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Abstract

This paper summarizes the research project on Mod-
eling of Economic Series Coordinated with Interest Rate
Scenarios initiated by the joint request for proposals by
the Casualty Actuarial Society and the Society of Actu-
aries. The project involved the construction of a finan-
cial scenario model that simulates a variety of economic
variables over a 50-year period. The variables projected
by this model include interest rates, inflation, equity re-
turns, dividend yields, real estate returns, and unemploy-
ment rates. This paper contains a description of the key
issues involved in modeling these series, a review of the
primary literature in this area, an explanation of param-
eter selection issues, and an illustration of the model’s
output. The paper is intended to serve as a practical
guide to understanding the financial scenario model in
order to facilitate the use of this model for such actuarial
applications as dynamic financial analysis, development
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of solvency margins, cash flow testing, operational plan-
ning, and other financial analyses of insurer operations.
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1. INTRODUCTION

The insurance industry is increasingly relying on financial
models. Financial models are an integral part of any dynamic fi-
nancial analysis (DFA) approach and are frequently used for sol-
vency regulation, capital allocation, and pricing insurance poli-
cies. Financial models can also be used to determine the eco-
nomic value of loss reserves. As financial models become a
widely used tool, actuaries have a greater need to understand
current models and to develop improvements.

A considerable amount of research suggests that sophisticated
tools are needed to accurately evaluate the financial condition of
insurers. Santomero and Babbel [37] review the financial risk
management practices of both the life and property-liability in-
surers and find that significant improvements are necessary. They
state that even the most advanced insurers are not effectively
managing their financial risks. Research also shows that the po-
tential consequences of the lack of risk measurement cannot be
ignored. A study by the Casualty Actuarial Society Financial
Analysis Committee [9] discusses the potential impact of inter-
est rate risk for property-liability insurers. Hodes and Feldblum
[26] examine the effects of interest rate risk on the assets and lia-
bilities of a property-liability insurer and conclude that “casualty
actuaries must understand interest rate risk thoroughly if they
wish to participate in the industry discussions and to influence
the coming professional and regulatory guidelines.” Staking and
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Babbel [41] find that significant work is needed to better under-
stand the interest rate sensitivity of an insurer’s surplus. D’Arcy
and Gorvett [14] and Ahlgrim, D’Arcy, and Gorvett [2] apply
more advanced measures to determine the interest rate sensitiv-
ity of loss reserves and illustrate how these measures depend on
the interest rate model chosen. All of these articles focus on the
need for a better understanding of the financial risks facing an
insurance company.

Many actuaries are now familiar with the traditional tech-
niques that form the basis of asset-liability management (ALM),
including the measures of duration, convexity, and the term struc-
ture of interest rates (Hull [27], Chapter 5). Duration and con-
vexity help insurers understand their interest rate sensitivity and
assist portfolio managers in reducing surplus volatility. However,
the calculations for duration and convexity rely heavily on un-
derlying assumptions about the level and potential movements
of interest rates, and these issues have not been thoroughly eval-
uated by the actuarial community.

In order to enhance actuaries’ understanding of financial mod-
els, the Casualty Actuarial Society (CAS) and the Society of
Actuaries (SOA) jointly issued a request for proposals on the
research topic “Modeling of Economic Series Coordinated with
Interest Rate Scenarios.” There were several specific objectives
of the request:

² Review the previous literature in the area of economic scenario
modeling;

² Determine appropriate data sources and methodologies to en-
hance economic modeling efforts relevant to the actuarial pro-
fession; and

² Produce a working model of economic series, coordinated with
interest rates, that could be made public and used by actuaries
via the CAS and SOA Web Sites to project future economic
scenarios.
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The economic series to be included in the model were interest
rates, equity returns, inflation rates, unemployment rates, and real
estate returns. An important consideration in this project is the
recognition of the interdependencies between the various eco-
nomic and financial series–for example, between interest rates
and inflation and between equity returns and interest rate move-
ments.

This paper provides a summary of the development of a
scenario generation model, which is now available for pub-
lic use. This work represents an initial step in the process of
helping actuaries develop a better understanding of financial
risk. The complete project, available on the CAS Web Site
(http://casact.org/research/econ/), includes a literature review, the
model, sample results, and a user’s guide.

This paper is organized as follows. Section 2 reviews some of
the key issues from the financial modeling literature, including
term structure and equity return development. Previous actuarial
models are also discussed. Section 3 describes the underlying
variables of the model, illustrates how each process is simulated,
discusses how the default parameters of the process were se-
lected, and provides sources of data that are used to select the
appropriate parameters. Section 4 briefly explains how to use the
financial scenario model and discusses how to incorporate the
model into other actuarial applications. Section 5 illustrates the
use of the model, summarizes the output produced in one simu-
lation, and includes a number of tabular and graphical displays
of the output. Section 6 provides a conclusion that encourages
actuaries to advance the work in this area.

2. ISSUES AND LITERATURE REVIEW

There are many issues involved in building an integrated fi-
nancial scenario model for actuarial use. This section reviews
the literature in the modeling of the term structure and equity re-



MODELING FINANCIAL SCENARIOS 181

turns. In addition, the financial models in the actuarial literature
are reviewed.

Term Structure Modeling

Insurance companies have large investments in fixed income
securities, and their liabilities often have significant interest rate
sensitivities. Therefore, any financial model of insurance opera-
tions must include an interest rate model at its core. This section
describes some of the relevant research issues involved in term
structure modeling. (For an overview of fixed income markets,
see Tuckman [42].)

The role of the financial scenario generator is not to explain
past movements in interest rates, nor is the model attempting to
perfectly predict interest rates in any future period in order to
exploit potential trading profits.1 Rather, the model purports to
depict plausible interest rate scenarios that may be observed at
some point in the future. Ideally, the model should allow for a
wide variety of interest rate environments to which an insurer
might be exposed.

The literature in the area of interest rate modeling is volumi-
nous. One strand of the literature looks to explore the possibility
of predictive power in the term structure. Fama [17] uses forward
rates in an attempt to forecast future spot rates. He finds evi-
dence that very short-term (one-month) forward rates can fore-
cast spot rates one month ahead. Fama and Bliss [19] examine
expected returns on U.S. Treasury securities with maturities of
up to five years. They find that the one-year interest rate has a
mean-reverting tendency, which results in one-year forward rates
having some long-term forecasting power.

1It might be noted that trying to develop a model that mimics past rate movements may
be a futile exercise since, despite the volume of research in the area, no tractable model
has yet been shown to be satisfactory in accurately explaining history.
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Historical Interest Rate Movements

Other research reviews historical interest rate movements in
an attempt to determine general characteristics of plausible in-
terest rate scenarios. Ahlgrim, D’Arcy, and Gorvett [3] review
historical interest rate movements from 1953 to 1999, summariz-
ing the key elements of these movements. Chapman and Pearson
[12] provide a similar review of history in an attempt to assess
what is known about interest rate movements (or at least what
is commonly accepted) and what is unknown (or unknowable).
Litterman and Scheinkman [32] use principal component anal-
ysis to isolate the most important factors driving movements of
the entire term structure. Some of the findings of these studies
include

² Short-term interest rates are more volatile than long-term rates.
Ahlgrim, D’Arcy, and Gorvett [3] use statistics (such as stan-
dard deviation) to show that long-term rates tend to be some-
what tethered, while short-term rates tend to be much more
dispersed. (A graphical presentation of historical interest rate
movements is available at http://www.business.uiuc.edu/»s-
darcy/present/casdfa3/GraphShow.exe.)

² Interest rates appear to revert to some “average” level. For ex-
ample, when interest rates are high, there is a tendency for
rates to subsequently fall. Similarly, when rates are low, they
later tend to increase. While economically plausible, Chapman
and Pearson [12] point out that due to a relatively short his-
tory of data, there is only weak support for mean reversion. If
anything, evidence suggests that mean reversion is strong only
in extreme interest rate environments (see also Chapman and
Pearson [11]).

² While interest rate movements are complex, 99% of the total
variation in the term structure can be explained by three basic
shifts. Litterman and Scheinkman [32] show that over 90% of
the movement in the term structure can be explained by simple
parallel shifts (called the level component). Adding a shift in
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the slope of the term structure improves explanatory power to
over 95%. Finally, including U-shaped shifts (called curvature)
explains over 99% of the variation observed in historical term
structure movements. Chapman and Pearson [12] confirm that
these three factors are persistent over different time periods.

² Volatility of interest rates is related to the level of the short-
term interest rate. Chapman and Pearson [12] further point out
that the appropriate measure for volatility depends on whether
the period from 1979 to 1982–when the Federal Reserve
shifted policy from focusing on interest rates to controlling in-
flation, resulting in a rapid increase in interest rates–is treated
as an aberration or included in the sample period.

Equilibrium and Arbitrage Free Models

Several popular models have been proposed to incorporate
some of the characteristics of historical interest rate movements.
Often these continuous time models are based on only one
stochastic factor, movements (changes) in the short-term interest
rate (the instantaneous rate). A generic form of a one-factor term
structure model is

drt = ·( ¡ rt)dt+¾rt°dBt: (2.1)

Formula (2.1) incorporates mean reversion. To see this, consider
the case where the current level of the short-term rate (rt) is
above the mean reversion level . The change in the interest rate
is then expected to be negative–interest rates are expected to
fall. The speed of the reversion is determined by the parame-
ter ·. The last term in (2.1) incorporates the unknown, volatile
component of interest rate changes over the next instant. The
last term, dBt, is the change in a Brownian motion–it has mean
zero and variance equal to dt. This uncertainty is scaled by the
volatility parameter ¾. If ° > 0, then interest rate volatility is re-
lated to the level of the interest rate. When ° = 0, this model
is equivalent to the formulation of Vasicek [43]; when ° = 0:5,
the model is the process proposed by Cox, Ingersoll, Ross [13]
(hereafter CIR). Chan et al. [10] estimate this class of interest
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rate models and determine that based on monthly data from 1964
through 1989 the value of ° is approximately 1.5.

Models of the type shown in Formula (2.1) are called “equi-
librium models” since investors price bonds by responding to
the known expectations of future interest rates. Using the as-
sumed process for short-term rates, one can determine the yield
on longer-term bonds by looking at the expected path of interest
rates until the bond’s maturity. To determine the full-term struc-
ture, one can price bonds of any maturity based on the expected
evolution in short-term rates over the life of the bond:2

P(t,T) = E

"
exp

Ã
¡
Z T

t
rudu

!#
(2.2)

where P(t,T) is the time t price of a bond that pays $1 in (T¡ t)
years. One of the primary advantages of equilibrium models is
that bond prices and many other interest rate contingent claims
have closed-form analytic solutions. Vasicek and CIR evaluate
Formula (2.2) to find bond prices:

P(t,T) = A(t,T)e¡rtB(t,T), (2.3)

where A(t,T) and B(t,T) are functions of the known process pa-
rameters ·, , and ¾. Therefore, given a realized value for rt,
rates of all maturities can be obtained.

One immediate problem with equilibrium models of the term
structure is that the resulting term structure is inconsistent with
observed market prices, even if the parameters of the model are
chosen carefully; while internally consistent, equilibrium models
are at odds with the way the market is actually pricing bonds.
Where equilibrium models generate the term structure as an out-
put, “arbitrage-free models” take the term structure as an input.
All future interest rate paths are projected from the existing yield
curve.

2It should be noted that the expectations in Formula (2.2) are evaluated under the risk
neutral measure. See chapter 9 of Tuckman [42] for an introduction to risk neutral val-
uation of bonds.
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Ho and Lee [25] discuss a discrete time model of the no-
arbitrage approach and include a time-dependent drift so that
observed market prices of all bonds can be replicated. The
continuous-time equivalent of the Ho-Lee model is

drt = (t)dt+¾dBt: (2.4)

The time-dependent drift ( (t)) of the Ho and Lee model is
selected so that expected future interest rates agree with market
expectations as reflected in the existing term structure. This drift
is closely related to implied forward rates. Hull and White [28]
use Ho and Lee’s [25] time-dependent drift to extend the equi-
librium models of Vasicek and CIR. The one-factor Hull-White
model is

drt = ·( (t)¡ rt)dt+¾dBt: (2.5)

Heath, Jarrow, and Morton [23] (hereafter HJM) generalize
the arbitrage-free approach by allowing movements across the
entire term structure rather than a single process for the short
rate. HJM posit a family of forward rate processes, f(t,T). In
this family

df(t,T) = ¹(t,T,f(t,T))dt+¾(t,T,f(t,T))dBt, (2.6)

where
f(t,T) =¡@ lnP(t,T)

@T
: (2.7)

Choosing between an arbitrage-free term structure model and
an equilibrium model often depends on the specific application.
Despite their initial appeal, arbitrage-free approaches often have
disadvantages.3 Some of these include the following:

² Arbitrage-free models are most useful for pricing purposes,
especially interest rate derivatives. Since derivatives are priced
against the underlying assets, a model that explicitly captures
the market prices of those underlying assets is superior to mod-
els that more or less ignore market values. Hull [27] comments

3In addition to the references in this section, Tuckman [42] provides an excellent
overview of the advantages and disadvantages of equilibrium models vs. arbitrage-free
models.
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that equilibrium models are judged to be inferior since traders
will have little confidence in the price of an option if the model
cannot accurately price the underlying asset. Research sup-
ports this argument. Jegadeesh [31] looks at the pricing of
interest rate caps and determines that arbitrage-free models
price interest rate caps more accurately than equilibrium mod-
els. Unfortunately, the pricing accuracy of arbitrage-free term
structure models is based on short pricing horizons; there have
been no formal comparative tests of the pricing accuracy using
long-term assets.

² Fitton and McNatt [21] comment that arbitrage-free models are
most useful for short-term pricing applications when similar
market data are readily available. Arbitrage-free models are
intractable over long periods of time. With many arbitrage-
free models, the forward rate plays a central role in the ex-
pected path of interest rates. Forward rates are related to the
slope of the term structure and may exhibit strange behavior
that significantly impacts projections of interest rate paths in
arbitrage-free term structure models. For steeply sloped yield
curves, the forward rate may become very large. For parts of
the term structure that are downward sloping, the forward rate
may even become negative. Especially for long-term projec-
tions, simulation paths may become extreme since the effects
of small fluctuations in the term structure are magnified in
long-term forward rates. For long-term analysis, equilibrium
models are more appropriate.

² Arbitrage-free models also suffer from inconsistency across
time (see Wilmott [46] and Tuckman [42]). As mentioned
above, many arbitrage-free term structure models assume that
the risk-free rate is closely related to the forward rate curve.
The forward curve is often quite dissimilar at different points
in time. For example, at time 0, the model uses the existing
term structure to determine forward rates for years into the
future. If the model were correct, we should be able to restart
the simulation at some subsequent time t using the forward
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rates for longer maturities that were implied from the earlier
projection. Clearly the actual path of interest rates will differ
from the implied forward rate curve, as well as the volatilities
of these rates. This requires the model to be refit to avail-
able market data each time it is used, which means that future
projections make different assumptions about future spot rates
and volatilities. Equilibrium models provide more consistent
statements about projected interest rates over time.

² Determining the input into an arbitrage-free model is not
straightforward. One usually considers the term structure im-
plied by risk-free securities such as U.S. Treasuries. There
are several difficulties in looking at U.S. Treasury data. First,
market data gathered from zero coupon securities data, such
as STRIPs (separate trading of registered interest and principal
securities), are noisy, especially at long maturities. An alterna-
tive source for long-term interest rate data is to look at yields
on long-term U.S. Treasury bonds. However, the liquidity of
these long-term coupon bonds is suspect, and since on-the-run
(the most current issue of a particular bond) Treasury securi-
ties typically have higher liquidity (and higher prices), yields
of the longest maturity bonds are forced down. The forward
rate curve initially reflects interest rate information for short-
term rates, but for longer maturities, liquidity issues dominate.
The result is a strangely shaped forward rate curve that can
have significant undulations stemming from illiquidity. In ad-
dition, the future of 30-year bonds is uncertain given the Trea-
sury’s curtailment of 30-year bond issues. Fewer points on the
term structure make arbitrage-free models very sensitive to the
market data and particularly vulnerable to market inefficien-
cies. Equilibrium models do not suffer from these “dirty” data
issues.

² Depending on the specific arbitrage-free model, one may have
to resort to numerical techniques such as simulation or interest
rate trees to value contingent claims. Equilibrium models often
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have closed-form solutions for common interest rate dependent
securities.

Single- vs. Multifactor Models

The models presented above are all one-factor term structure
models since there is only a single variable generating stochastic
movements in interest rates. One problem with one-factor mod-
els is that the single source of uncertainty drives all term struc-
ture movements. As a result, yields of all maturities are perfectly
correlated to the one stochastic factor and the range of potential
yield curves is limited. The effects of multi-dimensional moves
in the term structure can have serious consequences on a port-
folio’s value. Reitano [35] demonstrates that even small non-
parallel shifts in the yield curve can cause extreme changes in
asset values.

Introducing additional sources of uncertainty (such as allow-
ing the long end of the curve to fluctuate or introducing stochas-
tic volatility or both) provide for a fuller range of yield curve
movements and shapes. The downside is that introducing multi-
ple dimensions of yield curve movements quickly increases the
complexity and tractability of the model. Choosing the number
of stochastic factors for a term structure model represents an
important balance between accuracy and simplicity.

To illustrate an example of a multifactor term structure model,
Hull and White [29] extend the one-factor Hull-White model [28]
to include a stochastic mean reversion level:

drt = ( (t)+ ut¡ art)dt+¾1dB1t
dut =¡butdt+¾2dB2t:

(2.8)

Similar to the one-factor Hull-White model, the instantaneous
short-term rate (rt) reverts to some time-dependent reversion level
( (t)+ ut). The introduction of a stochastic process for ut in the
second equation in Formula (2.8) shows that the mean rever-
sion level is also variable. The effect of introducing this second
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stochastic factor is to allow movements at opposite ends of the
yield curve. Any correlation between short and long rates is ac-
counted for in the correlation of the Brownian motion compo-
nents of Formula (2.8).

Summary of Term Structure Issues

The final choice of term structure model is a decision that
frequently elicits passionate debate. Decisions are needed to se-
lect among the various kinds of assumptions including matching
the existing term structure (equilibrium vs. arbitrage-free model),
the number of parameters employed, and so on. In making these
decisions, it is vital to bear in mind the application of the model.
The choice of a term structure model is likely to be different
for short-term applications that require precision and compara-
bility to traded securities than for long-term strategic planning
exercises.

For this research, it is not intended that our model will be
used for trading purposes. Rather, it is meant to give insurers
a range of potential interest rate scenarios that are possible in
the future. In selecting a term structure model for the financial
scenario generator, we attempted to balance three important (and
often opposing) goals: (1) mimicking the key historical charac-
teristics of term structure movements, (2) generating the entire
term structure for any future projection date, and (3) recognizing
the desire for parsimony.

The first concern led us to a multifactor model that allows
for some flexibility in yield curve shapes. While single-factor
models are often easier to describe and use, their restricted yield
dynamics are too important for insurers to ignore. The second
issue highlights the importance of interest rates of all time hori-
zons, not of any specific key rates on the curve. Based on the
realizations of the limited number of stochastic factors, we pre-
ferred term structure models that have closed-form solutions for
bond prices so that the entire term structure can be quickly and
easily retrieved. When closed-form solutions for bond yields are
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available, this allows users of the term structure model to track
all interest rates on the yield curve during a simulation, not a
limited few. For example, users of a term structure model who
are interested in mortgage prepayment rates will be interested in
the refinancing rate, which may be closely related to bond yields
of specific maturities (such as 10 years). Other users may be
concerned about crediting rates that are a function of historical
5-year interest rates. Without some explicit closed-form solution,
the modeler has no foundation to imply yields of different ma-
turities from a limited set of stochastic factors. The two-factor
equilibrium model selected for the financial scenario model is
described in the third section of this paper.

Equity Returns

Similar to interest rates, there have been many studies that
have looked at the behavior of equity returns. Shiller [39] and
Siegel [38] analyze long-term patterns in stock returns and pro-
vide helpful analyses of long-term trends. Sornette [40] exam-
ines the behavior of stock markets, investigating why complex
systems such as stock markets crash.

Often equity returns are assumed to follow a normal distri-
bution. For example, in the development of their famous option
pricing formula, Black and Scholes [7] assume that (continu-
ously compounded) returns for stocks are normally distributed.
However, historical observation of equity returns reveals that the
distribution has “fatter tails” than predicted by the assumption of
normality (Campbell, Lo, and MacKinlay [8]).

A number of alternative assumptions have been proposed
for stock movements. Alexander [4] summarizes a variety of
substitutes, including generalized autoregressive conditional het-
eroskedasticity (GARCH) processes and principal component
analysis. Hardy [22] uses a regime-switching model for stock re-
turns and concludes that the performance of the regime-switching
model is favorable relative to competing models. To understand
the rationale for Hardy’s model, consider the severe decline of
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the stock market in October 1987. This single observation may
appear to be too “extreme” and very unlikely given a single-
variance assumption. Instead, suppose that equity returns at any
point in time are generated from two distinct distributions, a
“high volatility” regime or a “low volatility” regime. The chance
of switching from one regime to the other over the next time
step is dictated by transition probabilities. During times of eco-
nomic instability, the returns on equities may be more uncertain,
representing a transition to the high volatility regime. Thus, the
observation from October 1987 may simply be a draw from the
high volatility regime.

We use Hardy’s approach for equity returns but apply the
regime-switching process to excess returns over and above the
nominal risk-free rate. At any point in time, the excess return of
stocks is a draw from a normal distribution that is conditional
on the current regime.4 For each period, there is a matrix of
probabilities that dictate the movement between regimes. While
there is no limit to the number of regimes that can be embedded
in the model, Hardy finds only marginal improvement in fit when
extending the equity return model to more than two regimes.

Given two regimes (i.e., i and j), Hardy uses these transi-
tion probabilities to determine the unconditional probability ¼i
of being in state i at any point in time:

¼i =
pj,i

pi,j +pj,i
, ¼j = 1¡¼i: (2.9)

Actuarial Models

Redington [34] pioneered the work in modeling insurers. This
early work introduced the concept of immunization against in-
terest rate risk and introduced the “funnel of doubt” terminology
to convey uncertainty in outcomes. Modern approaches to mod-
eling (including this research) focus first on assumptions of the

4Ahlgrim and D’Arcy [1] extend this regime-switching approach to international equities.
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external economic and financial environment before incorporat-
ing the impact of these variables on the operations of the insurer.

Wilkie’s [44] model proposes inflation as the independent
variable, using a first-order autoregressive model to simulate in-
flation. Wilkie links the realization of inflation with other vari-
ables using a cascade approach. Wilkie’s original model [44]
includes (1) dividends, (2) dividend yields, and (3) interest rates.

Wilkie [45] updates his earlier work by expanding on the
structural form of the processes used to represent key variables
in his “stochastic investment model.” The paper includes several
appendices that fully develop the time-series tools used through-
out the presentation, including cointegration, simultaneity, vector
autoregression (VAR), autoregressive conditional heteroskedas-
ticity (ARCH), and forecasting. Wilkie [45] also estimates pa-
rameters for each equation of the model by looking at data from
1923 through 1994 and performs tests on competing models for
fit. As in the 1986 model, Wilkie’s updated model simulates in-
flation as an autoregressive process that drives all of the other
economic variables, including dividend yields, long-term inter-
est rates, short-term interest rates, real estate returns, wages, and
foreign exchange rates. One shortfall of the Wilkie model is the
inconsistent relationships generated among inflation and short-
term vs. long-term interest rates. In addition, the equity returns
are based on an autoregressive process that leads to a distribution
of returns that is much more compact than history indicates.

Hibbert, Mowbray, and Turnbull [24] describe a model us-
ing modern financial technology that generates values for the
term structure of interest rates (both real and nominal interest
rates), inflation, equity returns, and dividend payouts. They use
a two-factor model for both interest rates and inflation, a regime-
switching model for equities, and a one-factor autoregressive
dividend yield model. The paper discusses issues related to pa-
rameter selection and also illustrates a simulation under alternate
parameters, comparing results with the Wilkie model.
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Dynamic financial analysis (DFA) has become the label under
which these financial models are combined with an insurer’s
operations when performing a variety of applications including
pricing, reserve adequacy, and cash flow testing. D’Arcy et al.
[15, 16] walk through the development of a public-access DFA
model and illustrate the use of the model in a case study.

3. DESCRIPTIONS OF THE FINANCIAL SCENARIO GENERATOR
AND DATA

In this section, detailed descriptions are provided for each
of the economic time series included in our model. Embedded
in these descriptions are references to the sources of historical
time-series data used to select the parameters of the model.

Inflation

Inflation (denoted by q) is assumed to follow an Ornstein-
Uhlenbeck process5 of the form (in continuous time):

dqt = ·q(¹q¡ qt)dt+¾qdBq: (3.1)

The simulation model samples the discrete form equivalent of
this process as

¢qt = qt+1¡ qt = ·q(¹q¡ qt)¢t+ "q¾q
p
¢t

qt+1 = qt+·q(¹q¡ qt)¢t+ "q¾q
p
¢t

= ·q¢t ¢¹q+(1¡·q¢t) ¢ qt+ "q¾q
p
¢t:

(3.2)

From this last equation, we can see that the expected level of
future inflation is a weighted average of the most recent value
of inflation (qt) and a mean reversion level of inflation, ¹q. The
speed of reversion is determined by the parameter ·q. In the
continuous model, mean reversion can be seen by considering
the first term on the right-hand side of Formula (3.1) (which is
called the drift of the process). If the current level of inflation qt is

5The Vasicek process discussed in Section 2 is also an Ornstein-Uhlenbeck process.
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above the mean reversion level, the first term is negative. There-
fore, Formula (3.1) predicts that the expected change in inflation
will be negative; that is, inflation is expected to fall. The second
term on the right-hand side of Formula (3.1) represents the un-
certainty in the process. The change in Brownian motion (dBt)
can be likened to a draw from a standardized normal random
variable (represented by "q in the discrete form of the model).
The uncertainty is scaled by the parameter ¾q, which affects the
magnitude of the volatility associated with the inflation process.

We can rearrange the last equation above to show that the
Orstein-Uhlenbeck process is a continuous time version of a first-
order autoregressive process:

qt+1¡¹q = ¹q·q¢t¡¹q+(1¡·q¢t) ¢ qt+ "q¾q
p
¢t

= (1¡·q¢t) ¢ qt¡ (1¡·q¢t) ¢¹q+ "q¾q
p
¢t

= (1¡·q¢t) ¢ (qt¡¹q)+ "q¾q
p
¢t: (3.3)

Using the last equation in (3.2), we can estimate the param-
eters of the inflation model using the following time-series re-
gression:

qt+1 = ®+¯qt+ "
0
qt: (3.4)

Note that we have not run the regression using the change
in inflation as the dependent variable since this would not al-
low us to simultaneously derive the mean reversion speed (·q)
and the mean reversion level (¹q). To derive the parameters of
the inflation process, we transform the regression coefficients in
(3.4):

¯ = 1¡·q¢t, ·q =
1¡¯
¢t

(3.5)

®= ·q¹q¢t =
1¡¯
¢t

¹q¢t, ¹q =
®

1¡¯ : (3.6)

We gathered inflation data from the Consumer Price In-
dex (CPI) data collected by the Bureau of Labor statistics
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(http://www.bls.gov) and ran several regressions of this type to
estimate ·q and ¹q. One specific concern of this data was that in-
dividual monthly CPI levels might contain self-correcting errors
that would bias the regression coefficients. For example, if the
CPI of September 2004 was overstated and then corrected in the
following month, then inflation in September would temporarily
appear “high” while the subsequent inference of monthly infla-
tion would appear “low.” If the time series of CPI contained
any errors of this type, the resulting mean reversion strength and
volatility parameters may be overstated. Given the noisy fluctu-
ations in monthly data, we selected the parameters for the infla-
tion process by looking at annual regressions. By calculating the
change in CPI over the course of a year, the inflation rate would
appear less volatile.

The often-cited time series of CPI uses a base period (i.e.,
resets the index value at 100) between the years 1982 and 1984.
Given the fact that the CPI level is reported only to the first deci-
mal place, using the current base does not lend itself to capturing
minor changes in inflation in the first half of the 20th century; a
small change in CPI may lead to large swings in inflation when
the level of the index is low. The only other publicly available
series reported on the old base level (1967 = 100) is the one that
is not seasonally adjusted, U.S. city averages, all items.6

The annual rate of inflation was measured as

qt = ln
CPIt
CPIt¡1

, (3.7)

where CPIt is the reported index value for year t and CPIt¡1 is
the prior year’s reported index value of the same month. We ran
two annual regressions: (1) all available data and (2) the years
after World War II.

6Often in economic data, seasonal adjustments are required to remove persistent cyclical
factors that may affect raw (unadjusted) values. Examples of seasonal factors that may
have an impact on CPI include effects from climatic changes, holidays, and production
cycles.
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Time Period ·q ¹q ¾q

1913—2001 0.37 3.3% 4.0%
1946—2001 0.47 4.8% 3.0%

We selected the default mean reversion speed (·q) to be 0.4
and the mean reversion level (¹q) to be 4.8% to capture the post-
war economic period. Although it might appear that the speed
of mean reversion over the second half of the 20th century has
increased, it should be noted that the standard error of the es-
timate of ·q is higher (which undoubtedly is due to fewer data
points in the shorter period).

Instead of being concerned with the annualized, instantaneous
level of inflation, bond investors are more concerned with the ex-
pected level of inflation over the life of their investment. Given
the existing level of inflation (qt) and the parameters of the as-
sumed process in Formula (3.1), we can derive expectations of
future inflation over various horizons. Our process for inflation
follows the same Ornstein-Uhlenbeck process as in Vasicek [43],
so we can develop a “term structure” of inflation analogous to
Formula (2.3). This term structure posits an expected inflation
rate over various horizons. A term structure of inflation is needed
to generate nominal interest rates, since investors are concerned
about not only the time value of money, but also the erosion of
purchasing power expected over the life of their investment.

Real Interest Rates

To derive real interest rates, we selected a simple case of the
two-factor Hull-White model (Formula (2.8)). In this model, the
short-term rate (denoted by r) reverts to a long-term rate (denoted
by l) that is itself stochastic. The long rate reverts to an average
mean reversion level ¹r

drt = ·r(lt¡ rt)dt+¾rdBr,
dlt = ·l(¹r¡ lt)dt+¾ldBl:

(3.8)
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In order to estimate the parameters of the model, we look at
the discrete analog of the model:

¢rt = ·r(lt¡ rt)¢t+¾r"rt
p
¢t,

¢lt = ·l(¹r¡ lt)¢t+¾l"lt
p
¢t:

(3.9)

rt+1¡ rt = ·r(lt¡ rt)¢t+¾r"rt
p
¢t

= (·rlt¡·rrt)¢t+¾r"rt
p
¢t,

lt+1¡ lt = ·l(¹r¡ lt)¢t+¾l"lt
p
¢t

= (·l¹r¡·llt)¢t+¾l"lt
p
¢t:

(3.10)

rt+1 = rt+(·rlt¡·rrt)¢t+¾r"rt
p
¢t

= ·r¢t ¢ lt+(1¡·r¢t) ¢ rt+¾r"rt
p
¢t,

lt+1 = lt+(·l¹r¡·llt)¢t+¾l"lt
p
¢t

= ·l¢t ¢¹r+(1¡·l¢t) ¢ lt+¾l"lt
p
¢t:

(3.11)

From these equations, we can see that the short rate is again
a weighted average of the current levels of rt and the mean re-
version factor lt. The mean reversion factor is itself a weighted
average of its long-term mean (¹r) and its current value (lt).

Hibbert, Mowbray, and Turnbull [24] (hereafter HMT) also
use this process for real interest rates. They derive closed-
form solutions for bond prices (and therefore yields), which
are slightly more complicated than the one-factor Ornstein-
Uhlenbeck process for inflation:

Pr(t,T) = Ar(t,T)e¡rtB1(t,T)¡ltB2(t,T) (3.12)

where rt and lt are the values for the short and long real interest
rates and Ar, B1, and B2 are functions of underlying parameters
in the two-factor Hull-White specification for real interest rates.

Estimating the parameters in Formula (3.11) is a difficult pro-
cedure since real interest rates are not directly observable in the
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market. We compute ex post real interest rates based on the dif-
ference between nominal rates observed in the market less the
monthly (annualized) inflation rate. We use the three-month Con-
stant Maturity Treasury (CMT) as a proxy for the instantaneous
short rate and the 10-year CMT yield as a proxy for the long
rate. (We also looked at longer Treasury yields as a proxy for the
long rate. Results were not sensitive to the choice of maturity.)
Nominal interest rates are from the Federal Reserve’s historical
database. (See http://www.federalreserve.gov/releases/.)

There are several issues related to the Federal Reserve’s in-
terest rate data. First, at the long end of the yield curve, there
are significant gaps in many of the time series. For example,
the 20-year CMT was discontinued in 1987; yields on 20-year
securities after 1987 would have to be interpolated from other
yields. Also, the future of 30-year rate data is uncertain, given
the decision of the Treasury to stop issuing 30-year bonds (in
fact, the Fed stops reporting 30-year CMT data in early 2002).
At the short end of the yield curve, there are several choices
for a proxy of the short rate. Ideally, one would want an inter-
est rate that most closely resembles a default-free instantaneous
rate. While the one-month CMT is reported back only to 2001,
the three-month rate is available beginning in 1982. While we
could have reverted to a private, proprietary source of data to
create a longer time series, we restricted ourselves to only pub-
licly available data sources that would be available to any user
of the model.

Based on Formula (3.11), we use the following regressions
on monthly data from 1982 to 2001:

rt+1 = ®1lt+®2rt+ "
0
rt,

lt+1 = ¯1 +¯2lt+ "
0
lt:

(3.13)

Traditional ordinary least squares (OLS) regressions are not
possible given the dependence of the short-rate process on the
long rate. To estimate these simultaneous equations, we use two-
stage least squares estimation. In order to estimate the short-rate
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equation in stage 2, we first obtain fitted estimates for the long
rate l̂t, based on the parameter estimates from stage 1:

Stage 1: lt+1 = ¯1 +¯2lt+ "
0
lt,

Stage 2: rt+1 = ®1 l̂t+®2rt+ "
0
rt:

(3.14)

The resulting parameters were generated from the regression re-
sults.

Real Interest Rate Process Estimated from 1982

to 2001

·r ¹r ¾r ·l ¾l

6.1 2.8% 10.0% 5.1 10.0%

These parameters indicate a very high level of volatility that is
tempered by strong levels of mean reversion. See the discussion
of the nominal interest rates below for the parameters that are
used in the simulation illustration in section five.

Nominal Interest Rates

Fisher [20] provides a thorough presentation of the interaction
of real interest rates and inflation and their effects on nominal
interest rates. He argues that nominal interest rates compensate
investors not only for the time value of money but also for the
erosion of purchasing power that results from inflation. In the
model presented here, the underlying movements in inflation and
real interest rates generate the process for nominal interest rates.
If bonds are priced using expectations of inflation and real in-
terest rates until the bond’s maturity, then nominal interest rates
are implied by combining the term structure of inflation and the
term structure of real interest rates. Therefore,

Pi(t,T) = Pr(t,T) ¢Pq(t,T), (3.15)

where i refers to nominal interest rates and the superscripts on
the bond prices correspond to the underlying stochastic variables.
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Unfortunately, the parameters for the real interest rate pro-
cess shown above generate a distribution that severely restricts
the range of potential future nominal interest rates. For example,
using the regression results from Formulas (3.13) and (3.14), the
1st percentile of the distribution for the 20-year nominal rate is
5.9% and the 99th percentile is 8.2%. There are several candi-
dates for problems with real interest rates that may lead to this
seemingly unrealistic distribution of future nominal rates: (1)
the use of ex post real interest rate measures is unsuitable, (2)
because of potential errors in monthly reporting of CPI men-
tioned above, monthly measurements of real interest rates pro-
duce self-correcting errors that exaggerate mean reversion speed,
or (3) the time period used to measure real interest rates is too
short.

As a result, the parameters for real interest rates were altered
to allow nominal interest rates to better reflect historical volatil-
ity. Specifically, mean reversion speed was dramatically reduced.
Given that mean reversion speed and volatility work together to
affect the range of interest rate projections, volatility was also
reduced. The following parameters are used as the “base case”
in the model. These parameters are in line with what was used
in Hull [27].

·r ¹r ¾r ·l ¾l

1.0 2.8% 1.00% 0.1 1.65%

An important consideration in the model is the correlation
between interest rates and inflation. Risa [36] reviews the lit-
erature on the relationship between inflation and interest rates.
Pennacchi [33] finds evidence that the instantaneous real inter-
est rates and expected inflation are significantly negatively cor-
related. Ang and Bekaert [5] develop a regime-switching model
for inflation and real interest rates. They find that inflation is
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negatively correlated with the short-term real interest rate. Fama
[18] examines how one-year spot interest rates can be used to
forecast its components: the one-year inflation rate and the real
return on one-year bonds. It is found that the expected values of
those two components move opposite to one another. As a re-
sult, the financial scenario model includes a negative correlation
between real interest rates and inflation.

Equity Returns

Equity returns are equal to the risk-free nominal interest rate
(q+ r) and a risk premium or excess equity return attributable to
capital appreciation (x):

st = qt+ rt+ xt: (3.16)

In her model, Hardy [22] assumes that stock prices are lognor-
mally distributed under each regime. But while Hardy looks at
total equity returns, including dividends and the underlying com-
pensation from the risk-free rate, we use the excess equity re-
turns from capital appreciation x. To estimate the parameters of
the regime-switching equity return model, we follow the proce-
dure outlined in Hardy [22], maximizing the likelihood function
implied from the regime-switching process.

We estimate the process for the returns of small stocks and
large stocks separately. Numerous web sites are available to
capture the time series of capital appreciation of these indices
(see, for example, http://finance.yahoo.com). The large stocks
are based on the Standard and Poor’s (S&P) 500 (or a sample
chosen to behave similarly for the years prior to the construc-
tion of the S&P 500). The data are available online at a Web
Site generated by Robert Shiller, author of Irrational Exuberance
(http://www.econ.yale.edu/»shiller/data/ie data.htm). The small
stock values are based on Ibbotson’s Stocks, Bonds and Bills [30].
As expected, the risk and return of small stocks appear higher
than large stocks under both regimes. The following parameter
estimates were developed:
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Excess Monthly Returns

Large Stocks (1871—2002) Small Stocks (1926—1999)

Low
Volatility

High
Volatility

Low
Volatility

High
Volatility

Regime Regime Regime Regime

Mean 0.8% ¡1.1% 1.0% 0.3%
Standard Deviation 3.9% 11.3% 5.2% 16.6%

Probability of Switching 1.1% 5.9% 2.4% 10.0%

Note that while the expected return in the high volatility
regime is lower, it is more likely that if the high volatility regime
is ever reached, the equity market will revert back to the low
volatility regime since the probability of switching is higher. The
regime switches are correlated, so if large stocks are in the low
volatility regime, then small stocks are more likely to be in the
low volatility regime as well.

Equity Dividend Yields

Similar to the process used by HMT and Wilkie [44], we as-
sume that the log of the dividend yield follows an autoregressive
process:

d(lnyt) = ·y(¹y ¡ lnyt)dt+¾ydByt: (3.17)

One source of difficulty associated with estimating the div-
idend yield process involves obtaining data. There is no long
time series of dividend yields that is publicly available for eq-
uity indices. To obtain this information, we used a proprietary
source of financial data (Telerate). However, one may be able
to estimate the dividend yield of indices that contained a lim-
ited number of stocks (such as the Dow Jones industrial aver-
age). It should be noted that the process for dividend yields is
clearly time-dependent. Average dividend yields have fallen dra-
matically over the last 50 years given the recognition of double
taxation effects. Recent tax changes that levy lower taxes on div-
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idends may (or may not) reverse the long-term trends of lower
dividends.

Estimation of this process is analogous to the inflation process
described above. The mean reversion speed of the series is not
significantly different from zero. Given the long-term changes in
historical dividend patterns, the log of dividends appears to be a
random walk around its starting value.

Real Estate (Property)

Given that the real estate portfolios of insurers are domi-
nated by commercial properties, we use the National Council
of Real Estate Investment Fiduciaries (NCREIF) pricing index
to capture the quarterly returns on commercial properties (see
http://www.ncreif.com). The NCREIF data are generated from
market appraisals of various property types, including apartment,
industrial, office, and retail. While the use of appraisal data
may only approximate sharp fluctuations in market valuation,
publicly obtainable transaction-based real estate data were not
available.

Using quarterly return data from NCREIF from 1978 to
2001 (http://www.ncreif.com/indices/), we estimated the follow-
ing Ornstein-Uhlenbeck model for real estate:

d(re)t = ·re(¹re¡ (re)t)dt+¾redBre: (3.18)

We estimated two separate models including the levels of infla-
tion. While we expected inflation to provide additional explana-
tory power for real estate returns, the results were not significant.
The following parameters were used to project quarterly real es-
tate returns:

·re ¹re ¾re

1.20 2.3% 1.3%
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Unemployment

There are many plausible ways to link unemployment rates
to other economic variables. One approach to estimating unem-
ployment is based on the well-known Phillips curve. The Phillips
curve illustrates a common inverse relationship between unem-
ployment and inflation. The approach taken by Phillips seems
plausible: As the economy picks up, inflation increases to help
temper the demand-driven economy. At the same time, unem-
ployment falls as firms hire to meet the increasing demand. When
the economy slows down, unemployment rises, and inflationary
pressures subside.

We also include a first-order autoregressive process in the
unemployment process, in addition to the relationship suggested
by the Phillips curve:

dut = ·u(¹u¡ ut)dt+®udqt+¾udBut: (3.19)

It is expected that when inflation increases (dqt > 0), unem-
ployment decreases (i.e., ®u < 0). One may argue that there is
a lag between inflation and unemployment. To keep the model
simple, we did not pursue any distributed lag approach.

The discrete form of the unemployment model is shown as

ut+1 = ut+·u¹u¡·u¢t ¢ ut+®u(qt+1¡ qt)+¾u"ut
p
¢t

= ·u¹u+(1¡·u¢t) ¢ ut+®u(qt+1¡ qt) +¾u"ut
p
¢t:

(3.20)
This suggests the following regression:

ut+1 = ¯1 +¯2ut+¯3(qt+1¡ qt)+¾u"0ut: (3.21)

We use inflation data as described above and retrieve
monthly unemployment data from the Bureau of Labor Statis-
tics (http://www.bls.gov). Using data from 1948 to 2001 and
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transforming the regression coefficients as in Formulas (3.5) and
(3.6), we get

dut = 0:13 ¢ (6:1%¡ ut)dt¡ 0:72dqt+0:76% ¢ dBut:
(3.22)

Comments on Selecting Parameters of the Model

Some have argued that the performance of any model should
be measured by comparing projected results against history. It
is not our intent to perfectly match the distribution of histori-
cal values for interest rates, equity returns, and so on. To do so
would naively predict a future based on random draws from the
past. If perfect fit is desired, history already provides the set of
economic scenarios that may be used for actuarial applications
and the development of an integrated financial scenario model is
completely unnecessary. Instead, the model presented here pro-
vides an alternative: an integrated approach to creating alternative
scenarios that are tractable and realistic. While history is used to
gain important insights into the characteristics of relevant vari-
ables, it would be impossible to build tractable models that yield
a perfect fit to historical distributions. In general, we believe
our theoretical framework provides a parsimonious approach to
closed-form solutions of particular variables of interest.

4. USING THE FINANCIAL SCENARIO MODEL

The financial scenario model is an Excel spreadsheet that
benefits from the use of a simulation software package called
@RISK, available through Palisade Corporation (http://www.
palisade.com). @RISK leverages the simplicity of spreadsheets
and integrates powerful analysis tools that are used to help ran-
domly select future scenarios and examine risk in a stochastic
financial environment. The software package allows users to de-
fine uncertain variables as a distribution, take numerous draws
from these inputs, and then capture each iteration’s impact on a
user-defined output variable of interest, such as profits, sales, or
an insurer’s surplus.
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Excluding Negative Nominal Interest Rates

There has been significant debate over the proper way to deal
with negative nominal interest rates in interest rate models. Some
modelers have set boundary conditions that prevent nominal in-
terest rates from becoming negative. Other modelers have not
been concerned over negative interest rates, either because the
mathematical characteristics of the model are more important
than the practical applications or because the incidence of nega-
tive nominal interest rates is too infrequent to require significant
attention.

While it depends on the specific application, the occurrence
of negative nominal interest rates can be problematic. Econom-
ically, certain variables have natural limits. For example, while
theory may not reject negative interest rates, reality suggests that
it is unlikely that investors would ever accept negative nominal
interest rates when lending money. Therefore, the model provides
users with two options:

² Placing lower bounds on the levels of inflation and real interest
rates. The model simulates these processes as if there were no
lower bound, but then it chooses the maximum of the lower
bound and the simulated value.

² Eliminating the potential for negative nominal interest rates. In
this case, the model uses the standard inflation simulation, but
effectively places a lower bound on the real interest rate such
that the resulting nominal interest rate is non-negative.

User-Defined Scenarios

The financial scenario model provides for stochastic simula-
tion of future economic variables, based upon user-specified pa-
rameters for the assumed processes. However, there are instances
where it may be desirable to allow the user to input specific sce-
narios for the future values of certain processes. For example,
regulations may require sensitivity testing based on specific eq-
uity return patterns over the next decade. The financial scenario
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model allows users to specify scenarios for three economic vari-
ables in the model; nominal interest rates, inflation, and equity
returns. For example, with respect to nominal interest rates, each
of the “New York 7”7 regulatory interest rate tests are prepro-
grammed into the model and may be selected by the user; the
user may also specify a scenario of her or his own creation for
any of the three economic processes.

Employing the Financial Scenario Model

It is expected that the financial scenario model will be imple-
mented in a variety of different analyses. The model can be used
as the underlying engine for creating many financial scenarios
and can be tailored for a user’s specific purposes. For example,
Ahlgrim and D’Arcy [1] use the model as the underlying asset
return generator to assess the risk inherent in pension obligation
bonds issued by the state of Illinois. In this case, the model was
extended to include international equities and to compute yields
on coupon bonds from the nominal interest rates.

5. ILLUSTRATIVE SIMULATION RESULTS

Regardless of the mathematical sophistication of the variables
incorporated in a model, the accuracy of the procedures used to
determine the parameters, and the timeliness of the values on
which the calibration is based, the most important test of the va-
lidity of any model is the reasonability of the results. This section
will examine the results of a representative run of the financial
scenario model and compare the output with historical values. It
should be reiterated that the goal of choosing the parameters for
the model was not to replicate history. Correspondingly, we do
not include measures of fit when comparing the sample results

7The “New York 7” are seven different interest rate scenarios originally specified by NY
Regulation 126 for use in asset adequacy testing and actuarial opinions for life insurers.
Each scenario is based on deviations from the current term structure.
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to history. This section uses history to review results of an illus-
trative simulation to subjectively assess the model’s plausibility.

A simulation is performed generating 5,000 iterations (sample
paths) using the base parameters described in Section 3, disal-
lowing negative nominal interest rates.8 The results are presented
in several different ways (these results are discussed in the fol-
lowing section).

² Table 1 provides key statistics for key variables in the simula-
tion. Mean values of the output are shown for the first and last
(50th) projection years. The 1st and 99th percentiles of the dis-
tribution of results are indicated for an intermediate projection
year (year 10).

² Tables 2 and 3 show the correlation matrices, comparing the
simulation correlations (Table 2) and historical correlations
(Table 3).

² Some of the Figures (1—6, 8—10, 14—15, 18, 20, and 22) show
“funnel of doubt” plots, indicating the level of uncertainty sur-
rounding each output variable over time.9 The x-axis indicates
the time period and the y-axis indicates the value(s) assumed
by the variable of interest. The “funnel of doubt” graphs show
the mean value for the 5,000 iterations (solid line), the 25th
and 75th percentile values (dark shaded section), and the 1st
and 99th percentile values (lighter shaded section). Expanding
funnels indicate that the values become more uncertain over
the projection period. Narrowing funnels indicate that the vari-
ables become more predictable when making long-term fore-
casts.

² Figures 7, 11—13, 16—17, 19, 21, and 23 are histograms, illus-
trating the full probability distribution of the values for a par-

8The output of this illustration has been saved in a file and is posted at http://casact.org/
research/econ. The American Academy of Actuaries uses a similar prepackaged scenario
approach in looking at C-3 risk of life insurers.
9These “funnel of doubt” graphs are referred to as “summary graphs” in @RISK.
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TABLE 1

Key Variables from Financial Scenario Model Run

Date 7/17/2004
Iterations 5,000
Parameters Base

Nominal Interest Rates Not Allowed to Be Negative

Mean Range at Year 10 (25)
First Year (16) Last (30) 1% 99%

Output Interest Rates
Real Interest Rates
1-month (B) 0.009 0.030 ¡0:053 0.100
1-year (D) 0.009 0.029 ¡0:051 0.097
10-year (G) 0.011 0.026 ¡0:033 0.076

Inflation Rate
1-month (J) 0.023 0.048 ¡0:053 0.145
1-year (L) 0.027 0.048 ¡0:037 0.129
10-year (O) 0.039 0.045 0.020 0.069

Nominal Interest Rates
1-month (R) 0.032 0.078 0.000 0.194
1-year (T) 0.036 0.077 0.000 0.183
10-year (W) 0.051 0.071 0.006 0.127

Other Output
Large Stocks (B) 0.087 0.116 ¡0:159 0.296
Small Stocks (C) 0.134 0.136 ¡0:159 0.397
Dividend Yield (D) 0.015 0.023 0.006 0.039
Unemployment (E) 0.060 0.061 0.035 0.087
Real Estate (F) 0.081 0.094 0.030 0.161

The letters in the first column indicate the columns, and the numbers in the headings indicate the
rows, of the cells where the values are located in the @RISK output files.

ticular variable at one point in time (a single projection year).
For comparative purposes, the distribution of historical values,
where appropriate, is also plotted in these histograms.

Real Interest Rates

We start by looking at the one-month real interest rate in Ta-
ble 1. The mean value for the first projection month is 0%. By
the end of the 50-year projection period, this value has moved
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to 3.0%. This result is entirely in line with the specifications of
the model. The one-month value would be closely aligned with
the initial short-term real interest rate (rinit1). To estimate this
rate, we backed out an estimate of inflation from the observed
risk-free, short-term interest rate. During the summer of 2004,
the resulting value of the real interest rate was near 0%. Un-
der the projections, the initial value would begin to revert to the
long-term mean after one month. The mean of the final value in
the results, after 50 years, is around the mean reversion level for
the long rate (rm2), which is 2.8%.

To provide an idea about the range of values for the one-
month real interest rate, columns 3 and 4 of Table 1 display the
1st and 99th percentiles of the distribution in the tenth projection
year. In 1 percent of the iterations, the one-month real interest
rate, on an annualized basis, is less than ¡5:3%. On first obser-
vation, this result seems nonsensical. Why would an investor be
willing to lose money, in real terms, by investing at a negative
real interest rate? Instead, an investor would just hold cash rather
than lose 5.3% a year, after adjusting for inflation. However, this
may not be as unrealistic as it seems. First, this result is the annu-
alized rate as opposed to the one-month real rate of only ¡0:4%.
Second, this return may represent the best return available. If in-
flation is high, then holding cash would generate an even larger
loss. In times of high inflation, the best real return an investor
can receive may be negative. Finally, real interest rates are not
observable. The true real interest rate is the return required, over
and above expected inflation, for the specific interval. However,
the precise expected inflation rate is unobservable in the financial
markets.

In practice, two approaches have been used for estimating the
expected inflation rate. First, one can use economists’ forecasts
of inflation. Economists, though, do not represent investors. By
training and occupation, the economists included in the surveys
are not at all representative of the general financial market par-
ticipants. Investors may consider some economists’ forecasts in
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making their own determination of what to expect regarding fu-
ture economic conditions, but many other factors, including their
own experience, the counsel of other participants, and recent his-
torical experience, are used to determine their inflation expecta-
tions. There is no survey of representative market participants to
determine what they truly anticipate for the inflation rate.

The second approach has been to examine actual inflation
rates that have occurred, and then subtract those from prior in-
terest rates (ex post analysis). This approach is also flawed for
several reasons. First, there is no reason to believe that the mar-
ket is prescient regarding inflation expectations. Especially in the
case of an unexpected shock to the system, such as oil price in-
creases during the 1970s, the market does not know what will
happen in the future. It cannot even be assumed that errors in
forecasting will cancel out over time, since the market could be
biased to underestimate or overestimate future inflation. Second,
actual inflation cannot be accurately measured. The Consumer
Price Index and other values commonly used to determine in-
flation are widely recognized as being imperfect. These indices
track the prices of specific goods and services that are not com-
pletely representative of the entire economy. These indices can-
not recognize the substitution effect in which consumers con-
tinually engage, such as buying more chicken than usual when
beef prices rise, or driving less when gasoline prices soar. Due to
these problems, it is not possible to claim that real interest rates
cannot be negative, so a small negative value over a short time
interval does not necessarily represent a problem.

On the opposite side of the distribution, the 99th percentile
value for one-month real interest rates after 10 years is 10%. The
same limitations described above also apply to this value.

Going further out on the term structure, the mean value of
the one-year real interest rate after the first projection year is
0.9%. This reflects reversion from the initial value of 0% to
the long-term mean of 2.8%. The mean of the last value, after
50 years, which is in line with these parameters, is 2.9%. The
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1st—99th percentile range after 10 years is ¡5:1% to +9:7%,
reflecting a similar distribution for the full year as was observed
for the monthly values. For the 10-year real interest rates, the
mean after the first projection month is 1.1%, and in the last
projection month, the mean is 2.6%, reflecting the strength of
the mean reversion over this long a period of time. The 1st—99th
percentile range after 10 years is ¡3:3% to +7:6%, reflecting the
more compact distribution for long-term (10-year) real interest
rates, compared to shorter time horizons.

Figures 1 through 3 depict the funnel of doubt graphs of
one-month, one-year and 10-year real interest rates. All reflect
the same shape, although the scaling differs. The “kink” in the
early portion of the graph occurs because the first 12 points rep-
resent monthly intervals, which have small changes in values, and
the latter steps are larger intervals, which lead to correspondingly
larger changes. The level of uncertainty increases over the entire
50-year time frame, but the shifts toward the end of the simula-
tion period are less pronounced. This shape occurs because of the
structure and parameterization of the model. The uncertainty in-
herent in the real interest rate process generates the initial spread
of the distribution, but the impact of mean reversion offsets this
tendency, keeping the “funnel of doubt” from expanding further.

Inflation

The next variable of interest is the inflation rate. As shown in
Table 1, the mean value of the (annualized) one-month inflation
rate is 2.3% after the first projection year and 4.8% after 50
years. Note that the initial inflation rate (qinit1) is set at 1.0%
and 4.8% is the long-term mean (qm2). The 1st—99th percentile
range after 10 years is ¡5:3% to +14:5%, which is wider than the
distribution for real interest rates since the mean reversion speed
for inflation is lower (0.4 compared to 1.0). Negative inflation
(or deflation) is not objectionable since small negative monthly
values have occurred in recent years. Also, monthly inflation
values in excess of 14.5% did occur during the 1970s.
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FIGURE 1

Distribution of 1-Month Real Interest Rate Projection

Period: 1 Month to 50 Years

FIGURE 2

Distribution of 1-Year Real Interest Rate Projection

Period: 1 Month to 50 Years
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FIGURE 3

Distribution of 10-Year Real Interest Rate Projection

Period: 1 Month to 50 Years

The mean one-year inflation rate begins at 1.6% and moves
to 4.8% by the end of 50 years, both in line with the model pa-
rameters. The 1st—99th percentile range of the one-year inflation
rate after 10 years is ¡3:7% to +12:9%. Although the United
States has not experienced deflation over an entire year since
1954, it seems quite appropriate to assign positive probability to
this event.

From the description in Section 3, recall that the 10-year in-
flation rate is derived from the expected path of inflation over
the next ten years. Given the assumption of mean reversion of
inflation, it is expected that there is less uncertainty inherent in
predicting longer-term inflation rates. The simulation confirms
this–the mean 10-year inflation rate begins at 3.6% and moves
to 4.5% by the end of 50 years, closer to the long-term mean
parameter of 4.8%. Also, the 1st—99th percentile range of the
10-year inflation rate after 10 years is 2.0% to 6.9%, demon-
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strating that, over longer time horizons, the (geometric) average
rate of inflation is less variable.

The funnel of doubt graphs of one-month, one-year, and 10-
year inflation rates are shown in Figures 4 through 6. The un-
certainty of the 10-year inflation rate is much smaller than it is
for one-month and one-year rates, reflecting the strength of the
mean reversion term for this single-factor model. Although infla-
tion varies widely over shorter time horizons, in this model the
long-term inflation rate is much less variable. This pattern can be
altered by increasing the volatility of the inflation process (¾q)
or reducing the mean reversion speed (·q).

The histograms for the one-year projected inflation rates and
of actual one-year inflation rates from 1913 through 2003 (from
January to January) are shown on Figure 7. It is readily appar-
ent that the modeled inflation rates generate a nice bell-shaped
curve, whereas the actual inflation rates are much less smooth.
One reason for this difference is that the model results are based
on 5,000 iterations, while the actual data contain only 90 data
points. More importantly, though, the projected values are de-
rived from a concise mathematical expression that will produce
a smooth distribution of results, but the actual inflation rates
depend on the interactions of an almost unlimited number of
variables. The key question is whether the model adequately ex-
presses the probability distribution of potential inflation rates.
The actual inflation rates are more leptokurtic (fatter in the tails
than a normal distribution) than the modeled values, but they re-
flect the central portion of the graph fairly well. All of the large
negative inflation rates occurred prior to 1950. Many of the pos-
itive outliers are from years prior to 1980, when monetary policy
was less focused on controlling inflation.

Nominal Interest Rates

Nominal interest rates reflect the combination of the real inter-
est rate and inflation. The mean values for one-month nominal
interest rates were 1.1% for the first month and 7.8% for the
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FIGURE 4

Distribution of 1-Month Inflation Rate Projection

Period: 1 Month to 50 Years

FIGURE 5

Distribution of 1-Year Inflation Rate Projection

Period: 1 Month to 50 Years
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FIGURE 6

Distribution of 10-Year Inflation Rate Projection

Period: 1 Month to 50 Years

FIGURE 7

Actual Inflation Rates (1913—2003) vs. Model Values
(5,000 Iterations)
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50th year. The initial nominal interest rate indicated in the model
(1.1%) is in line with the user-defined starting level (June 2004)
of 1.1%. The 1st—99th percentile range for the one-month nom-
inal interest rate after 10 years is 0.0% to 19.4%.

The mean one-year nominal interest begins at 1.9% and moves
to 7.7% by the end of 50 years. The initial value is again in line
with the current level of interest rates. The 1st—99th percentile
range of the one-year nominal interest rate after 10 years is 0.0%
to 18.3%.

The mean 10-year nominal interest begins at 4.6% and moves
to 7.1% by the end of 50 years. The initial value is in line with
the current level of interest rates for long-term bonds, given the
June 2004 10-year U.S. Treasury yield of 4.4%. The 1st—99th
percentile range of the one-year nominal interest rate after 10
years is 0.6% to 12.7%.

The funnel of doubt graphs of one-month, one-year, and 10-
year nominal interest rates, Figures 8 through 10, are similar
to the real interest rate and inflation graphs, but have a barrier
at zero since the restriction that nominal interest rates not be
negative is applied in this case. This restriction affects the 1st
percentile line on Figures 8 and 9, but not the 25th percentile
line. The effect of the restriction is not apparent for the 10-year
nominal interest rates. The level of uncertainty increases over
the 50-year time period used in the forecast. Since the nominal
interest rate is determined by adding the real interest rate to the
inflation rate, the increasing uncertainty reflected by real inter-
est rates and the inflation rate generates the same behavior for
nominal interest rates.

The histograms for the three-month, one-year, and 10-year
model nominal interest rates and the actual three-month, one-
year, and 10-year nominal interest rates are displayed in Figures
11 through 13. (The one-month values are not consistently avail-
able for historical data over a long enough time period to be re-
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FIGURE 8

Distribution of 1-Month Nominal Interest Rate

Projection Period: 1 Month to 50 Years

FIGURE 9

Distribution of 1-Year Nominal Interest Rate

Projection Period: 1 Month to 50 Years
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FIGURE 10

Distribution of 10-Year Nominal Interest Rate

Projection Period: 1 Month to 50 Years

FIGURE 11

Actual 3-Month Nominal Interest Rates (January

1934—May 2004) vs. Model Values (5,000 Iterations)
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FIGURE 12

Actual 1-Year Nominal Interest Rates (April

1953—May 2004) vs. Model Values (5,000 Iterations)

FIGURE 13

Actual 10-Year Nominal Interest Rates (April

1954—May 2004) vs. Model Values (5,000 Iterations)
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levant. Therefore, three-month interest rates are used for in Fig-
ure 11.) Figures 11 through 13 show the distribution of nominal
interest rates one year into the projection period.

Significant differences exist between the modeled and histor-
ical distributions for interest rates. In Figure 11, the modeled
three-month nominal interest rates are 0.0% in almost 20% of
the cases, whereas actual three-month interest rates have never
been below 0.5 percent (the column reflecting the 1% bin repre-
sents values between 0.5 and 1.5 percent). However, combining
the model values for 0 and 1 percent indicates a total in line with
actual values. In addition, the model distributions are smoother
than the actual values, which is natural since the model results
are based on 5,000 iterations, whereas the actual results, even
though derived from 845 (monthly) or 614 (one- and 10-year)
observations, are not at nearly as smooth, indicating that the sys-
tem that generates interest rates is not as straightforward as the
model.

At first glance, modeled interest rates are generally lower than
the historical rates. It is important to note that the modeled inter-
est rates are influenced by the starting values for the initial real
interest rate (rinit1), the initial mean reversion level for the real
interest rate (rinit2), and the initial inflation level (qinit1), which
are lower than historical averages.

The comparison between the 10-year modeled rates and the
10-year historical rates, Figure 13, indicates a few differences.
The modeled interest rates are more compact than actual 10-year
interest rates have been. If the user feels that the variance of the
model values should be closer to the historical distribution, then
the strength of the mean reversion factor in the interest rate model
can be reduced, but this would increase the incidence of negative
interest rates unless the user selects to avoid negative nominal
interest rates. The other significant difference is the skewness.
The historical rates exhibit positive skewness, but the modeled
rates have a slight negative skewness. Finally, the model rates



MODELING FINANCIAL SCENARIOS 223

are lower than historical values, again due to starting with the
current low levels of interest rates.

Stock Returns and Dividends

The values for large and small stock returns indicate, as ex-
pected, higher average returns and greater variability for small
stocks than for large stocks. As shown in Table 1, the mean of
the initial values (after one year) of large stocks is 8.7% and
of small stocks is 13.4%. The mean of the large stock values
increases to 11.6% at the end of 50 years and for small stocks
increases to 13.6%. The 1st—99th percentile range after 10 years
is ¡15:9% to 29.6% for large stocks and ¡15:9% to 39.7% for
small stocks.

The funnel of doubt graphs (Figures 14 and 15) indicate an
inverted funnel, compared to the displays of interest rates and
inflation. This means that uncertainty reduces over time and is
due to the way the values are calculated. The projected values
shown are geometric average returns for large and small stocks
over the projection period. For example, the one-year values are
returns over a one-year period, the 10-year values are average
annual returns over a 10-year period, and so on. Thus, Figures
14 and 15 show that the average annual returns expected over
a 50-year period are much more predictable than those for a
one-year period.

Histograms of the one-year returns for the large (Figure 16)
and small (Figure 17) stock returns as generated by the model
are displayed, along with actual one-year returns for 500 large
stocks for 1871 through 2004 and small stock returns over the
period 1926 through 2003. The graphs for large stocks (Figure
16) are relatively similar, although, as would be expected, the
results of the 5,000 iterations of the model produce a smoother
distribution. The histograms for small stocks (Figure 17) show
that historical values have been more variable, with a notable
outlier at 190% return, which represents a single observation.
The model values also have single observations around that level,



224 MODELING FINANCIAL SCENARIOS

FIGURE 14

Distribution of Compound Average Large Stock

Returns Projection Period: 1 Year to 50 Years

FIGURE 15

Distribution of Compound Average Small Stock

Returns Projection Period: 1 Year to 50 Years



MODELING FINANCIAL SCENARIOS 225

FIGURE 16

Actual Large Stock Returns (1871—2004) vs. Model
Values (5,000 Iterations)

FIGURE 17

Actual Small Stock Returns (1926—2003) vs. Model
Values (5,000 Iterations)



226 MODELING FINANCIAL SCENARIOS

but no one bin produces as large a proportion of the outcomes as
the one occurrence out of 78 years of the historical experience
to be as obvious on the graph.

The mean dividend yield for equities is 1.5% for the first
year and 2.3% for the 50th-year values. The 1st—99th percentile
range after 10 years is 0.6% to 3.9%. The funnel of doubt graph
of the dividend yield (Figure 18) increases over time as inter-
est rates and inflation do. Figure 19 displays the histogram of
the modeled dividend yields and the actual dividend yields over
the period 1871 through 2003, based on data available from
Robert Shiller [39]. Historically, dividend yields have varied
more widely than the model predicts and have been centered at
a higher level. This may be a result, in part, of a structural shift
in the dividend payment history in the United States. Bernstein
[6] notes that prior to the late 1950s, stock dividends tended
to be higher than interest rates on corporate bonds. This was
based on the understanding that stocks were riskier than bonds
and therefore should pay a higher return. Since 1959 though,
dividend yields have tended to be lower than interest rates, rang-
ing from 1.1% to 5.4%, which is in line with the simulation
results.

Unemployment and Real Estate Returns

The mean value of the unemployment rate, as shown in Ta-
ble 1, begins at 6.0% and increases to 6.1% (which is the long-
run mean value) for the end of 50 years. The 1st—99th percentile
range after 10 years is 3.5% to 8.7%. Figure 20 shows that the
funnel of doubt graph neither increases over time (as interest
rates and inflation do) nor decreases (as stock returns do). The
histogram of modeled unemployment rates along with the dis-
tribution of historical values over the period from 1948 through
2003 are shown in Figure 21. By selecting only a single unem-
ployment rate from each year (January), the frequency of the his-
torical values corresponds with that of the model values, which
are the unemployment rates indicated after the first year of the
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FIGURE 18

Distribution of Dividend Yield Projection Period:

1 Year to 50 Years

FIGURE 19

Actual Dividend Yields on S&P 500 (1871—2003) vs.
Model Values (5,000 Iterations)
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FIGURE 20

Distribution of Unemployment Rate Projection Period:

1 Year to 50 Years

FIGURE 21

Actual Unemployment Rate (1948—2003) vs. Model
Values (5,000 Iterations)
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FIGURE 22

Distribution of Compound Average Real Estate

Returns Projection Period: 1 Year to 50 Years

model run. Although the actual unemployment rates have varied
a bit more than the model results do, the distributions are quite
similar.

Real estate returns are the final variable included in the fi-
nancial scenario model. From Table 1, the mean value of real
estate returns is 8.1% in the first year and 9.4% after 50 years.
The 1st—99th percentile range after 10 years is 3.0% to 16.1%.
The funnel of doubt graph (Figure 22) is similar to the re-
turns on stocks, for the same reasons. The histograms of mod-
eled results and the historical returns based on the National In-
dex from the National Council of Real Estate Investment Fidu-
ciaries for 1978 through 2003 are shown on Figure 23. The
model values show a smooth distribution centered about the his-
torical returns. Unfortunately, only 26 years of annual returns
are available, so it is difficult to draw any conclusions on the
fit.
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FIGURE 23

Actual Real Estate Returns (1978—2004) vs. Model
Values (5,000 Iterations)

Correlations

Table 2 displays the correlation matrix for all the output
variables at the end of the first projection year (row 16 of
the spreadsheet). Table 3 displays the corresponding matrix
from history over the period from April 1953 through Decem-
ber 2001. Stock data are based on Ibbotson [30] and interest
rates and inflation are from St. Louis Federal Reserve Data
(http://research.stlouisfed.org/fred2/).

Several comments can be made when comparing the two cor-
relation matrices. First, the historical correlation between large
and small stocks is 0.744. The correlation between the model
values of large and small stocks is 0.699, which looks quite rea-
sonable. The correlation between inflation and Treasury bills (T-
bills) has been 0.593 historically. This correlation is also clearly
reflected in the model values, with a correlation of 0.906 be-
tween the one-month inflation rate and the one-month nomi-
nal interest rate, 0.892 between the one-year inflation rate and
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TABLE 3

Historical Correlations (April 1953—December 2001)

Large Small 3-Month 1-Year 10-Year Inflation
Stocks Stocks T-Bills Treasuries Treasuries Rate

Large Stocks 1.000
Small Stocks 0.744 1.000
3-Month T-Bills ¡0:078 ¡0:065 1.000
1-Year Treasuries ¡0:074 ¡0:066 0.991 1.000
10-Year Treasuries ¡0:030 ¡0:025 0.912 0.942 1.000
Inflation Rate ¡0:138 ¡0:100 0.593 0.576 0.478 1.000

the one-year nominal interest rate, and 0.617 between the 10-year
inflation rate and the 10-year nominal interest rate. Since nominal
interest is the sum of the real interest rate and the inflation rate,
and the real interest rate is constrained to be no less than the
negative of the inflation rate, this correlation is built into the
model.

Historically, T-bill rates and stock returns have been nega-
tively correlated (¡0:078 for large stocks and ¡0:065 for small
stocks). In the model, there was a slight positive correlation be-
tween the one-year nominal interest rate and stock returns (0.099
for large stocks and 0.087 for small stocks). Also, the historical
correlation between inflation and stock returns has been nega-
tive (¡0:138 for large stocks and ¡0:100 for small stocks). The
correlations in the model values between the one-year inflation
rate and large stocks and small stocks were 0.089 and 0.076,
respectively.

Alternate Parameters

The base parameters provide one feasible set of values to use
in modeling future economic conditions. These should be viewed
as a starting point in these applications. However, users should
develop an understanding of the impact of the different param-
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eters and then adjust these parameters as necessary to generate
distributions that they feel may be more suitable for a particular
application. For example, from the results shown above, a user
may feel that the default parameters for equity returns, while
consistent with historical experience through 2003, produce very
high equity risk premiums that may not be expected to continue
in the future. When testing long-term insurer solvency, an actuary
might change the regime-switching parameters to look at the
effects of lower stock returns over the next 50 years.

6. CONCLUSION

Historically, actuaries tended to use deterministic calculations
to value financial products. As technology improved, actuaries
began to incorporate different assumptions about insurance and
economic variables that would lead to several distinct scenar-
ios to better measure financial risk. The explosion of computing
power now gives actuaries and other financial analysts tremen-
dous tools for more refined risk analyses. Modern approaches to
financial modeling begin by specifying the underlying economic
and financial environments based on sophisticated mathemati-
cal equations, and then incorporate product-specific features that
are commonly related to those external conditions. This approach
yields a much richer understanding of the risks associated with
financial products.

The financial scenario model and its underlying mathematical
structure presented in this paper provide an integrated framework
for sampling from a wide range of future financial scenarios. The
model produces output values for interest rates, inflation, stock
and real estate returns, dividends, and unemployment. The model
can be incorporated into a variety of insurance applications, in-
cluding dynamic financial analysis, cash flow testing, solvency
testing, and operational planning. It is hoped that this work will
facilitate the use of recent advances in economic and financial
modeling in the actuarial profession.
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