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NON-RANDOM ACCIDENT DISTRIBUTIONS 
AND THE POISSON SERIES 

BY 

J O H N  CARLETON 

In recent years several papers have appeared in the Proceedings in which 
the Poisson formula has been used to obtain the theoretical distribution of 
accident frequencies in casualty insurance. In casualty terminology this 
formula with its required conditions may be expressed somewhat as follows: 

If accidents are distributed individually and collectively at random in a 
large exposure, the probability of exactly n accidents occurring in a 
portion of that exposure: i.e., in an individual risk, is given by 

C n e - - e  

P'~-- ni 
where c is the accident expectation for the portion under consideration. 

The requisite of individual randomness is that the timing of each accident 
must be independent of the timing of each other accident. 

The requisite of collective randomness is that the accident frequency in 
any interval within the portion must be independent of the accident fre- 
quency in any other such interval not overlapping the first interval. 

The formula is applicable even if the accident producing potentialities are 
changed from interval to interval within the risk period, provided these 
changes are not made in such a way as to violate either of the two requisites 
of randomness. To illustrate: the formula applies to risks in which the 
accident producing potentialities are different during business hours than 
they are during other hours, but it does not apply to risks in which the occur- 
rence of an accident modifies the accident producing potentialities for an 
interval immediately following such occurrence. The formula applies to 
risks for which the hazards are greater during a particular season, but it does 
not apply to risks in which a high accident frequency early in the policy 
period has led to effective safety engineering the results of which are oper- 
ative in the balance of the policy period. 

Consideration of the characteristics of casualty insurance risks might lead 
to the surmise that they do not meet the two requisites of randomness with 
perfection. 

Accidents occurring in connection with defective equipment may remove 
the equipment from the exposure until such time as it can be repaired. A 
serious collision involving a particularly antiquated truck of a trucking fleet 
will remove, at least temporarily, that piece of equipment from the road and 
correspondingly modify the hazard per unit of exposure. Similarly, if there 
is validity in the contention that a disproportionate part of the workmen's 



~,~- NON-RANDoM ACCIDENT DISTRIBUTIONS AND THE POISSON SERIES 

compensation hazard inheres in accident prone employees, disability of one 
of these employees modifies the hazard per unit of payroll for the period 
of disability. 

Again in the workmen's compensation business, in almost any reasonably 
large risk there will be safety rules and practices, some formal, some in- 
formal. It is not unreasonable to believe that the interest in and enforcement 
of such rules and practices will vary from time to time. It  is likely that a 
peak of interest and enforcement will be immediately following a spectacular 
accident. 

In several lines of casualty insurance significant accidents of an unusual 
nature will prompt either the insured or the carrier to initiate efforts to pre- 
vent the recurrence of that particular type of accident. A catastrophe 
involving a bus line may result in a rerouting to avoid certain intersections. 

In each of these illustrations an accident operates to reduce the risk hazard 
for a period of time following its occurrence, and, accordingly, the general 
requirement that accidents must be independent is not perfectly met. The 
questions are (1) to what extent do these and other similar imperfections 
actually exist, and (2) to what degree do they modify the theoretical distri- 
bution of accidents given by the Poisson formula and thus impair its use, 
say, in prognosticating loss ratio distributions from accident cost distribu- 
tions, or in evaluating the accuracy of a rate making system. Preliminary 
judgment probably would be that the actual influence of accidents upon one 
another is very small and can be ignored in other than exceptional circum- 
stances. However, effort to explore this problem seems justified, even if only 
to confirm this preliminary judgment. 

-The exploratory efforts made in this paper are very limited: To answer 
the first question would require an analysis of accident timing in actual risk 
experience, an analysis which would be made very difficult by a lack of 
precise figures for true inherent hazards of individual risks and a lack of 
any information on hazard changes during policy periods. Only the second 
question has been touched, and that only in a way to provide some assistance 
in forming personal judgments. 

The situations cited as examples obviously do not lend themselves to very 
much precise mathematical calculation. It may be helpful, however, to define 
an idealized risk in which the requisite of individual randomness is violated 
in a nice uniform way and to calculate for several sets of conditions the 
properties of the theoretical accident frequency distributions for such risks. 
The variances (second moments about the mean) of these distributions can 
be compared with the variances of Poisson distributions for the same acci- 
dent expectations. To utilize the results of these calculations, it will be 
necessary, of course, to subjectively appraise the lack of independence of 
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accidents occurring in real risks and to compare that appraisal with the 
conditions assumed for the idealized risks. 

The idealized risks selected are assumed to have the following properties: 
An accident hazard of constant magnitude is operative from the start of the 
policy period until the occurrence of the first accident. Immediately follow- 
ing the first accident, and immediately following each subsequent accident, 
the accident hazard becomes negligible for a specific interval. At the end 
of each such interval the accident hazard immediately resumes its original 
magnitude and continues at this level until the following accident. 

To give these idealized models a touch of reality, they may be considered 
as corresponding to that portion of a workmen's compensation risk which 
relates to fatal cases. Whenever a fatal accident happens, factors are 
brought into play which practically preclude the occurrence of another fatal 
accident until some time has elapsed. Obviously, in actual risks the hypo- 
thetical accident spreading factors would be neither so uniform nor so com- 
pletely effective. However, they would operate in the general direction of 
creating a risk with properties similar to those of the mathematical models. 

It  might be well to mention that this paper is concerned only with the 
results of a lack of randomness. If the Poisson formula is used with accident 
expectations derived from casualty insurance rates, discrepancies between 
actual and theoretical results are usually observed, mainly because casualty 
insurance rate making does not accurately give the accident expectation of 
each individual risk. There are a multitude of possible reasons for this theo- 
retical deficiency in casualty rate making, including, conceivably, the possi- 
bility that some accidents may modify the risks without correspondingly 
modifying the rated premiums. In such a situation the discrepancies would 
arise from at least two sources: inaccurate figures for accident expectations 
and a lack of randomness in the accidents themselves. This paper is con- 
cerned only with the latter. 

Let the period of exposure be unity. Let the accident expectation which 
would prevail if the peak hazard were operative without interruption be a. 
Let b be the portion of the exposure period for which the hazard is rendered 
inoperative by an accident. 

The average or overall accident expectation which contemplates these 
intervals of zero hazard will obviously be less than a. It  is this average 
expectation which is involved in what is usually considered to be the inherent 
hazard of the risk and which is assumed to be reflected in the risk rating. 
Call this average expectation c. 

While the peak hazard is operative, the probability of an accident in any 
infinitesimal of time dx is adx, and the probability of no accidents occurring 
for a period of time d is e - ~ .  
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The probability (P~) of exactly n accidents in a risk as defined above will 
be obtained by taking the product of a succession of probabilities which 
account for the n accidents and the exposure time and integrating n times 
between suitable limits. The product comprises the probability of zero 
accidents up to point of time t, the probability of an accident at t, the cer- 
tainty of no accidents between t and (t + b), the probability of zero acci- 
dents from (t + b) to u, the probability of an accident at u, etc. The limits 
of integration are complicated somewhat by the circumstance that the inter- 
val of zero hazard occasioned by the last accident is not necessarily confined 
to the exposure period. This circumstance seems to necessitate (n + 1) sets 
of integrals. 

For nb ~ I 

Po - -  e - a  

Ii--b I 1 oae -a(1-b) G• - a y  dy 

I 1--2b f 1--, I 1--2b I 1 p ,  = a 2 e - ~ ( J - 2 b )  dx dy + a 2 e - ~ * - b )  dx dy 
0 $ + b  0 1--b 

I ~-b f 1 a z e - a ( u - b )  dx dy Jl- 1--2b a~q-b 

I 1--8b f 1--2b I 1--b P3 = a ~ e -~'(~-~b) dw dx dy 
0 w + b  a:+b 

-~ 0 1--2b 

-{'- S 1--Sb f 1--2b S 1 0  w-t-b 1-b aae-a(v-2b) d w d x d y  

1 
a 8 e -~cv-2b~ d w d x  dy 

a~+b 

1--3b w+b ~.+b 
a 3 e -~cu-e~) dw dx dy 

P 4  - -  a 4 e - a O - 4 o )  dv dw dx dy 
0 v + b  w + b  ~ + b  

0 v+b  w+b 1--b 0 v+b  l - -~b m+b 
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0 1- -8b  t o + b  w + b  1- -4b  v+b teTb a~+b 

where F -- a 4 e -*(v-3~) dv dw dx dy. 
1 

Integration reveals that for 0 < n ~< ~- the probability of exactly n acci- 

dents takes the form: 

[ a2(l--nb)2 a"(1- -nb)"]e_ , (x_ ,b  ) 
P . - -  l + a ( 1 - - n b ) +  2 " ' +  n[ 

[ a , - l [ l _ ( n _ l )  b],-1] 
- -  1 + a ( 1 - - ( n - - 1 ) b )  + . .  ( n - - l )  ! e - a  F1--(.-1>~1 

I t  will be noted that when b is made zero, P ,  reduces to the Poisson formula. 
It will also be noted that 

X P , = I  when s b = l .  
tl=0 

The latter result could be anticipated, as under the conditions given it is 
impossible to have more than s accidents. 

Several distributions have been calculated from the above formula and 
the results are exhibited in the following table: 

a - - 2  a = 2  a = 2  a = 1 0  a - - 1 0  
b = 0 . 2  b = 0 . 1  b = 0 . 0 5  b = 0 . 2  b - -0 .1  

C 

(1) or 1.4693 1 . 6 8 0 5  1 . 8 2 2 3  3 . 5 5 3 9  5.1509 
X P . X  

(2) ~ P .  x 2 .7975 1 . 1 8 7 7  1.5134 .4889 1.4933 

P .  x 2 
(3) .5427 .7067 .8305 .1376 .2899 

(4) V (3) .7375 .8407 .9113 .3709 .5384 

Line 1 gives the accident expectations of the risks as defined. These 
g 

figures approach ~ as b is made smaller, but again because the zero 

hazard interval following the last accident is not confined to the policy 
period, they are somewhat larger. 

In the Poisson distribution, the variance (second moment about the mean) 
is equal to the expectation (first moment from the origin). Consequently, 
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line 1 also gives the variances of Poisson distributions most nearly com- 
parable with the distributions found for the idealized risks. 

Line 2 gives the variances calculated for the idealized risk distributions. 
L i n e  3 shows the ratios of the two variances, and line 4 shows the square 
roots of these ratios. Since the standard deviation is the square root of the 
variance, the figures in line 4 are the ratios of the standard deviations and 
are intended to show the degree to which these departures from randomness 
affect dispersion. As might be anticipated, if the values of either a or b are 
increased, the dispersion is moved further from the value it would have if 
random conditions prevailed. 

It is noted that the conditions assumed: i.e., a reduction of the accident 
producing potentialities following the occurrence of an accident, tend to 
reduce the dispersion. Conversely, it may be assumed that the dispersion 
would be increased by conditions under which an accident renders more 
likely the occurrence of other accidents. Something analogous to the latter 
situation is found in the use of claim data as the only available approxima- 
tion for accident data in estimating loss ratio distributions. When there is 
the possibility of multiple claim accidents, the instant of time coincident 
with or immediately following a claim may be considered to have been 
endowed with a special hazard for other related claims. 

With respect to the influences operating in the direction of the idealized 
risks, it is necessary to inject personal opinion of their magnitude if any 
effort is to be made to relate the mathematical models to reality. There 
should be general agreement that this magnitude is sufficiently small so that 
actual risks, or even the serious portion of actual risks, could not be consid- 
ered comparable with any of the idealized risks with the possible exception 
of the one in which a = 2 and b = 0.05. 

If a workmen's compensation risk is of such a size that an average of 1.8 
serious accidents occur per year, it is conceivable that the occurrence of one 
of these would bring forces into play which would preclude a recurrence for 
a little over two weeks, or at least greatly reduce the hazard for a corre- 
spondingly ]onger period. Such a departure from randomness would reduce 
the standard deviation of the serious accident distribution by about 9%. 
Unfortunately, 9% is neither large enough to be startling nor small enough 
to be dismissed as insignificant. 

I t  is a matter of conjecture just how many risks are subject to such de- 
partures from randomness, If it is agreed that these influences are normally 
much less effective, then it can be concluded that concern over the applica- 
bility of the Poisson distribution to casualty insurance accidents can be 
confined to special situations in which accidents are known definitely to be 
other than independent. 


