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CREDIBILITY PROCEDURES 
LAPLACE'S GENERALIZATION OF BAYES' RULE 

AND THE COMBINATION OF 
C O L L A T E R A L  KNOWLEDGE WITH OBSERVED DATA 

BY A R T H U R  L.  B A I L E Y  

"I f  thou canst believe, all things are possible 
to him that believeth." 

Mark 9:23 

The casualty insurance business has used credibility formulas or procedures 
for many years in making rates or in experience rating plans. These formulas 
have been used to detelTnine the weight to be given to the indications of actual 
observations in a combination of such indications with a priori expectations 
which were based either on other actual data, on prior knowledge or on rea- 
sonable assumptions made before actual observations were available. Such 
formulas have invariably provided that the weight to be given to actual 
observations increase as the volume of such observations increases. 

Last December the discussion of a paper by Mr. T. O. Carlson, entitled 
"Statistical and Actuarial Procedures in Liabilit~ Insurance"*[1],pointed out 
that casualty insurance underwriters and actuaries believe that they are not 
devoid of knowledge before they have acquired any statistics from observed 
data, and that this belief results in the use of credibility formulas to produce 
weighted averages of that prior knowledge and the information provided by 
the observed data. The remarks made at that time were general and unsup- 
ported by any demonstration. In fairness to other statisticians and to students 
of casualty insurance, it appears desirable to present a complete development 
from basic principles to show exactly the basis upon which credibility formulas 
rest and to make evident the point at which the classical statistical theory, 
particularly that of statistical estimation, departs from that used by cas- 
ualty actuaries. 

The basis for these credibility formulas has been a profound mystery to 
most people who have come in contact with them. The actuary finds them 
difficult to explain and, in some cases, even difficult to understand. Paradoxical 
as it may be, the more contact a person has had with statistical practices in 
other fields or the more training a person has had in the theory of mathemati- 
cal statistics, the more difficult it has been to understand these credibility 
procedures or the validity of their application. 

The credibility formulas for casualty insurance have been accepted in the 
past, and continue to be accepted at the present time, because it appears to 
most people to be logical and reasonable to give the indications of a large 
volume of data more consideration or weight than the indications of a small 
volume of data. How much weight the indications of specific volumes of data 

* Numerals in brackets refer to the References at the end of this paper. 



8 CREDIBILITY PROCEDURES 

are to be given, in the casualty business, has continued to be a matter of 
individual judgment. 

In addition to the relatively simple concept that more consideration or 
weight should be given to a greater volume of observational data, the casualty 
actuaries have devised credibility procedures to give more weight to the 
frequent occurrence of small losses than to the occasional or fortuitous occur- 
rence of large losses of the same total amount. (It should be noted that nega- 
tive losses can not occur.) For example, the rate making procedure for work- 
men's compensation insurance separates the actual losses into "Serious," 
"Non-serious" and "Medical" losses and uses three differing schedules of 
credibility for the three components of the total loss. Several experience rating 
plans give a greater schedule of credibility to the first G dollars of each loss 
than is given to the excess of any loss over G dollars. The "Multi-split Experi- 
ence Rating Plan" for workmen's compensation insurance carries this even 
further by providing, in effect, a separate schedule of credibilities for each 
interval of G dollars of which a loss is composed. 

It  is at this point in the discussion that the ordinary individual has to 
admit that, while there seems to be some hazy logic behind the actuaries' 
contentions, it is too obscure for him to understand. The trained statistician 
cries "Absurd! Directly contrary to any of the accepted theories of statistical 
estimation." The actuaries themselves have to admit that they have gone 
beyond anything that has been proven mathematically, that all of the values 
involved are still selected on the basis of judgment, and that the only demon- 
stration they can make is that, in actual practice, it works. Let us not forget, 
however, that the~ have made this demonstration many times. It  does work! 

It  is the purpose of the technical portion of this paper (1) to show that it is 
proper to give greater weight to larger volumes of observed data and why; 
(2) to show that under certain conditions, specifically those prevailing in 
casualty]nsurance, it is proper to give greater weight to frequently occurring 
small values than to infrequently occurring large values and why; and (3) to 
show that these procedures are universally applicable to all fields of observa- 
tion and are not peculiar to casualty insurance. 

HISTORICAL COMMENTS 

I t  will be realized that all of the problems in which credibilities are used 
are problems in statistical estimation and that the problem of statistical 
estimation is a very old problem. One of the first steps in the solution of this 
problem was made by Bayes [2] resulting in what is known as Bayes' Rule. 
That rule was initially produced as the solution of a specific case in which, a 
priori, all possible events were equally likely to occur [3]. It  appears that statis- 
ticians of that day grasped at this as being better than no solution even when 
the basic condition as to equality of a priori probabilities was not met. Laplace 
in an early paper [4] advocated lust that, and the practice appears to have 
become so well established that the Laplace generalization of Bayes' Theorem 
[5] (published in 1820) was given very little attention. Laplace's generalization 
actually provided the solution when, a priori, the possible events had varying 
probabilities of occurring. 

I t  is interesting to note here that the Rev. Richard Price, who presented 
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Bayes' essay for publication in 1763, was closely connected with the insurance 
industry and would now be called an actuary. The following quotation from 
his introductory comments to Bayes' essay is so true today that it could not 
be improved to introduce the subject at hand: 

"Every judicious person will be sensible that the problem now men- 
tioned is by no means merely a curious speculation in the doctrine of 
chances, but necessary to be solved in order to assure foundation for 
all our reasonings concerning past facts, and what is likely to be here- 
after. Common sense is indeed sufficient to show us that, from tim 
observation of what has in former instances been the consequence 
of a certain cause or action, one may make a judgment what is likely 
to be the consequence of it another thne, and that the larger number 
of experiments we have to support a conclusion, so much the more 
reason we have to take it for granted. But it is certain that we cannot 
determine, at least not to any nicety, in what degree repeated ex- 
periments confirm a conclusion, without the particular discussion 
of the beforementioned problem; which therefore, is necessary to be 
considered by any one who would give a clear account of the strength 
of analogical or inductive reasoning; concerning which, at present, 
we seem to know little more than that it does sometimes in fact con- 
vince us, and at other times not; and that, as it is the means of 
acquainting us with many truths, of which otherwise we must have 
been ignorant; so it is, in all probability, the source of many errors, 
which perhaps might in some measure be avoided, if the force that 
this sort of reasoning ought to have with us were more distinctly and 
clearly understood." 

From 1763 to the present time there has been continual argument over the 
propriety of using Bayes' Theorem in its original form and, possibly because 
of its apparent complexity, little use made of Laplace's generalization. The 
advocates of the use of Bayed original theorem have formalized the process, 
with its assumption that all possibilities are equally likely, into what they 
describe as the application of the "Principle of Insufficient Reason." Their 
opponents have in turn characterized it as the "Assumption of the Equal 
Distribution of Ignorance," or the "Theory of Equal Ignorance." R. A. 
Fisher has modified it slightly to produce the "Method of Maximum Likeli- 
hood." Others have developed the "Best Unbiased Estimate" by methods 
which assume that there is only one possibility rather than several or many. 

At present, practically all methods of statistical estimation appearing in 
textbooks on statistical methods or taught in American universities are based 
on an equivalent to the assumption that any and all collateral information 
or a priori knowledge is worthless. There have been rare instances of rebellion 
against this philosophy by practical statisticians [6] who have insisted that 
they actually had a considerable store of knowledge apart from the specific 
observations being analyzed. Philosophers have recently discussed the credi- 
bilities to be given to various elements of knowledge [7], thus undermining 
the accepted philosophy of the statisticians. However, it appears to be only 
in the actuarial field that there has been an organized revolt against discarding 
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all prior knowledge when an estimate is to be made using newly acquired data. 
In our own Proceedings we have some astounding paradoxes which only 

serve to show the extent to which the teaching of the Principle of Insufficient 
Reason has been embedded in the minds of even our own actuaries. In 1918 
Mr. Whitney [8] presented the first comprehensive development of credibilities 
to appear in our Proceedings. He assumed that the inherent hazards differed 
among classifications of risks and assumed a knowledge of the distribution of 
such hazards. However, in the course of the mathematical development he 
used Bayes' Rule to obtain a solution, thus reversing his assumption in the 
middle of the development.~MrdArne Fisher, in discussing Mr. Whitney's 
paper [9], took Mr. Whitney~'to~task~for using Bayes' Rule, quoted many 
authorities against the use of it, and then sugges ted another approach which 
was based on the same philosophy, if not directlyon the same theorem. 

From the foregoing it will~be appreciated that anyone advocating a return 
all the way back to the fundamental principles of Laplace's generalization of 
Bayes' Theorem must look for opposition from many sides. However, Mr. 
Kendall's recent survey [10] of the current position of probability theory and 
his plea for progress along practical lines has been accepted by the writer as 
a definite encouragement to present such a development of the credibilities 
or weights to be given to observed data in its combination with collateral data 
or with a priori knowledge. Let us be clear in one thing however. Use will be 
made of Laplace's generalization of Bayes' Rule and not of the original 
Bayed Rule. 

G E N E R A L  D I S C U S S I O N  

Let us define the problem of statistical estimation as that in which it is 
desired to obtain E(x I H), the expected value of a statistic x which corre- 
sponds to the origin or cause of an observed event H. Such an expected value 
is the sum of the products of all possible values of x and the probabilities 
P(x]H); where P(z]H) is the probability that the value z was the value 
corresponding to the origin or cause of the observed event H. 

In the insurance business such an expected value is obviously desirable in 
setting insurance rates, in order that there will be a balance between premiums 
and losses. The use by an actuary of a "maximum likelihood" estimate would 
be suicidal because, in many cases, the most likely event is the complete 
absence of loss. Thus the maximum likelihood estims te would provide nothing 
for losses and the premium would be', to say the least, inadequate. 

The expected value E(z I H) is an unbiased estimate of z for a particular 
value of H. It  sbould be noted, however, that the "Best Unbiased Estimate" 
of the literature is unbiased for a particular value of x, not of H, under the tacit 
assumption that there is only one possible value of x, as yet unknown but 
having a probability or certainty of existing. This only serves to bring out a 
major difference of approach. The actuary knows that there is more than one 
possible value of z and is willing to assume that he can approximate the 
a priori probabilities of the existence of such possible values. 

The expected value E(z]H) will be the "best" estimate, from the least 
squares point of view, because, if it is used as the estimate of x for all of the 
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possible cases for which H may occur, the sum of the squares of the errors, 
(x - E'), will be a minimum when E' = E(z [ H). 

I t  will be noted that  x' = E(x [ H) is the true regression of z on H and 
that  it may be a series of discrete points or a continuous curve, but not neces- 
sarily a straight line. Ia  specific cases the discrete points may fall on a straight 
line or the continuous culwe may actually be a straight line. (Several such 
special cases will be discussed herein.) Whatever the form of the true regres- 
sion, it will be possible to obtain tbe best linear regression of z on H, and it is 
such best linear regressions that  have been previously discussed by the 
writer [11]. 

The Laplace generalization of Bayes' Rule [3] states that  if an event, H, 
has been produced by one of the mutually exclusive conditions, F1, F2, • •., F~., 
and if K(x) is the a priori probability that  Fx existed, and if P(H I x) is the 
a priori probability that  when Fx exists the event H will occur, the a posteriori 
probability P(F~ [ H) that  the particular condition F~ was the origin or cause 
of an observed event H is: 

P(F:]H) = K ( a ) . P ( H [ a ) / ~  K(x) .P(H[z) .  (1) 

When the mutually exclusive conditions FI, F2, . . . ,  Fi are the conditions 
under which a statistic has the values 1, 2, . . . ,  j, the value of E(z [ H) cam 
be written as 

I t  is important to note that,  if the event H is the simultaneous occur- 
rence of events H1, H2, . - . ,  H, ,  then E(x [ H) is not the average value of 
E(z [ Hi), but:  

~ z  .g(z) .P(HI [ z).P(H~ [ x) . . . . .  P(H, I x) 
E(z  [ H) = ~ (3) 

~ g ( z )  .P(H, ] z).P(H~ ] x) . . . . .  P(H, ] x) 
$6 

In the following developments either formulas (2) or (3) will be utilized as 
the case requires. For simplicity of expression Ju will be used at  times in place 
of E(x lH) ,  F (HIx  ) in place of K(x) .P(H[~) ,  and F(H) in place of 
~ g ( x )  .P(H [ z). 
x 

The error variance, ¢~.H, of using JH as an estimate of the true value of x 
in all of the possible cases for which a particular value of H may occur is: 

0"~,// = ~ (X -- JH) 2 " F ( H [ z ) / F ( H ) ,  
or x / 

x ~ .F(H Ix) 

o~.tI = ~ - J~. (4) F(H) 
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The error variance, a~, of using J ~  as an estimate of the true value of x 
in all of the possible cases for which all possible values of H may occur is: 

= as  F(H) = 1. (5) 
H H 

The mean error for each possible value of H is zero. 
At this point it  will be desirable to let the mean and variance of the K(z) 

distribution be indicated by m and c 2 respectively and to let T ~ indicate the 
variance of H for all values of x. Thus: 

m = ~wx .K(x)  
z. 

T2 = 

(7 ~ ÷ 

z 

~wH ~ .F(H)  - H .F (H)  
H 

Combining (5) with (4) and using this new notation 

o~ = (r 2 -}- m 2 - ~ J~ .F(H). (6) 
H 

In the special cases for which Z H .  P ( H  I x) = A x  -t- B the regression 

of H on x is the line H'  = Az T B. Irrespective of the form of the true regres- 
sion of x on H, the best fitting straight line can be obtained readily from 
k~owledge as to the relationship of the coefficients of the best linear regression 
of x on H and the coefficients of the best linear regression of H on ~. Thus, the 
best fitting straight line can be written as 

x' ~- z ( - H - ~ )  + (1 - Z)m (7) 

where 
Z = A 2 a V T  2. (8) 

If the true regression of x on H is a straight line, it  obviously must be the 
line expressed in (7), and x' then becomes J n  or E(x I H). Such special cases 
will be considered later, but it should be noted here that  in such cases, (6) 
reduces* to: 

= - z ) .  ( 9 )  

* The  a lgebra  of the derivat ion of (9) f rom (6) is stra[ghtforward but  is not  shown here because of Its length. 
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I t  should be noted that  equation (7) provides for the combination of the 
indications of the data, summarized by (H - B)/A,  and the a priori knowl- 
edge, summarized by m, through a weighting procedure in which Z is the 
weight given to the indications of the data and (1 - Z) is the weight given 
to the a priori knowledge. 

WHEN P(H [ x) FOLLOWS THE BINOMIAL DISTRIBUTION 
When the event H is the occurrence of H successes out of n trials for each 

of which the a priori probability of a success was the same and equal to x, 
the value of P(H I x) follows the Binomial distribution and is (~)zH(1 - x) ~-R. 
The problem is to obtain the expected value or estimate of the true value of x 
from the observation that  H successes occurred out of n trials and the a priori 
knowledge of the probabilities K(z)  of various possible values of x; sum- 
marized if possible by the mean, m, and the variance ~2 of the probability 
function K ( z). 

The best straight line regression of x on H may be obtained by the follow- 
hag reasoning. 

For a particular value of x, the mean value of H is nx, the variance of H 
is nx(1 - x) and the mean square of H is n(n - 1)x 2 -I- nx. For all values of x 
the mean square of H is n(n - 1)( ~r~ q- m S) d- nm; the mean value of H is 
nm; and T 2, the variance of H, is n(n - 1) a 2 -}- nm(1 - m). The value of 

~ H  .P(H I x) is nx, so that  the values of A and B to be used in (7) and (8) 
n 

are A = n and B = 0. Thus Z can be obtained from (8) as: 

n a  ~ 
Z = (n - 1) ¢~ h- m(1 - m)' (10) 

This value of Z can be inserted in equation (9) to obtain the best fitting 
straight line to the regression of x on H. 

In general E(z I H) will consist of n -I- 1 discrete points which can be calcu- 
lated from (2) for any known values of K(x).  There is one special ease for which 
these n q- 1 points will all fall on a single straight line. This case occurs when 
K(x),  the a priori probabilities of the existence of z, follow the Hardy [12] 
distribution* as suggested by E. C. Molina in 1946 [6]. 

Let  
g(x) = K z ~ - I ( 1  - x)  b - `  ( 1 1 )  

where 
m(1 - m )  

c - -  1 

and 
a = mc, b = ( 1 -  m)c 

and 
K -- r(c) 

r(a)  r(b) 

so that  x has a mean of m and a variance of a s. 
* Note  that this  ts th~ par t icular  case of the Pearsonian T y p e  I dis t r ibut ion for which the range of x la from 

0 to 1 and  is also known as  the  Be ta  dis tr ibut ion [18]. 
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Inserting these values of K(x)  and the Binomial distribution values of 
P(H I x) in (2), except for constants common to both numerator and denomi- 
nator, gives: 

E(x IH) = 

(12) 

where B(x, y) is the Beta function equal 

and b from (11) and the value of Z from (10) are used, (12) becomes: 

E(x  l H)  = z H  -t- (1 - Z)m. 
n 

; /// xH+a(1 - x)n--H'~ b-ldx XH+,-I(1 _ X ) n - H +  b-ldx" 

B(H -~ a ~- 1, n - H -{- b) H -b a 
B(H -b a, n - H -b b) n -b a -b b 

r(x) r(y) When the values of a to I'(x -b y) " 

( 1 3 ) *  

The value Z is thus seen to be the credibility, or percentage of total weight, 
to be given to the observed ratio of successes to trials in its combination with 
the a priori expectation, m. From (10) it  is seen that  when n is one, Z = 
0.2]m(1 - m) and that  Z increases as n increases, approaching unity as n 

approaches infinity. 

WHEN P ( H  ] x) FOLLOWS THE POISSON DISTRIBUTION 

When H is the number of events observed in n units of time or 
space throughout which events are randomly distributed with an average 
frequency of x events per unit, the value of P(H [ x) follows the Poisson dis- 
tribution and is (nx)He- '~/H!.  The problem is to estimate x by obtaining its 
expected value from the observed value of H and the a priori knowledge of 
the probabilities, K(x), of various possible values of x; summarized if possible 
by the mean m and the variance 0.2 of the probability function K(x). 

The best straight line regression of x on H may be obtained by the following 
reasoning. For a particular value of x, the mean value of H is nx, the variance 
of H is nz  and the mean square of H is nx -t- n~x ~. For all values of x the mean 
square of H is nm ~- n~( 0.2 ~_ m~); the mean value of H is rim; and T 2, the 

variance of H, is nm ~- n ~ 0.2. The value of ~ H  .P (H  ] x) is nx, so that  the 

values of A and B to be used in (7) and (8) are A -- n and B = 0. Thus Z 
can be obtained from (8) as: 

n 0 .2 
Z = (14) n 0.2 -{- m 

which can be inserted in equation (9) to obtain the best fitting straight line 
to the regression of x on H. 

* Note :  I f  the Principle of Insufficient Reason is applied in this case the assumption would be that all values 
o f z  from 0 to 1 were equally likely. This would produce E ( z  [ H)  = (H "]- 1)/(n -[- 2) and not E(x [ H)  - H / n  
as is frequently used. 
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In general E(xIH ) will consist of discrete points corresponding to the 
discrete values of H from 0 to ~ .  These discrete points can be calculated from 
(2) for any known values of K(x). There is one special case for which these 
points will all fall on a single straight line. This case occurs when K(x) follows 
the Pearsonian Type I I I  distribution having a range of x from 0 to oo ;* 
specifically when: 

K(z) g~gxmg-'e-~X n2 (15) = r(mg) where g = -~ 

Inserting this value of K(x) and the Poisson distribution values of P(H [ x) 
in (2), except for constants common to both numerator and denominator, 
gives: 

Using the value of Z in (14), this becomes: 

The value Z is seen to be the credibility, or percentage of total weight, to 
be given to the observed number of events per unit  of time or space in its 
combination with the a priori expectation, m. From (14) it is seen that  when 
n is one, Z = cry/( ~2 -t- m) and that  Z increases as n increases, approaching 
unity as n approaches infinity. 

WHEN H IS THE SUM OF THE INDEPENDENT VARIABLES X AND h 

When H consists of the simultaneous occurrence of the values H,, H~, • •., H~ 
for the sum of a single value of z and n random values of a variable h, and 

* I t  will be noted that this distribution is closely related to the Chi-square distribution with 2mV# s d e g r ~  
of freedom (gee reference [13] and is called the Gamma distribution. I t  was used by R. Kefl'er [14] in 1929 
with m ffi 1. 

t Note: I / t h e  Principle of Insufficient Reason is applied in this case it would produce E ( z  1 H)  - ( I f  ~ 1)/~ 
aud not H/~ as is frequently used. 

(16) 

(17)I 



16 CBEDIBIL1TY PROCEDUREs 

when h is independent of x with a mean of B, a variance of S 2 and a frequency 
distribution of ~o(h), the value of P(H I z) may be expressed as: 

P(H I x) = ~ (g ,  - z ) .  ~(H~ - z) . . . . .  ~(H,  - z). (18) 

The problem is to estimate the value of z included in each of the sums, 
H,, Hz, . . . ,  H,  by obtaining its expected value from the values H,, H2, • •., H .  
and the a priori knowledge of the probabilities, K(x) ,  of various possible values 
of x; summarized if possible by the mean m and variance a 2 of the probability 
function K(x)  and the mean, ~, of the values Hx,//2, . . . ,  H,. 

Consider the special case when both K(x)  and ~(h) are normal distributions. 
Inserting the values of K(x)  and of ~(Hl - x) in (3), except for constants 
common to both numerator and denominator, gives: 

E(x I H) -- (19) 

[ ( x ~ 2  ) ' _ } _ ( H , - x - B ) ' + ( H , - x - B ) ' + - - - + ( H , , - x - B ) ' ] 2 S  ~ 

f_oo dz 

(x ~2)'_I(HI -- x -- B)' + (H2 -- x - B)' + ..- + (H. - z - B)'] 
- -  28~ 

The numerator of (19) is of the form C U- d V where 
oo 

Ira , riB, n ] + n i + . - . + H I  
e -~4  -~ + -D- + s, + C 

m H I + H ~  + . - .  + H , ,  
e z ~ + S' - -  - and U = 

d V  x e  - ~  -p+ = dx. 

Thus the numerator of (19) may be expressed as C.U.  V] oo 

2B(H, + H~ + ... + H.)] 
8' ] 

oo 

dx 

The value of C. U- V] oo is nil as C.U.  V is zero at both oo and - oo. --O0 

C. V.dU. 

o0 
The value of - C . V . d U  is the denominator of (19) multiplied by 

¢o 
the following quantity, which thus becomes the value of E(x [ H) : 
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E(x I H) = 

m H, + H, + . . .  + H .  n B (20) 
a--' + S ~ - 

1 n 

This may be expressed as: 

where 

E(x] H) = Z(~ - B) + (1 - Z)m (21)* 

n if2 
Z = $2. (22)* 

n fig- nu 

Not only is this special case one for which the true regression of x on H is 
a straight line when H is a single observed sum of z and h; but it is also one 
for which all of the knowledge pertinent to the determination of E(x | H )  is 
contained in ~ when H is the simultaneous occurrence of n values with such 
an average. Knowledge of the individual values of H,, H2, . . . ,  H,  would add 
nothing to the knowledge provided by ~r  

~' is  the result of assuming that ~(h) This concentration of knowledge in 
is a normal distribution function. If that assumption is continued without the 
assumption that K(x) is a normal distribution function, the regression of z 
on ~ will not be a straight line although the best fitting straight line will be 
the line provided by (21) and (22). If ~(h) is not a normal distribution func- 
tion, E(x I H) can be calculated from (3) and will involve the individual values 
of Hi and not only ~.  

E(x ] H) IN TZRMS OF y and 

Before proceeding to other cases, it will be helpful to investigate the possi- 
bility of expressing E(z [ H) in terms of ~ where H is the concurrent observa- 
tion of events H1, H2, . . . ,  H,  and ~ is the average value of E(x[HO, 
E(z I H2), ..., E(x [H.). 

In the case where P(H[ z) follows the Binomial distribution and K(x) 
follows the Beta distribution, a value E(z I Hi) = Ji could be obtained for 
the result of each of the n trials. I t  would be: 

Thus 

J i =  m ( 1 -  m) "Hi'{- l - r e ( l - - m )  .m. (23) 

H 
-~- 1 • m ( 2 4 )  

= m(1 - m) " n  m(1 - m) 

o r  

• Note that  the Principle of Insufficient Reason would, in effect, assume that  ¢ !  ~ ¢o so that  Z would be- 
come 1 and E(z [ H) would e q u a l / ~ - -  B. Note also that,  under that  assumption, (8) would produce a larger 

..2 t " 2 I f  value, namely e "  S ~'. re.read of ~e  " S ',,,n.. + - ~ . .  
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r e ( l - r e ) y -  0.~-H 
m = n (25)  

m(1 - m) - 0.2 

Substituting this value of m and the value of Z given in (10) in equation (13) 
produces: 

E ( z l H )  = n -  i . z . H +  (1 - n -  1 . Z) Z (26) 
n n n 

In the case where P ( H  I x) follows the Poisson distribution and K ( z )  follows 
the Gamma distribution, a value of Jt could be obtained from the number  
of events observed in each of the n units of time or space. I t  would be 

o-2 ( ~2 ) 
Ji = ~0.2 ..j_ m " Hi q- 1 0.2 q._ m . m. (27) 

Thus 

o r  

( a2 . H +  1 0.2 .m (28) J =  ~r2-]-m n -]-m 

m = ( o-2 q- m ) , l -  0 .2 .H /n  (29) 
m 

Substituting this value of m and the value of Z given in (14) in equation (17) 
produces: 

E ( z [ H )  = n -  1 . Z . H - b  (1 - n -  1 . Z) • J. (30) 
n n n 

In the case where P ( H  ] z) = P(H1] z ) .P (H~  z) . . . . .  P(H,,] z) and 
where P ( H i l  x) and K ( z )  are both normal distributions, a value of Ji could 
be obtained for each of the n values of Hi. I t  would be: 

J~= 0.2 S~( H ~ -  B) + 1 .m. (31) 

Thus 

o r  

( °2) 
Y---- 0.2 q_ s2 (H  - B) -1- 1 - 0.2 q_ $2 - m  (32) 

( o-~ + s~),y - ~ ( H  - B ) .  (33) 

Substituting this value of m and the value of Z given in (22) in equation (21) 
produces: 

E ( z [  H)  = n -  1 . Z . (ff~ - B) + (1 - n -  1 . Z) • J. (34) 
n ?z 
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I t  is noted that  the coefficient (n - 1)Z]n is common to equations (26), 
(30) and (34) and that,  although Z is different in each case, Z is the coefficient 
in the best straight line regression of x on ~.  When Ji is not a linear function 
of H~, the coefficient (n - 1)Z/n is obviously proper both when n is one and 
when n approaches infinity. This suggests that  this general relationship is 
either always true or that  it represents a close approximation to the t ruth 
even when J~ is not a linear function of H~. This will be assumed to be the case 
although it will be clearly understood that  it  has not been proven. 

WHEN H Is THE PRODUCT OF THE INDEPENDENT VARIABLES X AND h 

When H consists of the simultaneous occurrence of the values H~, H2, .." H ,  
as the product of a single value of x and n random values of a variable h, 
and when h is independent of x with a mean of 1, a variance of S ~ and a fre- 
quency distribution of ~(h), the value of P(H I x) may be expressed as: 

1 [H?~ 
(35) 

This condition is of frequent occurrence in practical applications for which 
both x and h can have only positive values. The problem is to obtain the ex- 
pected value of the x which is included in each of the products, H1, 
H2, - . . ,  H,,  from those values and the a priori knowledge of the probabilities, 
K(x), of various possible values of x; summarized if possible by the parameters 
of K(x) and ¢(h) and the means ~ and j for the values H1, H2, . . . ,  H,.  

The best fitting straight line to the regression of x on ~ can be shown 
to be: 

x ' =  Z. /7  + ( 1 -  Z)m (36) 

where 

~%. O .2 
Z = • (37) 

n. ~* + S~(q ~ + mD 

This straight line can not, however, be depended upon to give a reliable 
estimate of x for small values of n for two reasons: first, the true regression 
must be expected to be far from a straight line in most practical applications; 
and second, there is usually much more information in the individual values 
of Hi than is summarized in the average ~.  

To show the departure from a straight line regression when n = 1, an exam- 
ple has been selected in which ¢(h) is typical of the distribution of losses by 
size of loss for casualty insurance and in which K(x) is typical of the distribu- 
tion of classification average claim costs expressed as a percentage of the 
average for all classes. To simplify calculations K(x) has been taken so that  it 
has values only at  the discrete intervals of z = n/lO where n is an integer. 
With K(x) = e -1° .101°x/(10x)l K(x) has a mean of 1, a variance of ~2 = 1/10 
and the distribution shown in the following diagram. P(H I x) has been chosen 
as equal to ~(H)/x where ~(h) has a mean of 1 and a variance of S 2 = 3 and 
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K(x) 

.2 

. 1  

o I l l l , , .  
0 1 2 

,IJ Ii 
with ~(h) following the normal logarithmic distribution shown in the follow- 
ing diagram. 

~(h) 

.2 

.1 

. h  
o i ~ ~ 4 

E(x ] H) has been calculated for a sufficient number of values of H to indi- 
cate the relationship to H shown in the following diagram. The lines x -- H, 
produced by the application of the Principle of Insufficient Reason, and 
x' = ZH -4- (1 - Z)m, produced as the best straight line regression, are also 
shown on the diagram for comparison with the curve x = E(x [ H). The cal- 
culated values of E(x l H) are shown together with the values of 1.054 ~ .164 
log10 H which appear to reasonably approximate the values of E(z I H) in 
this example. 
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1 . 0 ~  
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PRIMARY AND EXCESS VALUES 

When Hi is the product of the independent variables x and hi, the value of 
E(~IH ) may be expressed in terms of ~ and ~ as: 

E ( x I H )  = n - 1 ZR + ( 1  n - 1 Z ) J  (38) 
n 

where Z has the value shown in (37). This relationship is exact when the tl~ae 
regression of x on H is a straight line. Let it be assumed to hold when that 
regression is not a straight line. 

Consider now the portions of Hi and Ji illustrated by areas on the following 
diagram and as defined below: 

x 

o 
- - j  

1. 

o ~, ,H 
o 2 
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Hp = the primary portion of H, defined as: 
H p =  H i f H g  J a n d H p =  J i f H  > J; 

He = the excess portion of H, defined as: 
He = O i f H  g J a n d  He = H - J i f H  > J; 

Je = the excess portion of J, defined as: 
Je = J - H if  H ~ J a n d  J~ = O if H > J." 

Noting that H = Hp -[- H. and that ff = ~ -{- Je, equation (38) can be 
written: 

n - 1  n - 1  
E ( z  ] H)  = -~p + - -  Z He + (1 - -  Z)je- (39) 

n n 

It  is found that the average of the primary portions of the observations 
Hi, H~, • •., H ,  should be given full credibility (a weight of unity) and that the 
excess portions of those observations should be given a lesser weight of 
(n - 1)Z/n. This coincides with the beliefs of casualty actuaries as expressed 
in practice in the Multi-split Experience Rating Plan for workmen's com- 
pensation insurance. As the a priori  expected value of ~e is equal to that of 
~., the actuaries have replaced ~ in (39) with the a priori  expected value 
of ~o. It is obvious from (39) that such a replacement impairs the accuracy 
of the estimate of x although such impairment may not be appreciable. 

From the diagram it will be seen why the single split of observed values at G 
may be a sufficiently close approximation. With such a split the definition of 
primary and excess values would be H~ = H if H g G and H~ = G if H > G, 
a n d H .  = O i f H  g Gand Ho = H - G i f H  > G. 

T H E  UNSOL~rED P R O B L E M  

In casualty insurance, the inherent hazard of an insured, or of a classifica- 
tion of Jnsureds, is the product of an inherent frequency of loss occurrence 
and an inherent average amount of loss, and it is the value of this product 
for which an estimate is desired. Such an estimate must be expressed in terms 
of the amounts of the individual losses which have occurred and the a priori  
knowledge as to average frequencies, average amounts of losses, the distribu- 
tion of frequencies and loss amounts about such averages and a priori  knowl- 
edge as to the correlation between frequencies of loss and average loss amounts. 

The expected value, or estimate, of such a product would, no doubt, be 
more complicated in form than the results obtained for the simpler cases 
studied herein. The form such an estimate should take would be very desirable 
information for the actuary to have, even though, at the present time, there 
is little or no knowledge as to the correlation between frequencies of loss and 
average loss amounts in casualty insurance. I t  is the hope of the writer that 
someone ~'ith a knowledge of the statistical behavior of products will under- 
take the development of the appropriate procedure. I t  is for that person's 
encouragement that Jesus' statement was initially quoted. 
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