SIZE OF LOSS DISTRIBUTIONS IN WORKMEN'S COMPENSATION JNSURANCE

LESTER B. DROPKIN

This paper was generated in the belief that publication of statistical data setting forth actual distributions of incurred loss amounts by size of loss would be of general interest, and that such data should be made freely available for whatever immediate purpose or use might be made of it by others. In the field of workmen's compensation insurance, there have been relatively few papers presented to our Society concerned specifically with size of loss distributions. Furthermore, such information as has been presented has not dealt with the several different type of injury categories separately.

In addition to simply aggregating masses of data to form empirical size of loss distributions which may then be used in the context of a particular problem area, we are often concerned to try to go beyond the observed distribution and to ask questions about the theoretical distribution underlying the specific data.

As an illustration of this, take for example, the determination of the Non-Serious " D " ratio, one of the steps involved in arriving at the rating values of the Workmen's Compensation Experience Rating Plan. Briefly stated, the procedure is to array the Non-Serious claims for a recent experience period by size, discount them according to the multi-split principle or its equivalent, and then compare the aggregate discounted losses with the aggregate undiscounted losses. This process is usually repeated each year in connection with, and as part of, a normal annual workmen's compensation revision. The Non-Serious " D " ratio used in a particular year is thus an empirical figure. The reason for doing this calculation each year is, obviously, to keep the rating values of the Experience Rating Plan on as up-to-date a basis as possible, so that there will be a correspondence between the Actual Primary (i.e., discounted) Losses and the Expected Primary Losses used in the calculation of experience rating modifications.

If, as is reasonable, we consider that the observed distribution represents the "true" distribution coupled with the effects of a random "disturbance" term, then simply using an empirically derived "D" ratio as our estimate has introduced some error into our calculations. If we had suitable information about the underlying distribution, the possibility of improving our estimates would be strengthened.

The foregoing is merely an illustration of one kind of situation which might engender an interest in size of loss distributions and is typical of the kind of problem area in which our objective is knowledge about size of loss distributions in and for themselves. There is, however, another broad area of concern in which our main objective is knowledge about the distribution of the total amount of claims during a time interval. Here the size of loss distribution is a component element to be considered in conjunction with the claim frequency distribution. ${ }^{1}$ One of the main reasons that investigations in this area, generally referred to as the mathematical theory of risk, have not been pursued on other than a very formal and abstract basis, has been the lack of readily available information with respect to the distribution of loss size.

The balance of this paper is divided into three sections. First, we describe the data and set forth the observed distributions. Secondly, we consider the question of fitting a curve to the observed distributions, with specific attention, in the case of Permanent Disability and Temporary, to the log-normal curve. Finally, there are a few summary remarks and comments.

THE DATA*

The basic data for this paper is the standard coverage California experience of all companies authorized to write workmen's compensation insurance in California for Policy Years 1960 and 1961, as reported under the Unit Statistical Plan. ${ }^{3}$

California's Statistical Plan is basically similar to that of the National Council on Compensation Insurance, and in common with that Plan, provides for identifying each claim as coming under one of the following type of injury categories: Death, Permanent Total, Major Permanent Partial, Minor Permanent Partial, Temporary, or Medical Only. Further, the Plan

[^0]requires the separate listing of each claim, except that a carrier is permitted to group together (by Manual classification) all closed Medical Only claims on which the incurred medical cost is $\$ 500$ or less. While the Statistical Plan provides for a first, second and third reporting of experience, the manner in which such second and third report data are filed and processed does not, at present, allow for the tabulation of size of loss data on a second or third report basis. Accordingly, the data used here, for both Policy Year 1960 and Policy Year 1961, is on a first report basis, i.e., the losses are valued as of 18 months after the inception date of the policy.

In general the incurred loss for a Death or Permanent Disability case will include Temporary indemnity benefit amounts as well as the amounts arising out of the Death or Permanent Disability rating itself. Also, the size of the incurred losses, as used in this paper, represents the indemnity and medical amounts combined.

Because not all Medical Only claims are individually listed on the Unit Reports, it was not possible to obtain size of loss distributions for this particular type of injury. That is, this paper deals only with claims involving some form of indemnity benefit.

However, it may be of interest to note the corresponding total number and total amount of Medical Only claims. For Policy Year 1960 there were 639,612 Medical Only claims with a total incurred loss amount of $\$ 16,160,673$; for Policy Year 1961 there were 583,184 claims and a total incurred loss amount of $\$ 16,456,429$.

The observed size of loss distributions are set forth in Exhibits 1 through 10 , as indicated below:

Policy Year	Type of Injury.	Exhibit Number
1960	Death	1
1961	Death	2
1960	Permanent Total	3
1961	Permanent Total	4
1960	Major Permanent Partial	5
1961	Major Permanent Partial	6
1960	Minor Permanent Partial	7
1961	Minor Permanent Partial	8
1960	Temporary	9
1961	Temporary	10

Each exhibit shows, for each given incurred loss size interval, the actual average loss size as well as the number of claims within the interval. (Because of the relatively small number of Permanent Total claims in a year, Exhibits 3 and 4 simply list each claim individually.) A column showing relative frequencies has not been included in these exhibits because they are more usefully displayed in the subsequent exhibits.

THEORETICAL SIZE OF LOSS DISTRIBUTIONS

Death Cases: Even a quite casual comparison of the data for the Death cases given in Exhibits 1 and 2 with the data for the other type of injury categories will reveal that the form of the distribution for Death cases is quite different from the form of the other distributions. Accordingly, the procedure followed with respect to the Death type of case was not that which was used for the Permanent Disability and Temporary categories.

Simple histograms were constructed for the Policy Year 1960 and 1961 Death cases, as shown on Exhibits 11 and 12. The three peaks appearing on each of these exhibits reflect the provisions of the California Labor Code with respect to Death benefits. The Labor Code provides that there shall be benefits as follows:
a. Burial expenses, up to $\$ 600$; and
b. a death benefit to be allowed to the dependents when the employee leaves any person dependent upon him for support; in the case of total dependency, the benefit is $\$ 17,500$, except that in the case of a surviving widow and one or more dependent minor children it is $\$ 20,500$.

The three peaks are thus seen to correspond to: the no-dependency death case; total dependency other than widow and children; total dependency, widow and children. The variation about these three specific benefit amounts arises out of several causes, among which are: variation in the amount of temporary indemnity; variation in the amount of medical; partial dependency; compromised cases.

Permanent Disability (Total, Major, Minor) and Temporary Cases: In contrast to the tri-modal distribution of Death cases, the Permanent Disability and Temporary cases exhibit distributions which accord much more nearly with simple probability distributions. That is, histograms for the observed Permanent Disability and Temporary distributions would show that they are uni-modal, have a relatively much wider range, have a "cocked-hat" shape, and are skewed to the right.

The reason for this difference in the nature of the distributions for the Death cases on the one hand, and for the Permanent Disability and Temporary cases on the other, lies in the fact that there are a much larger number of significant variables interacting with each other in the Permanent and Temporary Disability cases as against the situation in the Death cases where the dependency status variable is the prime determinative.

Previous studies on size of loss distributions for lines of insurance other than workmen's compensation have indicated that "for a quite diverse variety of types of insurance, the log-normal curve is a reasonably good fit. ${ }^{י}{ }^{4}$ Coupled with this as a reason for focussing on the log-normal curve as being the possible theoretical distribution underlying the data, is the fact that the log-normal curve is easy to handle in numerical work. Other possibilities are referred to in the cited article by Dickerson et al.

In deciding whether or not the log-normal curve provides a good theoretical description of the observed data, several (related) approaches can be used. The techniques can conveniently be referred to as being the visual, the tabular and the analytical method, respectively.

Since each of these techniques was used with each of the remaining type of injury categories, a brief description of these approaches is given next, reserving the discussion of specific results to a subsequent portion of the paper.

As a preliminary, it is of course necessary to convert the observed number of claims to relative frequencies and to deal with the logarithm of the loss size.

A good deal of information can often be gained by simply plotting the data on a suitable graph and visually judging the result. Accordingly, the starting point in considering whether the log-normal described the observed data was to plot the data on special probability-log paper. The horizontal axis on this paper is logarithmic, while the vertical scale is adjusted to reflect the probabilities of the normal curve. This graph paper, therefore, has the property that the cumulative distribution function for the log-normal appears as a straight line." When the observed cumulative frequencies are plotted, the result is, of course, a step-function. However, since the number of loss size intervals was fairly large, vertical lines were added to the step-function graphs at the saltus for better visual delineation.

[^1]The next step continued the visual approach and brought in the tabular. This was to fit a log-normal curve to the observed data and to draw the fitted curves on the graphs.

Sheet 1 of each of Exhibits 13 through 20 are the graphs and show both the step-functions and the fitted log-normal distribution functions. ${ }^{6}$ Sheets 2 et seq, of these exhibits give the particulars in tabular form. The tabular information shown is as follows: Loss Size Interval; Observed Cumulative Frequency; Theoretical Cumulative Frequency; Absolute Value of Difference between Observed and Theoretical Cumulative Frequencies. In determining the means and standard deviations the actual average loss size within the interval was used. The cumulative frequencies shown correspond to the upper limit of the interval.

Having fitted a log-normal curve to the observed data it is possible to arrive at a judgment as to the goodness of fit, whether based on a visual impression using the graphs, or based on a comparison of the tabular values of the observed and fitted frequencies. For many of the particular areas of interest, it will be sufficient to stop at this point. The question of whether or not there is a significant difference between the observed and fitted curves will be conditioned on the requirements of the individual problem area under consideration. It may be, for example, that the fit overall is not too good, yet the fit may be quite good over a limited portion of the range, or below (or above) a certain point, where, perhaps, our special interest may lie.

On the other hand, there obviously will be times when it is desirable to have an analytical or statistical test of the goodness of fit. Perhaps the most widely used such test is the Chi-Square. There is however, another statistical test which seems to have many advantages over the Chi-Square test. This test, known as the Kolmogorov test, is, like the Chi-Square test, concerned with the problem of testing the hypothesis that a variable (here, the \log of the claim size) has a specified distribution (here, the normal) against the alternative that it has some other distribution. However, while the Chi-Square test function is based on the differences between observed and hypothetical frequencies within cells, the Kolmogorov test is based on the observed and hypothetical cumulative distributions.

The test function in the Kolmogorov test is generally designated by D_{n} and is defined as the maximum of the absolute deviations between the observed and theoretical cumulative frequencies. That is, if $S_{n}(x)$ is the ob-

[^2]served cumulative relative frequency in a sample of size n corresponding to any given x, and $F(x)$ is the corresponding theoretical frequency, then ${ }^{7}$
$$
D_{n}=\max _{x}\left|F(x)-S_{n}(x)\right|
$$

The test itself consists of calculating the sample statistic D_{n} and then determining whether D_{n} exceeds a critical value D_{n}^{a}. That is, D_{n}^{a} is such that the following relation holds:

$$
\operatorname{Prob}\left(D_{n} \leq D_{n}^{a}\right)=1-\alpha
$$

If we use an $\alpha=.05$, it turns out that for $n>35, D_{n}^{a}=\frac{1.36}{n^{1 / 2}}$. In applying the test at the 95% level, say, all we need do, therefore, is to calculate the statistic D_{n} and compare it with the value of $\frac{1.36}{n^{1 / 2}}$ (assuming $n>35$). If D_{n} is more than $\frac{1.36}{n^{1 / 2}}$ we conclude that the fit is not sufficiently good and we reject the hypothesis that $F(x)$ correctly specifies the theoretical distribution.

Although we have not done so in this paper, the critical value D_{n}^{a} can also be used to construct a confidence belt with confidence coefficient $1-\alpha$ about the observed step-function $S_{n}(x)$. That is, the two stepfunctions $S_{n}(x) \pm D_{n}^{a}$ give the required belt for $F(x) .^{s}$

It was mentioned above that the Kolmogorov test has many advantages. Among these is the fact that it does not involve any extensive calculations and is easy to use. Another is that the Kolmogorov test appears to be a more powerful test than the Chi-Square test; i.e., for a type 1 error of size α, there is a smaller probability of accepting the hypothesis when in fact the hypothesis is not true with the Kolmogorov test than with the Chi-Square test. Also, the Kolmogorov test can be used with relatively small sample sizes.

A few caveats are, nevertheless, in order. The Kolmogorov test is an exact test only when (i) the data is unclassified, and (ii) the parameters of

[^3]The values of λ for several values of α are as follows:

$\alpha \mid$.20	.10	.05	.01
$\lambda \mid$	1.07	1.22	1.36	1.63

For $n<35$ it is necessary to look up D_{n}^{a} in a table.
the hypothetical distribution are not estimated from the data. However, the discrepancy introduced by using grouped data is negligible if the grouping is not too coarse, as we believe is the case here. The second point is more important. If the parameters are estimated from the data, we can correct for the effect of this when a Chi-Square test is used by reducing the degrees of freedom. Unfortunately the effect of estimating the parameters from the data has not been worked out with respect to the Kolmogorov test. The recommended procedure is to correct for this effect by using a critical value smaller than would otherwise be used. ${ }^{9}$

Specific Results-Permanent Disability and Temporary Cases: Before turning to a more detailed consideration of the specific results as set forth in Exhibits 13 through 20, mention should be made of one of the problems that often arises in dealing with a given body of observed data, viz., the possibility that the data has been "contaminated." lt will, perhaps, have been noted that among the Permanent Total cases reported for Policy Year 1961 was one case where the incurred loss size was $\$ 1,840$. Now this is certainly an odd looking figure to find among the Permanent Total cases and it raises some immediate questions. It is, of course, possible that everything is quite legitimate, that it is truly a P. T. case, correctly entered, coded and punched with respect to both type of injury and amount. On the other hand, any one of a number of different types of errors could have occurred. Should the figure be disregarded? It could be argued that one's theory must be broad enough to encompass all possibilities, including mistakes of one sort or another; that mistakes will occur and that in routine handling of data such mistakes will remain unnoticed and uncorrected. This sort of reasoning argues for retaining the figure. One could equally argue for dropping it. The answer really depends on one's particular purposes in a specific context. Since the purpose of this paper is to present information, we have begged the question by including two sets of sheets for Exhibit 14 . Those sheets marked with an "a" refer to the unadjusted data of Exhibit 4, Shect 1 ; those marked with a " b " refer to the data excluding the $\$ 1,840$ case.

In visually reviewing the graphs it should be noted that the incurred loss size is expressed in thousands for the Permanent Total and Major Permanent Partial cases; in hundreds for the Minor Permanent Partial cases; and in tens for the Temporary cases.

[^4]It will, I think, be generally agreed that the visual impression one gets in reviewing the graphs is that the fit is not unacceptable for each of the categories and for each of the policy years. However, the answer given by the Kolmogorov test of goodness of fit is somewhat different.

Exhibit 21 sets forth the pertinent information for each of the types of injury, for each of Policy Years 1960 and 1961. Shown on this exhibit are the following: Number of Cases (n); the parameters used in fitting a normal curve to the logarithms of the loss sizes, i.e., the mean and standard deviation; ${ }^{10}$ the sample statistics D_{n}; the corresponding critical values $D_{n}^{.05}$; the result of applying the Kolmogorov test, i.e., accept or reject the hypothesis that the logarithm of the claim size has a normal distribution.

The result of applying the Kolmogorov test at the 95% level, as shown on Exhibit 21, is a rejection of the hypothesis for the Major, Minor and Temporary categories. The fit would appear to be acceptably good for the Permanent Total category. However, in view of the remarks above with regard to estimating parameters from the data one should perhaps say that the fit is just acceptable for the Permanent Total category.

The different conclusions reached by the visual and analytical approaches are only apparent and can be resolved by remembering two facts. The first is that the vertical scale on the graphs is not linear. Therefore, for example, if two given vertical distances are equal, they will not, in general, represent equal portions of the total frequency. That is, one must adjust his visual impressions to the vertical scale. Secondly, the graphs cannot emphasize the dependence of a goodness of fit test on the number in the sample. Thus, for example, while the value of D_{n} for Temporary for 1960 is much smaller than the value of D_{n} for Permanent Total for 1961 (something which is ascertainable from the graphs or tables and to be expected given the much larger number of Temporary cases) the graphs or tables by themselves cannot indicate whether the drop in the value of D_{n} is commensurate

[^5]${ }^{10}$ The mean, variance and skewness of the corresponding log-normal curves can

The skewness is given by $\left(n^{3}+3 \eta\right)$
with the increase in the number of cases. This, of course, is the point and purpose of a "critical value" in an analytical or statistical test.

One additional fact seems to be worthy of specific recognition. Many of the actions and decisions of an Actuary are predicated, explicitly or implicitly, on the assumption that a distribution observed to exist in some past period will continue to be the appropriate distribution in a future period. It is therefore of some interest to note that for each of the type of injury categories, the shape of the observed distribution for Policy Year 1961 is basically the same as that for Policy Year 1960.

SUMMARY

The size of loss data for the various type of injury categories normally recognized in workmen's compensation insurance has been presented in some detail in accordance with the general objective of making available factual material which can then be used in connection with consideration of problems relating to ratemaking, individual risk rating plans, reinsurance and other more specific areas of interest.

The distribution of Death cases has been seen to be directly conditioned by the dependency status variable and the concomitant statutory benefit provisions. Based on the Kolmogorov goodness of fit test at the 95% level, the log-normal distribution does not seem to provide an exact description of the Permanent Disability and Temporary cases, with the possible exception of Permanent Total. Nevertheless, the fact that the lognormal distribution is relatively easy to handle may dictate its use in many areas.

It should again be noted that, while we may not be able to specify exactly what hypothetical distribution underlies an observed distribution, it is still possible to utilize a critical value to construct a confidence belt about the observed distribution, and thereby obtain useful quantitative answers.

The data set forth in this paper, and the specific results described, reflect the experience of two specific years for a specific state. It would clearly be of great value if similar analyses were made of other bodies of data.

I should like to conclude this paper with the following observation: It may be possible to conclude, after a sufficient number of studies, that some given probability function adequately describes the distribution of losses by size. This would be a major achievement. Nevertheless, such a step should be considered as merely a preliminary to the ultimate construction of an appropriate model.

CALIFORNIA WORKMEN'S COMPENSATION DISTRIBUTION OF LOSSES FOR DEATH CASES BY TOTAL LOSS SIZE

Policy Year 1960 - 1st Reports

Loss Size Interval	Number of Cases
0-499	15
500-999	39
1,000-1,499	14
1,500-1,999	11
2,000 - 2,499	6
2,500-2,999	4
3,000 - 3,499	6
3,500-3,999	1
4,000-4,499	11
4,500-4,999	2
$5,000=5,499$	9
$5,500-5,999$	4
6,000-6,499	7
6,500-6,999	2
7,000 - 7,499	3
7,500-7.999	9
8,000-8,499	4
8,500-8,999	5
9,000-9,499	4
9,500-9,999	2
10,000-10,499	14
10,500-10,999	8
11,000-11,499	5
11,500-11,999	2
12,000-12,499	1
12,500-12,999	2
13,000-13,499	4
13,500-13,999	1

Average
Loss S1ze
271.53
647.28
$1,133.71$
$1,744.73$
$2,151.00$
$2,594.25$
$3,115.00$
$3,764.00$
$4,190.09$
$4,875.00$
$5,036.89$
$5,625.00$
$6,208.71$
$6,645.00$
$7,269.33$
$7,638.00$
$8,172.75$
$8,585.40$
$9,144.25$
$9,700.00$
$10,077.14$
$10,809.38$
$11,170.80$
$11,585.00$
$12,000.00$
$12,525.00$
$13,090.75$
$13,500.00$

Loss Size Interval	Number of Cases	Average Loss Size
14,000-14,499	4	14,200.00
14,500-14,999	4	14,500.00
15,000-15,499	6	15,035.83
15,500-15,999	1	15,637.00
16,000-16,499	2	16,062.50
16,500-16,999	1	16,682.00
17,000-17,499	8	17.144.50
17,500-17,999	10	17,730.00
18,000-18,499	83	18,197.81
18,500-18,999	19	18,643.79
19,000-19,499	13	19,173.69
19,500-19,999	13	19,698.46
20,000-20,499	9	20,212.33
20,500-20,999	15	20,765.13
21,000-21,499	188	21,176.41
21,500-21,999	24	21,690.75
22,000-22,499	11	22,240.09
22,500-22,999	8	22,825.50
23,000-23,499	6	23,237.67
23,500-23,999	5	23,635.80
24,000-24,499	2	24,182.50
25,000-25,499	1	25,200.00
25,500-25,999	3	25,712.00
26,500-26,999	1	26,630.00
0-26,999	632	15.401.03

CALIFORNIA WORKMEN'S COMPENSATION

dISTRIBUTION OF LOSSES FOR DEATH CASES by total loss size

Policy Year 1961 - 1st Reports

Loss Size interval	Number of Cases
0-499	16
500-999	46
1,000 $=1,499$	13
1,500-1,999	8
2,000-2,499	11
2,500-2,999	13
3,000-3,499	7
$3.500-3.999$	3
4,000-4,499	7
$4,500=4,999$	9
5,000 - 5,499	22
$5,500-5,999$	5
6,000-6,499	3
$6,500-6,999$	4
$7.000-7,499$	3
7,500-7,999	12
8,000 - 3,499	11
$8,500=8,999$	3
$9,000-9.499$	6
$9.500-9.999$	5
10,000-10,499	9
$10,500=10,999$	16
11,000 = 11,499	5
11,500-11,999	4
12,000-12,499	5
12,500-12,999	4
13,000-13,499	2
13,500-13,999	5
14,500-14,999	4
15,000-15,499	9
$15,500-15,999$	4

Average
Loss size
312.50
644.70
$1,188.15$
$1,646.13$
$2,145.73$
$2,656.69$
$3,169.43$
$3,590.63$
$4,269.71$
$4,660.44$
$5,085.05$
$5,592.80$
$6,205.33$
$6,762.25$
$7,093.67$
$7,558.75$
$8,139.36$
$8,670.00$
$9,079.17$
$9,726.80$
$10,117.11$
$10,624.44$
$11,124.80$
$11,661.25$
$12,144.40$
$12,647.50$
$13,125.00$
$13,729.80$
$14,691.50$
$15,021.11$
$15,759.50$

Loss Size Interval	Number of Cases
$16,000-16,499$	3
$16,500-16,999$	4
$17,000-17,499$	10
$17,500-17,999$	7
$18,000=18,499$	99
$18,500-18,999$	20
$19,000-19,499$	12
$19,500=19,999$	12
$20,000-20,499$	12
$20,500-20,999$	11
$21,000-21,499$	213
$21,500-21,999$	33
$22,000-22,499$	14
$22,500-22,999$	9
$23,000-23,499$	5
$23,500-23,999$	4
$24,000-24,499$	3
$24,500-24,999$	2
$25,000-25,499$	5
$25,500-25,999$	2
$26,000-26,499$	2
$26,500-26,999$	1
$27,000-27,499$	1
$28,000-28,499$	1
$29,500-29,999$	1
$30,500-30,999$	1
$34,000-34,499$	1
$37,000-37,499$	1
$43,000-43,499$	1
$73,000-73,499$	1
$0-73,499$	1

Average
Loss Size
16,200.00 16,945.75 17,204.80 17,662. 29 18,176.63 18,708.40 19,188.25 19,658.25 20, 279.75 20,693.45 21,175.23 21,640.24 22,157.57 $22,636.22$ 23,253.60 $23,689.25$ 24,352,67
24,895.09 25,310.60 25,765.00 26,367.00 26,991.00 27,254.00 28,400.00 29,790.00 30,750.00 34,000.00 37,222.00 43,312.00 73,090.00 15.251 .35

CALIFORNIA WORKMEN'S COMPENSATION
DISTRIBUTION OF LOSSES FOR PERMANENT TOTAL CASES
BY TOTAL LOSS SIZE
Policy Year 1960 - 1st Reports

Loss Size	Loss Size	Loss Slze
12,380	68,391	147,563
32,499	69,653	147,663
39,348	75,394	159,121
40,299	80,000	161,415
43,624	86,828	164,208
44,977	89,028	165,183
46,000	104,500	174,404
54,825	107,326	179,169
55,338	114,514	199,965
56,000	118,144	206,511
56,001	119,874	280,354
58,506	121,200	292,525
58,600	125,000	4,955,238
59,673	128,995	
62,500	135,844	No. of Cases $=46$
63,291	139,845	Ave. Loss Size $=107,723$
67,206	141,564	

CALIFORNIA WORKMEN'S COMPENSATION
DISTRIBUTION OF LOSSES FOR PERMANENT TOTAL CASES
by total loss size
Policy Year 1961-1st Reports

Loss Size
1,840
33,300
46,000
48,457
50,247
53,200
53,327
53,653
55,000
59,371
62,100
62,522
63,800
64,588
64,726
65,340
68,874
70,639
72,679
73,391

Loss Size
75,000
75,500
76,823
77,711
79,304
81,969
83,000
83,481
86,690
89,000
93,410
94,816
99,187
100,187
100,340
101,090
101,312
103,515
107,493
108,485

Loss Size	
108,637	O
109,521	T
111,591	5
115,547	\%
132,946	$\underline{0}$
145,787	年
150,000	区
152,015	
156,995	\%
166,644	
172,826	
174,600	
201,460	
213,260	
250,351	
254,494	
331,151	
5,889,192	
No. of Cases $=57$	
Ave. Loss Size $=103,319$	

CALIFORNIA WORKMEN'S COMPENSATION

Loss Size Interval		Number of Cases	Average Loss Size
14,000	- 14,499	87	14,159.68
14,500	- 14,999	65	14,656.89
15,000	- 15,499	86	15,145.59
15,500	- 15,999	71	15,642.51
16,000	- 16,499	51	16,111.10
16,500	- 16,999	57	16,684.53
17,000	- 17,499	45	17,163.53
17,500	- 17.999	40	17,675.40
18,000	- 18,499	45	18,122.18
18,500	- 18,999	31	18,647.03
19,000	- 19,499	31	19,149.10
19,500	- 19,999	31	19,638.00
20,000	- 20,499	34	20,095.03
20,500	- 20,999	17	20,668.88
21,000	- 21,499	23	21,112.87
21,500	- 21,999	19	21,720.26
22,000	- 22,499	23	22,109.43
22,500	- 22,999	16	22,632.75
23,000	- 23,499	17	23,182.82
23,500	- 23,999	15	23,659.00
24,000	- 24,499	15	24,104.60
24,500	- 24,999	4	24,639.50
25,000	- 25,499	21	25,116.71
25,500	- 25,999	7	25,593.71
26,000	- 26,499	6	26,120.17
26,500	- 26,999	6	26,595.83
27,000	- 27,499	4	27,111.75
27,500	- 27.999	2	27,631.00
28,000	- 23,499	7	28,125.71
28,500	- 28,999	7	28,605.71

DISTRIBUTION OF LOSSES FOR MAJOR CASES BY TOTAL LOSS SIZE

Pollcy Year 1960 - 1st Reports

Loss Size Interval	
0	99
400	499
700	799
900	999
1,000	1,499
1,500	- 1.999
2,000	- 2,499
2,500	2,999
3,000	3,499
3,500	- 3,999
4,000	- 4,499
4.500	- 4,999
5,000	- 5,499
5,500	- 5,999
6,000	- 6,499
6.500	- 6,999
7,000	- 7.499
7,500	- 7,999
8,000	- 8,499
8,500	- 8.999
9.000	- 9.499
9,500	- 9,999
10,000	- 10,499
10,500	- 10,999
11,000	- 11,499
11,500	- 11,999
12,000	- 12,499
12,500	- 12,999
13,000	- 13,499
13,500	- 13,999

Number of Cases
6
1
3
2
2
1
5
3
3
8
14
8
22
46
67
92
112
141
153
157
182
173
196
150
152
134
125
94
120
113

Average
Loss size
26.17
436.00
764.33
980.50
$1,204.00$
$1,950.00$
$2,271.00$
$2,820.00$
$3,267.33$
$3,633.00$
$4,143.93$
$4,706.50$
$5,186.95$
$5,708.37$
$6,231.33$
$6,730.51$
$7,218.96$
$7,710.26$
$8,202.44$
$8,717.49$
$9,201.43$
$9,693.76$
10.176 .51
$10,683.21$
$11,180.76$
$11,678.15$
$12,156.67$
$12,676.38$
$13,165.83$
$13,667.52$

Loss Size Interval	Number of Cases	Average Loss Size	Loss Size Interval	Number of Cases	$\begin{gathered} \text { Average } \\ \text { Loss Size } \end{gathered}$
29,000-29,499	2	29,064.00	54,500-54,999	1	54,997.00
29,500-29,999	5	29,632.80	55,500-55,999	1	55,516.00
30,000 - 30,499	5	30,112.00	56,000-56,499	1	56,000.00
$30,500=30,999$	3	30,533.33	59,500-59,999	3	59.853 .67
$31,000=31,499$	2	31,160.00	60,000-60,499	2	60,000.00
31,500-31,999	1	31,617.00	60,500-60,999	1	60,717.00
$32.000-32.499$	3	32,018.33	61,500-61,999	1	61,656.00
$32,500=32,999$	3	32,704.00	64,500-64,999	1	64,912.00
$33,000-33,499$	3	33,163.00	65,000-65,499	2	65,258.00
$33,500-33,999$	4	33.583 .75	68,000 - 68,499	1	68,344.00
34,000-34,499	2	34,213.50	$71,000-71,499$	1	71,476.00
34,500-34,999	1	34.530.00	71,500-71,999	1	71.540 .00
35,000-35,499	4	35.142.00	$74,500-74,999$	1	74,772.00
$36,000=36,499$	4	36.178.75	$76,000-76,499$	1	76,307.00
$36,500-36,999$	1	36.550.00	$77,500-77,999$	1	77,869.00
$37,000-37,499$	2	37,033.00	88,500-88,999	1	88,811.00
$37.500-37,999$	1	37,610.00	$90,000-90,499$	1	90,000.00
38,500-38,999	2	38,671.00	94,000-94,499	1	94,000.00
39,000 - 39,499	1	39,490.00	95,000-95,499	1	95,040.00
39,500-39,999	1	39,686.00	98,000 - 98,499	1	98,428.00
$40,500=40,999$	4	40,777.00	102,000-102,499	1	102.366.00
$41,000=41,499$	1	41,462.00	186,000 - 186,499	1	186,000.00
42,000-42,499	2	42,090.00			
43,000-43,499	2	$43,300.50$	0-186,499	3,271	13,172.79
$44,000=44,499$	2	44,167.00			
$45,000=45,499$	1	45,079.00			
45,500-45,999	3	45,737.67			
$46,500=46,999$	1	46,693.00			
48,000 - 48,499	1	48,130.00			
49,000-49,499	1	49,440.00			
$50,000=50,499$	3	50.135 .33			
50,500-50,999	1	50,920.00			
52,000-52,499	1	52,140.00			
$53,000=53,499$	3	53,187.00			
54,000-54,499	1	54,162.00			

California horkhen's compensation DISTRIBUTION OF LOSSES FOR MAJOR CASES by total loss size

Policy Year 1961 - Ist Reports

Average	Loss Size
Loss Size	Intervel
60.67	13,500-13,999
459.00	14,000-14,499
700.00	14,500-14,999
937.00	15,000-15,499
1,349.00	15,500-15,999
1,749.00	16,000-16,499
2,451.50	16,500-16,999
2,678.50	17,000 - 17,499
3,266.18	17,500-17,999
3,726.61	18,000-18,499
4,188.87	18,500-18,999
4,620.62	19,000-19,499
5,175.00	19,500-19,999
5,728.59	20,000-20,499
6,224.45	20,500 - 20,999
6,694.15	21,000 - 21,499
7,205.90	21,500-21,999
7,704.00	22,000 - 22,499
8,201.86	22,500 - 22,999
8,681. 21	23,000-23,499
9,189.52	23,500-23,999
9,693.54	24,000 - 24,499
10,184.08	24,500-24,999
10,706.73	25,000-25,499
11.162 .41	25,500 - 25,999
11,687.40	26,000 - 26,499
12,175.69	$26.500-26.999$
12,653.72	27.000-27.499
13,159.60	27,500-27,999

Number of Cases	Average Loss sixe
145	13,670.69
141	14,174.25
135	14,668.33
133	15,117.36
100	16,674.01
103	16,146.57
74	16,693.46
76	17.179 .34
74	17,662.42
80	18,175.70
44	18,664.34
50	19,147.78
59	19,684. 10
54	20,118.19
33	20,657.36
38	21,183.79
34	21,673.65
25	22,102.08
23	22,705.91
24	23,177.88
16	23,635.94
20	24,196.55
17	24,675.00
21	25,127.95
13	25,687.77
13	26,155.54
7	26,664.71
7	27, 104. 29
13	27,636.54

Average
Loss Size
$28,054.17$
$28,682.83$
$29,278.43$
$29,777.50$
$30,179.50$
$30,750.00$
$31,277.50$
$31,779.50$
$32,305.38$
$32,666.50$
$33,156.67$
$33,790.29$
$34,244.50$
$34,690.00$
$35,252.33$
$35,695.40$
$36,115.50$
$36,822.50$
$37,233.50$
$38,073.50$
$38,590.00$
$39,462.00$
$39,754.40$
$40,193.40$
$40,767.25$
$41,137.33$
$41,800.67$
$42,256.00$
$42,865.00$
$43,233.75$
$43,830.00$
$44,000.00$
$45,168.50$
$45,758.67$
$46,186.50$
$46,679.50$
$47,108.00$
$47,697.00$
$48,087.00$
$49,739.00$
$50,257.00$
50

Loss Size
Interval
Interval
$51,500=51,999$
52,000 - 52,499 52,500 - 52, 999 55,000 - 55,499 55,500 - 55,999 56,500 - 56,999 57,000 - 57,499 $57,500=57,999$ 58,000 - 58,499 $59,000=59,499$ $59,500-59,999$ $60,000-60,499$ $60,500=60,499$ $61,500=61,999$ $62,000=62,499$ $63,000=63,499$ $63,500-63,999$ $66,000=66,499$ $67,000-67,499$ 68,500 - 68,999 69,500 - 69,999 69,500 - 69,999 $70,000=70,499$ $71.500=71.999$ $72,000=72,499$
$73,000=.73,499$ $73,000=.73,499$
$75,000-75,499$ $75,000-75,499$
$76,000=76,499$ $77,000-77,499$ $78,500=78,999$ 80,500 - 80,999 $83,000-83,499$ $83,000-83,499$
$86,500-86,999$ $86,500-86,999$ $89,000-89,499$ $91,500=91,999$
$98,000-98,499$ $98,000-98,499$
$99,000-99,499$ 100,000 $=100,499$ 22,000-122,499 $74,500=174,999$ 88,000 $=188,499$

Average Loss size

51.564 .00 $52,025.00$ 52,707.00 55,237.00 55,900.00 56.624 .00 57,433.00 57.596. 50 58.490 .00 59, 270.00 59,581.00 60,000.00 60,695.50 61,659.00 62,000.00 63,146.00 63,858.00 66,051.00 67,340.00 $68,887.00$ 69,500.00 70,238.00 $70,238.00$
71.829 .00 71,829.00 $72,100.00$
73.158 .00 73.158 .00
75.010 .50 76,100.00 77,187.50 78,757.00 80,683.00 83,472.00 86,500.00 89.167.00 91,925.00 98,204.00 99.197 .00 $100,404.00$ $122,272.00$ 174,998.00 $188,418.00$
$13,687.67$

CALIFORNIA WORKMEN'S COMPENSATION DISTRIBUTION OF LOSSES FOR MINOR CASES by TOTAL LOSS SIZE

Policy Year 1960 - Ist Reports

Loss Size Interval	Number of Cases	Average Loss Size
0. 99	46	50.04
100-199	86	150.86
$200-299$	120	252.53
$300-399$	182	349.75
$400-499$	219	445.32
$500-599$	377	544.10
$600-699$	510	647.37
$700-799$	637	745.40
$800-899$	666	846.18
$900-999$	655	941.02
1,000-1,499	2,762	1,220.40
1,500-1,999	2,280	1,713.34
$2,000-2,499$	1.909	2,205.07
2,500-2,999	1,549	2,706.84
$3,000-3,499$	1,418	3,193.23
3,500-3,999	1,236	3,695.52
4,000-4,499	1,052	4,182.15
4,500-4,999	845	4,690.28
5,000-5,499	738	5,189.59
5,500-5,999	610	5,680.56
6,000-6,499	566	6,160.49
6,500-6,999	420	6,561.54
7,000-7,499	365	7,157.25
7,500-7,999	285	7,673.02
8,000 - 8,499	217	8,143.23
8,500-8,999	165	8,661.25
9,000-9,499	139	9,141.95
9,500-9,999	118	9,643.19

Loss size Interval	Number of Cases	Average Loss Size
$10,000-10,499$	111	$10,106.61$
$10,500-10,999$	64	$10,685.69$
$11,000-11,499$	50	$11,123.22$
$11,500-11,999$	33	$11,638.36$
$12,000-12,499$	31	$12,170.52$
$12,500-12,999$	24	$12,571.33$
$13,000-13,499$	13	$13,065.00$
$13,500-13,999$	11	$13,656.09$
$14,000-14,499$	11	$14,136.18$
$14,500-14,999$	5	$14,504.00$
$15,000-15,999$	9	$15,116.56$
$16,000-16,499$	5	$16,000.00$
$16,500-16,999$	4	$16,578.25$
$17,000-17,999$	2	$17,273.33$
$18,000-18,999$	3	$18,250.00$
$19,000-19,499$	3	$19,133.33$
$20,500-23,499$		$21,983.33$
0		
$0-23,499$	20,554	$3,113.05$

CALIFORNIA WORKMEN'S COMPENSATION OISTRIBUTION OF LOSSES FOR MINOR CASES

BY TOTAL LOSS SIZE
Pollcy Year 1961-1st Reports

Loss Size interval	Number of Cases	Avarage Loss size
10,000-10,499	132	10,114. 25
10,500 - 10,999	94	10,642.41
11,000-11,499	81	11,139.68
11,500-11,999	51	11,679.49
12,000-12,499	46	12,171.07
12,500-12,999	41	12,640.80
13,000-13,499	26	13,141.62
13,500-13,999	24	13,686. 29
14,000-14,499	16	14,118.75
14,500-14,999	10	14,645.30
15,000-15,499	14	15,178.21
15,500-15,999	6	15,740.67
16,000-16,499	5	16,062.20
16,500-16,999	5	16,616.40
17,000-17,499	9	17.101.67
17,500-17,999	5	17,676.00
18,000-18,999	4	18,475.00
19,000-19,499	2	19,030.00
20,000-20,999	2	20,325.00
21,000-22,999	3	21,916.67
24,000-24,499	2	24,250.00
25,000-25,999	3	25,398. 33
34,000-35,499	2	34,825.00
0-35,499	24,613	3,228.46

CALIFORNIA WORKMEN'S COMPENSATION DISTRIBUTION OF LOSSES FOR TEMPORARY CASES by total loss size

Pollcy Year 1960 - 1st Reports

Loss Size Interval	
$0-$	9
$10-$	19
$20-$	29
$30-$	39
$40-$	49
$50-$	59
$60-$	69
$70-$	79
$80-$	89
$90-$	99
$100-$	149
$150-$	199
$200-$	249
$250-$	299
$300-$	349
$350-$	399
$400-$	449
$450-$	499
$500-$	549
$550-$	599
$600-$	649
$650-$	699
$700-$	749
$750-$	799
$800-$	849
$850-$	899
$900-$	949
$950-$	999

Number of Cases
96
192
441
777
1,194
1,487
1,622
1,681
1,691
1,597
7,003
5,158
4,083
3,110
2,856
2,236
2,025
1,633
1,476
1,245
1,332
1,119
1,090
1,066
981
851
753
571

Average Loss Size
4.93
15.77
25.29
34.97
44.57
54.46
64.62
74.50
84.47
94.60
123.33
173.19
222.39
272.63
322.16
372.52
420.60
472.67
518.81
572.77
621.07
672.04
720.84
771.09
820.56
871.86
918.77
970.18

Loss Size
Interval
$1,000-1,499$
$1,500-1,999$
$2,000=2,499$
$2,500=2,999$
$3,000=3,499$
$3,500=3,999$
$4,000=4,499$
$4,500=4,999$
$5,000=5,499$
$5,500-5,999$
$6,000=6,499$
$6,500=6,999$
$7,000=7,499$
$7,500=7,999$
$8,000=8,499$
$8,500-8,999$
$9,000-9,999$
$10,000-10,999$
$11,000=12,999$
$13,000-16,499$
$17,000-33,999$
0

Number of Cases
2,887
1,092
634
405
264
176
133
88
78
62
38
21
33
20
21
13
7
14
7
6
7

> Average Loss size

CALIFORNIA WORKMEN'S COMPENSATION DISTRIBUTION OF LOSSES FOR TEMPORARY CASES BY TOTAL LOSS SIZE

Policy Year 1961-1st Reports

Loss Size Interval		Number of Cases	$\begin{gathered} \text { Average } \\ \text { Loss Size } \end{gathered}$	Loss Size Interval	Number of Cases	$\begin{gathered} \text { Average } \\ \text { Loss Slize } \\ \hline \end{gathered}$
0 -	9	71	5.99	1,000-1,499	3,333	1,173.53
$10-$	19	183	14.90	1,500-1,999	1,273	1,663.31
20 -	29	466	25.10	2,000-2,499	729	2,177.04
$30-$	39	830	34.69	2,500-2,999	433	2,582.25
$40-$	49	1,291	44.76	3,000-3,499	330	3,137.05
$50-$	59	1,621	54.59	3,500-3,999	216	3,663.19
60 -	69	1,830	64.38	4,000-4,499	174	4,133.39
$70-$	79	1,819	74.46	4,500-4,999	121	4,675.05
$80-$	89	1,846	84.44	5,000-5,499	94	5,123.88
$90-$	99	1,757	94.52	$5,500-5,999$	66	5,639.88
$100-$	149	7,530	123.03	6,000-6,499	51	6,158.59
$150-$	199	5,706	172.55	6,500-6,999	38	6,660. 24
$200-$	249	4,421	222.86	7,000 - 7,499	25	7,101.40
$250-$	299	3,484	272.94	7,500-7,999	25	7,650.12
$300-$	349	2,979	321.73	8,000-8,499	24	8,076.04
$350-$	399	2,446	372.72	8,500-8,999	19	8,618.16
$400-$	449	2,022	421.44	9,000-9,499	11	9,173.73
450 -	499	1,714	472.00	9,500-9,999	12	9,627.92
$500-$	549	1,634	520.62	$10,000-10,499$	11	10,095.45
$550-$	599	1,361	571.50	10,500-10,999	8	10,695.50
$600-$	649	1,345	621.14	11,000-11,999	11	11,2.18.64
$650-$	699	1,188	672.58	12,000-12,999	8	12,410.50
$700-$	749	1,207	721.48	$13,000 \div 14,999$	6	13,500.00
$750-$	799	1,163	770.84	15,000-20,499	5	17,280.00
$800-$	849	1,053	820.35			
$850-$	899	955	872.93	0-20,499	60,398	513.80
$900-$	949	818	915.45			
950 -	999	635	970.61			

Exhibit 11
DEATH - 1960

(1)	(2) Cumulative	(3) Frequency	(4) Absolute Difference	(1)	(2) Cumulative	(3) Frequency	(4) Absolute Difference
Loss Size	Observed	Theoretical	(2) $-(3)$	Loss Size	Observed	Theoretical	(2) $-(3)$
12,380	. 0217	. 0007	. 0210	104,500	. 5217	. 5910	. 0693
32,499	. 0435	. 0495	. 0060	107,326	. 5435	. 6064	. 0629
39,348	. 0652	. 0901	. 0249	114,514	. 5652	. 6480	. 0828
40,299	. 0870	. 0968	. 0098	118,144	. 5870	. 6664	. 0794
43,624	. 1087	.1190	. 0103	119,874	. 6087	. 6736	. 0649
44,977	. 1304	.1292	. 0012	121,200	. 6304	. 6808	. 0504
46,000	. 1522	. 1379	. 0143	125,000	. 6522	. 6985	. 0463
54,825	. 1739	. 2090	. 0351	128,985	. 6739	. 7157	. 0418
55,338	. 1957	. 2148	. 0191	135,844	. 6957	. 7422	. 0465
56,000	. 2174	. 2206	. 0032	139,845	. 7174	. 7580	. 0406
56,001	.2391	. 2206	. 0185	141.564	. 7391	. 7642	. 0251
58,506	. 2609	. 2420	. 0189	147,563	. 7609	. 7852	. 0243
58,600	. 2826	. 2420	. 0406	147,663	. 7826	. 7852	. 0026
59,673	. 3043	. 2514	. 0529	159,121	. 8043	. 8186	. 0143
62,500	. 3261	. 2743	. 0518	161,415	. 8261	. 8238	. 0023
63,291	. 3478	. 2810	. 0668	164,208	. 8478	. 8315	. 0163
67,206	. 3696	. 3156	. 0540	165,183	. 8696	. 8340	. 0356
68,391	. 3913	. 3264	. 0649	174,404	. 8913	. 8554	. 0359
69,653	. 4130	. 3372	. 0758	179,169	.9130	. 8643	. 0487
75,394	. 4348	. 3859	. 0489	199,965	. 9348	. 8997	. 0351
80,000	. 4565	. 4207	. 0358	206,511	. 9565	. 9082	. 0483
86,828	. 4783	. 4721	. 0062	280,354	. 9783	. 9656	. 0127
89,028	. 5000	. 4880	. 0120	292,525	1.0000	. 9706	. 0294

(1)	(2) Cumulative	(3) Frequency	(4) Absolute Difference	(1)	(2) Cumulative	(3) Frequency	(4) Absolute Difference
Loss Size	Observed	Theoretical	(2) $-(3)$	Loss Size	Observed	Theoretical	(2) -(3)
1,840	. 0175	. 0000	. 0175	89,000	. 5263	. 5120	. 0143
33.300	. 0351	. 0838	. 0487	93,410	. 5439	. 5398	. 0041
46,000	. 0526	. 1788	.1262	94,816	. 5614	. 5478	. 0136
48,457	. 0702	. 2005	. 1303	99,187	. 5789	. 5753	. 0036
50,247	. 0877	. 2148	. 1271	100,187	. 5965	. 5793	. 0172
53,200	. 1053	. 2389	. 1336	100,340	. 6140	. 5793	. 0347
53,327	. 1228	. 2420	. 1192	101,090	. 6316	. 5832	. 0484
53,653	. 1404	. 2420	. 1016	101,312	. 6491	. 5871	. 0620
55,000	. 1579	. 2546	. 0967	103,515	. 6667	. 5987	. 0680
59,371	. 1754	. 2912	.1158	107,493	. 6842	.6179	. 0663
62,100	.1930	. 3121	.1191	108.485	. 7018	. 6255	. 0763
62,522	. 2105	. 3156	.1051	108,637	.7193	. 6255	. 0938
63,800	. 2281	. 3264	. 0983	109,521	. 7368	. 6293	. 1075
64,588	. 2456	. 3336	. 0880	111,591	.7544	. 6406	. 1138
64,726	. 2632	. 3336	. 0704	115,547	. 7719	. 6591	.1128
65.340	. 2807	. 3409	. 0602	132,946	.7895	. 7291	. 0604
68,874	. 2982	. 3669	. 0687	145,787	. 8070	. 7704	. 0366
70,639	.3158	. 3821	. 0663	150,000	. 8246	. 7823	. 0423
72,679	. 3333	. 3974	. 0641	152,015	. 8421	. 7881	. 0540
73,391	. 3509	. 4013	. 0504	156,995	. 8596	. 8023	. 0573
75,000	. 3684	. 4168	. 0484	166,644	. 8772	. 8238	. 0534
75,500	. 3360	. 4207	. 0347	172,826	. 8947	. 8389	. 0558
76,823	. 4035	. 4286	. 0251	174,600	. 9123	. 8413	. 0710
77.711	. 4211	.4364	. 0153	201,460	. 9298	. 8869	. 0429
79,304	.4386	. 4483	. 0097	213,260	. 9474	. 9015	. 0459
81.969	.4561	.4641	.0080	250,351	. 9649	. 9357	. 0292
83,000	. 4737	. 4721	. 0016	254,494	. 9825	. 9382	. 0443
83,481	.4912	. 4761	.0151	331,151	1.0000	. 9726	. 0274
86,690	. 5088	.4960	. 0128				

Exhlbit 14

Sheet 2b

(1)	(2) Cumulative	(3) Frequency	(4) Absolute Difference	(1)	(2) Cumulative	(3) Frequency	(4) Absolute Difference
Loss Size	Observed	Theoretical	(2) -(3)	Loss Size	Observed	Theoretical	(2) $-(3)$
33,300	. 0179	. 0143	. 0036	89,000	. 5179	. 4602	. 0577
46,000	. 0357	. 0668	. 0311	93,410	. 5357	. 5000	. 0357
48,457	. 0536	. 0823	. 0287	94,816	. 5536	. 5120	. 0416
50,247	. 0814	. 0951	. 0237	99.187	. 5714	. 5517	. 0197
53.200	. 0893	.1170	. 0277	100,187	. 5893	. 5596	. 0297
53,327	.1071	.1170	. 0099	100,340	. 6071	. 5596	. 0475
53,653	. 1250	.1210	. 0040	101,090	. 6250	. 5675	. 0575
55,000	.1429	. 1314	. 0115	101,312	. 6429	. 5714	. 0715
59,371	.1607	.1685	. 0078	103,515	. 6607	. 5871	. 0736
62,100	. 1786	. 1949	. 0163	107,493	. 6786	. 6179	. 0607
62,522	. 1964.	. 1977	. 0013	108,485	. 6964	. 6255	. 0709
63,800	. 2143	. 2090	. 0053	108,637	. 7143	. 6255	. 0888
64,588	. 2321	. 2177	. 0144	109.521	. 7321	. 6331	. 0990
64,726	. 2500	. 2177	. 0323	111,591	. 7500	. 6480	. 1020
65,340	. 2679	. 2236	. 0443	115,547	. 7679	. 6736	. 0943
68,874	. 2857	. 2611	. 0246	132,946	. 7857	. 7734	. 0123
70,639	. 3036	.2776	. 0260	145,787	. 8036	. 8289	. 0253
72,679	. 3214	. 2981	. 0233	150,000	. 8214	. 8438	. 0224
73,391	. 3393	.3050	. 0343	152,015	. 8393	. 8508	. 0115
75,000	. 3571	. 3228	. 0343	156,995	. 8571	. 8665	. 0094
75,500	. 3750	. 3264	. 0486	166,644	. 8750	. 8907	. 0157
76,823	. 3929	. 3409	. 0520	172,826	. 8929	. 9049	. 0120
77.711	.4107	. 3483	. 0624	174,600	. 9107	. 9082	. 0025
79,304	. 4286	. 3669	. 0617	201,460	. 9286	. 9484	. 0198
81,969	. 4464	. 3936	. 0528	213,260	. 9464	. 9608	. 0144
83,000	. 4643	. 4013	. 0630	250,351	. 9643	. 9821	. 0178
83,481	. 4821	. 4052	. 0769	254,494	. 9821	. 9834	. 0013
86,690	. 5000	.4364	. 0636	331,151	1.0000	. 9964	. 0036

(1)	(2) Cumulative	(3) Frequency	(4) Absolute Dlfference \qquad	Loss SizeInterval
Interval	Observed	Theoretical		
$0-99$. 0018	. 0000	. 0018	14,000-14,499
$400-499$. 0021	. 0000	. 0021	14,500-14,999
$700-799$. 0031	. 0000	. 0031	15,000-15,499
$900-999$. 0037	. 0000	. 0037	15,500-15,999
1,000-1,499	. 0043	. 0001	. 0042	16,000 - 16,499
1,500-1,999	. 0046	. 0005	. 0041	16,500-16,999
2,000-2,499	. 0061	. 0019	. 0042	17,000-17,499
2,500-2,999	. 0070	. 0053	. 0017	17,500-17,999
3,000-3,499	. 0079	. 0119	. 0040	18,000-18,499
3,500-3,999	. 0104	. 0223	. 0119	18,500-18,999
$4,000-4,499$. 0147	. 0370	. 0223	19,000 - 19,499
4,500-4,999	. 0171	. 0563	. 0392	19,500-19,999
5,000-5,499	. 0238	. 0799	. 0561	20,000-20,499
5,500-5,999	. 0379	. 1071	. 0692	20,500 $=20,999$
6,000-6,499	. 0584	.1379	. 0795	21,000-21,499
6,500-6,999	. 0865	. 1711	. 0846	21,500-21,999
7,000-7,499	. 1208	. 2061	. 0853	22,000-22,499
7,500-7,999	.1639	. 2426	. 0787	22,500-22,999
8,000-8,499	. 2106	. 2800	. 0694	23,000-23,499
8,500-8,999	. 2586	. 3174	. 0588	23,500-23,999
9,000-9,499	.3143	. 3546	. 0403	24,000-24,499
9,500-9,999	. 3672	. 3913	. 0241	24,500-24,999
10,000 - 10,499	. 4271	. 4270	. 0001	25,000-25,499
10,500-10,999	. 4729	. 4618	.0111	25,500-25,999
11,000-11,499	. 5194	. 4952	. 0242	26,000-26,499
11,500-11.999	. 5604	. 5275	. 0329	26,500-26,999
12,000-12,499	. 5986	. 5580	. 0406	27,000 - 27,499
12,500-12,999	. 6273	. 5871	. 0402	27,500-27,999
13,000 $=13,499$. 6640	. 6145	. 0495	28,000-28,499
13,500-13,999	. 6936	. 6406	. 0580	28,500-28,999

(1) Loss Size	(2) Cumulative	(3) Frequency	(4) Absolute Difference	(1) Loss Size	(2) Cumulative	(3) Frequency	(4) Absolute Difference $(2)-(3)$	
Interval	Observed	Theoretical	(2)-(3)	Interval	Observed	Theoretical		
29,000-29,499	. 9691	. 9615	. 0076	50,000 - 50,499	. 9902	. 9974	. 0072	
29,500-29,999	. 9707	. 9642	. 0065	50,500-50,999	. 9905	. 9974	. 0069	
30,000 $=30,499$. 9722	. 9665	. 0057	52,000 - 52,499	. 9908	. 9979	. 0071	
30,500-30,999	. 9731	. 9688	. 0043	53,000 - 53,499	. 9917	. 9981	. 0064	
31,000-31,499	. 9737	. 9708	. 0029	54,000 - 54,499	. 9921	. 9983	. 0062	\cdots
31,500-31,999	. 9740	. 9728	. 0012	54,500-54,999	. 9924	. 9984	. 0060	
32,000-32,499	. 9749	. 9745	. 0004	55,500 - 55,999	. 9927	. 9986	. 0059	易
32,500-32,999	. 9758	. 9762	. 0004	56,000 - 56,499	. 9930	. 9987	. 0057	5
33,000-33,499	. 9768	. 9778	. 0010	59,500 - 59,999	. 9939	. 9991	. 0052	O
33,500-33,999	. 9780	. 9792	. 0012	60,000-60,499	. 9945	. 9991	. 0046	n
$34,000-34,499$. 9786	. 9806	. 0020	60,500-60,999	. 9948	. 9992	. 0044	$\underline{\square}$
34,500-34.999	. 9789	. 9818	. 0029	61,500-61,999	. 9951	. 9992	. 0041	-
35,000-35.499	. 9881	. 9830	. 0029	64,500-64,999	. 9954	. 9994	. 0040	$\underset{\sim}{2}$
$36,000-36,499$. 9814	. 9851	. 0037	$65,000=65,499$. 9960	. 9995	. 0035	$\stackrel{\square}{\square}$
$36,500=36,999$. 9817	. 9860	. 0043	68,000 - 68,499	. 9963	. 9996	. 0033	$\stackrel{1}{0}$
37,000-37,499	. 9823	. 9869	. 0046	71,000-71,499	. 9966	. 9997	. 0031	\underline{Z}
37,500-37,999	. 9826	. 9877	. 0051	71,500-71,999	. 9969	. 9997	. 0028	
38,500-38,999	. 9832	. 9892	. 0060	74,500-74,999	. 9972	. 9998	. 0026	
39,000-39,499	. 9835	. 9898	. 0063	76,000 - 76,499	. 9976	. 9998	. 0022	
$39.500-39.999$. 9838	. 9905	. 0067	77,500-77,999	. 9979	. 9998	. 0019	
40,500-40,999	. 9850	. 9916	. 0066	88,500-88,999	. 9982	. 9999	. 0017	
41,000-41,499	. 9853	. 9921	. 0068	90,000-90,499	. 9985	. 9999	. 0014	
42,000-42,499	. 9859	. 9931	. 0072	94,000 $=94,499$. 9988	1.0000	. 0012	
43,000-43,499	. 9865	. 9939	. 0074	95,000-95,499	. 9991	1.0000	. 0009	
$44,000=44,499$. 9872	. 9946	. 0074	98,000 - 98,499	. 9994	1.0000	. 0006	
45,000-45,499	. 9875	. 9952	. 0077	102,000-102,499	. 9997	1.0000	. 0009	
$45,500=45,999$. 9884	. 9955	. 0071	186,000-186,499	1.0000	1.0000	. 0000	
46,500-46,999	. 9887	. 9960	. 0073					
48,000-48,499	. 9890	. 9966	. 0076					
49,000-49,499	.9893	. 9970	. 0077					

MANOR PERMANENT PARTIAL - 1961

(1)
Loss Size interval
0 -
$400-499$
$700-799$
900- 999
1,000-1,499
1,500-1,999
2,000-2,499
2,500-2,999
3,000-3,499
3,500-3,999
4,000-4,499
4,500-4,999
5,000-5,499
5,500-5,999
6,000-6,499
6,500-6,999
7,000 - 7,499
7,500-7,999
8,000 - 8,499
8,500-8,999
9,000-9,499
9,500-9,999
10,000-10,499
10,500-10,999
11,000-11,499
11,500-11,999
12,000-12,499
12,500-12,999
13,000-13,499
13,500-13,999
14,000-14,499
14,500-14,999
15,000-15,499
15,500-15,999
16,000-16,499

(4)
(2)

Cumulative	Frequency	Absolute Difference
Observed	Theoretical	(2) $-(3)$
. 0006	. 0000	. 0006
. 0010	. 0000	. 0010
. 0012	. 0000	. 0012
. 0014	. 0000	. 0014
. 0018	. 0000	. 0018
. 0022	. 0002	. 0020
. 0026	. 0007	. 0019
. 0030	. 0023	. 0007
. 0053	. 0059	. 0006
. 0091	. 0123	. 0032
. 0140	. 0225	. 0085
. 0195	. 0367	. 0172
. 0290	. 0554	. 0264
. 0423	. 0783	. 0360
. 0660	. 1050	. 0390
. 0923	. 1353	. 0430
. 1252	. 1683	. 0431
. 1619	. 2036	. 0417
. 2012	. 2404	. 0392
. 2473	. 2781	. 0308
. 2940	. 3163	. 0223
. 3392	. 3545	. 0153
.3880	. 3922	. 0042
. 4309	. 4292	. 0017
. 4717	. 4651	. 0066
. 5093	. 4997	. 0096
. 5532	. 5330	. 0202
. 5887	. 5647	. 0240
. 6271	. 5948	. 0323
. 6579	. 6234	. 0345
. 6379	. 6503	. 0376
. 7165	. 6755	. 0410
. 7447	. 6993	. 0454
. 7659	. 7214	. 0445
. 7877	. 7422	. 0455

(1)
Loss Size
1nterval
$16,500-16,999$
$17,000-17,499$
$17,500-17,999$
$18,000-18,499$
$18,500=18,999$
$19,000-19,499$
$19,500-19,999$
$20,000-20,499$
$20,500-20,999$
$21,000=21,499$
$21,500-21,999$
$22,000-22,499$
$22,500-22,999$
$23,000-23,499$
$23,500-23,999$
$24,000-24,499$
$24,500-24,999$
$25,000-25,499$
$25,500-25,999$
$26,000-26,499$
$26,500-26,999$
$27,000-27,499$
$27,500-27,999$
$28,000-28,499$
$28,500-28,999$
$29,000-29,499$
$29,500-29,999$
$30,000-30,499$
$30,500-30,999$
$31,000-31,499$
$31,500-31,999$
$32,000-32,499$
$32,500-32,999$
$33,000-33,499$
$33,500-33,999$

Exhiblt 16 Sheet 2
(4)

Absolute
$\frac{\text { Cumulative Frequency }}{\text { Observed }}$

$$
01 \text { fference }
$$

.8034

.8034	.7614	.0420
.8195	.7795	.0400
.8352	.7961	.0391
.8521	.8116	.0405
.8614	.8260	.0354
.8720	.8392	.0328
.8845	.8515	.0330
.8959	.8629	.0330
.9029	.8735	.0294
.9109	.8832	.0277
.9181	.8921	.0260
.9234	.9004	.0230
.9283	.9080	.0203
.9334	.9151	.0183
.9368	.9215	.0153
.9410	.9276	.0134
.9446	.9331	.0115
.9490	.9381	.0109
.9518	.9428	.0090
.9546	.9472	.0074
.9561	.9511	.0050
.9576	.9548	.0028
.9604	.9583	.0021
.9617	.9613	.0004
.9642	.9643	.0001
.9657	.9669	.0012
.9670	.9694	.0024
.9687	.9716	.0029
.9691	.9737	.0046
.9695	.9757	.0062
.9703	.9774	.0071
.9720	.9891	.0071
.9724	.9820	.0082
.9730	.9745	.0080
	.983	
106		

MAJOR PERMANENT PARTIAL - 1961

(1) Loss Size	(2) Cumulative	(3) Frequency	(4) Absolute Difference
Interval	Observed	Theoretical	(2) - (3)
34,000 $-34,499$.9749	.9845	.0096
34,500-34,999	. 9753	. 9856	. 0103
35,000-35,499	. 9759	. 9866	.0107
35,500-35,999	. 9770	. 9876	. 0106
36,000-36,499	. 9778	. 9885	.0107
36,500-36,999	. 9782	.9893	.0111
37,000 - 37.499	.9786	. 9900	.0114
38,000 - 38,499	. 9790	.9913	.0123
38,500-38,999	. 9792	. 9920	.0128
39,000-39,499	.9794	. 9926	.0132
39,500-39,999	. 9805	.9931	.0126
40,000 - 40,499	. 9816	. 9935	.0119
$40,500=40,999$. 9824	.9940	.0116
41,000-41,499	. 9830	. 9944	.0114
41,500-41,999	. 9836	.9948	.0112
42,000 $-42,499$. 9838	.9951	.0113
42,500-42,999	. 9842	. 9954	.0112
43,000-43,499	.9850	.9957	.0107
$43.500=43,999$. 9852	.9960	. 0108
44,000 $=44,499$. 9854	.9963	. 0109
45,000-45,499	. 9858	. 9967	. 0109
$45,500=45,999$.9864	. 9970	. 0106
46,000 $=46,499$. 9872	. 9972	. 0100
46,500-46,999	.9876	. 9974	.0098
47,000-47,499	. 9882	. 9975	.0093
47,500-47,999	.9890	. 9977	. 0087
48,000-48,499	. 9892	. 9978	. 0086
49,500-49,999	. 9896	. 9982	. 0086
50,000-50,499	. 9898	. 9984	. 0086
50,500-50,999	.9900	. 9985	. 0085
51,500-51,999	.9902	.9987	. 0085
52,000-52,499	.9904	.9987	. 0083
52,500-52,999	. 9908	. 9988	. 0080
55,000-55,499	.9914	. 9991	. 0077
55,500-55,999	.9916	. 9992	. 0076

$\begin{array}{rr}\text { Exhibit } 16 \\ \text { Sheet } & 3\end{array}$
(4)

Absolute

Cumulative	Frequency	Absolute Difference
Observed	Theoretical	(2)-(3)
.9918	.9993	. 0075
. 9920	.9993	. 0073
.9924	. 9994	. 0070
. 9926	. 9994	. 0068
. 9930	. 9995	. 0065
. 9932	. 9995	. 0063
. 9938	. 9995	. 0057
. 9942	. 9995	. 0053
. 9944	.9996	. 0052
. 9946	. 9996	. 0050
. 9948	. 9997	. 0049
. 9950	. 9997	. 0047
. 9952	. 9998	. 0046
. 9954	. 9998	.0044
. 9956	. 9998	. 0042
. 9958	. 9998	. 0040
. 9960	. 9998	. 0038
. 9962	. 9998	. 0036
. 9964	.9998	. 0034
. 9966	. 9999	.0033
. 9970	. 9999	. 0029
. 9972	.9999	. 0027
. 9976	. 9999	. 0023
.9978	. 9999	. 0021
. 9980	1.0000	. 0020
.9982	1.0000	. 0018
. 9984	1.0000	. 0016
. 9986	1.0000	. 0014
. 9988	1.0000	. 0012
. 9990	1.0000	. 0010
. 9992	1.0000	. 0008
. 9994	1.0000	. 0006
. 9996	1.0000	. 0004
. 9998	1.0000	. 0002
. 0000	1.0000	0000

(1)	(2) Cumulative	(3) Frequency	(4) Absolute Difference $\text { (2) }-(3)$	(1) Loss Size	(2) Cumulative	(3) Frequency	(4) Absolute Difference
Interval	Observed	Theoretical		Loss Size Interval	Observed	Theoretical	(2)-(3)
$0-99$. 0022	. 0001	. 0021	7.500-7,999	. 9503	. 9333	. 0170
100-199	. 0064	. 0017	. 0047	$8,000-8,499$. 9609	. 9421	. 0188
$200-299$. 0123	. 0074	. 0049	8,500-8,999	. 9689	. 9497	. 0192
$300-399$. 0211	. 0183	. 0028	9,000 - 9,499	. 9757	. 9561	. 0196
400-499	. 0318	. 0342	. 0024	9,500 - 9,999	. 9814	. 9614	. 0200
$500-599$. 0501	.0544	. 0043	10,000 $=10,499$. 9868	. 9661	. 0207
$600-699$. 0749	. 0779	. 0030	$10,500=10,999$. 9899	. 9700	. 0199
$700-799$. 1059	. 1042	. 0017	11,000-11,499	. 9924	. 9735	. 0186
$800-899$.1383	. 1320	. 0063	11,500-11,999	. 9940	. 9765	. 0175
$900-999$. 1702	. 1609	. 0093	12,000 $=12,499$. 9955	. 9791	. 0164
1,000-1,499	. 3046	. 3067	. 0021	12,500-12,999	. 9966	. 9813	. 0153
1,500-1,999	. 4155	. 4364	. 0209	13,000-13,499	. 9973	. 9833	. 0140
2,000 - 2,499	. 5084	. 5426	. 0342	13,500-13,999	. 9978	. 9850	. 0128
2,500-2,999	. 5837	. 6278	. 0441	14,000-14,499	. 9983	. 9865	. 0118
3,000-3,499	. 6527	. 6950	. 0423	14,500-14,999	. 9986	. 9879	. 0107
3,500-3,999	. 7129	. 7486	. 0357	15,000-15,999	. 9990	. 9901	. 0089
4,000 - 4,499	. 7640	. 7913	. 0273	16,000-16,499	. 9993	. 9911	. 0082
4,500-4,999	. 8051	. 8259	. 0208	16,500-16,999	. 9995	. 9919	. 0076
5,000-5,499	. 8411	. 8536	. 0125	17,000-17,999	. 9996	. 9932	. 0064
5,500-5,999	. 8707	. 8762	. 0055	18,000-18,999	. 9997	. 9944	. 0053
6,000-6,499	. 8983	. 8948	. 0035	19,000-19,499	. 9999	. 9949	. 0050
6,500-6,999	. 9187	. 9101	. 0086	20,500-23,499	1.0000	. 9974	. 0026
7,000-7,499	. 9365	. 9226	. 0139				

MINOR PERMANENT PARTIAL — 1961

(1) Loss Size	(2) Cumulative	(3) Frequency	(4) Absolute Difference	(1) Loss Size	(2) Cumulative	(3) Frequency	(4) Absolute DIfference
Loss Size Interval	Observed	Theoretical	(2) $-(3)$	Interval	Observed	Theoretical	(2) $-(3)$
$0-99$. 0022	. 0000	. 0022	9,000-9,499	. 9703	. 9504	. 0199
100-199	. 0063	. 0018	. 0045	9,500-9,999	. 9760	. 9564	. 0196
$200-299$. 0134	. 0073	. 0061	10,000-10,499	. 9814	. 9614	. 0200
$300-399$. 0221	. 0179	. 0042	10,500-10,999	. 9852	. 9658	. 0194
$400-499$. 0325	. 0332	. 0007	11,000 $=11,499$. 9885	. 9696	. 0189
$500-599$. 0507	. 0526	. 0019	11,500-11,999	. 9906	. 9729	. 0177
$600-699$. 0741	. 0754	. 0013	12,000-12,499	. 9925	. 9758	. 0167
$700-799$. 1021	. 1005	. 0016	12,500-12,999	. 9942	. 9783	. 0159
$800-899$.1323	. 1272	. 0051	13,000-13,499	. 9953	. 9805	. 0148
$900-999$. 1609	. 1551	. 0058	13,500-13,999	. 9963	. 9825	. 0138
1,000-1,499	. 2905	. 2965	. 0060	14,000-14,499	. 9970	. 9842	. 0128
1,500-1,999	. 3995	. 4230	. 0235	14,500-14,999	. 9974	. 9857	. 0117
2,000 - 2,499	. 4951	. 5278	. 0327	15,000-15,499	. 9980	. 9870	. 0110
2,500-2,999	. 5725	. 6124	. 0399	15,500-15,999	. 9982	. 9883	. 0099
3,000-3,499	. 6409	. 6800	. 0391	16,000-16,499	. 9984	. 9894	. 0090
3,500-3,999	. 6991	. 7343	. 0352	16,500-16,999	. 9986	. 9903	. 0083
4,000 $=4,499$. 7524	. 7780	. 0256	17,000-17,499	. 9990	. 9911	. 0079
4,500-4,999	. 7962	. 8132	.0170	17,500-17,999	. 9992	. 9919	. 0073
$5,000-5,499$. 8318	. 8420	. 0102	18,000-18,999	. 9994	. 9932	. 0062
5,500-5,999	. 8621	. 8655	. 0034	19,000-19,499	. 9995	. 9938	. 0057
6,000-6,499	. 8862	. 8849	. 0013	20,000 - 20,999	. 9996	. 9952	. 0044
6,500-6,999	. 9074	. 9011	. 0063	21,000 - 22,999	. 9997	. 9965	. 0032
7,000-7,499	. 9250	. 9146	. 0104	24,000-24,499	. 9998	. 9972	. 0026
7,500-7,999	. 9390	. 9259	. 0131	25,000-25,999	. 9999	. 9977	. 0022
8,000-8,499	. 9520	. 9354	. 0166	34,000-35,499	1.0000	. 9993	. 0007
8,500-8,999	. 9614	. 9435	. 0179				

(1)		(2) Cumulative	(3) Frequency	(4) Absolute Difference $(2)-(3)$	(1)	(2) Cumulative	(3) Frequency	(4) Absolute Difference
Interval		Observed	Theoretical		Loss Size Interval	Observed	Theoretical	(2)-(3)
$0-$	9	. 0017	. 0009	. 0008	$850-899$. 8676	. 8665	. 0011
$10-$	19	. 0052	. 0076	. 0024	$900-949$. 8812	. 8770	. 0042
$20-$	29	. 0132	. 0208	. 0076	$950-999$. 8915	. 8863	. 0052
$30-$	39	. 0272	. 0387	. 0115	1,000 - 1,499	. 9437	. 9428	. 0009
$40-$	49	. 0488	. 0599	.0111	1,500-1,999	. 9634	. 9673	. 0039
$50-$	59	. 0756	. 0829	. 0073	2,000-2,499	. 9748	. 9797	. 0049
$60-$	69	. 1049	. 1069	. 0020	2,500-2,999	. 9822	. 9866	. 0044
$70-$	79	. 1353	. 1316	. 0037	3,000 - 3,499	. 9869	. 9908	. 0039
$80-$	89	.1658	. 1564	. 0094	3,500-3,999	. 9901	. 9934	. 0033
$90-$	99	. 1946	. 1809	. 0137	4,000 - 4,499	. 9925	. 9952	. 0027
$100-$	149	. 3211	. 2956	. 0255	4,500-4,999	. 9941	. 9963	. 0022
$150-$	199	.4143	. 3928	. 0215	5,000 - 5,499	. 9955	. 9972	. 0017
$200-$	249	. 4880	. 4737	. 0143	5,500-5,999	. 9966	. 9978	. 0012
$250-$	299	. 5442	. 5402	. 0040	6,000 - 6,499	. 9973	. 9982	. 0009
$300-$	349	. 5958	. 5960	. 0002	6,500-6,999	. 9977	. 9986	. 0009
$350-$	399	. 6361	. 6428	. 0067	7,000 - 7,499	. 9983	. 9989	. 0006
$400-$	449	. 6727	. 6822	. 0095	7,500-7,999	. 9986	. 9991	. 0005
$450-$	499	. 7022	. 7160	. 0138	$8,000-8,499$. 9990	. 9992	. 0002
$500-$	549	. 7289	. 7448	. 0159	8,500 $-8,999$. 9993	. 9994	. 0001
$550-$	599	. 7513	. 7698	. 0185	9,000 - 9,999	. 9994	. 9995	. 0001
600 -	649	. 7754	. 7916	. 0162	10,000 $=10,999$. 9996	. 9997	. 0001
650 -	699	. 7956	. 8106	. 0150	11,000-12,999	. 9998	. 9998	. 0000
700 -	749	. 8153	. 8272	. 0119	$13,000=16,499$. 9999	. 9999	. 0000
$750-$	799	. 8345	. 8418	. 0073	17,000-33,999	1.0000	1.0000	. 0000
800 -	849	. 8523	. 8549	. 0026				

(1)			(2) Cumulative	(3) Frequency	(4) Absolute Difference $(2)-(3)$	(1) Loss size	(2)	(3) Frequency	(4) Absolute Difference $(2)-(3)$	
Loss Size Interval			Observed	Theoretical		Interval	Observed	Theoretical		
0	-	9	. 0012	. 0010	. 0002	$900-949$. 8731	. 8720	. 0011	
10	-	19	. 0042	. 0078	. 0036	$950-999$. 8836	. 8815	. 0021	
20	-	29	. 0119	. 0209	. 0090	1,000 - 1,499	. 9388	. 9396	. 0008	$\stackrel{n}{N}$
30	-	39	. 0256	. 0387	. 0131	1,500-1,999	. 9599	. 9651	. 0052	m
40	-	49	. 0470	. 0595	. 0125	2,000 - 2,499	. 9720	. 9781	. 0061	O
50	-	59	. 0738	. 0823	. 0085	2,500-2,999	. 9792	. 9855	. 0063	-
60	-	69	. 1041	. 1060	. 0019	3,000-3,499	. 9847	. 9899	. 0052	앙
70	-	79	. 1342	.1303	. 0039	3,500-3,999	. 9883	. 9928	. 0045	0
80	-	89	. 1648	.1547	. 0101	4,000-4,499	. 9912	. 9946	. 0034	믄
90	-	99	. 1939	. 1789	. 0150	4,500-4,999	. 9932	. 9960	. 0028	\%
100	-	149	. 3185	. 2919	. 0266	5,000-5,499	. 9948	. 9968	. 0020	安
150	-	199	.4129	. 3879	. 0250	5,500-5,999	. 9959	. 9975	. 0016	$\stackrel{5}{5}$
200	-	249	. 4861	. 4673	. 0183	6,000 - 6,499	. 9967	. 9981	. 0014	${ }_{0}$
250	-	299	. 5438	. 5341	. 0097	6,500-6,999	. 9973	. 9984	. 0011	2
300	-	349	. 5931	. 5895	. 0036	7,000 - 7,499	. 9977	. 9987	. 0010	
350	-	399	. 6336	. 6360	. 0024	7,500-7,999	. 9981	. 9989	. 0008	
400	-	449	. 6671	. 6755	. 0084	$8,000-8,499$. 9985	. 9991	. 0006	
450	-	499	. 6955	. 7093	. 0138	8,500 - 8,999	. 9988	. 9993	. 0005	
500	-	549	. 7226	. 7383	. 0157	9,000-9,499	. 9990	. 9994	. 0004	
50	-	599	.7451	. 7634	. 0183	9,500-9,999	. 9992	. 9995	. 0003	
600	-	649	. 7674	. 7853	. 0179	10,000-10,499	. 9994	. 9995	. 00001	
650	-	699	.7871	. 8045	. 0174	10,500 = 10,999	. 9995	. 9996	. 0001	
700	-	749	. 8071	. 8214	. 0143	11,000 ~ 11,999	. 9997	. 9997	. 0000	
750	-	799	. 8264	. 8364	. 0100	12,000-12,999	. 9998	. 9998	. 0000	
300	-	849	. 8438	. 8496	. 0058	13,000-14,999	. 9999	. 9999	. 0000	
850	-	899	. 8596	. 8614	. 0018	15,000-20,499	1.0000	1.0000	. 0000	N

CHARACTERISTICS OF THE
SIZE OF LOSS DISTRIBUTIONS FOR PERMANENT DISABILITY ANO TEMPORARY CASES

Type of Injury	Policy Year	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Cases } \end{gathered}$	Mean	Standard Deviation	$\mathrm{Da}_{\text {a }}$	$\underline{\mathrm{D}_{\mathrm{n}}{ }^{05}}$	$\begin{gathered} \text { Result } \\ \text { of } \\ \text { K-test } \\ \hline \end{gathered}$
Permanent Total	1960	46	4.95667	. 26967	. 083	. 201	sccept
	1961- "a'	57	4.93985	. 30200	. 134	. 180	accept
	1961-"b"	56	4.96976	. 20460	. 102	. 182	accept
Major	1960	3,271	4.06335	. 22971	. 085	. 024	reject
	1961	4,721	4.07928	. 21256	. 046	. 020	rejact

Minor	1960	20,554	3.35888	.36261	.044	.009	rejact
	1961	24,613	3.37215	.36719	.040	.009	reject

| | 1960 | 55,372 | 2.42763 | .47380 | .026 | .006 | reject |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Temporary | 1961 | 60,398 | 2.43481 | .47759 | .027 | .006 | reject |

$$
\begin{aligned}
\mathrm{D}_{\mathrm{n}} & =\max _{\mathrm{x}}\left|F(\mathrm{x})-\mathrm{S}_{\mathrm{n}}(\mathrm{x})\right| \\
\mathrm{D}_{\mathrm{n}} \cdot 05 & =1.36 \div \mathrm{n}^{\frac{1}{2}}
\end{aligned}
$$

[^0]: ${ }^{1}$ The general form of the cumulative distribution function, $F(y, t)$, of the total amount of claims during a time interval of length t, is given by:

 $$
 F(y, t)={\underset{0}{\infty}}_{\infty}^{\infty} p_{n}(t) \cdot G_{n}(y)
 $$

 where $\quad p_{n}(t)$ is the probability of the occurrence of n claims;
 $G(y)$ is the cumulative size of loss distribution; and
 $G_{n}(y)$ is the n-fold convolution of $G(y)$ with itself.
 ${ }^{2}$ Although the analysis, procedures and discussions of the paper are based on data reported to the California Inspection Rating Bureau, the manner in which such data has been utilized and any opinions expressed herein are those of the writer and should not be taken to reflect the position of the Bureau, its Members, or its Committees.
 ${ }^{3}$ It should be noted that U.S. L \& H experience and pneumonoconiosis claims under a classification which is subject to a pneumonoconiosis surcharge are not included in the basic data of the paper.

[^1]: ${ }^{4}$ Dickerson, O. D.; Katti, S. K.; and Hofflander, A. E.; "Loss Distributions in NonLife Insurance," The Journal of Insurance, Vol. XXVIII, No. 3, p. 49.
 ${ }^{5}$ The particular commercial graph paper I used was 3 cycle, ± 2.05 standard deviation units, which was then extended manually to ± 2.3 standard deviation units.

[^2]: ${ }^{6}$ Exhibit 14 has Sheets $1 a$ and $1 b$ rather than a Sheet 1 . Sheet $1 a$ corresponds to Sheet 1 of the other exhibits. The purpose of Sheet $1 b$ is explained subsequently.

[^3]: ${ }^{7}$ Technically, D_{n} is defined as the least upper bound of the absolute deviation of $S_{n}(x)$ from $F(x)$; from a practical viewpoint this means the maximum.
 ${ }^{s}$ For $n>35, D_{n}=\frac{\lambda}{n^{1 / 2}}$

[^4]: ${ }^{4}$ A discussion of the Kolmogorov test can be found in Hoel, P. G., Introduction to Mathematical Statistics, 3rd ed., Wiley, pp. 345-349; and in Keeping, E. S., Introduction to Statistical Inference, Van Nostrand, pp. 256-259.

[^5]: be found as follows (assuming logs to base 10 were used in the transformation): If α and $\beta^{1 / 2}$ stand for the mean and standard deviation as shown on Exhibit 21, then the mean and variance (μ and σ^{2}) of the log-normal is given by

 $$
 \begin{aligned}
 \mu & =\exp \left[\frac{\alpha}{\mathrm{c}}+\frac{\beta}{2 \mathrm{c}^{2}}\right] \\
 \sigma^{2} & =\mu^{2} \eta^{2} \\
 \mathrm{c} & =\log \mathrm{e}=.43429 \\
 \eta^{2} & =\exp \frac{\beta}{\left(\mathrm{c}^{2}\right)}-1
 \end{aligned}
 $$

 $$
 \text { where } \quad \mathrm{c}=\log \mathrm{e}=.43429
 $$

 and

