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The Place of Excess Ratio Distributions in Casualty Insurance Rate Making 

A risk who wishes to be self-insured to a degree, and whose size as measured 
by expected losses is sufficient to make it practicable, may elect to have his 
premium based in part on actual losses up to a specified limit. The balance 
of his premium would consist of charges by the insurance carrier for claim 
service and other carrier expenses plus a charge for the expected or average 
value, based on the experience of many risks, of losses in excess of the speci- 
fied limit. Where the specified limit is a stated percentage of total expected 
losses, the ratio of expected losses in excess of that percentage to the total 
expected losses is called an "excess pure premium ratio" or more briefly, an 
"excess ratio" or "charge." Likewise the risk may elect to forego the full 
reduction in premium that would otherwise result in event a very low actual 
loss ratio should be incurred, in which case his premium would be adjusted 
up to a specified minimum percentage of the standard premium to reflect a 
saving to the carrier equal to the expected value of losses in excess of actual 
losses. The difference between the charge and the saving for selected maximum 
and minimum loss ratios is the net insurance charge. The standard premium is 
the premium that would be paid in the absence of any plan for basing premium 
on the actual losses of the risk. A rating plan which bases premium on actual 
losses is called a "retrospective" rating plan. 

In order for such a plan to be equitable it is necessary for the carriers to 
calculate from a large body of experience the expected ratios to total losses 
of losses in excess of any specified loss ratio for risks of every size. From these 
calculations a table of charges and savings can be prepared for rating any 
risk under a retrospective rating plan. The table used currently for this pur- 
pose by the principal carriers is named Table M. 

Previous Treatment of the Subject 
In his paper entitled "On Graduating Excess Pure Premium Ratios", 

(P.C.A.S. Vol. XXVIII)  Mr. Paul Dorweiler showed how indicated excess 
ratios calculated directly from actual data could be graduated for varying 
specified loss ratios for a given amount of expected losses and how they could 
be graduated for varying expected loss sizes for a given specified loss ratio. 
It was on the basis of his work that Table M was prepared from the 1934-37 
experience of New York State Workmen's Compensation Risks. 

In "Sampling Theory in Casualty Insurance", (P.C.A.S. Vol. XXX P. 56) 
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Mr. Arthur L. Bailey stated the linear relationship that exists between the sum 
of the charges in Table M and the variance of the loss ratios of risks with 
corresponding expected losses. (See page 10, infra.) 

This convenient mathematical relationship permitted adjustment of Table 
M in 1954 to reflect increases in the variance of loss ratios for risks of a given 
expected loss size, due in large measure to increased claim costs over the 
average claim cost of the 1934-37 period and the consequent decrease in the 
number of claims required to produce a given amount of losses. 

For this purpose it was necessary to find a formula for estimating the vari- 
ance of the probability distribution* of loss ratios for a risk of average size 
from the experience of a group of risks with varying expected losses. The 
problem of a formula to use for the purpose arose because grouping of risks 
by size necessarily involves some spread in the size of risks included in any 
group. A straightforward calculation of the variance of their loss ratios accord- 
ing to elementary formulas would produce an upward bias in the estimate 
of the variance for a risk of average size owing to the hyperbolic relationship 
between expected losses and the expected values of the squares of differences 
between loss ratios and their expected values. The mathematical details of 
the relationship are covered in the Appendix, Notes 1 and la. 

On the basis of Mr. Bailey's studies variances corresponding to various 
expected losses were calculated from the countrywide experience of Policy 
Year 1950. Table M was accordingly revised to match the calculated variances 
based on 1950 experience with the variances underlying the columns of 
insurance charges in Table M as previously developed. 

Advantages of the Method of Moments 
It  is apparent that the so-called "Method of Moments" has already been 

of great use in studies of Table M through providing, by means of variance 
calculations, a simple check on the correctness of the totals of the insurance 
charges. This check, which tests the graduation of charges by size of expected 
losses, is sufficient where the charges in each column are believed to stand 
in the proper proportions to one another. 

For a more complete check on the table it is necessary to study the manner 
in which insurance charges are graded from low loss ratios to high as well as 
from small risks to large risks. Since the direct computation of a table of 
excess ratios and their subsequent graduation is quite a laborious undertaking 
~;ithout, in the writer's opinion, a very satisfactory solution from either the 
practical or the theoretical standpoint, it should be worth while to try to 
extend the method of moments to cover the grading of charges. This method,. 
which has found wide application in many fields of statistics as a tool f o r  
describing probability distributions, should make it possible by calculation 
of a few parameters to produce a graded table of insurance charges from a 
listing of individual risk experience. It  has the further advantage that the 
economy of parameters required reduces the sampling error in the finished 
table. With an electronic calculator the labor would be reduced to very little. 

*The probability distribution of loss ratios for a risk of given size is mathematically the 
same as the theoretical distribution hy lo~ ratio of an infinite population of risks with equal 
expected losses. 
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accident cost, except in Eq. (9), where it is a constant in the 
graduating equation for VR ~. 
coefficient of u in Eq. (9). 
coefficient of u in Eq. (10). 
coefficient of u in Eq. (12). 
coefficient of u s in Eq. (9). 
base of natural logarithms. 
expected ratio of losses to permissible losses; estimated value 
of ER. 
dummy constant in Eqs. (2.3) et seq. 
dummy constant in Eqs. (3.2) et seq. 
ordinal subscript retaining same value as a quantity in Eqs. (29.1), 
(29.2), (29.3). 
number of risk size-groups, except in Eqs. (1.5) to (1.7) in which it 
is the expected value of n. 
number of risks in a size group, except: 
(1) in Eqs. (29.1), (29.2), (29.3) where values of the argument (x) 
are numbered from 0 to n and (2) in Note la, where n denotes 
the number of cases in a sample, and (3) in Eq. (14) where it is 
an exponent. 
number of accidents. 
reciprocal of EL, except in Notes 1 and la, where it is a dummy 
variable used for illustration. 
dummy variable used for illustration. 
weighting coefficient used in normal equations; equals fZX. 
measure of skewness; equals ~8~[~ s. 
measure of kurtosis; equals ~4[~22. 
n 'h moment of a variable; equals E(v  -- Ev)" if v is the variable. 
coefficient of correlation; defined in Note 1, Appendix. 
standard deviation; equals square root of ~. 
spacing interval for given values of Ro. 
upper limit of the range of a probability distribution; specifically, 
the lowest value of R for which charges would be shown in Table M 
as zero. 
losses of a risk. 
number of possible values of n in Note la. 
number of risks in all size-groups of risks. 
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premium of a risk. 
ratio of losses to permissible losses (loss ratio) for a risk; equals 
L/X. 
charge in Table M. 
charge in Table M corresponding to R value of R0. 
charge in Table M corresponding to R. 
coefficient of variation, equals the standard deviation divided by 
the expected value. 
permissible losses. 

a subscript adjoined to any symbol denotes that the value of the 
symbol associated with the subscript is to be used. 

shown over a symbol; denotes the value indicated by experience, 
without graduation. 
shown over a symbol; denotes graduated values derived from 
experience. 

bar over a symbol; denotes its average value indicated by a sample. 
Ill connection with study of experience by size-groups of risks it 
denotes the average value based on one group. 
double bar over a symbol; denotes the average value based on all 
size-groups of risks combined. 
average value; equivalent to bar over the symbol. 
expected value; theoretically true average. 
summation. In connection with size-groups it refers to summation 
over a single group. Subscripts and superscripts denote limits 
between which summation is to be taken. 
Used here only to denote summation over all size-groups. 

where the number o f f  strokes is n, denotes the n-fold integral 
evaluated at b minus the same evaluated at a. 
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Formulas for Estimating Moments of the Probabilily Distribution of Loss Ratios 
for a Risk of Average Size from Experience of a Group of Risks of Varying Size 

To permit combination of the experience of risks with different permissible* 
loss ratios, actual loss ratios will be expressed as ratios of actual losses to permis- 
sible losses, which is the basis on which Table M is constructed. The mean or 
first moment  of loss ratios associated with any risk is therefore assumed 
under Table M to be unity. 

For any group of risks the average loss ratio is R = 2;L/ZX where L is 
actual losses, X is permissible losses, and R is L / X  for individual risks. 
EL, the expected losses for any risk, is f X  where f is all abbreviation for ER, 
the expected ratio of L to X. If we have only one group of risks with which 
to deal and the group is sufficiently large to make R statistically significant, 
can be used as an estimator of f. Use of R adjusts for excess or deficiency 
in rate level on the basis of the experience of the group. Possible alternatives 

to R as an estimator o f f  are unity and R, where R = ZZL/2;2;X, the double 2; 
signs indicating summation over a number of groups.~ 

Variance 
The variance or dispersion of the probability distribution of loss ratios for 

a given risk is defined: 
( 1 )  ~ R  ~ = E ( R  - f ) 2  
where E denotes expected value. 
VR, the coefficient of variation of R, is defined as zR/f. Since the coefficient 

of variation of any variable is invariant for all multiples of the variable, and L 
is a multiple of R equal to XR, we have 

(2) VR~= E ( L -  EL)~ 
(EL) 2 

Because Table M assumes E R  equals unity, the variance of R underlying 
Table M is the same as VR ~ in this case. We shall find it most convenient to 
calculate VT. ~, knowing that  VL ~ = VR: (=  aR 2 for ER = 1.000). 

Since EL equals f X  we can substitute 

(3) V~ ~ = E(L - fX)  ~ 
(EL) 2 

Eq. (3) follows from the definition in Eq. (1) of the variance of R for a given 
risk. For a risk with expected losses equal to the average loss for the group 

2;L 
we can define EL as - - .  The numerator, however, will require close analysis. 

n 
I t  must be estimated on the basis of the experience of all risks in a given 

group. Only if we can show that  the value 12;(L - fX)  2 based on the group 
n 

*The word "permissible," though superseded in current insurance usage by "expected,"  
will be used here to avoid confusion with "expected" in the statistical sense of"average  
value." In this paper "expected" will be used only in the statistical sense. 

oUnity and ~ are incorrect to use for small risks, however, because the ratio of average 
losses to permissible losses rises sharply for small risks when experience of risks with no 
losses is excluded, as is done in developing a table of excess ratios. 
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is a proper estimate of E(L - fX)  ~ for a risk with expected losses equal to the 
group average is Eq. (2) a valid estimator of VR 2 for that  risk. 

Since the proof of this is rather lengthy it is omitted here and given in Note 1 
of the appendix. 

On the basis of this proof we can use group experience in Eq. (3) to estimate 
Va ~ for a risk of average expected losses. 

Our estimate of Va 2 is therefore 
, av . (L  - f X )  2 av. L 2 - -  f2(av. X) 2 

(4) ¥R2 = f2(av. X) 2 = f f (av .  X) 2 (*) ¢ 

The operator "av ."  denotes an estimate of the expected value and is equiva- 
lent to the operator Y~/n. 

Where f is estimated by the ratio R, adjustment  must be made for the loss 
of a degree of freedom by use of the so-called "finite multiplier" n / ( n - - 1 ) .  

(4a) ~ 2  = av. L 2 - (av. L) 2 n 
(av. L) 2 n - 1 

If f is estimated by the ratio R, less than a whole degree of freedom has 
been lost in any group. The finite multiplier in tha t  case uses the total number 
of risks in all groups and 

(4b) 9 a  2 = av. L 2 - ~ (av. X) 2 N 

~2 (av. X) 2 N - -  1 
If f is estimated to be unity, no degrees of freedom are lost so no finite 

multiplier is required. Then 

(4c) ~R2 = at,. L 2 -- (av. X) 2 
(av. X)" 

Skewness  
The skewness of a probability distribution is measured by the statistic B1, 

which is invariant with respect to the origin or unit in terms of which a vari- 
able is expressed. Because of this invariance, f~l is the same for losses as for 
corresponding loss ratios. We shall compute ~ for losses and use it for loss 
ratios. ~ is defined as the square of the third moment  divided by the cube of 
the second moment,  or ~a2/a 6. For losses or loss ratios of a risk with average 
expected losses: 

[ E ( L -  EL):~] 2 
(5) ~ = aL 6 

lay. (L - f x ) ~ ?  ( , , )  
(6) ~1 = [av. (L - fX)2] a 

The derivation of Eq. (6) is given in Note 2 of the appendix. 

**See footnote * in Note 2 of the Appendix regarding the applicability of this equation to 
small risks. 

*An accent over a statistic will denote an estimate of its value based on observed values, 
without graduation. 

¢See Note la  of the appendix regarding the accuracy of this equation for small risks. 
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Kurtosis 

The peakedness (or to be more precise, the lack of peakedness) of a prob- 
ability distribution is measured by the statistic &, which like 81 is invariant 
with respect to origin or unit of measurement. We shall compute t~2 for losses 
and use it for loss ratios. 8~ is defined as the fourth moment divided by the 
square of the second moment, or m/a 4. 

(7) 82 = E ( L -  EL)'. 
O" L 4 

For losses or loss ratios of a risk with average expected losses: 
av. ( L - f  X) 4 _ 3 ~  (*) 

(8) ~2 = lay. (L fX)~] ~ 
where V~ is the squared coefficient of variation of permissible losses within the 
group. The derivation of Eq. (8) is given in Note 3 of the Appendix. 

Graduation of Indicated Moments 

Variance 

The relationship between VR 2 and the reciprocal of EL is practically linear 
for large risks. For small risks the curve is concave upward due to the u s term 
in the equation: 

(9) VR 2 = a + b2u + cu: where u = 1~EL 
See Note 1, Appendix, for derivation of this equation. 
The constant term, a, is included because only with as yet unattained 

perfect rating procedures that  precisely estimated in advance the expected 
losses of each risk, would Va 2 approach zero. 

The weights to be applied to calculated values of u and VR ~ in fitting Eq. (9) 
should, according to the Theorem on Observation Weights#, be inversely 
proportional to the sampling variances** of the respective observations. Since 
the principal element of sampling variance is, like Va 2, inversely proportional 
to the expected number of claims underlying the expected losses used, hence 
to the total expected losses, the weight to be given to each pair of VR 2 and u 
values is f2;X for the group from which VR 2 and u were calculated. Letting 
w = fZX,  the normal¢ equations for determining a, b~ and c are: 

(ga) 2:w~R ~ = a~w + b2~wu + c~wu 2 
(9b) Z w u V a  ~ = aF~wu + b2Zwu 2 -~- cZwu 3 

(9c) F, wu2VR 2 = a~wu 2 + b2~wu" + c~wu 4 

Eq. (9) provides VR 2, the graduated value of Va ~, for any given value of EL 
when the values given to a, b2 and c are derived from these normal equations. 

*See footnotes in Notes 2 and 3 of the Appendix regarding the applicability of this equa- 
tion to small risks. 

¢Equations from which values of constants are derived according to the least squares 
method. 

**Mean square error of observed values from their expected values. 
//Harold Jeffreys, Theory of Probability, Clarendon Press, Oxford, 1948, p. 124, and other 

authors. 
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Skewness 
The procedure for graduating f31 values is the same as for VR 2 values except 

that  no constant term is needed since the distribution of R approaches the 
normal distribution for very large risks. Graduated values of BI are given by 
the equation 

(10) B1 = bau 
where b8 is determined from the normal equation 

(11) b~ = 2~wuB1 
Zwu2 (*) 

Kurtosis 
~l values are graduated in the same way on the basis of the equation: 
(12) Di = 3 + b4u 

with b4 determined from the normal equation 

(13) b4 = 2;w(f~ -- 3)u 
Zwu  2 

The constant, 3, included above represents the kurtosis of a normal distribu- 
tion, with the term b4u measuring the excess of kurtosis in the observed dis- 
tribution over the normal. 

Relationship Between Charges in Table M a~d the Moments of the 
Underlying Probability Distribution 

As pointed out by Mr. Nels M. Valerius in "Risk Distributions Underlying 
Insurance Charges" (P.C.A.S. Vol. XXIX) ,  the second differences in a table 
of charges yield the theoretical frequency distribution of risks by size of 
entry ratio (ratio of actual losses to expected losses). A double integration 
of the risk distribution, therefore, provides a table of charges. 

The mathematics of this relationship are very interesting and are readily 
extended to include higher moments. We use the reduction formula: 

(14) f z ' f (x )dx  = x " f f ( x ) d x  - nxn-l f f f ( x ) d x d x  
+ n(n -- 1) x"-2 . f f f f ( z )dxdxdx  . . . .  + . . .  

For n = 2 we have 
(15) f x 2 f ( x ) d x  = x ~ f f ( x ) d x  - 2x f f f  (x)dxdx + 2 f f f  f ( z )dxdzdx  

The charge in Table M for a selected loss ratio of Ro is defined mathematically 
by the equation 

Sd (16) So = (R)dR - R0 (R)dR 
JR0 

fo (17) So = 1 - Rf(R)dR - Ilo[1 - f(R)dR] (since ER -- 1) 
d o  

*Note that  the normal equation is not ZwB'~/~,wu as might be,supposed by simple aver- 
aging. Eq. (11) is derived by minimizing the quantity: Y,w~t -b ,u)  t according to the 
principle of least squares. The same principle applies in connection with the normal equa- 
tion for any ratio estimate (see/~2, following). 
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On appl icat ion of Eq.  (14) this reduces to 
Ro 

(18) So = 1 + f f f ( R ) d R d R -  Ro 
0 

The  charge for a selected loss ra t io  of F¢ is therefore 

(19) S~ = 1 + f f  f ( R ) d R d R  - R 
In t eg ra t ion  and  doubling gives 

(20) 2 f S R d R  = 2R -b 2 f f f  f ( R ) d R d R d R  - R 2 
the cons tan t  of in tegra t ion being zero. 

fK I f f ( R )  is cont inuous over  the finite range  0 < R  < K  and f ( R ) d R  = 1, 
y0  

the  following equat ions  hold. T h e  second specification is m e t  to as close a 
degree of precision as required by choosing K suffieiently large. 

fo K (21) 2 S•dR = 2K - I (  2 -t- 2 S S . f  f ( R ) d R d R d R  
0 

Since for Tab le  M f ( R ) d R  = 1, R f ( R ) d R  = 1, 
J o  j o  

/o //o and  ~R 2 -- R~f (R)dR f ( R ) d R  - 1, 

we have  f rom Eq.  (15) on taking the definite integral:  
K K 

(22) aa  2 = K "~ --  2 K f f f ( R ) d R d R  -{- 2 f f f f ( R ) d R d R d R  - 1 
0 0 

Again f rom Eq.  (15) and  tak ing  the definite integral:  

(23) 

(24) 

(25) 

f 0  K f 0  K K R f ( R ) d R  = K f ( R ) d R  - f f f ( R ) d R d R  
0 

f f ] ( R ) d R d R  = K f ( R ) d R  - R f ( R ) d R  = K - 1 
0 

K ~ r" K 
zR 2 = 2K - K ~ q- 2 f f f f ( R ) d R d R d R  - 1 = 2 ]  SRdR - 1 

0 J o  

=2 f S=dR -1  
.tO 



54 GRADUATION OF EXCESS RATIO BY METHOD OF MOMENTS 

For values of Sa spaced at  intervals of 0.1 or more for R the value of 

SRdR should be estimated by Simpson's one-third rule or other non-linear 

quadrature formulas, but  for spacing at  intervals of .01 the trapezoidal rule 
is sufficient. The  latter rule gives for a spacing iuterval of B: 

S ° (26) SRdR -- 2B (ZSR -- ½) - 1 

or if the charge (unity) for R = 0 is omitted, as in Table M, 

f0  ° (27) SRdR = 2B SR + B -- 1 
R~B 

as stated by Mr. Arthur Bailey in the paper previously mentioned.* 
The principles used in deriving Eq. (25) when extended to higher moments 

of R give: 

foK (28) ~3 = 6[(K - 1) SRdR -S___SSRdIldR] -t-2 
0 

f0 (29) g4 = 12[(K 2 -- 2K -t- 1) SRdR -I- 2(1 - K ) f f S R d R d R  
0 

K 
n t- 2 . f f fSRdRdRdR]  - 3 

0 

Equations (28) and (29) have the disadvantage, for purposes of practical 
computation, that  because the values of ~ and #4 are derived as differences, 
accurate calculation of small values of these statistics is subject to considerable 
relative error unless precise values of the several definite integrals of SR can 
be calculated. 

In evaluating multiple integrals by single quadrature formulas it is necessary 
to use the ealeulated values of the (n - 1)th integral at  the selected values of 
the argument when applying the quadrature formula to estimate the n ' th  
integral. 

*Mr. Bailey (page 56) showed the summation as ff rather  than  ~ but  this is apparently 

an error if the positive sign is given to B. If  ~ is used the sign of B must  be negative. In its 
O 

memorandum dated November 12, 1952, in which the method used in the 1953 studies of 
Table M is described, the National  Council on Compensation Insurance indicated the  

summation ~ and showed sums of charges for various expected loss sizes. The figure shown 
z 

for $300,000 expected losses, the only one checked by the writer, reflected summation cor- 
rectly from R = .01. 
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The formulas shown below are equivalent to repeated application of the 
trapezoidal rule in accordance with the preceding paragraph. For completeness, 
the well known rule for single quadrature is shown first: 

x, y0 -b y, 
(29.1) ydx -~ h 2 -k y~ 

. f  2"o 1 

Xn // [ .1 1 (29.2) ydxdx ~ h ~ (.5n - .25)yo -k ~ (n - i)y, -I- .25y, 
1 

xo 
~n 

f f f  h3 {[ 2n- 1 (n- I)21 (29.3) ydxd;~:dx "-- -~ 4 -E ~ yo 

Xo n- 1 } 
+ ~ [(~ - i)~ + .5]y, + .25 y, 

1 

Conversion of Graduated Moments into a Table of Charges and Savings 
Because of the relationship: 

Saving -- Entry ratio -b Charge - Unity, it is sufficient to calculate a table 
of charges, from which savings are derived by use of this equation.* 

Three principal types of frequency functions are available for calculating 
the probability distribution from the graduated moments, namely Pearson's 
~s tem of curves, the Gram-Charlier Series and the Edgeworth Series. 
Pearson's system is recommended here. Elderton's investigations~ indicate 
that Pearson's curves are best adapted to representation of extremely skewed 
distributions (characteristic of loss ratios for small risks) and approach the 
lmrmal distribution for such variates as the loss ratios of very large risks. 
Pearson's curves have the further advantage that they do not develop negative 
frequencies (as the other series tend to do near the tails of the distribution). 

Because the procedure for fitting these curves is published elsewhere~, 
there is no need to repeat it here. 

*The saving is defined mathematically by 
R0 R0 

Saving = RoJn / (R)dR-  J ,  nf(R)dn 

By application of Eq. (14) this reduces to 
Ro 

Saving = f j ' f ( R ) d R d R  
o 

which is the charge (Eq. 18) minus unity plus the entry ratio, R0. 
~Elderton, Sir W. P., Frequency Curves and Correlation, 3rd Edition, Cambridge Uni- 

versity Press, explains the procedure in great detail. Many examples of fitting these curves 
appear in Biometrilca. 
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In performing the double integrations of the risk distributions it is essential 
to add - 1, the constant of integration, to f f (R )dR ,  and -b 1 to . f f f (R)dRdR 
as is seen by differentiating Eq. (19): 

(29a) dSa/dR = f f ( R ) d R -  i 
(29b) d:SR/dR: = f(R) 

Use of the trapezoidal quadrature rule for integration with R spaced at 
intervals of .01 produces the finished table for selected sizes of expected losses. 
Charges for intermediate expected losses should be calculated by interpolation. 

The Problem of Sampling Error 
The question as to whether a given volume of experience is sufficient for 

derivation of a usable table requires that an estimate be made of the sampling 
error in the final results. The best way to accomplish this in theory is to divide 
the available experience into a number of parts or sub-samples selected on a 
random basis so that a given risk has equal probabilities of being included in 
any of the several parts, and compute the standard deviations from the several 
sets of values derived from the sub-samples. Where the values of interest are 
the end products of a long chain of arithmetical operations, however, this 
procedure is prohibitive in cost unless electronic calculating equipment is 
available. 

A short cut is to compute the sampling errors of certain key statistics. For 
^ 

this purpose we can best choose VR 2 since VR ~ for given expected losses is a 
linear function of the sum of the charges as noted earlier. The coefficient of 
variation of VR 2 is therefore the relative sampling error in the charges. 

^ 

The simplest method of calculating sampling errors of the Va 2 values is 
to compute the values of (VR 2 - Va~) 2 = 32 for each group, which is to say 
for each value of u used, and fit a curve to plotted values of s ~ and u. Repre- 

^ 

senting this curve by f(u), the coefficient of sampling error of Va ~ for a given 
value of u is estimated by: 

(30) Vg~ = $/f(u)/[(m - 3) g(u)VR 21 
where g(u) is the experience-density function described below, m the number 
of size-groups and 3 the number of constants in Eq. (9). 

Values of 32 may tend to be larger for large values of u, but this is not 
necessarily the case. I t  depends on the numbers of risks in the various size- 
groups. If all size-groups have equal total expected losses, f(u) should be a 
straight line with zero slope. The distribution of risks by size, however, will 
ordinarily prevent use of such size groups without introducing excessive ranges 
of size within certain groups. If the total expected losses in each group increases 
in proportion to average expected losses (number of risks in each group con- 
stant) the curve should be a straight line with positive slope. This procedure 
leads to wider individual deviations of ~ra2 from Va ~ for large u. The reliability 

^ 

of VR'- in a given region of u values, however, depends on the total weight 
given to Va 2 values of that region in the derivation of Eq. (9), that is, on the 
total expected lo~es of the region. The grouping of risks by size, therefore, 
sho~ld be done in a regular way so that the total expected losses corresponding 
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to a given value of u, hence to given average expected losses per risk, will be 
a smooth function of u, not necessarily expressed algebraically. I t  can be 
expressed merely by a graph of the total expected losses for each size-group 
when plotted against corresponding u values. Denote the function represented 
by this graph as g'(u). I t  is also necessary to reflect the spacing of u values. 
This is done by plotting, against the means (ui+.5) of successive u values, 
the values of u~+l - ui. Denote the function represented by a graph of these 
points as A(u). The product of the ratio of g'(u) to the average expected losses 
per group times the ratio of the average separation of u values to A(u) gives 
the experience density function of u: 

(31) g(u) rag'(u) • [u m a x . -  U ml,.] g'(U)[U m~x. -- U mln.] 
= [:~:~/X]  • [ m ~ ( u ) ]  = ~ ( u ) : ~ f X  

Choice of size-group ranges ~ l l  affect f (u)  but this effect will be cancelled by 
g(u) which works in the opposite direction. Narrow groups in a region of u 
produce unreliable Va ~ values, hence large values off(u),  but  there will be more 

• ^ 

values of Va ~ in tha t  region so the reliability of VR 2 is not reduced. The pres- 
ence of g(u) in the denominator of the radical of Eq. (30) expresses this by 
dividing the f (u)  values by a proportionately small number. 

Values of VR ~ will not have an approximately normal probability distribu- 
tion for size-groups with average expected losses as low as $1,000 unless a 
good m a n y - - s a y  100 or more--risks are included in the group. The probability 
distribution of Va 2, however, can be considered normal since it is a kind of 
average VR 2 based on all groups, only the smallest of which need be as low as 
$1,000 under the present form of Table M. We are therefore justified in using 
the normal curve to interpret V#~ values in terms of the probability of stated 
percentages of sampling error. 

A P P E N D I X  
Note 1 

Derivation of formula for Va 2, the squared coe gicient of variation of loss ratios 
for risks with average expected losses, estimated from experience of a group of 
risks of varying size. 

We define 
(1.1) aL ~ = E(L -- EL) 2 = ElL - 2LEL ~- (EL) 2] 
(1.11) -- EL ~ - (EL) ~ 
Since L = n~5 and Ed = Ea 
(1.2) ~L2= Ended 2 -- ( E ~ 5 )  ~" 

E u v -  EuEv . 
We use the coefficient of correlation, ~,,,,, = , m Eq. (1.2) to 

flu 0"~ 
give 

(1.3) aL2 = En,2Ed ~" - (En,Ea)  2 -}- (terms involving ¢)t .  
Assuming a Poisson probability distribution for n,, o~n, = En,  but for any 

?These terms, dropping the subscript on n, are 
~ ,  a 2 o'n 2 qa ~ - 2EnEaq~a,a on, ~a - ~ , a  a~n (r~ 

Where for a given risk average accident cost (severity) is statistically independent of acci- 
dent frequency, ~p is equal to zero so these terms can be dropped. The assumption of a zero 
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variable,  z, Ez  ~ = (Ez) ~ + ~2, so En~ 2 = (End) ~ + Eno. Also, for any sample 
of n wi th  mean  ~ dra~-a f rom a universe with var iance a ,  2, a~ ~ = a;2/n. Eq.  
(1.3) m a y  therefore be writ ten,  if we neglect file terms involving ~: 

O'a 2 
(1.4) O'L2 "--[(Ena)~ + Ena][ (Ea)2 + - ~ * 1  -- (EnaEa)2 

Division by (EL) ~ --  (Ea)~(En~) 2 gives, lett ing m = E,~ 
_ _  V.___ ~ 

(1.5) VL 2 __ 1 + m V'2 + rn 2 

(1.51) VL 2 _ (Ea)(1 + V~ *) (Ea )W.  -° 
E L  + (EL) 2 

The  second term of Eq.  (1.5) is negligible for large risks bu t  no t  for risks 
with only a few thousand  dollars expected losses since with present average 
claim costs of abou t  $700 for W o r k m e n ' s  Compensat ion,  m 2 in such cases is 
no t  a large number.  

The  Poisson assumpt ion regarding the probabil i ty distr ibution of the num-  
ber of accidents was invest igated by Mr.  John  Carleton (P.C.A.S. Vol. 
X X X I I ,  p. 26). He  s ta ted "concern over the application of the Poisson dis- 
t r ibut ion to casual ty insurance accidents can be confined to special s i tuations 
in which accidents  are definitely known to  be other  than  independent ."  We 
therefore assume the  Poisson dis tr ibut ion ordinarily is valid for use in these 
equations.  

To  continue, we define Va ~ as ,R2/p, f = E L / E X  so E L  = f E X ,  hence 
~L = ~R E X .  Then  since VL ~" = ~L~/(EL) 2, VL 2 = [~R~/p(EX)2](EX) ~ = 
~R~//~ = VR~. 

VR 2 is therefore given by dividing Eq. (1.1) by (EL)2: 
Fo r  a risk with expected losses of X 

(1.6) Va ~ = E (L  - EL)2/(EL) ~ =  [EL 2 -  (EL)~]/(EL) 2, 
(1.61) = E(L  - / X ) V f , X  ~ 
We subst i tu te  for VR ~ the value in Eq. (1.51) and mult iply b y f 2 X  2 = (EL) 2, 

with m = E L / E a  [ v ,l 
(1.7) p X '  1 + m V~---------~" + m ' J  = E (L - I X )  2 

Since E L  = m E a  = f X :  
(1.8) (Ea) ( /X)O + V~0 + (Eu) ~ V:- = E(L  - f X )  °- 
Eq. (1.8) applies to individual risks. T he  value of (L - f X )  -° for each risk is 

value for ~ for lines of insurance subject to retrospective rating is believed to be justified 
as a practical and necessary approximation. Although a risk's adoption of a new process 
may change the nature of the hazard and temporarily produce a correlation between severity 
andaccident frequency (as by increasing the number of small accidents), there appears to 
be no a priori reason to expect a correlation between severity and frequency in the normal 
fluctuations of experience. 

*The exact value of this term is ~2En~-x, rather than a°t]En° as shown. With a Poisson 
~yrobability distribution of n, however, En -1 for non-zero values of n is closely approximated 

1/En. The case of small values of En is discussed in Note la. 
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used as an estimate of its own expected value. Summing over the group of 
n risks: 

(1.9) f ( E a ) ( Z X ) ( 1  q- V~ 2) q- n(Ea)  2 V~ 2 = Z(L - fX )  ~ 
(1.91) f (Ea) (av .X) (1  q- Va 2) -b (Ea) 2 V~ ~ = av.(L - fX )  ~ 
Dividing by [f (av. X)] 2 we get 

(2.0) (Ea)(1 -~ Va 2) (Ea)W~ 2 av.(L - fX )  2 
y av. X "ff ( fav .  X) ~ = ( fav .  X) ~ 

The left member of Eq. (2.0) is recognized as VR 2 from Eq, (1.51) with EL 
represented by f(av. X). The required formula is therefore 

(2.1) ~r~2 = av.(L - fX)  ~ = av. L 2 - f~(av. X) 2 Q.E.D. 
( f  av. X) ~ J~(av. X)~ 

As noted in connection with Eq. (4a), (4b) and (4c), finite multipliers are 
necessary if f is estimated from the same experience as used to compute 
av.(L - J'X) 2 or from a larger body of experience which includes it. 

The  formula used in the 1953 studies of Table M to calculate the variance 
indicated by the experience of a given group of risks for a risk with average 
expected losses has not, to the writer's knowledge, previously been published. 
The worksheets for those calculations were based on the formula: 

(2.2) ~-rRo = av. P av. I?-/P -- (av. L) 2 n 
(av. L) °- n -- I 

I t  will be noted that  this formula differs from Eq. (4a) iu tha t  (1) no recog- 
nition is given in this formula for variation between risks in the expected loss 
ratio, and (2) in the presence of P in the numerator. This writer has been 
unable to find the theoretical basis for Eq. (2.2) because the expected value 
of the first term of the numerator is not EL 2, which is needed in Eq. (1.6) 
above, but  a complex expression involving the coefficients of correlation be- 
tween av. P and av. L-°/P and between L ~ and 1/P. 

Note l a  
Calculation of VR ~ for small risks. 

O'u 2 
I t  is elementary that  for fixed n, E$ = Eu and a~ 2 = - -  

n 
With n variable, we achieve sufficient generality by considering n free to 

take M possible positive integral values, the highest of which is K, not all 
values of n being necessarily unequal. Then the average of all possible sample 
means is 

1 [ ~121 "~- U ' 2 2  UKI - [ -2 'K2- [ -  • " " - ' [ -UKK]  
(2.21) Ez~ = ~ Ul, + 2 " -]- " "  -[- K 

1 [ 2Eu  K E u ]  
(2.22) = ~ Eu T T  q - ' ' "  T T j w i t h M t e r m s i n [  ]. 

1 [MEu] = Eu. (2.23) = 5-~ 



60 GRADUATION OF EXCESS RATIO BY METHOD OF MOMENTS 

The expected value of a sample mean is therefore equal to the expected 
value of the variate, regardless of the probability distribution of the number 
of cases that  comprise the sample. 

The average of all possible squared deviations of sample means from the 
population mean for n = 1, 2, 3 . . . .  K is 

(2.24) E ( ~ - E u ) ~ = M E [ ( ~ , - E u ) ' - b ( ~ 2 - - E u ) ' + . . . - b ( ~ K - -  Eu) 2] 

1 [a~ + a~ /2  -b " ' " + a~2/K] with M terms in [ ] (2.25) = 

(2.26) = a ~ E n  -1 

The expected value of the mean square deviation of a sample mean from 
the population mean is therefore the variance of the variate multiplied by the 
expected value of the reciprocal of the number of cases in the sample. 

For Table M we are concerned with the variance of non-zero losses. Conse- 
quently, the expression En -~ refers to the expected number of accidents pro- 
vided at least one occurs, which restriction is essential if the expression is to 
have a finite value. Likewise the value of En must reflect the same restriction. 
For large risks, the probability of zero accidents is negligible, hence for them 
the restriction against non-zero values is insignificant; but it is important for 
small risks where zero losses have considerable probability. 

We see, therefore, that  for non-zero losses the probability distribution of n 
is not the complete Poisson distribution, but  only that  portion of it for values of 
n equal to or greater than one. This considerably complicates the mathematics 
for small risks. The mean of such a distribution is m/(1 - e-~)where m is the 

m 2 -{- m 
mean of the complete Poisson distribution, and the variance is - -  

m 2 1 -  e -m 
(1 -- e-~) 2 ' as compared with m for both the mean and variance of the 

complete Poisson distribution. 

Because of these mathematical complications in the way of accurate calcu- 
lation of Va ~ for small risks when size groups contain a wide variation in size 
of risk, the most practical solution is to use Eq. (4a), which is considerably 
more accurate than the simple av. (R - ~)2 but still only an approximation, 
and keep the error down by making size-groups for small risks as narrow as 
the volume of experience and computing facilities will permit. The resulting 
scatter of ~'R 2 values will be ironed out in the graduated values. 

Note 2 

Derivation of formula for ~1 of loss ratios of risks with average expected losses, 
estimated from experience of a group of risks of varying size. 

Rather  than go through detailed calculations similar to those used for Va 2 
in Note 1, which were given at  length because the formula advanced in Eq. 
(2.1) differs from the one used in the past, making it desirable to show its 
derivation from first principles, we shall simplify the derivation of /3L by 
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m a k i n g  use of t he  k n o w n  inverse  re la t ionship  be tween  fix of the  ave rage  of a 
sample  and  the  n u m b e r  of cases on which  the  ave rage  is based.* 

T h e  experience of a r isk m a y  be rega rded  as t h a t  of a sum of shor t  t e rm  ex- 
posures ,  each wi th  expec ted  losses of one dol lar .  T h e  n u m b e r  of exposures  for 
a r isk is therefore  equal  to  i t s  expected  losses. T h e  loss r a t i o  for  a r isk is there -  
fore the  average  loss per  exposure.  T h e n  for each r isk  

[E (R  --  ER)s] ~ b~ 
(2.3) /~' = [ E ( R -  ER)~] 3 = f-X 

Since ~ is i n v a r i a n t  w i th  respect  to  uni t s  of m e a s u r e m e n t :  

[E(L - fX)a] ~ b3 
(2.4) f~ = [E(L - fX)~] ~ = ~ (  

W e  have  shown in Eq.  (1.8) t ha t ,  except  for the  re la t ive ly  smal l  t e r m t  
(Ea) 2. V, ~, E ( L  - f X )  ~ is p ropor t iona l  to  f X  so t h a t  a p p r o x i m a t e l y  

(2.5) [E(L  - fX)3] ~ = b__ L 
g~ffx)~ fx  

where  g is a cons t an t  
(2.6) E ( L  - f X )  ~ = I X  bv~-~# 

S u m m i n g  over  all r isks in t he  group  and  d iv id ing  by  the  n u m b e r  of  r isks,  
wi th  (L - f X )  a t r e a t ed  as  an  e s t ima te  of i t s  own expec ted  va lue  for each  r isk 
and  then  squar ing :  

(2.7) Inv. (L - f X ) 3 ]  ~ = [fav. X]2b3g s 
Divis ion  by  (fav. X)Sg 3 gives 

(2.8) [av. (L - IX)S] 2 b~ 
g~(f av. X )  s = f av. X 

T h e  d e n o m i n a t o r  of the  lef t  m e m b e r  of Eq.(2 .8)  is equ iva len t  to  [E(L  - f X ) ~ ]  s 
e s t ima ted  by  [a v. (L - -  fX)2] ~, hence  for  t he  r isk w i th  ave rage  expec ted  losses 

[av. (L - fX)8] 2 b3 Q .E .D.  
(2.9) /~" = [av. (L - fX)~] s = fav .  X 

Note S 
Derivation of formula for ~ of loss ratios of risks with average expected losses, 

estimated from experience of a group of risks of varying size. 

*See Kendall, The Advanced Theory of Statistics, Vol. 1, page 284 (Chas. Griffin & Sons, 
Ltd. 1948). The expected values of m and ~4 for sample means as given there for sampling 
from a finite population of N individuals, reduce to ~l[n and ~.z[n -t- 3 on taking the limit as 
N--~ ~ and dividing by ~2 ~ and 92 ~ respectively. 

t i t  should be realized that this term becomes important for risks with small expected 
losses. With average accident costs of $700, expected losses of $700 give the first and second 
terms the same order of magnitude. 

For this reason Eqs. (6) and (3.2) are rather rough approximations for risks with only 
$1,000 or so of expected losses when the range of sizes is wide. 

The error is minimized by keeping the range of sizes in groups of small risks as narrow 
as possible. This will reduce the reliability of individual t~ values but not the reliability of 
graduated values, since there will be more B values underlying the graduating lines given 
by Eqs. (10) and (12). The exact formulas for calculating ~1 or ~2 from experience of small 
risks of varying size for a risk of average size are too complicated to make their use prac- 
ticable. 
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( ~  - -  3) of sample averages is, like ill, inversely proportional to the number  
of cases.~ The  derivation here is similar to tha t  in Note  2. For  each risk 

E ( L - f X )  4 - 3  = b4 
( 3 . 1 )  - 3 = [ E ( L  - 

Since E(L - f X )  ~ is proportional* to f X  by Eq. (1.8) 

(3.2) E(L - f X )  4 b~ 
(hfX)  - 3  

where h is a constant 
(3.3) E(L -- f X )  4 = 3(hfX) ~ -{- b~h2fX 

Treat ing the value of (L - -  f X )  4 for each risk as an est imate of its own 
expected value, summing for all risks in the group and dividing by the number  
of risks we get 

(3.4) av. (L - f X )  ~ -~ 3h"p av. X 2 -I- b,h~f av. X 
Dividing by h~j'Z(av. X) 2 we have 

(3.5) av. (L -- f X )  4 3 av. X ~ b4 -- ~ - 3 
h ~ ( a v .  X) 2 (av. X) 2 = f av.------X 

Since av. X 2 = (av. X)  2 + ~x 2 

(3.6) f~2 -- av.(L - f X )  4 
lay. (L - f X ) 2 ]  2 - 3V2 Q.E.D. 

~Kendall, loc. cir. 
*Remarks in footnote t of Note 2 apply here as well. 


