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Abstract

A general formulation of risk load for total cash flows
is presented. It allows completely additive co-measures1

at any level of detail for any dependency structure
between random variables constituting the total. It is
founded on the intuition that some total outcomes are
more risky per dollar than others, and the measure of
that is a “riskiness leverage ratio.” This riskiness lever-
age function is an essentially arbitrary choice, enabling
an infinite variety of management attitudes toward risk
to be expressed.
The complete additivity makes these models useful.

What makes them interesting is that attention can be
turned toward asking “What is a plausible risk measure
for the whole, while being prepared to use the indicated
allocation technique for the pieces?” The usual mea-
sures are special cases of this form, as shown in some
examples.
While the author does not particularly advocate allo-

cating capital to do pricing, this class of models does
allow pricing at the individual policy clause level, if so
desired.
Further, the desirability of reinsurance or other

hedges can be quantitatively evaluated from the cedant’s
point of view by comparing the increase in the mean cost
of underwriting with the decrease in capital cost from
reduction of capital required.

1Gary Venter coined this term, in parallel with variance and covariance.
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1. INTRODUCTION

The generic problem is that there are a number of random lia-
bilities and assets for a company and a single pool of shared capi-
tal to support them. Their mean is usually meant to be supported
by the reserves and their variability supported by the surplus,
with the total assets of the company being the sum. Frequently,
it is desired that the supporting capital be allocated in consider-
able detail–for example, to underwriter within line of business
within state. This is not an end in itself, but is usually meant to
help to understand profitability (or lack of it) in a business unit
by associating a target rate of return with the allocated surplus
and comparing to the actual profit return distribution. Sometimes
the allocation is meant to be used for creating a pricing risk load
as the allocated surplus times a target rate of return. Really, it is
the cost of capital that is being allocated.2

One would like to have a methodology that would allow al-
location of an essentially arbitrary form for the total capital re-
quired, and would also like to have an interpretation of the form
in terms of statistical decision theory. The total capital including
surplus will usually be represented as the sum of a risk load and
a mean outcome. These can be calculated for a given distribu-
tion of total results. No attempt to connect risk load to a theory
of pricing will be made here, although given the shape of the
distribution in the context of a given theory such a connection
could be made. It is simply assumed that some appropriate mean
return is needed to attract and retain capital for the total risk.

2Gary Venter, private communication.
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There are several desirable qualities for an allocatable risk
load formulation: (1) it should be able to be allocated to any
desired level of definition; (2) the risk load allocated for any
sum of random variables should be the sum of the risk load
amounts allocated individually; (3) the same additive formula
is used to calculate the risk load for any subgroup or group of
groups.

This means that senior management can allocate capital to
regions, and then regional management can allocate their capital
to lines of business, and the allocations will add back up to the
original. Further, it also means that the lines of business will add
to the allocations for total lines of business as seen at the senior
management level.

Ultimately, the choice of the riskiness leverage function will
reflect management attitudes toward risk. The intention of this
paper is to provide an interpretable framework for infinitely
many choices, all of which can be appropriately allocated. It will
be argued that the risk load must be considered in the context of
the capital to support the risk.

Once management has experimented with various riskiness
leverage functions and found a formulation with which they are
comfortable, then it can be used to evaluate potential manage-
ment decisions quantitatively. For example, buying reinsurance
or choosing between reinsurance programs can be framed by
including the variables representing the reinsurance cash flows.
The general effects from a well-designed program will be to in-
crease the mean cost–because the reinsurer needs to make a
profit, on average–and to decrease the risk load and its asso-
ciated cost–because the reinsurance is a good hedge against
severe outcomes. If there is a net reduction in total cost, then
there is an advantage to the alternative. It is worth noting that no
financial information except the price is needed from the rein-
surer. In particular, whatever return the reinsurer may think he
will get from the contract is irrelevant to the cedant’s decision
to buy or not.
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Section 2 introduces the framework and some practical notes;
Section 3 is the development of the form and some of its proper-
ties; Section 4 is various examples, including some of the usual
suspects for risk measures; Section 5 talks about what general
properties might be desirable; and Section 6 is a numerical ex-
ample with an accompanying spreadsheet.

2. THE FRAMEWORK

Assume n random financial variables Xk, k = 1 to n; and let
X =

Pn
k=1Xk be their sum, the net result to the company. These

variables may be from assets and/or liabilities but we will think
of them for the initial exposition as liabilities. The convention
used here is the actuarial view that liabilities are positive and
assets are negative. This is an odd point of view for financial
reports, and so in the accompanying exemplar spreadsheet, to
be discussed at length in Section 6, the formulas are rephrased
with the variables being net income streams and positive income
being positive numbers.

Denote by ¹ the mean of X, C the total capital to support X,
and R the risk load for X. Their relationship is

C = ¹+R (2.1)

In more familiar terms, for balance sheet variables the capital
would be the total assets, the mean the booked net liabilities, and
the risk load the surplus.

Correspondingly, let ¹k be the mean of Xk, Ck be the capital
allocated to Xk and Rk be the risk load for Xk. These satisfy the
equation analogous to Equation (2.1):

Ck = ¹k +Rk: (2.2)

Using the abbreviation

dF ´ f(x1,x2, : : : ,xn)dx1dx2 : : :dxn, (2.3)
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where f(x1,x2, : : : ,xn) is the joint probability density function of
all the variables, the individual means are defined by

¹k ´
Z
xkdF, (2.4)

and the overall mean is

¹´
Z " nX

k=1

xk

#
dF =

nX
k=1

¹k: (2.5)

Riskiness leverage models have the form

Rk ´
Z
dF(xk ¡¹k)L(x) with x´

nX
k=1

xk: (2.6)

Then
R =

Z
dF(x¡¹)L(x) =

Z
f(x)(x¡¹)L(x)dx: (2.7)

The essential key to this formulation is that the riskiness lever-
age L depends only on the sum of the individual variables. In the
second form of Equation (2.7), f(x) is the density function for
X, the sum of random variables.

It follows directly from their definitions that R =
Pn
k=1Rk and

C =
Pn
k=1Ck, no matter what the joint dependence of the vari-

ables may be.

In analogy with the relation of covariance to variance, the
Rk will be referred to as co-measures of risk for the measure
R. On occasion, the Ck will also be referred to as co-measures
when the context is clear. Since additivity is automatic with these
co-measures, what remains is to find appropriate forms for the
riskiness leverage L(x).

The form can be thought of as the risk load being a
probability-weighted average of risk loads over outcomes of the
total net loss:

R =
Z
dxf(x)r(x) where r(x) = (x¡¹)L(x): (2.8)
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Again, the riskiness leverage reflects that not all dollars are
equally risky, especially dollars that trigger analyst or regulatory
tests.

Equation (2.8) is a standard decision-theoretic formulation for
R. It could have been written down immediately, except that the
special form for the risk load for outcomes is needed so that the
co-measures have good properties. Another version of Equation
(2.8) is to represent the risk load as an integral over risk load
density:

R =
Z
rld(x)dx where rld(x) = f(x)(x¡¹)L(x):

(2.9)

This has the advantage of showing which outcomes most con-
tribute to the risk load. Another formulation, of note to theorists,
is to say that the riskiness leverage modifies the joint density
function and that the allocations are statistical expectations on a
risk-adjusted density function. However, the support of L needs
to be the same as the support of f to make this really work.

R =
Z
dxf¤(x)(x¡¹) with f¤(x) = f(x)L(x):

(2.10)

A closely related useful form for thinking about the risk loads is
that they are conditional expectations of a variable less its mean
on the risk-adjusted measure, and that the conditions refer to the
overall total variable. A typical condition might be that the total
loss is greater than some specified value.

If we just want to think about co-measures without the explicit
breakout into mean and risk load, we can use the generalization

Rk ´
Z
dF(xk ¡ a¹k)L(x) with x´

nX
k=1

xk, (2.11)
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where any constant value can be used for a. A prime candidate is
a= 0, and in the exemplar spreadsheet in Section 6 this is done
because the variables considered there are net income variables.

It is also clear from Equation (2.6) that some variables may
have negative risk loads, if they happen to be below their mean
when the riskiness leverage on the total is large. This is a de-
sirable feature, not a bug, as software developers say. Hedges in
general and reinsurance variables in particular should exhibit this
behavior, since when losses are large they have negative values
(ceded loss) greater than their mean costs.

Practical Notes

Actual calculation of Equations (2.6) and (2.7) cannot be done
analytically, except in relatively simple cases. However, in a true
Monte Carlo simulation environment they are trivially evaluated.
All one has to do is to accumulate the values of Xk, L(X), and
XkL(X) at each simulation. At the end, divide by the number of
simulations and you have the building blocks3 for a numerical
evaluation of the integrals. As usual, the more simulations that
are done the more accurate the evaluation will be. For companies
that are already modeling with some DFA model it is easy to try
out various forms for the riskiness leverage.

This numerical procedure is followed in the spreadsheet of
Section 6, which has assets and two correlated lines of business.
All the formulas are lognormal so that the exact calculations for
moments could be done. However, the spreadsheet is set up to
do simulation in parallel with the treatment on a much more
complex model. It is also easy to expand the scope. If one starts
at a very high level and does allocations, these allocations will
not change if one later expands one variable (e.g., countrywide
results) into many (results by state) so long as the total does not
change.

3The mean for Xk is just the average over simulations, and it might be advantageous to
calculate this first. The risk load is just the average over simulations of XkL(X) minus
the mean of Xk times the average over simulations of L(X).
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Fundamentally, a risk measure should arise from economic
requirements and management attitudes toward risk as part of
the management business model. In this paper’s class of models
the risk attitude information is in the riskiness leverage function.

Gedanken4 experiments indicate that to get the riskiness lever-
age it is probably desirable to start with plausible relativities be-
tween outcomes. After that is done, set the overall scale by some
criterion such as probability of ruin (Value At Risk), mean pol-
icyholder deficit, Tail Value At Risk (TVAR)5 or anything else
that references the total capital and suits management’s predilec-
tions. It is best if the overall level can be framed in the same terms
as the relativities. In the Section 6 spreadsheet, TVAR is used.

In general, it might be good to start with simple representa-
tions, say with two parameters, and then see what consequences
emerge during the course of testing. More remarks will be made
later on specific forms. It will also be shown that the usual forms
of risk measure can be easily framed and the differences between
them interpreted in terms of different riskiness leverages.

A warning: there is no sign of time dependence in this for-
mulation so far. Presumably the variables refer to the present or
future value of future stochastic cash flows, but there is consid-
erable work to be done to flesh this out.6

3. FORM DEVELOPMENT

Here we will start from a covariance formulation and proceed
to the framework above by a detailed mathematical derivation.

4That is, thought experiments, as contrasted with the real thing. The term is from the
early days of relativity.
5TVAR is the average value of a variable, given that it is past some defined point in the
tail. For example, one could ask for the average loss size given that the loss is excess of
$10M.
6The work of Leigh Halliwell “The Valuation of Stochastic Cash Flows” may provide a
way of looking at this problem.
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Various proposed schemes7 have utilized the fact that an al-
location formula of the form

Ck = ®¹k +¯Cov(Xk,X) (3.1)

will always be additive no matter what the dependency between
the Xk may be. That is,

C ´ ®¹+¯Var(X)
= ®E(X)+¯Cov(X,X)

= ®
nX
k=1

¹k +¯
nX
k=1

Cov(Xk,X)

=
nX
k=1

Ck: (3.2)

A similar result will hold for the sum of any subset of the
variables, thus ensuring the desired properties of the allocation.
The sum of covariances of the individual variables with the total
is the covariance of the total with itself. This paper generalizes
this notion.

This form can be pushed further by imposing the reasonable
requirement8 that if a variable has no variation, then the capital
to support it is simply its mean value with no additional capital
requirement. This requires ®= 1. Then, with capital being the
sum of the mean and the risk load,

Rk = ¯Cov(Xk,X) (3.3)

and
R = ¯Var(X) (3.4)

and so finally

Rk = R
Cov(Xk,X)
Var(X)

: (3.5)

7For a sampling, try [6], [2], and [4]. There are no doubt others.
8In [6], since the company can default, a constant value carries a negative risk load. We
are assuming an ongoing company.
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This form is familiar from CAPM.

However, it is clear that there are many independent linearly
additive statistics. Back up a little to the definitions of mean and
covariance, expressed as integrals over the joint density function:

¹k ´ E(Xk) =
Z
xkf(x1, : : : ,xn)dx1 : : :dxn

´
Z
xkdF: (3.6)

The additivity of the mean then comes from

¹´ E(X) =
Z nX
k=1

xk =
nX
k=1

Z
xk =

nX
k=1

¹k: (3.7)

The covariance of one variable with the total is defined as

Cov(Xk,X)´
Z
dF(xk ¡¹k)(x¡¹), (3.8)

where x´Pn
k=1 xk. The additivity of the covariance is from

Cov(X,X) =
Z
dF(x¡¹)2

=
Z
dF

"
nX
k=1

(xk ¡¹k)
#
(x¡¹)

=
nX
k=1

Z
dF(xk ¡¹k)(x¡¹)

=
nX
k=1

Cov(Xk,X): (3.9)

We want to generalize this result, and to do so we need more
independent statistics that are linear functionals in Xk. Define the
moment expectations

Em(Xk)´
Z
dF[(xk ¡¹k)(x¡¹)m]: (3.10)
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Then, following the same argument as in Equation (3.9), for
any m

Em(X) =
nX
k=1

Em(Xk): (3.11)

Notice that the moment expectation for m= 1 is just the covari-
ance of Xk with the total.

The individual risk load may now be formulated as

Rk =
1X
m=1

¯mEm(Xk), (3.12)

and there are now an infinite number of arbitrary constants to
play with. Since there are so many independent constants, es-
sentially any form can be approximated arbitrarily well.

For any choice of the constants ¯m, the total risk load is the
sum of the individual risk loads:

R =
1X
m=1

¯mEm(X) =
1X
m=1

¯m

nX
k=1

Em(Xk) =
nX
k=1

Rk: (3.13)

This risk load can be put into a more transparent form by writing
it as

Rk =
1X
m=1

¯mEm(Xk) =
Z
dF(xk ¡¹k)

1X
m=1

¯m(x¡¹)m:

(3.14)

Since the term with m= 0 integrates to 0 (that being the defi-
nition of the mean), what is present is a Taylor series expansion
of a function of the total losses about ¹. Thus, Equation (3.14)
may be written as

Rk =
Z
dF(xk ¡¹k)L(x): (3.15)

This is the framework described earlier.
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Properties

Clearly, the allocation properties are all satisfied for any
choice of L(x). The risk load has no risk for constant variable

R(c) = 0:

It also will scale with a currency change

R(¸X) = ¸R(X),

provided L(x) is homogeneous of order zero:

L(¸x) = L(x):

The reason this is required is that there is already a currency
dimension in the term multiplying L. This can be made to hap-
pen, for example, by making L a function of ratios of currencies
such as x=¹ or x=¾, where ¾ is the standard deviation of X.

However, a more interesting possibility is to make L also be
a function of x=S, where again S is the total surplus of the com-
pany. Since asset variability is in principle included in the ran-
dom variables, S should be a guaranteed-to-be-available, easily
liquefiable capital. This could come, for example, by having it in
risk-free instruments or by buying a put option on investments
with a strike price equal to what a risk-free investment would
bring, or any other means with a sure result.

It is intuitively clear that S must come into the picture. Con-
sider the case where loss is normally distributed with mean 100
and standard deviation 5. Is this risky for ruin, from a business
point of view? If the surplus is 105, it is–but if it is 200 it is not.
The natural interpretation is that the riskiness leverage should be
a function of the ratio of the difference of the outcome from the
mean to the surplus. Since the riskiness leverage could be used
(with a pre-determined leverage) to give the surplus, there is a
certain recursive quality present.
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This formulation of risk load may or may not produce a co-
herent risk measure.9 The major reason is that subadditivity10

[R(X +Y)· R(X) +R(Y)] depends on the form of L(x). It might
be remarked that superadditivity [R(X +Y)> R(X)+R(Y)] is
well known in drug response interactions, where two drugs taken
separately are harmless but taken together are dangerous. While
axiomatic treatments may prefer one form or another, it would
seem plausible that the risk measure should emerge from the funda-
mental economics of the business and the mathematical properties
should emerge from the risk measure, rather than vice versa.

A riskiness leverage formulation clearly allows the entire dis-
tribution to influence the risk load, and does not prescribe any
particular functional form for the risk measure. In addition, many
familiar measures of risk can be obtained from simple forms for
the riskiness leverage ratio.

4. EXAMPLES
Risk-Neutral

Take the riskiness leverage to be a constant; the risk load is
zero.

The positive risk load balances the negative risk load. This
would be appropriate for risk of ruin if the range of x where
f(x) is significant is small compared to the available capital, or
if the capital is infinite. It would be appropriate for risk of not
meeting plan if you don’t care whether you meet it or not.

Variance

Take
L(x) =

¯

S
(x¡¹): (4.1)

This riskiness leverage says that the whole distribution is rele-
vant; that there is risk associated with good outcomes as much as

9In the sense of [1] the actual risk measure is mean +R.
10A requirement for coherence. See [5] or [1].
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bad; and that the outcome risk load increases quadratically out
to infinity.

This gives the usual

R =
¯

S

Z 1

0
dxf(x)(x¡¹)2 (4.2)

and

Rk =
¯

S

Z
dF(xk ¡¹k)

0@ nX
j=1

xj ¡¹
1A : (4.3)

Note that Equation (4.1) is suggestively framed so that ¯ is
a dimensionless constant available for overall scaling. The total
capital then satisfies

C = ¹+ S, (4.4)

and the solution for S = R is proportional to the standard devia-
tion of the total:

S =
q
¯Var(X): (4.5)

It is perfectly possible, of course, to use some other formula-
tion of the constant, say ¯=¹, which would then give a different
measure. Such a measure would imply that the riskiness leverage
does not depend on the amount of surplus available unless it was
hidden in the scaling factor ¯.

TVAR (Tail Value At Risk)

Take the riskiness leverage

L(x) =
(x¡ xq)
1¡ q : (4.6)

The value q is a management-chosen percentage; for example,
q= 99%. The quantile xq is the value of x where the cumulative
distribution of X, the total, is equal to q. That is, F(xq) = q. (x) is
the step function: zero for negative argument and 1 for positive.
See Appendix A for mathematical asides on this function.
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This riskiness leverage ratio is zero up to a point, and then
constant. Here the constant is chosen so as to exactly recreate
TVAR, but clearly any constant will give a similar result. In fact,
a riskiness leverage ratio that is constant up to a point and then
jumps to another constant will give a similar result.

C = ¹+
Z
dxf(x)(x¡¹) (x¡ xq)

1¡ q
= ¹+

Z 1

xq

dxf(x)
x¡¹
1¡ q

= ¹¡ ¹

1¡ q (1¡ q)+
1

1¡ q
Z 1

xq

dxf(x)x

=
1

1¡ q
Z 1

xq

dxf(x)x: (4.7)

This is the definition of TVAR, well known to be coherent.11

We see shortly that the allocated capital is just the average
value of the variable of interest in the situations where the total
is greater than xq. This is one example of the conditional expec-
tation referred to earlier.

Ck = ¹k +
Z
dF(xk ¡¹k)

(x¡ xq)
1¡ q

= ¹k ¡
¹k
1¡ q

Z
dF (x¡ xq)+

R
dFxk (x¡ xq)

1¡ q

=

R
dFxk (x¡ xq)

1¡ q : (4.8)

This measure says that only the part of the distribution at the
high end is relevant.

11[5], Op. cit.
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VAR (Value At Risk)

Take the riskiness leverage

L(x) =
±(x¡ xq)
f(xq)

: (4.9)

In Equation (4.9) ±(x) is the Dirac delta function.12 Its salient
features are that it is zero everywhere except at (well, arbitrar-
ily close to) zero and integrates to one.13 See Appendix A for
remarks about this very useful function. Here the riskiness lever-
age ratio is all concentrated at one point. The constant factor has
been chosen to reproduce VAR exactly, but clearly could have
been anything.

C = ¹+
Z
dxf(x)(x¡¹)±(x¡ xq)

f(xq)

= ¹+ xq¡¹
= xq: (4.10)

This gives value at risk, known not to be coherent.14 This mea-
sure says that only the value xq is relevant; the shape of the loss
distribution does not matter except to determine that value.

The capital co-measure is the mean of the variable over the
hyperplane where the total is constant at xq:

Ck = ¹i+
Z
dF(xk ¡¹k)

±(x¡ xq)
f(xq)

=
1

f(xq)

Z
dFxk±

0@ nX
j=1

xj ¡ xq
1A : (4.11)

In a simulation environment one would have to take a small
region rather than a plane. This could most easily be done as the

12Introduced in 1926.
13This implies that

R
dxf(x)±(x¡ a) = f(a). See Appendix 1.

14[5], Op. cit.
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difference of two closely neighboring TVAR regions. This was
done using the formulation of the exemplar spreadsheet and a
1% width of the region.

SVAR (Semi-Variance)

Take the riskiness leverage

L(x) =
¯

S
(x¡¹) (x¡¹): (4.12)

The risk load is the semi-variance–the “downside” of the vari-
ance:

R =
¯

S

Z 1

¹
dxf(x)(x¡¹)2, (4.13)

and

Rk =
¯

S

Z
dF(xk ¡¹k)(x¡¹) (x¡¹): (4.14)

This measure says that risk loads are only non-zero for results
worse (greater) than the mean. This accords with the usual ac-
countant’s view that risk is only relevant for bad results, not for
good ones. Further, this says the load should be quadratic to
infinity.

Mean Downside Deviation

Take the riskiness leverage

L(x) = ¯
(x¡¹)
1¡F(¹) : (4.15)

F(x) is the cumulative distribution function for X, the total. This
risk load is a multiple of the mean downside deviation, which
is also TVAR with xq = ¹. This riskiness leverage ratio is zero
below the mean, and constant above it. Then

R(X) =
¯

1¡F(¹)
Z 1

¹
dxf(x)(x¡¹), (4.16)
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and
Rk =

¯

1¡F(¹)
Z
dF(xk ¡¹k) (x¡¹): (4.17)

In some sense this may be the most natural naive measure, as
it simply assigns capital for bad outcomes in proportion to how
bad they are. Both this measure and the preceding one could be
used for risks such as not achieving plan, even though ruin is
not in question.

In fact, there is a heuristic argument suggesting that ¯ ¼ 2. It
runs as follows: suppose the underlying distribution is uniform
in the interval ¹¡¢· x· ¹+¢. Then in the cases where the
half-width ¢ is small compared to ¹, the natural risk load is ¢.
For example, if the liability is $95M to $105M, then the natural
risk load is $5M. So from Equation (4.17)

¢= R(X) =
¯

0:5

Z ¹+¢

¹

dx

2¢
(x¡¹) = ¯¢

2
: (4.18)

However, for a distribution that is not uniform or tightly gath-
ered around the mean, if one decided to use this measure, the
multiplier would probably be chosen by some other test such as
the probability of seriously weakening surplus.

Proportional Excess15

Take the riskiness leverage

L(x) =
h(x) [x¡ (¹+¢)]

x¡¹ , (4.19)

where to maintain the integrability of Rk either h(¹) = 0 or¢> 0.
Then

R =
Z
f(x)h(x) [x¡ (¹+¢)]dx, (4.20)

and
Rk =

Z
dF
xk ¡¹k
x¡¹ h(x) [x¡ (¹+¢)]: (4.21)

15Another contribution from Gary Venter.
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The last form has the simple interpretation that the individual
allocation for any given outcome is pro-rata on its contribution
to the excess over the mean.

5. GENERIC MANAGEMENT RISK LOAD

Most of the world lives in a situation of finite capital. Frame
the question as “given the characteristics of the business, what is
an appropriate measure of risk to the business, which generates a
needed surplus S?” In the spreadsheet example this is done with
a simplistic riskiness leverage function.

Clearly, the question at the heart of the matter is what an ap-
propriate measure of riskiness might be. There are many sources
of risk among which are the risk of not making plan, the risk
of serious deviation from plan, the risk of not meeting investor
analysts’ expectations, the risk of a downgrade from the rating
agencies, the risk of triggering regulatory notice, the risk of go-
ing into receivership, the risk of not getting a bonus, etc.

Given the above, it seems plausible that company manage-
ment’s list for the properties of the riskiness leverage ratio should
be that it:

1. be a downside measure (the accountant’s point of view);

2. be more or less constant for excess that is small com-
pared to capital (risk of not making plan, but also not a
disaster);

3. become much larger for excess significantly impacting
capital; and

4. go to zero (or at least not increase) for excess signifi-
cantly exceeding capital–once you are buried, it doesn’t
matter how much dirt is on top.

With respect to (3), the risk function probably has steps in it,
especially as regulatory triggers are hit. For (4), a regulator might
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want to give more attention to the extreme areas. In fact, a regu-
lator’s list of properties for the riskiness leverage might include
that it

1. be zero until capital is seriously impacted, and

2. not decrease, because of the risk to the state guaranty
fund.

TVAR could be used as such a risk measure if the quantile is
chosen to correspond to an appropriate fraction ® of surplus.
This would be

LRegulator(x) =
(x¡®S)
1¡F(®S) : (5.1)

However, everyone recognizes that at some level of probabil-
ity management will have to bet the whole company. There is
always business risk.

Management may more typically formulate its risk appetite
in forms such as “For next year, we want not more than a 0.1%
chance of losing all our capital, and not more than a 10% chance
of losing 20% of capital.” This is basically two separate VAR
requirements, and can be satisfied by using the larger of the two
required capital amounts. Or, as in the spreadsheet, management
may choose to say something like, “We want our surplus to be
112 times the average bad result in the worst 2% of cases.”

A (much too) simple example approximately satisfying (1) to
(3) on management’s list consists of linear downside riskiness
leverage:

L(x) =

8<:
0 for x < ¹

¯

·
1+®

(x¡¹)
S

¸
for x > ¹

: (5.2)

The value of ® is essentially the relative riskiness at the mean and
at excess over mean equal to surplus. The value of ¯ is again an
overall scale factor. In the spreadsheet the allocations are nearly
independent of the value of ®, and TVAR is used for the exam-
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ple. The suggested use is to get the riskiness leverage function,
and then to evaluate the effects of reinsurance (approximated
by an increase in the mean and a decrease in the coefficient of
variation) by seeing how the capital requirement changes for the
same leverage function.

6. EXEMPLAR SPREADSHEET

The Excel workbook “Mini DFA.xls” has two lines of busi-
ness with a correlation between the lines and investment income.
The example is meant to be oversimplified but plausible, and
takes the underwriting result for each line as a fixed premium
less random draw on loss and expense. There is investment in-
come on the surplus but no explicit consideration of it within the
reserves. On the other hand, the lines of business are priced to
a net positive underwriting result, so we could say that we are
looking at future values including all investment income.

Cells with a blue background are input cells, and the reader is
invited to change them and see how the results change. All the
formulas are lognormal so that the exact calculations could be
done. However, there is a “Simulate” button on the spreadsheet
that will give statistics and cumulative distribution functions for
whatever set of cells is selected. Simulation is used to get the
overall results and the allocation ratios for different risk mea-
sures.

The sheets in the workbook are of two types: the data sheets
(e.g., “basics”) and the simulations done on them (“Sim basics”).
The different sheets are generally different business alternatives.
We start with “basics,” which gives the basic setup of the busi-
ness, and continue on: “TVARS” calculates various TVAR mea-
sures, “change volume” changes the volumes of the lines, and
“reinsurance” and “reinsurance (2)” explore the effects of rein-
surance. We will walk through them in detail, with commentary.

In all of them, the layout is the same. The two lines of business
and the investment on surplus are laid out in columns, with blue
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background for user input. The financial variables are the two
net underwriting results and the investment result, all of which
vary randomly. F9 will recalculate to a new set of results. Below
the income variables are the starting and ending surplus, and cal-
culated mean and current (random) return. Interesting simulation
results such as allocation percentages are displayed to the right
of the surplus calculation.

Starting with “basics,” Line A has a mean surplus of
10,000,000 and a standard deviation of 1,000,000 and Line B
has a mean surplus of 8,000,000 and a standard deviation of
2,000,000. There is a correlation of about 25% between the lines
(if the functions were normal rather than lognormal, it would be
exactly 25%). Each line is written with a premium equal to the
mean loss plus 5%. We interpret this calculation as our estimate
at time zero of the value at time 1 of the underwriting cash flows,
including all investment returns on reserves and premiums.

The investment income on the surplus is taken directly. The
investment is at a mean rate of 4% with a standard deviation
of 10%. The total of the results, on which we will define our
leverage functions, is then added to the beginning surplus of
9,000,000 to get the ending surplus. As a consequence of the
input values, the mean return on surplus is 14%. We would all
be happy to have such a company, provided it is not too risky.

The simulation (“Sim basics”) shows the actual correlation of
the lines and the coefficient of variation on the return, as well as
the distribution of total ending surplus and return. From the “Sim
basics” sheet we can see that the probability of ruin is less than
one in a thousand, and the coefficient of variation on the return
is better than on the investment, which is good. We can also see
from comparing the simulated means and standard deviations of
the income variables to their known underlying values that the
simulation is running correctly.

Management has decided that it wants to consider not just
ruin, but on-going risk measures. In particular, it wants to get
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the TVAR values at various percentiles. It wants to formulate its
risk appetite as “For the x percent of possibilities of net income
that are less than $(income corresponding to x%), we want the
surplus to be a prudent multiple of the average value so that we
can go on in business.” What we do not know yet is what is x%,
and what is the “prudent multiple.” Gary Venter has suggested
that the prudent multiple could be such that the renewal book
can still be serviced after an average bad hit.

The sheet “TVARs” has the calculations needed for TVAR
simulation in cells G36:N42. Column G contains the percent-
age values from 10% to 0.1%, and Column H the values of the
total net income corresponding to those percentages. These val-
ues come from the sheet “Sim basics.” Column I answers the
question if whether the income is less than the value in Column
H. Columns J through M are either “FALSE” if Column I is
FALSE, or contain respectively the total income, the Line A in-
come, the Line B income, and the investment income. Column
N is a variable that is 1 if Column I is TRUE, and zero if it
is FALSE. Upon selecting these cells and simulating, the mean
value of Column N (for each row) will be the percentage of the
time that the condition was satisfied. This should be close to the
percentage in Column G. During simulation, non-numeric val-
ues in the selected cells are ignored. The mean values of cells in
Columns J through M are the conditional means of the income
variables for different threshold values, as desired.

The result of simulation is:

Income Mean Value of TVAR and Allocation Percentages
% is Below Total Line A Line B Investment

0.1 (8,892,260) (10,197,682) 12.30% 85.99% 1.71%
0.2 (7,967,851) (9,326,936) 12.49% 85.73% 1.78%
0.4 (7,024,056) (8,380,265) 12.89% 85.09% 2.02%
1 (5,749,362) (7,129,796) 13.38% 84.67% 1.95%
2 (4,732,795) (6,159,564) 13.60% 84.30% 2.10%
5 (3,309,641) (4,811,947) 13.60% 84.20% 2.20%
10 (2,143,327) (3,734,177) 13.26% 84.94% 1.80%
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The allocation percentages are just the ratios of the means for
the pieces to the mean for the total; they automatically will add to
100%. What is noticeable here is that the allocation percentages
change very little with the TVAR level, and that Line B needs
some six times the surplus of Line A. That it needs more is not
surprising; that it needs so much more perhaps is. What these
allocations say is that when the total result is in the worst 10%
of cases, about 5/6 of it is from Line B.

Management decides to adopt the rule “We want our surplus
to be 112 times the average negative income in the cases where it
is below the 2% level.” That row is in italic, and this rule means
that the 9,000,000 surplus is sufficient.

Using those allocation percentages, the mean returns on allo-
cated surplus are Total: 14%; Line A: 40.9%; Line B: 5.3%; In-
vestment: 190.6%. The total is a weighted average of the pieces.
One needs to be careful in interpreting these return numbers,
because they are dependent on both the relative volume of the
lines and on the allocation method. But in any case, because Line
B needs so much of the surplus, its return is depressed and the
other returns are enhanced.

The next sheet, “change volume,” looks at the case where
we can change the underwriting volumes of Lines A and B.
Clearly we want to reduce Line B and increase Column A, so
the example has Column A increased by 60% and Column B
decreased by 75%. This keeps the same mean net income. The
standard deviations have been taken as proportional to volume,
thinking of each line as a sum of independent policies.

Running the simulations, the allocations for Line A, Line B,
and Investments now are respectively 32.8%, 60.9%, and 6.4%.
Their implied returns change to 27.1%, 1.8%, and 62.8%. Line
B is still bad, but because there is less of it, there is not such
a large contribution at the 2% level. The 2% level, which was
(4,732,795), is now better at about (3,250,000).
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We also see that according to the management rule, we can
release surplus of about 2,500,000. Alternatively, we can keep
the same surplus and have a more conservative rule, with the
prudent ratio being 2 instead of 112 .

However, it may not be possible to change line volume, for
various reasons. For example, these may be two parts of an in-
divisible policy, like property and liability from homeowners.
Regulatory requirements may make it difficult to exit Line B. In
addition, it takes time to switch the portfolio and requires a ma-
jor underwriting effort. Management may decide to look at the
possibility of buying reinsurance to improve the picture, since
that is a decision that can be implemented quickly and easily
changed next year.

The sheet “reinsurance” has an excess reinsurance contract
on Line B, with a limit of 5,000,000 and an attachment of
10,000,000. It is priced with a load of 25% of its standard de-
viation. Once again, note that in the spreadsheet the results are
calculated because we used easy forms, but that we could have
complex forms and just simulate. The reinsurance results flow
into the total net income.

Running the simulations, the allocations for Lines A and
B, Investments, and now Reinsurance are respectively 36.3%,
73.9%, 14.2%, and ¡24:4%. The negative value for the rein-
surance allocation reflects that the hedge is working, effectively
supplying capital in these events. However, because of the pos-
itive net average cost of reinsurance, the return on the total is
reduced to 12.1%. The implied returns on the pieces are 15.3%,
6.0%, 28.3%, and 7.9%. Line B is still bad, but because of the
reinsurance there is not such a large contribution at the 2% level.
Again, the 2% level has gone from (4,732,795) to (3,300,000).
If we were to combine the reinsurance into Line B the combined
allocation would be 49.5% and the return would be 5.1%.

There is also some 3,000,000 in surplus that the management
rule would allow to be released. In the sheet “reinsurance (2)”
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the starting surplus has been reduced to 7,250,000 in order to
bring the mean return on the total back up to 14%. Running the
simulations, the 2% level on income is actually (3,237,000) but
we ran the TVAR at (3,300,000). The essential point is that the
results look reasonable, and the rule would allow release of still
more surplus.

What is omitted in the calculation is the value of the 1,750,000
already released from the original 9,000,000 surplus. What this
is worth depends on how the released surplus is going to be
used. At the very least, this should be worth the risk-free income
from it. Classical financial theory would suggest that it should
be evaluated at the firm’s cost of borrowing.

Measures other than TVAR were also run on the same basic
situation, but are not shown in the spreadsheet. They were of
two types. One was VAR measures, using a 1% interval around
the VAR values. This measure says, given that the total loss is
at a particular level, how much of it is from the different con-
tributions. The other class of measures is the power measures,
as in Equation (3.10). Each measure is a power of (¹¡ x) for
¹ > x, and zero otherwise. In other words, these are downside
measures.16 The powers 0 and 1 are respectively the mean down-
side deviation and the semivariance. The others could be called
“semiskewness,” “semikurtosis,” and so on–but why bother?

The results for VAR are quite similar to TVAR, except at the
10% level. This is because of the particular conditions we have
for variability and correlation, and will not be true in general.

16Note that in contrast to the earlier discussion on losses where the downside is outcomes
greater than the mean, here on return to surplus the downside is outcomes less than the
mean.
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Mean Value and Allocation Percentages

% Total Line A Line B Investment

0.1 (8,892,557) 13.51% 84.01% 2.48%
0.2 (7,969,738) 13.41% 84.74% 1.85%
0.4 (7,021,936) 15.32% 83.22% 1.46%
1 (5,746,279) 13.94% 84.18% 1.88%
2 (4,731,425) 14.20% 83.43% 2.38%
5 (3,308,824) 13.38% 83.64% 2.98%
10 (2,143,340) 11.16% 88.07% 0.76%

The downside power measure simulation results are:

Mean Values ˆ(1=(N +1)) and Allocations from Simulation

Power Total Line A Line B Investment

0 2,183,834 22.44% 65.52% 12.04%
1 2,839,130 20.63% 69.79% 9.58%
2 3,424,465 19.42% 72.30% 8.28%
3 3,985,058 18.35% 74.30% 7.35%
4 4,510,337 17.43% 75.97% 6.60%
5 5,018,663 16.55% 77.45% 6.00%
6 5,514,616 15.69% 78.79% 5.51%

As the power increases and the measure is increasingly sensi-
tive to the extreme values, the allocations move toward the TVAR
allocations. This is probably not surprising.
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APPENDIX A

SOME MATHEMATICAL ASIDES

(x) is the step function: zero for negative argument and 1 for
positive. It is also referred to as the index function.

±(x) is the Dirac delta function. It can be heuristically thought
of as the density function of a normal distribution with mean zero
and standard deviation arbitrarily small compared to anything
else in the problem. This makes it essentially zero everywhere
except at zero but it still integrates to 1.

The index function can also be thought of as the cumulative
distribution function of the same normal distribution, and it is
in this sense that the delta function can be thought of as the
derivative of the index function. All the usual calculus rules about
derivatives apply without modification.

Always, we are implicitly taking the limit as the standard de-
viation of this distribution goes to zero. This whole usage can
be justified in the theory of linear functionals, but the author has
no idea where.

These notions lead to some fundamental properties of the delta
function. For any continuous function f(x)

f(a) =
Z
f(x)±(x¡ a)dx, (A.1)

and for c > bZ c

b
f(x)±(x¡ a)dx= (c¡ a) (a¡ b)f(a): (A.2)

If h(a) = 0 then Z
f(x)±(h(x))dx=

f(a)
jh0(a)j : (A.3)
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The density function f(x) for the total sum of variables can
most easily be written as

f(x) =
Z
dF±

Ã
x¡

nX
k=1

xk

!

´
Z
dx1 : : :dxnf(x1, : : : ,xn)±

Ã
x¡

nX
k=1

xk

!
: (A.4)

For calculation this is often a convenient form, as in the
derivation of Equation (2.7):Z

dF

Ã
nX
k=1

xi¡¹
!
g

Ã
nX
k=1

xk

!

=
Z
dx

Z
dF±

Ã
x¡

nX
k=1

xk

!
(x¡¹)g(x)

=
Z
f(x)(x¡¹)g(x)dx: (A.5)

Similarly, the marginal density for any variable can be written

fk(y) =
Z
dF±(y¡ xk): (A.6)

The cumulative distribution function for the total is

F(x) =
Z
dF

Ã
x¡

nX
k=1

xk

!

´
Z
dx1 : : :dxnf(x1, : : : ,xn)

Ã
x¡

nX
k=1

xk

!
, (A.7)

and
f(x) =

d

dx
F(x) (A.8)

emerges from simple differentiation rules.


