state. It was found that the variations in this statistic were quite violent (especially in the smaller states), and a considerable degree of arbitrary control had to be imposed upon the result. In an effort to avoid this, the National Council on Compensation Insurance went to a function of the average Serious case (where Serious cases are Death, Permanent Total and Major Permanent Partials). A third method which has been suggested by this reviewer is based upon the percentile values of the distribution of losses excluding the Medical Only cases. The general reasoning is based upon the fact that the S-Point should be located at a point where the premium from year to year on risks that are at or above this point will be relatively stable. In other words, if the risk is going to have 100% credibility, he should have a fairly stable premium from one rating period to the next. It is also desirable to have S vary from state to state since the laws vary on a state basis and, hence, the distribution of losses will vary this way also. Finally, S should change if the law within a state changes in such a way as to make the loss distribution more "dangerous" or less "dangerous." This is another example of the age-old actuarial problem of wanting responsiveness to changing conditions, but wanting protection from unnecessary random fluctuation. Exhibit B consolidates the data from Mr. Dropkin's paper into a single distribution for each policy year. This type of information was used to locate certain percentile values. In each case a careful study of the published distributions by type of injury was made to establish the percentile value as accurately as possible. In actual practice one would use ungrouped data and obviate the need for approximation. In Exhibit C we have a comparison of the variation from one year to the next in the average Death and Permanent Total value, the average Serious case value and each of a number of percentile values. We can see from this exhibit that the two average value figures did not change much, while each of the percentile values moved up sharply. This latter fact indicates that the distribution has become more "dangerous" and, hence, there should be an increase in the 100% credibility point. Further experimentation along this avenue of approach to establishing the S-Point seems worthwhile.

It is appropriate to point out here that the entire change from 1960 to 1961 cannot be attributable to random fluctuation since there were two law amendments which have an effect upon the two sets of data. The individual losses are included in the loss distributions at the incurred cost to the company and are unadjusted for the effect of any benefit level changes. Mr. Dropkin has written me as follows: "There was a change in benefit level effective September 15, 1961. The calculated effect was as follows:

Type of Injury	Effect			
Death	1.005			
P.T.	1.001			
Major	1.007			
Serious	1.006			
Minor	1.011			
Temp.	1.039			
Non-Serious	1.018			
Medical	1.000			
Total	1.009			

It should be noted that the effects listed above are for the indemnity portion and the total medical portion separately, while the incurred loss size used in the basic distribution represent the indemnity and medical amounts combined. Also, effective October 1, 1962, there was a change in the Official Minimum Medical Fee Schedule which was applicable to all injuries whenever they may have occurred. In calculating the effect in this case we considered only new injuries since there is no good way to measure the effect on old ones. The calculated effect was:

Indemnity	1.000
Medical	1.025
Total	1.008"

The use of the one-sample Kolmogorov test leads rather naturally to the use of the two-sample Kolmogorov test to test the hypothesis that the two samples could have been drawn from the same population. Hoel¹ does not feel that this test possesses any advantages over other non-parametric methods for dealing with this problem. However, Siegel² cites it as the most powerful test available for continuous distributions when we wish to test for any kind of difference in the two samples. We proceed in the two-sample Kolmogorov test by evaluating D_{min} as the maximum absolute deviation between the two observed cumulative frequencies that we are testing. If $S_m(x)$ and $S_n(x)$ are the two observed cumulative relative frequencies in the samples of sizes m and n, then

¹ Hoel, Paul G., Introduction to Mathematical Statistics, Third Edition, John Wiley & Sons, Inc., New York, 1962, p. 349.

² Siegel, Sidney, Nonparametric Statistics for the Behavioral Sciences, McGraw-Hill Book Company, Inc., 1956, p. 157.

$$\mathbf{D}_{mn} = \frac{\max_{\mathbf{x}}}{\mathbf{x}} \left| \mathbf{S}_m(\mathbf{x}) - \mathbf{S}_n(\mathbf{x}) \right|$$

For small samples and when m = n, published tables are available for the test of significance. However, when the number of cases exceeds 40 in each

sample, the critical value can be found by the formula $k\sqrt{\frac{m+n}{mn}}$ where k is 1.3581 at the 5% level and 1.6276 at the 1% level. The test then reduces to comparing the sample value of D_{mn} against the critical value at the level of significance desired. Exhibits D through H set forth the two observed cumulative relative frequency distributions and the differences necessary to determine D_{mn} . Each of the exhibits has been shortened somewhat, especially by coarser grouping in the upper tails, but no significant

what, especially by coarser grouping in the upper tails, but no significant information has been omitted. Exhibit E of Permanent Total cases is different only because the raw data was set forth for each case separately, while all other distributions were presented on a grouped basis. Column (5) of Exhibit I sets forth the sample value of D_{mn} for each of the types of loss. Columns (3) and (4) show the critical values of D_{mn} at the two significance levels most commonly used by statisticians, and column (6) shows the conclusion reached on the hypothesis that the two samples came from the same population (against the alternative that they came from different populations). The rule used is to accept the hypothesis below the 5% level, to reject it above the 1% level and to remain in doubt when the sample statistic falls between these two levels. In the case of Temporary losses the sample statistic puts us in the doubtful area. With access to the entire raw data, it would be well to go back to the interval 650-699 and investigate more carefully on a case-by-case basis to determine the true maximum value of the statistic D_{mn} . A similar investigation would be made in the interval 800-849. This may very well lead to a value in excess of .0096 and, thus, lead to rejection of the hypothesis at the 1% level. This illustrates one of the problems when dealing with grouped data. If the grouping is too coarse, a significant difference between distributions can be completely masked. If there is any grouping at all and the test statistic gets close to the critical value, the researcher must go back and get more information in order to arrive at his conclusion. This two-tailed Kolmogorov two-sample test is appropriate when one wishes to investigate whether the distributions come from the same population or not.

If we have evidence that one distribution may have arisen from a population with a higher (or lower) distribution, the appropriate test would be a one-tailed test of significance. In the case we have here we know that the policy year 1961 data comes to us with more of the losses subjected to the law with higher benefit levels in it. We may, therefore, wish to test the hypothesis that the distribution of policy year 1961 losses is higher than the distribution of policy year 1960 losses. This can be done by again calculating the sample statistic D'_{mn} where D'_{mn} is the maximum difference between the two observed cumulative relative frequencies in the desired direction. From this we calculate

$$\chi^{\mathbf{z}} = 4 \ (\mathbf{D}'_{mn})^{2} \ \frac{mn}{m+n}$$

This time the critical value is the value of Chi-square with two degrees of freedom. The values of x^{e} are set forth in column (8) of Exhibit I and the conclusions with regard to the hypothesis are in column (9). The extremely high probability on Death cases (x^{e} at .99 is .020) makes one suspicious that we are testing the wrong hypothesis, and perhaps some other factors are at work in addition to law level and random fluctuation.

In setting forth a few cautions about the use of the one-sample Kolmogorov test, Mr. Dropkin says that it is exact only when the data is "unclassified" (that is, ungrouped). He also cautions us that if parameters are estimated from the data, the Kolmogorov test is affected; but it is not known exactly what the effect will be. He recommends that to correct for this we use a critical value smaller than would otherwise be used. Another way of saying the same thing would be that if a sample statistic leads to the rejection of the hypothesis, one could be confident that he was safe in rejecting the hypothesis at the given level of significance. However, if the sample value leads to accepting the hypothesis by a rather thin margin of difference between the sample value and the critical value, one would feel a little unsure about accepting the sample at the specified significance level if some of the parameters had to be estimated from the sample data.

Mr. Dropkin opens up the rather interesting area of outliers when he discusses the problems with the case evaluated at \$1,840 among his Permanent Total cases for policy year 1961. With a case that stands out as far as this, we can use a rather straightforward approach which is not particularly powerful. If we assume that the sample is, in fact, from a lognormal distribution with a mean and standard deviation as set forth in Exhibit 21 of the paper, we can quickly calculate that a case such as this falls 5.546 standard deviations away from the mean. The probability of such a rare event (or one more rare) occurring in random sampling is .00000003. Since we have a sample of 57 cases, the binomial probability of an event like this (or one more rare) occurring one or more times is:

 $1 - (.99999997)^{57}$

This equals .000002 and we would conclude that an event such as this in a sample of this size is quite unlikely. Therefore, we would reject the hypothesis that this was a true Permanent Total case which arose solely due to chance fluctuation. It can be treated as an outlier and justifiably excluded from the sample. If the sample were smaller and a rigorous test were still needed for the outlier, tables of the critical values of the studentized extreme deviate are available.³

This useful and important paper will undoubtedly be referred to many times. It will be helpful to have such distributions available for ready reference in the solution or approximation of solutions to a number of problems. The use of distribution-free tests in insurance statistics is bound to gain more acceptance as time goes on. Mr. Dropkin's fine description and illustration of the Kolmogorov one-sample test will be a handy reference. The paper was not only interesting but informative; not only theoretical but practical; not only advanced but understandable. It is a fine addition to our actuarial literature.

³ Biometrika Tables for Statisticians, Volume I, Second Edition, Cambridge University Press, 1958.

EXHIBIT A

CALIFORNIA WORKMEN'S COMPENSATION

Policy Year 1961

		Losses in Excess of:							
Type	<u>All Losses</u>	\$10,000	\$15,000	\$25,000	\$50,000	\$100,000	<u>\$250,000</u>		
Death	\$ 11,743,540	5,403,256	2,794,965	111,616	23,090	0	0		
Permanent Total	5,889,192	5,327,352	5,047,352	4,487,352	3,109,595	1,270,247	85,996		
Major	64,619,490	21,012,513	10,369,092	4,148,381	1,182,909	186,092	0		
Minor	79,462,086	1,249,416	195,332	20,845	0	0	0		
Temporary	31,032,492	96,703	11,400	0	0	0	0		
Medical Only	16,456,429	Ó	Ó	0	0	0	0		
Total	209,203,229	33,089,240	18,418,141	8,768,194	4,315,594	1,456,339	85,996		
Ratio to All Losses		.1582	.0880	.0419	.0206	.0070	.0004		

CALIFORNIA WORKMEN'S COMPENSATION Distribution of All Types Policy Year 1960

<u>Loss Size</u>	Interval	Number of Cases	<u>Sum Up</u>
0 -	4,999	71,759	79,875
5,000 -	5,499	847	8,116
5,500 -	7,999	2,903	7,269
8,000 -	8,499	395	4,366
8,500 -	12,999	2,183	3,971
13,000 -	16,499	675	1,788
16,500 -	16,999	62	1,113
17,000 -	33,999	935	1,051
34,000 -	45,499	35	116
45,500 -	45,999	3	81
46,000 -	299,999	78	78

Policy Year 1961

0 -	5,499	80,859	90,559
5,500 -	5,999	879	9,700
6,000 -	9,499	4,084	8,821
9,500 -	9,999	370	4,737
10,000 -	14,999	2,396	4,367
15,000 -	20,999	1,140	1,971
21,000 -	49,999	726	831
50,000 -	53,652	14	105
53,6	53	1	91
53,3	27	1	90
53,328 -	339,999	89	89

Note: The loss size intervals have been selected to facilitate location of the percentile values shown in Exhibit C while reducing the length of the exhibit to a minimum.

EXHIBIT C

CALIFORNIA WORKMEN"S COMPENSATION Some Possible Statistics for Determining the Self-Rating Point under the Experience Rating Plan

	<u>Year 1960</u>				
Number	Value	Number	<u>Value</u>	Change	DISTRIBUTIONS
	\$21,700		\$21,300	-2%	IONS
	\$14,600		\$14,800	+1%	
80	\$45,700	91	\$53,500	+17%	
799	18,100	906	20,300	+12%	
1,598	13,700	1,811	16,000	+17%	
3,994	8,470	4,528	9,780	+15%	
7,988	5,080	9,056	5,870	+16%	253
	Case <u>Number</u> 80 799 1,598 3,994	Number Value \$21,700 \$14,600 80 \$45,700 799 18,100 1,598 13,700 3,994 8,470	Case Case Number Value Number \$21,700 \$14,600 80 \$45,700 91 799 18,100 906 1,598 13,700 1,811 3,994 8,470 4,528	Case Case Number Value Number Value \$21,700 \$21,300 \$14,600 \$14,800 80 \$45,700 91 \$53,500 799 18,100 906 20,300 1,598 13,700 1,811 16,000 3,994 8,470 4,528 9,780	Case Case Number Value Number Value Change \$21,700 \$21,300 -2% \$14,600 \$14,800 +1% 80 \$45,700 91 \$53,500 +17% 799 18,100 906 20,300 +12% 1,598 13,700 1,811 16,000 +17% 3,994 8,470 4,528 9,780 +15%

253

CALIFORNIA WORKMEN'S COMPENSATION Death Cases -- Two Policy Years

	Cumula Observed				Cumul Observed	ative Frequency	
Loss Size Interval	1960	<u>1961</u>	Difference	Loss Size Interval	<u>1960</u>	1961	Difference
0 - 499	.0237	.0208	.0029	15,000 - 15,499	.3307	.3571	0264
500 - 999	.0854	.0805	.0049	15,500 - 15,999	.3323	.3623	0300
1,000 - 1,499	.1076	.0974	.0102	16,000 - 16,499	.3354	.3662	0308
1,500 - 1,999	.1250	.1078	.0172	16,500 - 16,999	.3370	.3714	0344
2,000 - 2,499	.1345	.1221	.0124	17,000 - 17,499	. 3497	- 3844	0347
2,500 - 2,999	.1408	.1390	.0018	17,500 - 17,999	.3655	.3935	÷.0280
3,000 - 3,499	.1503	.1481	.0022	18,000 - 18,499	.4968	.5221	0253
3,500 - 3,999	.1519	.1584	0065	18,500 - 18,999	- 5269	,5481	0212
4,000 - 4,499	.1693	.1675	.0018	19,000 - 19,499	. 5475	.5636	0161
4,500 - 4,999	.1725	.1792	0067	19,500 - 19,999	. 5680	.5792	0112
5,000 - 5,499	.1867	.2078	0211	20,000 - 20,499	.5823	. 5948	0125
5,500 - 5,999	.1930	.2143	0213	20,500 - 20,999	.6060	.6091	0031
6,000 - 6,499	.2041	.2182	0141	21,000 - 21,499	.9035	.8857	0178
6,500 - 6,999	.2073	.2234	0161	21,500 - 21,999	.9415	.9286	0129
7,000 - 7,499	.2120	.2273	0153	22,000 - 22,499	.9589	.9468	.0121
7,500 - 7,999	.2263	.2429	0166	22,500 - 22,999	.9715	.9584	.01 31
8,000 - 8,499	.2326	.2571	0245	23,000 - 23,499	.9810	.9806	.0004
8,500 - 8,999	.2405	.2610	0205	23,500 - 23,999	.9889	.9885	.0004
9,000 - 9,499	.2468	.2688	0220	24,000 - 73,499	1.0000	1.0000	.0000
9,500 - 9,999	.2500	.2753	0253				
10,000 - 10,499	.2722	.2870	0148				
10,500 - 10,999	.2848	.3078	0230				
11,000 - 11,499	.2927	.3143	0216				
11,500 - 11,999	.2959	.3195	0236				
12,000 - 12,499	.2975	.3260	0285				
12,500 - 12,999	.3006	.3312	0306				
13,000 - 13,499	.3070	.3338	0268				
13,500 - 13,999	.3085	.3403	0318				
14,000 - 14,499	.3149	.3403	0254				
14,500 - 14,999	.3212	.3455	0243				

CALIFORNIA WORKMEN'S COMPENSATION Permanent Total Cases - Two Policy Years

		Cumula	tive				Cumu	lative	
Loss	Size	Observed	Frequency		Loss S	Size	Observed	Frequency	
1960	1961	1960	1961	Difference	1960	1961	1960	1961	Difference
*	*	*	*	*		86,690		. 5088	0523
46,000	46,000	.1522	.0526	.0996	86,828		.4783		0305
,	48,457		.0702	.0820	-	89,000		. 5263	0480
	50,247		.0877	.0645	89,028		. 5000		0263
	53,200		.1053	.0469		93,410		. 5439	0439
	53,327		.1228	.0294		94,816		.5614	0614
	53,653		.1404	.0118		99,187		. 5789	0789
54,825	•	.1739		.0335		100,187		. 5965	0965
	55,000		.1579	.0160		100,340		.6140	1140
55,338	•	.1957		.0378		101,090		.6316	1316
56,000		.2174		.0595		101,312		.6491	1491
56,001		.2391		.0812		103,515		.6667	1667
58,506		.2609		.1030	104,500		. 5217		1450
58,600		.2826		.1247	107, 32 6 [·]		.5435		1232
	59,371		.1754	.1072		107,493		.6842	1407
59,673	•	.3043		.1289		108,485		.7018	1583
	62,100		.1930	.1113		108,637		.7193	1758
62,500	,	.3261		.1331		109,521		.7368	1933
	62,522		.2105	.1156		111,591		.7544	2109
63,291	•	.3478		.1373	114,514		. 5652		1892
•	63,800		.2281	.1197		115,547		.7719	2067
	64,588		.2456	.1022	118,144		.5870		1849
	64,726		.2632	.0846	119,874		.6087		1632
	65,340		.2807	.0671	121,200		.6304		1415
67,206	-	.3696		.0889	125,000		.6522		1197
68,391		.3913		.1106	128,985		.6739		0980
	68,874		.2982	.0931		132,946		.7895	1156
69,653	•	.4130		.1148	135,844		.6957		-,0938
-	70,639		.3158	.0972	139,845		.7174		0721
	72,679		.3333	.0797	141,564		.7391		0504
	73, 391		. 3509	.0621		145,787		.8070	0679
	75,000		.3684	.0446	147,563		.7609		0461
75,394		.4348		.0664	147,663		.7826		0244
•	75,500		.3860	.0488	-	150,000		.8246	0420
	76,823		.4035	.0313		152,015		.8421	0595
	77,711		.4211	.0137		156,995		. 8596	0770
	79,304		.4386	0038	159,121	-	.8043		0553
80,000	-	.4565		.0179	161,415		.8261		0335
-	81,969		.4561	.0004	164,208		.8478		0118
	83,000		.4737	0172	165,183		. 8696		.0100
	83,481		.4912	0347	*	*	*	*	*

SIZE OF LOSS DISTRIBUTIONS

255

SIZE OF LOSS DISTRIBUTIONS

EXHIBIT F

CALIFORNIA WORKMEN'S COMPENSATION

Major Permanent Partial Cases - Two Policy Years

	Cumulative	e				Cumulat	lve	
Loss Size	Observed Frequ			LOSS SI	7. e	Observed Fi		
Interval			Difference	Interva		1960	1961	Difference
					<u> </u>	<u></u>	1701	<u>principal de</u>
0 - 4,999		0195	+.0024	24,500 -	24,999	.9502	.9446	.0056
5,000 - 5,499		0290	0052	25,000 -	25,499	.9566	.9490	.0076
5,500 - 5,999		0423	0044	25,500 -	25,999	.9587	.9518	.0069
6,000 - 6,499	.0584 .0	0660	0076	26,000 -	26,499	.9606	.9546	.0060
6,500 - 6,999	.0865 .0	0923	0058	26,500 -	26,999	.9624	.9561	.0063
7,000 - 7,499	.1208 .1	1252	0044	27,000 -	27,499	.9636	.9576	.0060
7,500 - 7,999		1619	.0020	27,500 -	27,999	.9642	.9604	.0038
8,000 - 8,499	.2106 .2	2012	.0094	28,000 -	28,499	.9664	.9617	.0047
8,500 - 8,999		2473	.0113	28,500 -	28,999	.9685	.9642	.0043
9,000 - 9,499		2940	.0203	29,000 -	29,499	.9691	.9657	.0034
9,500 - 9,999		3392	.0280	29,500 -	29,999	.9707	.9670	.0037
10,000 - 10,499		3880	.0391	30,000 -	30,499	.9722	.9687	.0035
10,500 - 10,999		4309	.0420	30,500 -	30,999	.9731	.9691	.0040
11,000 - 11,499		4717	.0477	31,000 -	31,499	.9737	.9695	.0042
11,500 - 11,999		5093	.0511	31,500 -	31,999	.9740	.9703	.0037
12,000 - 12,499		5532	.0454	32,000 - 1	188,499	1.0000	1.0000	.0000
12,500 - 12,999	.6273 .5	5887	.0386					
13,000 - 13,499		5271	.0369					
13,500 - 13,999		5579	.0407					
14,000 - 14,499		5879	.0373					
14,500 - 14,999		7165	.0285					
15,000 - 15,499		7447	.0266					
15,500 - 15,999	.7930 .7	7659	.0271					
16,000 - 16,499	.8086 .7	7877	.0209					
16,500 - 16,999	.8260 .8	3034	.0226					
17,000 - 17,499		3195	.0203					
17,500 - 17,999		3352	.0168					
18,000 - 18,499		3521	.0137					
18,500 - 18,999		3614	.0139					
19,000 - 19,499		3720	.0127					
19,500 - 19,999		3845	.0097					
20,000 - 20,499		3959	.0087					
20,500 - 20,999		9029	.0069					
21,000 - 21,499		109	.0059					
21,500 - 21,999		181	.0046					
22,000 - 22,499		234	.0063					
22,500 - 22,999		283	.0063					
23,000 - 23,499		334	.0064					
23,500 - 23,999		368	.0076					
24,000 - 24,499	.9489 .9	410	.0079					

EXHIBIT G

CALIFORNIA WORKMEN'S COMPENSATION

Minor Permanent Partial Cases - Two Policy Years

Cumulative									
	Observed	Frequency	Absolute						
Loss Size Interval	1960	1961	<u>Difference</u>						
0 - 99	.0022	.0022	.0000						
100 - 199	.0064	.0063	.0001						
200 - 299	.0123	.0134	0011						
300 - 399	.0211	.0221	0010						
400 - 499	.0318	.0325	0007						
500 - 599	.0501	.0507	0006						
600 - 699	.0749	.0741	.0008						
700 - 799	.1059	.1021	.0038						
800 - 899	.1383	.1323	.0060						
900 - 999	.1702	.1609	.0093						
1,000 - 1,499	.3046	.2905	.0141						
1,500 - 1,999	.4155	.3995	.0160						
2,000 - 2,499	.5084	.4951	.0133						
2,500 - 2,999	.5837	.5725	.0112						
3,000 - 3,499	.6527	.6409	.0118						
3,500 - 3,999	.7129	.6991	.0138						
4,000 - 4,499	.7640	.7524	.0116						
4,500 - 4,999	.8051	.7962	.0089						
5,000 - 5,499	.8411	.8318	.0093						
5,500 - 5,999	.8707	.8621	.0086						
6,000 - 6,499	.8983	.8862	.0121						
6,500 - 6,999	.9187	.9074	.0113						
7,000 - 7,499	.9365	.9250	.0115						
7,500 - 7,999	.9503	.9390	.0113						
8,000 - 8,499	.9609	.9520	.0089						
8,500 - 8,999	.9689	.9614	.0075						
9,000 - 9,499	.9757	.9703	.0054						
9,500 - 9,999	.9814	.9760	.0054						
10,000 - 10,499	.9868	.9814	.0054						
10,500 - 10,999	.9899	.9852	.0047						
11,000 - 11,499	.9924	.9885	.0039						
11,500 - 11,999	.9940	.9906	.0034						
12,000 - 35,499	1.0000	1.0000	.0000						

EXHIBIT H

CALIFORNIA WORKMEN'S COMPENSATION

Temporary Cases - Two Policy Years

Cumulative									
	Observe	Absolute							
Loss Size Interval	1960	1961	Difference						
	<u> </u>								
0-9	.0017	.0012	.0005						
10 - 19	.0052	.0042	.0010						
20 - 29	.0132	.0119	.0013						
30 - 39	.0272	.0256	.0016						
40 - 49	.0488	.0470	.0018						
50 - 59	.0756	.0738	.0018						
60 - 69	.1049	.1041	.0008						
70 - 79	.1353	.1342	.0011						
80 - 89	.1658	.1648	.0010						
90 - 99	.1946	.1939	.0007						
100 - 149	.3211	.3185	.0026						
150 - 199	.4143	.4129	.0014						
200 - 249	.4880	.4861	.0019						
250 - 299	.5442	.5438	.0004						
300 ~ 349	.5958	.5931	.0027						
350 - 399	.6361	.6336	.0025						
400 - 449	.6727	.6671	.0056						
450 - 499	.7022	.6955	.0067						
500 - 549	.7289	.7226	.0063						
550 - 599	.7513	.7451	.0062						
600 - 649	.7754	.7674	.0080						
650 - 699	.7956	.7871	.0085						
700 - 749	.8153	.8071	.0082						
750 - 799	.8345	.8264	.0081						
800 - 849	.8523	.8438	.0085						
850 - 899	.8676	.8596	.0080						
900 - 949	.8812	.8731	.0081						
950 - 999	.8915	.8836	.0079						
1,000 - 1,499	.9437	.9388	.0049						
1,500 - 1,999	.9634	.9599	.0035						
2,000 - 2,499	.9748	.9720	.0028						
2,500 - 2,999	.9822	.9792	.0030						
3,000 - 3,499	.9869	.9847	.0022						
3,500 - 3,999	.9901	.9883	.0018						
4,000 - 4,499	.9925	.9912	.0013						
4,500 - 4,999	.9941	.9932	.0009						
5,000 - 5,499	.9955	.9948	.0007						
5,500 - 33,999	1.0000	1.0000	.0000						

TESTS OF SIGNIFICANCE

Туре	<u>Number</u> 1960	<u>of Cases</u> <u>1961</u>	<u>Critica</u> 5%_Level	<u>l Values</u> <u>1% Level</u>	Sample Value of_D _{mn}	Hypothesis*	Sample Value of D _{mn}	$\underline{\chi^2}$	<u>Hypothesis</u> **	SIZE (
Death	632	770	.0729	.0874	.0347	Accept	.0172	.02	Accept	다
Permanent Total	46	57	.2695	.3229	.2109	Accept	.1373	.38	Accept	035
Major	3,271	4,721	.0309	.0370	.0511	Reject	.0511	20.18	Reject	
Minor	20,554	24,613	.0129	.0154	.0160	Reject	.0160	11.47	Reject	(JBD)
Temporary	55,372	60,398	.0080	.0096	.0085	Doubt	.0085	8.35	Doubt	ION

- * The two samples could have come from populations having the same distribution function; alternative, they come from populations having different distribution functions. D_{mn} is the maximum absolute difference.
- ** The two samples could have come from populations having the same distribution function; alternative, they come from populations having the 1961 distribution function higher than (that is, to the right of) the 1960 distribution function. Critical values for the one-tailed test are from χ^2 with 2 degrees of freedom; 5.99 at 5% point and 9.21 at 1% point. D_{mn} is the maximum positive difference.