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MINIMUM DISTANCE ESTIMATION OF LOSS
DISTRIBUTIONS

STUART A. KLUGMAN AND A. RAHULJI PARSA

DISCUSSION BY CLIVE L. KEATINGE

1. INTRODUCTION

Klugman and Parsa have introduced the theory underlying
minimum distance estimation with parametric distributions. In
this review, I develop their ideas further to provide a more
complete view of the characteristics of minimum distance es-
timation. I conclude that minimum distance estimation can be
more efficient than the authors imply�but that there is lit-
tle basis for using it in place of maximum likelihood estima-
tion.

2. THEORY

The objective function that Klugman and Parsa consider is

Q(µ) =
kX
i=1

wi[G(ci;µ)¡Gn(ci)]2, (2.1)

where G is the model functional, Gn is the corresponding empir-
ical functional, c1 < c2 < ¢ ¢ ¢< ck are arbitrarily selected values,
and w1,w2, : : : ,wk > 0 are arbitrarily selected weights. The func-
tionals that Klugman and Parsa consider are the limited expected
value function and the cumulative distribution function. The min-
imum distance estimate is the value of µ that minimizes Q(µ).
From here on, I will follow the authors� convention of writing
G(ci;µ) as Gi and Gn(ci) as Gn,i.
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A necessary condition for Q(µ) to be at a minimum is for the
p functions

@Q=@µj = 2
kX
i=1

wi[Gi¡Gn,i]G(j)i (2.2)

to be equal to zero, where G(j)i is the partial derivative of the
model functional with respect to µj evaluated at ci, and p is the
number of elements in the parameter vector µ. Another necessary
condition for Q(µ) to be at a minimum is for the p£p matrix
with jlth element

@2Q=@µj@µl = 2
kX
i=1

wiG
(j)
i G

(l)
i +2

kX
i=1

wi[Gi¡Gn,i]G(j,l)i

(2.3)

to be positive semidefinite (which includes the positive definite
case).

As the sample size goes to infinity, there will be a solution
that satisfies these two conditions if and only if the p£p matrix
with jlth element

E[@2Q=@µj@µl] = 2
kX
i=1

wiG
(j)
i G

(l)
i (2.4)

is positive semidefinite, where the derivatives are evaluated at
the true parameter values. If all the weights are positive, this
matrix must be positive semidefinite. Though having some neg-
ative weights is counterintuitive, the theory does not rule them
out as long as the matrix is positive semidefinite. For smaller
sample sizes, the more negative weights there are, and the larger
they are in magnitude, the less likely it is that a solution that
satisfies the two necessary conditions above will exist.

Klugman and Parsa state that the minimum distance estimator
is consistent and asymptotically unbiased with asymptotic co-
variance matrix n¡1A¡1B§B0A¡1 if A is positive definite, where
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A is the matrix defined by Equation (2.3), B is the p£ k matrix
with jlth element @2Q=@µj@Gn,l =¡2wlG(j)l , and n¡1§ is the
asymptotic covariance matrix of the empirical functional. This
is correct, except that, as noted in Benichou and Gail [2], one
should use the asymptotic expectation of the empirical functional
instead of the observed value in Equation (2.3). Making this cor-
rection causes the second term of Equation (2.3) to vanish, thus
yielding Equation (2.4). Luong and Thompson [4] show this re-
sult in a more general setting.

An issue that Klugman and Parsa do not address is identifying
the sets of weights that will produce the minimum asymptotic
variance for the estimators of the parameters or of functions of
the parameters. A set of weights w1,w2, : : : ,wk will produce the
minimum asymptotic variance for the estimator of a function
h(µ) if A is positive definite and

wi =
(§¡1D0(D§¡1D0)¡1d)i

(D0v)i
, (2.5)

where D is the p£ k matrix with jlth element G(j)l , d is the vec-
tor of length p with jth element @h=@µj , and v is an arbitrary
nonzero vector of length p. The minimum asymptotic variance
is n¡1d0(D§¡1D0)¡1d. The proof is in the appendix. Defining
h(µ) to be µj yields weights that produce the minimum asymp-
totic variance for the estimator of the parameter µj itself. The
main diagonal of n¡1(D§¡1D0)¡1 gives the minimum asymptotic
variances for the estimators of the µjs.

In general, the asymptotic variances cannot be minimal for
all of the parameters at the same time. However, the asymptotic
variances can be minimal simultaneously if the definition of the
objective function is expanded to

Q¤(µ) =
kX
i=1

kX
j=1

wij[Gi¡Gn,i][Gj ¡Gn,j]: (2.6)
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The equation uses an entire matrix of weights instead of one
weight for each ci. The appendix gives the minimum asymptotic
variance condition. The most obvious matrix of weights that sat-
isfies this condition is §¡1. Luong and Thompson [4] show this
result in a more general setting.

When estimating parameters, it is not possible to find an op-
timal set of weights, since the true values of the parameters are
unknown. A reasonable requirement is that the weights used to
estimate the parameters be asymptotically optimal, or at least
close to asymptotically optimal, under the assumption that the
estimated parameter values are the true parameter values. Find-
ing an acceptable set of weights by trial and error is one option.
Alternatively, a systematic procedure that often works, hereafter
called Procedure 1, is to estimate the parameters using any rea-
sonable set of weights, optimize the weights using the estimated
parameter values, estimate the parameters again using the new
set of weights, and so on, until the process converges. Yet it is
possible that the process will not converge.

With Equation (2.1), finding the optimal set of weights at
each iteration of the process is problematical, since minimum
asymptotic variance can be achieved for only one parameter at
a time. One possible solution is to consider the sets of weights
defined by Equation (2.5) with h(µ) defined to be one partic-
ular parameter µj , look at the ratios of the diagonal elements
of n¡1A¡1B§B0A¡1 to the corresponding diagonal elements of
the minimum asymptotic covariance matrix n¡1(D§¡1D0)¡1, and
then search for a v that minimizes the sum of these ratios. There
is no easy way to do this, since, as the components of v vary,
there are many local minima for the sum. The best one can prac-
tically do is to systematically try a number of values for the
components of v and use those that yield the smallest values for
the sum as starting values in an optimization routine. An addi-
tional potential problem is that the minimum for the sum could
occur at a point where A is not positive definite. In that case,
modifications to the procedure would be necessary.
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With Equation (2.6), the easiest matrix of weights to use at
each iteration of the process is §¡1. If the functional is the cu-
mulative distribution function, then the process, if it converges,
yields the grouped maximum likelihood estimate. The appendix
shows this result. Of course, it would be much easier just to find
the grouped maximum likelihood estimate directly.

Another possible procedure, hereafter called Procedure 2, is
to use §¡1 as the matrix of weights in Equation (2.6) and
to treat it as a function of the parameters, instead of fixed,
when minimizing the objective function. This procedure pro-
duces an estimate for each of the parameters directly, instead
of a series of estimates that might or might not converge. If the
functional is the cumulative distribution function, the result is
the minimum chi-square estimate. The appendix shows this re-
sult.

Moore [5] shows that the asymptotic covariance matrix of
both the grouped maximum likelihood estimator and the mini-
mum chi-square estimator is n¡1(D§¡1D0)¡1, with the cumula-
tive distribution function and the true parameter values used to
evaluate the expression. If one uses Procedure 1 with Equation
(2.6), or if one uses Procedure 2, with a functional other than the
cumulative distribution function, similar reasoning reveals that
the asymptotic covariance matrix will also be n¡1(D§¡1D0)¡1,
with the selected functional and the true parameter values used
to evaluate the expression. If one uses Procedure 1 with Equation
(2.1), the asymptotic covariance matrix will be n¡1A¡1B§B0A¡1,
with weights optimized using the selected functional and the true
parameter values.

In the last section of their paper, Klugman and Parsa pro-
vide results of a simulation study they conducted with sam-
ples of size 500 to investigate how well the asymptotic esti-
mates perform. They make the point that averaging the values
in estimated asymptotic covariance matrices considerably over-
states the values in the true asymptotic covariance matrix when
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using minimum distance estimation with the Pareto distribu-
tion.

This phenomenon occurs because the distribution of esti-
mates is skewed to the right. The overstatement is not a fea-
ture specific to minimum distance estimation. It also occurs with
other estimation methods, including maximum likelihood esti-
mation.

Right skewness also causes the sample covariance matrix of
parameter estimates to tend to be larger than the asymptotic co-
variance matrix, though Klugman and Parsa did not note this be-
cause of an errant asymptotic covariance matrix. They showed
this matrix to be "

0:6640 120:3

120:3 21,830

#

when it should have been"
0:3595 75:68

75:68 16,794

#
:

Their sample covariance matrix of parameter estimates was"
0:5133 108:8

108:8 24,150

#
:

This right skewness of estimates is a feature of the Pareto
distribution. Other distributions may exhibit different behav-
ior.

3. EXAMPLES

I will now illustrate results from the previous section using
examples that Klugman and Parsa use. I will also discuss each of
the examples. Where I show numerical values that differ slightly
from what Klugman and Parsa show in their paper, I have used
values that I believe are more accurate.
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Example One�Improving the Efficiency of the Minimum
Distance Estimator

The first example involves a Pareto distribution fit to 6,656
general liability claims. Klugman and Parsa show 10,000,000 as
the largest ci. However, they actually used 100,000,000. I will
use that value here. Grouped maximum likelihood estimation
yields parameter estimates of �®= 1:4826 and �̧ = 705:79. The
asymptotic covariance matrix for these parameter values is"

0:0020472 1:3679

1:3679 1,090:4

#
:

Klugman and Parsa then use minimum distance estimation
with the limited expected value function and weights of 1 at
all cis. This yields parameter estimates of �®= 1:3388 and

�̧ =
590:33. The authors give the asymptotic covariance matrix for
these parameter values as"

0:034751 33:571

33:571 32,765

#
:

Making the correction to the matrix A noted in the previous
section yields a corrected asymptotic covariance matrix of"

0:036691 35:603

35:603 34,880

#
:

These values are substantially higher than the maximum like-
lihood values. A fairer comparison would be to compare the
asymptotic covariance matrices at the same parameter values.
The minimum distance asymptotic covariance matrix at the max-
imum likelihood parameter estimates is"

0:023518 21:819

21:819 20,579

#
:
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These values are still substantially higher than the maximum like-
lihood values.

The procedures described in the previous section can do bet-
ter. Using Procedure 1 and Equation (2.1), we can start with the
authors� estimates of �®= 1:3388 and �̧ = 590:33. We define h(µ)
to be the parameter ® and proceed with the iterative process un-
til it converges to estimates of �®= 1:4753 and �̧ = 704:94, quite
similar to the maximum likelihood estimates.

Using Procedure 1 and Equation (2.6), we can also start with
the authors� estimates of �®= 1:3388 and �̧ = 590:33. With §¡1
as the matrix of weights, the process converges to estimates of
�®= 1:4752 and �̧ = 705:51, again quite similar to the maximum
likelihood estimates.

Using Procedure 2 produces estimates of �®= 1:4431 and
�̧ = 684:63, somewhat removed from the maximum likelihood
estimates, but still much closer to them than to the authors� min-
imum distance estimates.

To compare the different estimators directly, we will examine
the asymptotic covariance matrices for each of the estimators at
the maximum likelihood parameter estimates. Both Procedure 1
with Equation (2.6) and Procedure 2 have asymptotic covariance
matrices of "

0:0020356 1:3594

1:3594 1,083:6

#
:

These are slightly smaller than the maximum likelihood values.
Procedure 1 with Equation (2.1) has an asymptotic covariance
matrix of "

0:0020356 1:3594

1:3594 1,083:7

#
:

The asymptotic variances of �® and the asymptotic covariances of
�® with �̧ are identical in the preceding two matrices. This must
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be true, as the appendix shows. The asymptotic variance of �̧ is
only very slightly higher in the second matrix than in the first.

Table 1 shows the weights that underlie the second matrix,
generated by a v of "

0:000001

0:0007093

#
:

One could multiply this vector by a nonzero factor without af-
fecting the variances or covariance. However, the factor has to
be positive to keep A positive definite. Note that several of
the weights are negative, but that is not a problem here. Ad-
jacent positive weights offset the two largest negative weights.
Of course, assigning the weight within each pair to just one of
the two adjacent values would yield virtually the same result.

The optimized weights decrease substantially as the cis in-
crease, in contrast to the uniform weights that Klugman and Parsa
use. Clearly, the poor performance of the uniform weights results
from an excessive amount of weight in the tail of the distribu-
tion. If one were simply to remove the weight at 100,000,000,
the asymptotic covariance matrix at the maximum likelihood pa-
rameter estimates would improve to"

0:0069132 5:8391

5:8391 5,199:8

#
:

Example One�Discussion

Table 2 shows the empirical limited expected values along
with the fitted limited expected values for the maximum like-
lihood parameter estimates and the original minimum distance
estimates with uniform weights. I confine attention to these here,
since the other minimum distance estimates obtained are fairly
close to the maximum likelihood estimates.

I suspect that most modelers would prefer the original min-
imum distance parameter estimates, since they provide a much
closer fit in the tail at a modest cost in terms of the fit low in
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TABLE 1

EXAMPLE 1 WEIGHTS

Limit Original Optimized

50 1 5509
100 1 1279
150 1 537
200 1 300
250 1 145
300 1 183
400 1 130
500 1 71
600 1 49
700 1 32
800 1 30
900 1 ¡4

1,000 1 52
1,500 1 36
2,000 1 18
2,500 1 ¡4
3,000 1 2.0
3,500 1 1.7
4,000 1 1.4
4,500 1 1.1
4,999 1 ¡76
5,000 1 77
6,000 1 1.3
7,500 1 1.3
9,999 1 160
10,000 1 ¡159
12,000 1 0.48
15,000 1 0.51
20,000 1 0.31
25,000 1 0.25
35,000 1 0.21
50,000 1 0.15
75,000 1 0.05
100,000 1 0.11
250,000 1 0.054
500,000 1 0.0011

1,000,000 1 0.0236
100,000,000 1 0.00087
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TABLE 2

EXAMPLE 1 LIMITED EXPECTED VALUES

Pareto Mixed Exponential

Maximum Min Dist Maximum Min Dist
Limit Empirical Likelihood Unif Wts Likelihood Unif Wts

50 48 48 47 48 48
100 92 91 90 91 91
150 133 130 129 131 131
200 170 166 164 168 168
250 203 199 196 202 202
300 235 230 226 233 233
400 291 285 280 288 289
500 338 333 327 336 337
600 379 376 368 378 379
700 415 414 406 415 416
800 448 448 439 447 449
900 477 479 469 477 478

1,000 504 507 497 503 505
1,500 610 619 607 607 610
2,000 686 698 687 682 686
2,500 745 758 748 740 744
3,000 792 806 797 787 792
3,500 831 844 838 826 831
4,000 864 877 873 860 865
4,500 893 905 903 889 894
4,999 919 929 929 914 919
5,000 920 929 929 914 919
6,000 962 969 973 957 963
7,500 1,014 1,015 1,025 1,008 1,014
9,999 1,079 1,069 1,087 1,071 1,078
10,000 1,079 1,069 1,087 1,071 1,078
12,000 1,117 1,100 1,124 1,110 1,118
15,000 1,163 1,135 1,168 1,156 1,164
20,000 1,222 1,176 1,219 1,213 1,221
25,000 1,264 1,204 1,256 1,254 1,263
35,000 1,318 1,242 1,308 1,308 1,319
50,000 1,367 1,277 1,357 1,353 1,367
75,000 1,408 1,309 1,406 1,393 1,408
100,000 1,433 1,329 1,437 1,416 1,430
250,000 1,511 1,377 1,518 1,481 1,514
500,000 1,587 1,401 1,565 1,540 1,592

1,000,000 1,662 1,418 1,602 1,592 1,650
100,000,000 1,662 1,458 1,713 1,618 1,669
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the distribution. This is in spite of the fact that the original min-
imum distance estimator has much greater asymptotic variances
than the maximum likelihood estimator. If one makes this judg-
ment, then one is implicitly acknowledging that the assumption
that the data comes from a Pareto distribution is not appropriate
here. Otherwise, one would prefer the estimator with the smaller
asymptotic variances.

This situation is quite common with parametric distributions.
They often are not flexible enough to provide a high quality
fit over the entire range of the data. In this case, there are al-
ternatives to using minimum distance estimation with weights
selected to trade off the quality of fit in one part of the dis-
tribution for another. One option would be to fit a parametric
distribution to the upper section of the data only and to use the
empirical distribution below that. Another option would be to
use the semiparametric mixed exponential distribution, which is
more flexible and thus better able to provide a good fit over
the entire distribution in many situations. The mixed exponential
distribution generally works very well with loss distributions, as
I discussed in detail in Keatinge [3].

Table 2 shows the fitted limited expected values for mixed
exponential distributions fit using maximum likelihood estima-
tion and minimum distance estimation with uniform weights. The
means and weights of the exponential distributions in each mix-
ture are as follows:

Maximum Minimum Distance
Likelihood Uniform Weights

Mean Weight Mean Weight

398 0.659077 394 0.648798
1,326 0.215884 1,405 0.259393
3,097 0.088849 4,446 0.067363
12,285 0.030721 18,513 0.023568
36,128 0.004935 356,076 0.000878
445,785 0.000535
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Each of these provides an excellent fit over the entire range
of the data. In this comparison of limited expected values, the
minimum distance estimator provides a closer fit than the max-
imum likelihood estimator because it uses the empirical limited
expected values directly, whereas the maximum likelihood esti-
mator uses the number of losses that fall in each interval. Since
the mixed exponential distribution is flexible enough to provide
a good fit over the entire distribution, it is not very sensitive to
the choice of weights.

Example Two�Improving the Efficiency of the Minimum
Distance Estimator

The second example involves 463 medical malpractice claim
report lags truncated from above and fit to a Burr distribu-
tion. Grouped maximum likelihood estimation yields param-
eter estimates of �®= 0:40274, �̧ = 34:224, and �¿ = 3:1181.
The asymptotic covariance matrix for these parameter values
is 264 0:017336 0:57436 ¡0:035566

0:57436 20:6558 ¡1:21351
¡0:035566 ¡1:21351 0:10703

375 :
Klugman and Parsa then use minimum distance estimation

with the cumulative distribution function. They use weights of
4 where the empirical cumulative distribution function is less
than 0.5, and the reciprocal of the empirical variance where
the cumulative distribution function is greater than 0.5. (The
weight at lag 162 is set equal to the weight at lag 156, since
the empirical cumulative distribution function at lag 162 is
1.) This might or might not produce good results, but there
is no particular theoretical justification for it, since it does
not take into account the correlation among the values of the
empirical functional. These weights yield parameter estimates
of �®= 0:48800, �̧ = 36:989, and �¿ = 2:9495. The authors give
the asymptotic covariance matrix for these parameter values
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as 264 0:081077 2:6655 ¡0:16625
2:6655 89:507 ¡5:5313
¡0:16625 ¡5:5313 0:33525

375 :
Making the correction to the matrix A noted in the previ-
ous section yields a corrected asymptotic covariance matrix
of 264 0:055717 1:8069 ¡0:10330

1:8069 60:474 ¡3:3933
¡0:10330 ¡3:3933 0:22450

375 :
These values are substantially higher than the maximum like-
lihood values. A fairer comparison would be to compare the
asymptotic covariance matrices at the same parameter values.
The minimum distance asymptotic covariance matrix at the max-
imum likelihood parameter estimates is264 0:039702 1:3327 ¡0:10037

1:3327 46:371 ¡3:4111
¡0:10037 ¡3:4111 0:29501

375 :
These values are still significantly higher than the maximum like-
lihood values.

We now try the procedures described in the previous section.
Using Procedure 1 and Equation (2.1), we can start with the
authors� estimates of �®= 0:48800, �̧ = 36:989, and �¿ = 2:9495.
We define h(µ) to be the parameter ® and proceed with the it-
erative process until it converges to estimates of �®= 0:40253,
�̧ = 34:205, and �¿ = 3:1270, quite similar to the maximum like-
lihood estimates.

Procedure 1, with Equation (2.6) and §¡1 as the matrix of
weights, does not converge. If it did, it would yield the maximum
likelihood estimates. Procedure 2 produces minimum chi-square
estimates of �®= 0:36995, �̧ = 33:702, and �¿ = 2:8685.
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Procedure 1 with Equation (2.1), at the maximum likelihood
parameter estimates, has an asymptotic covariance matrix of264 0:017336 0:57436 ¡0:035566

0:57436 20:6564 ¡1:21355
¡0:035566 ¡1:21355 0:10704

375 :
As must be true, the asymptotic variance of �® and the asymp-
totic covariances of �® with �̧ and �¿ are identical to the maximum
likelihood (and minimum chi-square) values. The other entries
are only very slightly higher than the maximum likelihood (and
minimum chi-square) values. Table 3 shows the weights that un-
derlie the matrix, generated by a v of264 1

34:25

¡2:229

375 :
Example Two�Discussion

Table 4 shows the empirical cumulative distribution function
along with the fitted cumulative distribution function for the
maximum likelihood parameter estimates, the original minimum
distance estimates, and the minimum chi-square estimates. If one
believes that a Burr distribution is appropriate, then one should
prefer the maximum likelihood or minimum chi-square estima-
tors, since they have smaller asymptotic variances.

None of the distributions provides a particularly good fit very
low in the distribution. If one does not believe that a Burr distri-
bution is appropriate over the entire range of the data, one could
fit that distribution only above a certain point and use an empir-
ical distribution below that. The mixed exponential distribution
always has a mode at zero, and since the data clearly shows
a mode significantly greater than zero, the mixed exponential
would not fit well over the entire range of the data. However,
one could fit the mixed exponential to the section of the distri-
bution to the right of the mode.
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TABLE 3

EXAMPLE 2 WEIGHTS

Lag Original Optimized

6 4.0 2195
12 4.0 309
18 4.0 112
24 4.0 59.4
30 4.0 42.0
36 4.0 31.1
42 4.0 24.7
48 4.0 20.5
54 4.1 17.6
60 4.2 13.6
66 4.5 15.2
72 4.9 14.0
78 5.5 13.3
84 6.2 13.0
90 6.8 12.8
96 7.4 12.8
102 8.1 13.1
108 9.7 13.5
114 10.6 14.2
120 11.0 15.2
126 12.7 16.6
132 21.2 18.6
138 26.8 21.5
144 47.3 25.9
150 58.9 33.4
156 232.5 48.6
162 232.5 94.5

At the conclusion of the second example, Klugman and Parsa
show numbers implying that an approximate 95% confidence
interval for the number of claims that will be reported after
Lag 168 is 72+ =¡ 15 for the maximum likelihood estimator,
and 59+ =¡ 20 for the minimum distance estimator with their
set of weights. These are incorrect. The actual confidence in-
tervals should be 72+ =¡ 57 and 59+ =¡ 61, respectively. For
the minimum chi-square estimator, the confidence interval is
102+ =¡ 89. The lengths of these confidence intervals indicate
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TABLE 4

EXAMPLE 2 CUMULATIVE DISTRIBUTION FUNCTIONS

Burr Weibull

Maximum Min Dist Minimum Maximum
Lag Empirical Likelihood Original Wts Chi-square Likelihood

6 0.0086 0.0020 0.0026 0.0032 0.0159
12 0.0216 0.0173 0.0194 0.0226 0.0513
18 0.0389 0.0574 0.0604 0.0672 0.1000
24 0.1210 0.1257 0.1276 0.1365 0.1585
30 0.2181 0.2142 0.2139 0.2212 0.2235
36 0.2959 0.3101 0.3079 0.3102 0.2924
42 0.4298 0.4025 0.3998 0.3955 0.3628
48 0.5011 0.4860 0.4838 0.4729 0.4327
54 0.5637 0.5585 0.5576 0.5411 0.5005
60 0.6156 0.6207 0.6212 0.6006 0.5649
66 0.6631 0.6736 0.6754 0.6521 0.6250
72 0.7149 0.7188 0.7216 0.6968 0.6802
78 0.7603 0.7574 0.7611 0.7357 0.7301
84 0.7970 0.7907 0.7949 0.7698 0.7746
90 0.8207 0.8195 0.8241 0.7998 0.8138
96 0.8402 0.8447 0.8493 0.8263 0.8478
102 0.8553 0.8668 0.8714 0.8498 0.8770
108 0.8834 0.8863 0.8907 0.8709 0.9019
114 0.8942 0.9036 0.9077 0.8898 0.9227
120 0.8985 0.9190 0.9229 0.9069 0.9401
126 0.9136 0.9329 0.9363 0.9224 0.9544
132 0.9503 0.9454 0.9484 0.9365 0.9660
138 0.9611 0.9567 0.9592 0.9494 0.9754
144 0.9784 0.9669 0.9690 0.9612 0.9829
150 0.9827 0.9763 0.9778 0.9721 0.9889
156 0.9957 0.9849 0.9859 0.9821 0.9936
162 1.0000 0.9927 0.9933 0.9914 0.9972
168 1.0000 1.0000 1.0000 1.0000 1.0000

that the volume of data is not sufficient to provide a reliable es-
timate of the number of claims that will be reported after Lag
168, even if one accepts the assumption that a Burr distribution
is appropriate for this data.

Accomando and Weissner [1] suggest using a Weibull dis-
tribution for this data. Maximum likelihood estimation yields



job no. 2040 casualty actuarial society CAS journal 2040d05 [18] 09-01-05 12:21 PM

216 MINIMUM DISTANCE ESTIMATION OF LOSS DISTRIBUTIONS

parameter estimates of �µ = 67:3 and �¿ = 1:71, with the cumula-
tive distribution function expressed as F(x) = 1¡ e¡(x=µ)¿ . Table
4 shows the fitted cumulative distribution function. The approxi-
mate 95% confidence interval for the number of claims that will
be reported after Lag 168 is 4+ =¡ 3. The reason that this is so
different from the Burr confidence intervals is that the confidence
intervals depend on the assumption that a particular distribution
is appropriate over the entire range of the distribution, including
the portion for which we do not yet have data. There is no way to
tell whether a Burr distribution, a Weibull distribution, or some
other distribution is most appropriate beyond the range of the
data. Attempting to extrapolate from the data to obtain the num-
ber of unreported claims, without reference to other experience
for which claims after Lag 168 have been observed, is likely to
lead to a very unreliable estimate.

The data in this example is truncated at a single point, and
though that makes the data of limited use for estimation beyond
the truncation point, adjusting for the truncation in the minimum
distance estimation procedure is straightforward. Likewise, data
with a single censorship point does not present difficulties. How-
ever, with data that contains multiple truncation or censorship
points on the left or the right, constructing the empirical distri-
bution becomes more complicated. The most logical approach is
to use the Kaplan-Meier Product-Limit estimator.

4. GOODNESS-OF-FIT TESTS

Klugman and Parsa propose a goodness-of-fit test using the
statistic

(Gn¡G)0W1=2fn¡1W1=2[I¡D0(DWD0)¡1DW]
£§[I¡WD0(DWD0)¡1D]W1=2g¡W1=2(Gn¡G),

where W is a matrix of the weights and �¡ � indicates a gen-
eralized inverse. If the distribution being fit is the correct one,
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this statistic has an asymptotic chi-square distribution with k¡p
degrees of freedom. The statistic

(Gn¡G)0fn¡1[I¡D0(DWD0)¡1DW]
£§[I¡WD0(DWD0)¡1D]g¡(Gn¡G)

also has an asymptotic chi-square distribution with k¡p degrees
of freedom. This statistic does not contain the square root of W,
which could be messy whenW is not a diagonal matrix. In their
proof, Klugman and Parsa use a vector Vn =W

1=2(Gn¡G) and
a matrix R=W1=2D0. By leaving off theW1=2 in this vector and
matrix, one can use the same reasoning to obtain the alternate
statistic.

If one uses Procedure 1 with Equation (2.6) and §¡1 as
the matrix of weights, or if one uses Procedure 2, n(Gn¡G)0
¢§¡1(Gn¡G) has an asymptotic chi-square distribution with
k¡p degrees of freedom. This follows either from using nI as
the generalized inverse in the authors� statistic or n§¡1 as the
generalized inverse in the alternate statistic. If G is the cumulative
distribution function, this is the standard chi-square goodness-of-
fit statistic.

With nW¡1=2§¡1[I¡D0(D§¡1D0)¡1D§¡1]W¡1=2 as the gen-
eralized inverse in the authors� statistic (the Moore-Penrose in-
verse) or n§¡1[I¡D0(D§¡1D0)¡1D§¡1] as the generalized in-
verse in the alternate statistic, one finds that

n(Gn¡G)0f§¡1[I¡D0(D§¡1D0)¡1D§¡1]g(Gn¡G)
has an asymptotic chi-square distribution with k¡p degrees of
freedom, which is independent of the weights used. If G is the
cumulative distribution function, this is the statistic given by
Moore [5, p. 90] as applicable with the maximum likeli-
hood estimator and the minimum chi-square estimator, among
others.

Regardless of which generalized inverse one uses, the tests in
this section are valid as long as the weights in the test statistic
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are consistent with the weights used in fitting. One may fix the
weights beforehand, or derive them as in Procedure 1 or Proce-
dure 2. The tests are valid even if the weights are suboptimal. If
the test statistic exceeds its critical value, that indicates a problem
with the selected distribution, not, as the authors imply, with the
weights. The weights may indeed be poorly chosen and thus give
large asymptotic variances, but that does not affect the validity
of the test.

5. CONCLUSION

Minimum distance estimation has some interesting proper-
ties, but as a practical matter, I see little reason to prefer it to
maximum likelihood estimation. The main purported advantage
of minimum distance estimation is that, through adjustment of
the weights, it can provide a closer fit to the parts of the distri-
bution that are of the most interest. This leads to an estimator
with a larger variance than the maximum likelihood estimator,
however. And, if one believes that the model one is using is ap-
propriate, one should prefer the estimator with the smaller vari-
ance.

Minimum distance estimation is a clumsy remedy for a model
that is not flexible enough. Instead of resorting to minimum dis-
tance estimation, I believe one would be better off addressing
the inadequacies of the model itself. One possible option is to
fit a parametric distribution to the upper section of the data only
and to use the empirical distribution below that. Another possible
option is to use the semiparametric mixed exponential distribu-
tion.

Minimum distance estimation performed with weights se-
lected to achieve high efficiency generally produces parameter
estimates close to the maximum likelihood estimates. But max-
imum likelihood estimation is usually somewhat easier to im-
plement than minimum distance (or minimum chi-square) es-
timation, especially if the data contains multiple truncation or
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censorship points. Minimum distance estimation would be most
useful in situations where maximum likelihood estimation is not
feasible, such as when limited expected values are the only data
available.
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APPENDIX

Here I find the sets of weights that minimize the asymptotic
variance of h( �µ), given by

n¡1d0A¡1B§B0A¡1d= n¡1d0(DWD0)¡1DW§WD0(DWD0)¡1d:

(A.1)

The matrix W is a symmetric matrix of weights, which may or
may not be a diagonal matrix. One can express any set of weights
as a symmetric matrix by allocating the weight assigned to each
off-diagonal term equally to both sides of the diagonal. I assume
that § has rank k, D has rank p, and d has at least one nonzero
element.

The first step is to take the derivative with respect to each entry
inW. The derivative of (DWD0)(DWD0)¡1 is zero. Therefore, by
the product rule for differentiation, (DWD0) times the derivative
with respect to a particular entry in W within (DWD0)¡1 must
be equal to the negative of the derivative with respect to that
entry within (DWD0) times (DWD0)¡1. Thus, using the product
rule and the symmetry of (A.1), the derivative with respect to the
ijth entry in W is

n¡1d0(DWD0)¡1D(1ij + 1ji)

£ [I¡D0(DWD0)¡1DW]§WD0(DWD0)¡1d,
where 1ij indicates a k£ k matrix with the ijth entry equal to 1
and the remaining entries equal to 0.

Since the derivative with respect to all entries inW must be 0
for (A.1) to be at a minimum, and since the expression in brack-
ets is idempotent with a nullspace consisting of the p columns
of D0, §WD0(DWD0)¡1d must be in the column space of D0 or
§WD0(DWD0)¡1d=D0u, where u is a vector of length p. Multi-
plying both sides by (D§¡1D0)¡1D§¡1 yields u= (D§¡1D0)¡1d.
Thus,

WD0(DWD0)¡1d=§¡1D0(D§¡1D0)¡1d: (A.2)
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Substituting (A.2) into (A.1) shows that the minimum asymptotic
variance of h( �µ) is n¡1d0(D§¡1D0)¡1d.

This also shows that if the asymptotic variance of h( �µ) is
at its minimum value, then the asymptotic covariance of h( �µ)
with any other function h¤( �µ) is n¡1d¤0(D§¡1D0)¡1d, where d¤
is the vector of length p with jth element @h¤=@µj . However,
this does not imply that the asymptotic variance of h¤( �µ) is
n¡1d¤0(D§¡1D0)¡1d¤.

Multiplying both sides of (A.2) by (WD0)¡, a left-inverse of
WD0, yields (DWD0)¡1d= (WD0)¡§¡1D0(D§¡1D0)¡1d. Substi-
tuting this into (A.2) yields [I¡WD0(WD0)¡]§¡1D0(D§¡1D0)¡1d
= 0. The expression in brackets is idempotent with a nullspace
consisting of the p columns ofWD0, so§¡1D0(D§¡1D0)¡1dmust
be in the column space ofWD0 or §¡1D0(D§¡1D0)¡1d=WD0v,
where v is a vector of length p.

If W must be a diagonal matrix, then

wi = (§
¡1D0(D§¡1D0)¡1d)i=(D

0v)i,

where v is an arbitrary nonzero vector. Thus, the equation can
be satisfied for weights associated with a space of dimension
p. In general, a set of weights cannot satisfy this equation for
all functions h(µ), unless k = p+1. It is possible in this case
because the intersection of p spaces of dimension p within a
space of dimension p+1 has a dimension of at least 1.

If W may be a full symmetric matrix, then there are many
Ws that will satisfy this equation. If WD0 has the same column
space as §¡1D0(D§¡1D0)¡1, then W can satisfy this equation
for all functions h(µ). The most obvious choice for W with this
property is §¡1.

For a set of weights to produce minimum asymptotic variance,
A=DWD0 must be positive definite, whether W is a diagonal
or a full symmetric matrix. If W=§¡1, then since D§¡1D0 is
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positive definite, minimum asymptotic variance is achieved for
all functions h(µ).

Results specific to the cumulative distribution function

If G is the cumulative distribution function, then §¡1 is a
tridiagonal matrix with

§¡1ii =
Gi+1¡Gi¡1

(Gi¡Gi¡1)(Gi+1¡Gi)
and

§¡1i,i¡1 =§
¡1
i¡1,i =

¡1
Gi¡Gi¡1

,

where G0 = 0 and Gk+1 = 1.

* * * * *

If the matrix of weights is §¡1¤, based on a given cumulative
distribution function, then the objective function is proportional
to

n(Gn¡G)0§¡1¤(Gn¡G)

= n

24 kX
i=1

(G¤i+1¡G¤i¡1)(Gn,i¡Gi)2
(G¤i ¡G¤i¡1)(G¤i+1¡G¤i )

¡2
kX
i=2

(Gn,i¡Gi)(Gn,i¡1¡Gi¡1)
G¤i ¡G¤i¡1

35
= n

24 kX
i=1

(Gn,i¡Gi)2
G¤i ¡G¤i¡1

+
k+1X
i=2

(Gn,i¡1¡Gi¡1)2
G¤i ¡G¤i¡1

¡2
kX
i=2

(Gn,i¡Gi)(Gn,i¡1¡Gi¡1)
G¤i ¡G¤i¡1

35
= n

k+1X
i=1

[(Gn,i¡Gn,i¡1)¡ (Gi¡Gi¡1)]2
G¤i ¡G¤i¡1

:
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If one treats the matrix of weights as a function of the parameters
as in Procedure 2 from Section 2, then G and G¤ are identical,
and the objective function is proportional to the chi-square func-
tion.

If the matrix of weights is fixed, then one finds the minimum
of the objective function by taking the derivative of the numerator
of each of the terms with respect to each of the parameters and
finding the point at which all of the derivatives are equal to zero.
The derivative with respect to the jth parameter is

¡2n
k+1X
i=1

[(Gn,i¡Gn,i¡1)¡ (Gi¡Gi¡1)](G(j)i ¡G(j)i¡1)
G¤i ¡G¤i¡1

:

With Procedure 1 from Section 2, G and G¤ must be identical
at the final parameter estimates. At that point, the expression
reduces to

¡2n
k+1X
i=1

(Gn,i¡Gn,i¡1)
(G(j)i ¡G(j)i¡1)
Gi¡Gi¡1

,

which is proportional to the derivative of the grouped log-
likelihood function

n
k+1X
i=1

(Gn,i¡Gn,i¡1) ln(Gi¡Gi¡1)

with respect to the jth parameter.

* * * * *

The jlth entry of the inverse of the minimum asymptotic co-
variance matrix is

(nD§¡1D0)jl

= n

24 kX
i=1

(Gi+1¡Gi¡1)G(j)i G(l)i
(Gi¡Gi¡1)(Gi+1¡Gi)

¡
kX
i=2

G(j)i G
(l)
i¡1 +G

(l)
i G

(j)
i¡1

Gi¡Gi¡1

35
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= n

24 kX
i=1

G(j)i G
(l)
i

Gi¡Gi¡1
+
k+1X
i=2

G(j)i¡1G
(l)
i¡1

Gi¡Gi¡1
¡

kX
i=2

G(j)i G
(l)
i¡1 +G

(l)
i G

(j)
i¡1

Gi¡Gi¡1

35
= n

k+1X
i=1

(G(j)i ¡G(j)i¡1)(G(l)i ¡G(l)i¡1)
Gi¡Gi¡1

:

Then, to confirm that this is identical to the grouped maxi-
mum likelihood value, the second derivative with respect to the
jth and lth parameters of the grouped loglikelihood function
n
Pk+1
i=1 (Gn,i¡Gn,i¡1) ln(Gi¡Gi¡1) is

n
k+1X
i=1

(Gn,i¡Gn,i¡1)
24G(j,l)i ¡G(j,l)i¡1
Gi¡Gi¡1

¡ (G
(j)
i ¡G(j)i¡1)(G(l)i ¡G(l)i¡1)

(Gi¡Gi¡1)2

35,
and its negative expectation is

n
k+1X
i=1

(G(j)i ¡G(j)i¡1)(G(l)i ¡G(l)i¡1)
Gi¡Gi¡1

:




