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Abstract

The insurance process is complex, with numerous fac-
tors combining to produce both premiums and losses.
When compiling rates, actuaries often aggregate data
from more than one source, while at the same time strat-
ifying the data to achieve homogeneity. Such exercises
may lead to biased and sometimes even surprising re-
sults, called Simpson’s paradox, because the variables
involved in the aggregation process or the stratification
process are confounded by the presence of other vari-
ables. In this paper, we will describe Simpson’s para-
dox and confounding and the statistical underpinning
associated with those phenomena. We will further
discuss how such bias may exist in P&C actuarial
rating applications and solutions that can resolve the
bias.

1. INTRODUCTION

An actuary is asked by the CEO for a small insurance com-
pany to examine the good student discount that the company of-
fers. The discount is currently fifteen percent, but several com-
petitors offer a twenty percent discount for qualifying youth-
ful operators. As usual, the CEO is in a hurry, so the actuary
compiles the experience and develops a relativity based on the
pure premiums for all youthful operators (Age 15 to 25). Imag-
ine the actuary’s shock when the experience indicates, not the
twenty percent discount for which the CEO had been hoping,
but a twenty percent surcharge. The loss experience appears in
Table 1.
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TABLE 1

WITHOUT GOOD STUDENT DISCOUNT

Exposures Distribution Losses Pure Premium
18,980 86.3% $44,210,062 $2,329
WITH GOOD STUDENT DISCOUNT
Exposures Distribution Losses Pure Premium Relativity
3,020 13.7% $8,475,292 $2,806 20%
TABLE 2
WITHOUT GOOD STUDENT DISCOUNT
Distribution
Age Exposures Within Age Losses Pure Premium
15-18 5,500 68.8% $21,661,344 $3,938
19-21 5,580 93.0% $12,488,608 $2,238
22-25 7,900 98.8% $10,060,110 $1,273
Total 18,980 $44,210,062 $2,329
WITH GOOD STUDENT DISCOUNT
Distribution
Age Exposures ~ Within Age Losses Pure Premium  Relativity
15-18 2,500 31.3% $7,653,680 $3,061 —22%
19-21 420 7.0% $705,002 $1,679 —25%
22-25 100 1.3% $116,610 $1,166 —8%
Total 3,020 $8,475,292 $2,806 20%

The actuary knows of the problems incumbent with pure pre-
miums, but certainly they can’t cause this magnitude of a dispar-
ity. The actuary decides to review the experience by driver age
that is available from the company’s class plan. Table 2 displays
that experience.

The relativities by class appear more reasonable, but the ac-
tuary still has a concern. How can the “average” of these three
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TABLE 3
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WITHOUT GOOD STUDENT DISCOUNT

Distribution
Age Exposures Within Age Losses Pure Premium
15 1,300 65.0% $6,500,000 $5,000
16 1,300 65.0% $5,525,000 $4,250
17 1,350 67.5% $4,876,875 $3,613
18 1,550 77.5% $4,759,469 $3,071
19 1,860 93.0% $4.,854,658 $2,610
20 1,860 93.0% $4,126,459 $2,219
21 1,860 93.0% $3,507,490 $1,886
22 1,920 96.0% $3,077,540 $1,603
23 1,980 99.0% $2,697,656 $1,362
24 2,000 100.0% $2,316,169 $1,158
25 2,000 100.0% $1,968,744 $984
Total 18,980 $44,210,062 $2,329
WITH GOOD STUDENT DISCOUNT
Distribution
Age Exposures ~ Within Age Losses Pure Premium  Relativity
15 700 35.0% $2,625,000 $3,750 —25%
16 700 35.0% $2,231,250 $3,187 —25%
17 650 32.5% $1,761,094 $2,709 —25%
18 450 22.5% $1,036,336 $2,303 —25%
19 140 7.0% $274,053 $1,958 —25%
20 140 7.0% $232,945 $1,664 —25%
21 140 7.0% $198,003 $1.414 —25%
22 80 4.0% $96,173 $1,202 —25%
23 20 1.0% $20,437 $1,022 —25%
24 — 0.0% — — 0%
25 — — — — 0%
Total 3,020 $8,475,292 $2,806 20%

discounts produce a surcharge? The actuary is also concerned
about the variation in the indicated relativities. The actuary re-
quests data by driver age from the company’s IS department and
reviews the experience, which is displayed in Table 3.

By further stratifying the data, even more precision appears
to be achieved and it appears that an even higher discount is
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TABLE 4
Male Female
Acceptance Acceptance
School Applying Accepted Ratio Applying  Accepted Ratio
Engineering 1000 400 40% 200 100 50%
Arts 200 20 10% 1000 125 13%
Total 1200 420 35% 1200 225 19%

justified. In addition, the same discount seems to be supported for
all driver ages. Nevertheless, the question remains: “How does
the accumulation of all these discounts produce a surcharge?”
The answer is Simpson’s paradox.

2. SIMPSON’S PARADOX

E. H. Simpson first described the paradox in 1951 in a pa-
per titled “The Interpretation of Interaction in Contingency Ta-
bles” [14]. It is an interesting statistical phenomenon that causes
a potential bias in certain data analyses. The paradox occurs
when a relationship or association between two variables reverses
when a third factor, called a confounding variable, is introduced.
The paradox also occurs when a relationship/association reverses
when the data is aggregated over a confounding variable.

2.1. The College Admissions Example

The classic illustration of the paradox involves college ad-
missions by gender, which can be illustrated in the example in
Table 4 [3].

In Table 4, the overall acceptance ratio for female applicants,
19%, is lower than the ratio for the male applicants, 35%. How-
ever, this relationship reverses when the factor of the school to
which they apply is introduced. When this variable is consid-
ered, the acceptance ratio for female applicants is 25% higher
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FIGURE 1

Simpson's Paradox
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than male applicants for both the engineering school (50% to
40%) and the art school (13% to 10%).

The reason why Simpson’s paradox occurs is that more fe-
male applicants apply to the art school, which has an overall
lower acceptance rate than the engineering school. The engi-
neering school has a 40% to 50% acceptance rate, while the art
school has a 10% to 13% acceptance rate. In the above example,
about 83% of female applicants apply to the art school, while
83% of male applicants apply to the engineering school.

Let’s vary the percentage of the female applicants applying to
the art school and assume all the other parameters in the example
remain the same. Then, calculate the ratio of the overall female
applicants to the male applicants.

In Figure 1, the solid line represents the ratio of the overall
female acceptance rate to the overall male acceptance rate by
varying the percentage of females applying to the engineering
school. We know that the underlying ratio is 1.25 when we an-
alyze the acceptance by school, and the dashed line represents
the actual ratio of 1.25.

We can see that only when the percentage of female students
applying to the engineering school is 83% is the overall ratio



138 SIMPSON’S PARADOX

the same as the true ratio. This 83% is the same percentage
as the male students applying to the engineering school. For all
the other percentages, the overall ratio is different from the true
ratio.

Another interesting point indicated in Figure 1 is that when
the percentage of female students applying to the engineering
school is less than 60%, the ratio of the overall acceptance rate
of female to male is less than 1.00, represented by the dotted line,
suggesting that the overall female acceptance rate is lower. This
is a reversal of the fact that the female acceptance rate is higher
than the male acceptance rate, which is Simpson’s paradox [12].

From the example above, we can see that Simpson’s para-
dox occurs when the distributions of the sample population are
not uniform across the two predictive variables. When this takes
place, the variable of “school” is confounding the acceptance rate
and is confusing the relationship between the acceptance rate and
applicants’ gender. We will discuss the concept of confounding
variables in detail later.

2.2. The Simple Math of Simpson’s Paradox

Simpson’s paradox arises from one simple mathematical truth.
Given eight real numbers: a, b, ¢, d, A, B, C, D with the following
properties: a/A > b/B and ¢/C >d/D, then it is not necessarily
true that (a + ¢)/(A + C) > (b + d)/(B + D). In fact, it may be true
that: (a+c¢)/(A+C) < (b +d)/(B+ D). This is Simpson’s para-
dox. This is an obvious math reality, yet it has significant rami-
fications in Bayesian analysis, medical research, science and en-
gineering studies, societal statistical analysis and yes, insurance
ratemaking. It is of concern for any statistical activity involving
the calculation and analysis of ratios of two measurements. This
activity is prevalent in insurance; loss ratios, pure premium, fre-
quency, severity and loss development factors are just some of
the statistics involving the ratio of two measures.
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3. CONFOUNDING VARIABLES

A variable can confound the results of a statistical analysis
only if it is related (non-independent) to both the dependent vari-
able and at least one of the other (independent) variables in the
analysis. More specifically, a variable can confound the results
of an insurance rate structure analysis only if it is related (non-
independent) to both the experience measure (loss ratio, pure
premium, etc.) and at least one of the other rating variables in
the analysis.

3.1. Experimental Design

Confounding and Simpson’s paradox are of great concern in
the design of research studies. For example, in a typical design of
medical research, researchers would like to know the impact of
an intervention measure. Using the notation introduced in Sec-
tion 2.2, assume that A and C are the number of observations
where the intervention has taken place. B and D are the number
of observations in the group where the intervention has not been
executed (the control group). The distinction between the A and
C (and also B and D) observations is the potential confounding
variable. For example, in Cates [5], A and C would represent
smokers attempting to quit with nurse intervention (the inter-
vention) from two different studies (the potential confounding
variable).! Also, in our previous college admission example, A
and C might represent the number of females (the intervention)
applying to the art and engineering schools (the potential con-
founding variable) respectively, as displayed in Table 5.

Further, the number of events is represented by a, b, ¢ and
d and the ratio a/A is the proportion of events per number of

I'Cates [5] described the meta-analysis of smokers attempting to quit with and without
high intensity nurse intervention. Cates illustrated several methods of combining studies
from independent sources. Methods included Maentel-Hensel fixed effects method and
a random effects methodology. Both of these methodologies produced weights that were
used to combine the risk differences, rather than the underlying data. Cates showed that
a reversal (Simpson’s paradox) occurred when the raw data were combined.
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TABLE 5
Variables Under Study
1 2
Example Females Males
Number of a b
Confounding Events
i Art School
Variable Value 1 Number of A B
Observations
Number of c d
Confounding Events Engineering
Variable Value 2 Number of School c D
Observations

observations; e.g., the percentage of females being admitted to
art school or the proportion of smokers in Study #1 (of the Cates
paper) who quit with the aid of a nurse.

While both the college admission example and the smoking
intervention example involve studies where existing data are ob-
served and analyzed, assume for a moment that this is not the
case—that we can design an experiment in such manner as to
minimize the bias of any potential confounding variable. Ulti-
mately, we find the bias is eliminated if the confounding variable
and the variable under study are independent. The bias is also
eliminated if either the groups are balanced (possess an equal
number of observations) or are proportionally distributed (there
is the same ratio of observations of the variable under study for
each value of the confounding variable).? It is possible to illus-
trate this using the following argument.

Consider an experiment with groups A, B, C, D as de-
scribed above. Also assume that the ratio differences are known
and are equal to some K: (a/A)—(b/B) =K =(c/C)—(d/D).

20f course, the balance condition is a special case of the proportional condition. The
balance condition is especially important in experiment design.
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How can the experiment be designed so that (a+c¢)/(A+C)—
(b+d)/(B+D)=K?

First assume that the potential confounding variable is inde-
pendent of the variable under study, i.e., that a/A =¢/C and
b/B =d/D. Therefore A =aC/c and B = bD/d and

atc b+d  a+c b+d _ifi_[(
e ip Cave Bpsay € P
c d c d

Therefore, if the potential confounding variable and the variable
under study are independent then there is no confounding.

Now instead of assuming independence, assume that the ex-
periment has a balanced distribution; i.e., there is the same num-
ber of observations in each group relative to the variable under
study (the same number of females applying to the art school and
the engineering school and the same number of males applying
to both schools). Then A =C and B = D. And

a+c_b+d_ a N c b B d
A+C B+D A+C A+C B+D B+D
__a N c b B d
A+A C+C B+B D+D
_lfa ¢ b d
T21A E_E_B}
_1fa b ¢ d
"2|lA B 6_5}
=%[K+K]=K.

So there is no confounding if the observations possess a balanced
distribution.

Now assume that the experiment is proportionally distributed;
i.e., there is the same ratio of observations of the variable under
study for each value of the confounding variable (A/B = C /D).
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That is, the ratio of females applying to the art school to the
number of males applying to the art school is the same as the
ratio of females applying to the engineering school to the number
of males applying to the engineering school. If A/B = C /D, then
define A/C =B/D = K'. Then A = CK', B = DK'. Therefore
atc b+d  a+c b+d
A+C B+D CK'+C DK +D
1 atc b+d
TK +1 ( cC D >

K

1 ,(a b
—m{ff (ZE>+K}
1 K +1

= K'K +K) =
1 KK+ K=

Therefore, if the observations are proportionally distributed,
there is no confounding.

K =K.

In the example detailed in the introduction of the paper, the
good student pure premiums and ultimately the indicated good
student discount were confounded by driver age. It is not surpris-
ing that there is the observed relationship between the distribu-
tion of drivers by age and those with the good student discount.
As driver age approaches 25, fewer are students, much less good
students. The reversal occurs since there is a higher distribution
of young drivers with good student discount and young drivers
have higher pure premiums.

Important Principle: 1f there is independence between the
potential confounding variable and the variable under study, or



SIMPSON’S PARADOX 143

if the study is balanced or proportionally distributed, then there
is no confounding.

Insurance ratemaking differs from most statistical studies in
a number of ways:

1. It is generally not possible to design the makeup of
groups of insureds so that classifications are balanced.

2. Generally there are far more values for each variable and
probably more variables in insurance than in research
analysis.

3. In most statistical studies, the objective is to accept or
reject a hypothesis. The primary concern in insurance
ratemaking is to properly calculate a rate, which requires
a continuous rather than binary output.

In the next four sections, we will further examine and ex-
tend the Important Principle of confounding to more than two
variables using general statistical models and experimental de-
sign theories. The two statistical models that we will use are the
simple additive and the multiplicative models, both without an
interaction term. Such additive and multiplicative multivariable
models are the ideal models, and are similar to many insurance
rating and class plan structures [1]. For illustrative purposes, we
will use a 2-by-2 rating example with age of driver (youthful
drivers vs. adult drivers) and territory (urban territories vs. sub-
urban territories) throughout the sections. For more details of
the additive and multiplicative statistical models and experimen-
tal design theories, please see Montgomery [9] and Neter, et al.
[10].

3.2. The Confounding Effect on an Additive Model with No
Interaction Term

Let’s start with a 2-by-2 additive model. Assume that the ob-
servation or exposure distribution of each cell is w; ; . Later we
will extend the models to more dimensions and values.
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Deflne: W(il),l = wil,l/ziz wil’iz; e.g.,

W _ W11 W _ Wi
(H,1 — ’ 1,2 = ’
Wi +wio Wit Wwio

Wo 1 Woo
Wou= o s Y@2T
W1t W2 W1 T Woo

Note: While this notation may be unfamiliar, please accept
this verbal interpretation. If W; i, Tepresents the exposures in cell
iy,i,, then W(i,),1 Tepresents the marginal exposure distribution of

cell i;,i, for cells with i; = 1.

For a linearly independent additive model, the mean value
(underlying rate) for each of the 2-by-2 cells can be represented
as follows: Mijiy = [F My o ¥ Mo ip =1,2,i, = 1,2, where a dot
(o) index indicates the mean across that index.

By linearly independent we mean that there are no interac-
tion terms. If the model were not linearly independent, the mean
value (underlying rate) for each of the 2-by-2 cells would be
represented as: fy; B, TR et ey v e = 12,0 = 1,2,

where ¢; ; is the interaction term.

More specifically, we define the following for the 2-by-2 age
of driver and territory example: y; ; = p + 11; J(Age of Driver) +
I, (Vehicle Territory).

Now we want to compare the difference in the aggregate rate
between adult and youthful drivers:

Then the aggregate rate for each i, is M o= [ Wi )1 +
Hi 2W(i)),2-
And
My e =My e = My 1Wiy,1 T H12W2 — H2,1W(2),1 — H2,2W(2)2-
Then
My g —Mye =Wy (4 p o+ o)+ Wiyo(l + 1y o + [le2)

Wy (+ foe + fle 1) =Wy 2 (1 + f1g o + fle2)-
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My g —Mye =Wy 1 (+ [ ot fe1) +Weiyo(l + 1y o+ [le2)
=Wy (B + Hoe + e 1) = Wiy2(l + Hp e + e 2)
=Wy (H1e = H2.0) F W 2(Hie = H2e) = 10— Hoe-

Since for the 2-by-2 case: w(;); + w(j), = 1, we can derive the
same results for the other factor, the vehicle territory.

If Wiy = Wapy and wy 1y = wy o), then mg, —mg | = 14 — flg |-

Therefore, territory does not confound the age of driver rel-
ativities for this 2-by-2 linearly independent additive model if
territorial distribution of exposures is independent of the age
of driver distribution of exposures. That is, if wq); =w),
W2 = W2y, Wiy = Wa 1y and wy o) = wy (o). This is a propor-
tional distribution. Of course, a special case for such a distribu-
tion occurs when each cell has the same number of data points,
Wi = Wi =Wy = w,,. This is a balanced distribution.

The following is a numerical example that illustrates such an
additive model. The statistics for the example are as follows:

Wi, = p+ uil’,(Age of Driver) + u.,iz(Vehicle Territory)
Let ;o = $400,
141 .. = +$100 for youthful drivers
oo = —$100 for adult drivers,

tte.1 = +$100 for urban drivers,

tten = —$100 for suburban drivers.

Therefore, the pure premiums for each of the four combinations
are:

Hig = $600, Hio = $400,
[1/271 = $400, /JZ’Z = $200.
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TABLE 6
Urban Suburban Total
Youthful Total Loss $3,000 $6,000 $9,000
Exposures 5 15 20
Distribution 12.5% 37.5% 50.0%
Pure Premium $600 $400 $450
Adult Total Loss $2,000 $3,000 $5,000
Exposures 5 15 20
Distribution 12.5% 37.5% 50.0%
Pure Premium $400 $200 $250
Total Total Loss $5,000 $9,000 $14,000
Exposures 10 30 40
Distribution 25.0% 75.0% 100.0%
Pure Premium $500 $300 $350

Also assume that

Wl,l = 125%, WI,Z = 375%,
W271 = 125%, W2,2 =37.5%.

If we study Table 6, we can see that the difference between
youthful driver underlying rate and the adult driver underlying
rate is: ju; , — i, = $200, which is the same as the difference
between the aggregate rates, $450 — $250 = $200. Therefore, in
this case, confounding does not occur.

The data for the other factor, vehicle territory, yield the same
result. The difference between underlying rates for the urban
territory and the suburban territory is: p, | — i, , = $200, which
is the same as if we use the aggregate rates, $500 — $300 = $200.
Therefore, in this case as well, confounding does not occur.

Now consider a different distribution:

Wl,l = 125%, W1,2 = 375%,
W271 = 375%, W2,2 =12.5%.
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TABLE 7
Urban Suburban Total
Youthful Total Loss $3,000 $6,000 $9,000
Exposures 5 15 20
Distribution 12.5% 37.5% 50.0%
Pure Premium $600 $400 $450
Adult Total Loss $6,000 $1,000 $7,000
Exposures 15 5 20
Distribution 37.5% 12.5% 50.0%
Pure Premium $400 $200 $350
Total Total Loss $9,000 $7,000 $16,000
Exposures 20 20 40
Distribution 50.0% 50.0% 100.0%
Pure Premium $450 $350 $400

This distribution is neither balanced nor proportional. The
confounding effect of territory on class (and vice versa) be-
comes apparent. Table 7 displays that in this case for the age
of the driver factor, we can see that the difference between
the underlying rate for youthful drivers and adult drivers is:
[0 — He = $200.00, as before. However the aggregate rate dif-
ference is $450 — $350 = $100.

3.3. The Confounding Effect for an n-Dimensional Additive
Model with No Interaction Term

Now we want to extend the linearly additive model from two
dimensions to n dimensions. Also we will extend the number
of values for each variable to more than two, that is, m values.
This is because a typical insurance rating structure has many
variables with multiple values. It is understood that the lower
bound of the summation is equal to unity. Again, assume that
the sample distribution of each cell is w

Define:

11121314..,'

W oo
Lolgolgsnly
mﬂ

Wi Viosinseoi., — Ty Ty 110 .
e Zi22 2133 Zi44 ' ”Zzn LT -
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For a linearly additive model, the mean value for each of the
[1i m; cells can be represented as follows:

Fijigig.i, = ¥ Hi e 0T Moo ot " T leaa i
i = 1,2,3,...,m1, i=123,....m
i=1,23,...om3, i,=123,....m
where a dot (e) index indicates the mean across that index.

Again, we want to compare the difference in the aggregate
rate and the underlying rate between any two values for the first
factor, i;.

Then the expected rate for each i; is

rn3 n14
M ee....0 ZZZ Z“l AR BLLUCH WA A
) Iy
and
m, ms ny
mll, 9. 7°_ Loy, .o — ZZZ Zullﬁzﬁxa -l (l )12,13, -l
nﬂg na4
ZZZ Zul by gy Wiy
Iy
Then
ll’ S 9 ’ ml’.s.’ ’.
n12 n13 n14

g zaww
l

Iy

X (M + /‘Lil,o,o,...,o + :uo,iz,o,...,o Ll Y P o,. )

_ZZZ Z W()siguigsenni,

12 13 14

X (:u + /’Ll,o,o,,,,,o + Mo,[z,o,,,,,o toort e ee )

,9,0,...,1
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E WG iyigniy, = Wi i, thED
il,o,o,. ml,o,o,
my my

= ZZZ Z W().iyiy..

X (M + Mil,o,o,...,o + :uo,iz,o,...,o +--t Heoe,...i )
m2 m3 m4 mn
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The distribution of the sample population is defined as pro-
portional when:

Wi iydgoed, = W) gy, for all i,
Wi (iyigedy, = Wiy (Diyi,  fOT AL D,
Wil’iz’(i3)""’in = Wil’iZ’(l)""’in for all 13,

Wi iientiy) = Wipigiyeany 0T @I,

Confounding will not occur for the n-dimensional linearly
additive model if the sample distribution is proportional.

3.4. The Confounding Effect on a Multiplicative Model with No
Interaction Term

Let’s start with a 2-by-2 multiplicative model without an in-
teraction term. Assume that the sample distribution of each cell
is w; ; as before.

Again define: w; ), = Wil,l/Ziz Wi i)s €8

w _ Wi W _ Wi
(D1 — K 2= .
Wi +wio Wil tWio

Wo 1 Woo
Wiy = ——————, Wiy = ——.
@1 Wy +Wso @2 Wy + W

For a multiplicative model with no interaction term, the mean
value for each of the 2-by-2 cells can be represented as follows:

Hijiy = H X M 0 X fej - =12, i,=172.

More specifically, we define the following for the 2-by-2 age
of driver and territory example:

i i, = X uil,,(Age of Driver) x ,u,Jz(Vehicle Territory),

where a dot (e) index indicates the mean across that index.
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Now we want to compare the difference in the aggregate rate
and the underlying rate between adult and youthful drivers.

Then the expected rate for each iy is m; o= p; 1WiH1+
1, 2,2 and

Mmye  HiiWm,1 T H12Ww)2

Mye Mo 1W2)1 + H22oW2)2

Then
mpe W(1),1(MM1,.M.,1) + W(l),Z(NMI,.No,Z)

My Wyt (i ette) + Wy 2(1hn ete )

Mie Wiy (g o tte 1) + Wiy 2 (14 ] ofte2)
Mye Wiy (o ette 1) + Wiy 2 (112 o e 2)

and
Mo 1eW) 1l ¥ W)2He2)  [e

Mye Wiy 1te1 ¥ Wiyalte2)  Hoe

Therefore, territory does not confound the age of driver rela-
tivities for this 2-by-2 multiplicative model if the territorial dis-
tribution of exposures is independent of the age of driver dis-
tribution of exposures. That iS, if W(l),l = W(Z),l’ W(l),Z = W(Z),Z’
Wl,(l) = WZ,(I) and Wl,(2) = WZ,(Z)'

This occurs when the distributions among the predictive vari-
ables are independent and proportional to each other. Of course,
a special case for such independent distributions is when each
cell has the same number of data points; i.e., w; | = wj, = w, =
w, 5. Again, this is a balanced distribution.

The following is a numerical example that illustrates such a
multiplicative model. The statistics for the example are as fol-
lows:

Hi i, = b iy, J(Age of Driver) x p, ; (Vehicle Territory)
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TABLE 8
Urban Suburban Total
Youthful Total Loss $3,750 $3,750 $7,500
Exposures 5 15 20
Distribution 12.5% 37.5% 50.0%
Pure Premium $750 $250 $375
Adult Total Loss $2,250 $2,250 $4,500
Exposures 5 15 20
Distribution 12.5% 37.5% 50.0%
Pure Premium $450 $150 $225
Total Total Loss $6,000 $6,000 $12,000
Exposures 10 30 40
Distribution 25.0% 75.0% 100.0%
Pure Premium $600 $200 $300

Let u = $400,

1. = 1.25 for youthful drivers
e = 0.75 for adult drivers,
e = 1.50 for urban drivers

e = 0.50 for suburban drivers.
Therefore, the pure premiums for the four combinations are:

[1/171 = $750, /Jl’z = $250,
[1/271 = $450, /JZ’Z = $150.

Also assume that wy; =12.5%, w;, =37.5%, w,; =12.5%,
W2,2 = 375%.

If we study Table 8 for the age of the driver factor, we can
see that the underlying rate for the difference between youthful
drivers and adult drivers is  ,/p,, = 1.25/0.75 = 1.67, which
is the same as if we use the aggregate rate, $375/$225 = 1.67.
Therefore, in this case, confounding does not occur.
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TABLE 9
Urban Suburban Total
Youthful Total Loss $3,750 $3,750 $7,500
Exposures 5 15 20
Distribution 12.5% 37.5% 50.0%
Pure Premium $750 $250 $375
Adult Total Loss $6,750 $750 $5,000
Exposures 15 5 20
Distribution 37.5% 12.5% 50.0%
Pure Premium $450 $150 $250
Total Total Loss $10,500 $4,500 $15,000
Exposures 20 20 40
Distribution 50.0% 50.0% 100.0%
Pure Premium $525 $225 $375

Now assume a different distribution:

Wiy =125%,  wy, =37.5%
W2,1 = 37.5%, W2’2 =12.5%.

This distribution is neither balanced nor proportional, and the
confounding effect of territory on class (and vice versa) is again
obvious. Table 9 shows that in this case for the age of the driver
factor, the relationship between the underlying rates for youthful
drivers and the adult drivers is p; ,/pp, = 1.25/0.75 = 1.67, as
before. However the aggregate rate is biased; $375/$250 = 1.50.

3.5. The Confounding Effect on an n-Dimensional Multiplicative
Model with No Interaction Term

Now, we want to extend the multiplicative model from two
dimensions to n dimensions. In addition, for each variable, we
will extend the number of values to more than two, that is, m
values. Again, assume that the sample distribution of each cell

sw; . . .
Epslosigslyses
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For a multiplicative model, the mean value for each of the [} m;
cells can be represented as follows:

Mil,iz,i3...i,1 = :u:uil,o,o,...,o:uo,iz,o,. .,® <Moo,

i1=1,2,3,...,m1, i2=1,2,3,...,m
iz=1,23,....m3, ... ,i,=1,23,....m
where a dot index indicates the mean across that index. Again

we want to compare the difference in the aggregate rate and

the underlying rate between any two values for the first
factor, i;.

Then the expected rate for each i; is

m3 m4
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If w for all i; then
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Confounding will not occur for the n-dimensional multiplica-
tive model if the sample distribution meets the above indepen-
dence or proportionality conditions.

4. TYPES OF CONFOUNDING VARIABLES

A variable that confounds the results of a study does so in
essentially the same way regardless of the nature of the variable
under study or the confounding variable itself. However, the na-
ture of the variable may affect its identification and treatment.
For the purpose of this paper, confounding variables will be cate-
gorized as one of three types: stratification confounding variable,
aggregation confounding variable or lurking confounding vari-
able.

4.1. Stratification Confounding Variable

In order to properly price a pool of risks, it may be necessary
to stratify those risks into smaller, more homogeneous groups.
Often a structure is stratified using more than one criterion. An
example that has already been discussed is personal automobile,
which is usually rated by territory and by classification. Each of
these rating variables is customarily analyzed separately and rat-
ing factors developed reflecting past loss experience. If territory
is independent of classification, then the rates developed will be
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appropriate. If the distribution by classification varies between
territories (that is classification is not independent of territory),
then such a simple analysis will yield biased rates. For example,
if there is a disproportionately high number of youthful operators
in a particular territory and youthful operators are underpriced,
a univariate analysis of each rating variable will yield rates that
are too high for the youthful drivers in that territory. If the rat-
ing variable under analysis is territory, then classification is a
potential stratification confounding variable.

4.2. Aggregation Confounding Variable

“It’s a well accepted rule of thumb that the larger
the data set, the more reliable the conclusions drawn.
Simpson’ [sic] paradox, however, slams a hammer
down on the rule and the result is a good deal worse
than a sore thumb. Unfortunately, Simpson’s para-
dox demonstrates that a great deal of care has to be
taken when combining small data sets into a large one.
Sometimes conclusions from the large data set are ex-
actly the opposite of conclusion from the smaller sets.
Unfortunately, the conclusions from the large set are
also usually wrong.” [6]

In order to stratify data into smaller and more homogeneous
classes, actuaries gather data from as many sources as possible.
Adding states, companies and years of experience are three ways
that an actuary may maintain class homogeneity while increasing
class size (and thus credibility). If the variable along which data
is aggregated is correlated with one or more rating variables, then
that variable may confound the results of any analysis of those
rating variables. For example, assume that state B’s loss experi-
ence is to be combined with state A’s loss experience to increase
the volume of data available for a class relativity analysis. Also
assume that state B has a higher proportion of youthful opera-
tors as well as worse loss experience overall. While an analysis
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of each state’s youthful operator experience alone might yield
the same appropriate relativity, when combined the analysis will
produce an indicated youthful operator relativity that is inappro-
priately high.

Exhibit 1 [15] illustrates the effect of two aggregation con-
founding variables. In this scenario both loss ratio and exposure
distribution by class are related to both year and state. The loss
experience displayed in Exhibit 1 (second page) arises from the
required factors of 1.00 for class 01 and 2.10 for class 02. The
derivation of the indicated class 02 relativity is displayed on the
first page of Exhibit 1. The indicated relativities are 2.30 us-
ing the loss ratio method, 2.68 using the pure premium method
and 2.30 using the modified loss ratio method. Although each
of the indicated relativities are biased, the pure premium method
is more susceptible to bias than either of the other two meth-
ods. Aggregation confounding variables (though not identified
as such) were discussed at length by Stenmark [15]. The exam-
ple of aggregation confounding variables given in Exhibit 1 will
be discussed further in Section 5.5.

4.3. Lurking Confounding Variable

As displayed in the introduction to this paper, it is possible
that a confounding variable may not be under examination. While
many references use the terms lurking variable and confounding
variable interchangeably, a more narrow definition of lurking
confounding variable is being used here. A lurking confounding
variable, then, is a variable that has not yet been uncovered as a
stratification confounding variable or an aggregation confound-
ing variable. A lurking confounding variable may exist outside of
an actuary’s ratemaking data, possibly to be detected using one
of the many data mining techniques available. A lurking con-
founding variable may be a data element that is available only
through demographic data, not captured through a company’s
processing system. Most discouraging of all, the piece of infor-
mation may not exist anywhere as data.
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Insurance companies have been collecting more and more in-
formation, and underwriters and actuaries have become sensi-
tive to criteria that might affect the loss process. Hopefully, then,
there are not too many undiscovered confounding variables lurk-
ing in our data that will significantly distort our rates. Regardless,
one only needs to point at the use of credit scores to recognize
an important lurking confounding variable that has only recently
been utilized to its full potential.

There are two issues relative to the discussion of confounding
in previously unused rating variables. First, prior to its use as a
rating variable, the failure to segment insureds according to any
credit measure may have caused confounding of those rating
variables actually in use. For example, assume that a certain class
of insureds often displays a poor credit rating and, as a result,
that class manifests poor loss experience. The rates for insureds
in that class with a better credit score would be inappropriately
high.

Second, once credit score has been established as a rat-
ing variable, proper methods must be undertaken to prevent
the continued confounding of the class rates through the use
of one of the treatments described in the next section. For
example, a company that provides a discount in automobile
for insureds with a homeowner’s policy might find that, af-
ter introducing a discount for good credit, the rates for au-
tomobile risks with an accompanying homeowner’s policy are
too low. This challenge is discussed at length by Guszcza and
Wu [16].

5. TREATMENT OF POTENTIAL CONFOUNDING VARIABLES

We have presented the empirical and theoretical evidence for
the existence of Simpson’s paradox and confounding variables.
In this section, we present several alternatives for the treatment
of this phenomenon.
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5.1. No Treatment

Pearl [12] concludes that there is no test for confounding.
Much of Pearl’s writing concerns the principle of causality [11],
presumably because confounding is of such great concern in
medical research and, in that research, causality is of prime im-
portance. Since, in insurance, we are more concerned with sta-
tistical correlation than causality we allow a more liberal test for
confounding. Therefore, we say that if a variable is unrelated to
the variable under study or to the loss measure, then confound-
ing will not result and no treatment is necessary. However, it is
ill-advised for an actuary to assume that there is no confound-
ing without extensive examination of the relationship of all the
variables affecting the loss process.

5.2. Controlling Confounding Through Experiment Design

As discussed in Section 3.1, if we can carefully design an
analysis and then collect the data accordingly, then we can con-
trol confounding. Whether we have prior knowledge of the re-
lation between the potential confounding variable and the target
information or not, we can control its effect if the confound-
ing variable is unrelated to the variable(s) under study. This can
be achieved through completely balanced design or proportional
design of the experiment. That is, for each combination of the
confounding variable and the variable(s) of interest, the same or
proportional amount of data is collected. This concept is com-
monly used in many research areas such as medical, engineering,
and scientific research projects.

When an actuary analyzes insurance data, the actuary typi-
cally cannot “design” the analysis. The actuary has to analyze
whatever he or she is given. The data are mostly determined by
the company’s book of business, which is largely determined by
the market segments that the company serves. Moreover, since
there are multiple rating variables, and for each rating variable
there exist many different values, it is possible that many com-
binations of the variables will have missing or very little data. In
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other words, insurance data is highly non-ideal for the confound-
ing issue, and it is difficult, if not impossible, for us to control
the bias through the experimental design approach.

5.3. Controlling Confounding Through Multivariate Analysis

If the insurance data is highly non-ideal and we cannot con-
trol confounding through standard experimental design, we can
control it by using multivariate analysis. That is, we can perform
the Bailey’s [1] minimum bias analysis or GLM analysis [4, 8]
by including the confounding variable along with the variable(s)
of interest. By doing so, the confounding variable’s relation with
the target variable and the variable(s) in interest will be properly
determined and be allocated through the multivariate approach.
Therefore, the true relationship of the variable(s) under study can
be revealed.

While multivariate analysis may be an ideal solution to deal
with the confounding issue, there may exist practical issues
against using the approach within insurance applications. One
issue is that insurance applications constantly aggregate or strat-
ify data with regards to states, years, and companies. In theory,
we can include these potential confounding variables in the anal-
ysis, but the inclusion of these non-rating variables in the mul-
tivariate analysis may lead to other issues such as credibility of
the data for analysis and reasonability and interpretation of the
analysis result for the variables. Therefore, later we propose an
alternative approach, using scaling factors, for actuaries to con-
sider for addressing confounding. The alternative approach will
be discussed in detail in Section 5.5.

5.4. Controlling Confounding Through the Use of Meta-Analysis

Researchers are often faced with situations that compel the use
of data from several studies. In insurance we strive to increase
the volume of our data to increase credibility, and medical re-
searchers attempt to do the same through compilations of more
than one study called meta-analyses [5].
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A research study typically includes observations from two
groups: an intervention group (;) and a control group (N,). From
these observations four pieces of data are derived: an intervention
with an event (n;), intervention without an event (N; — n;), control
with an event (n,) and control without an event (N. —n,). From
these a statistic, generally called a “size effect,” is calculated.
The two size effects in general use are termed the “risk differ-
ence” and the “odds ratio.” The risk difference is the difference
between the ratio of the number of interventions with an event
to the total observations of all interventions and the ratio of the
number of control subjects with an event to the total observations
of the control group. Risk difference = (n;/N;) — (n./N,). The re-
ciprocal of the risk difference is termed the “number needed to
treat” (or “harm”) and represents the number of interventions re-
quired to achieve one event. The “odds ratio” is the ratio of the
ratio of the number of interventions with an event to the number
of interventions without an event to the ratio of the number of
control subjects with an event to the number of control subjects
without an event. Odds ratio = (n;/(N; —n;)) +~ (n./(N. — n,)).

If an analyst naively combines all of the observations, con-
founding can result and lead to biased findings because there is
a different distribution of observations between studies. For ex-
ample, in Cates [5] seven out of ten studies resulted in a positive
number needed to treat, and the three that did not represented
only 839 of the 6,121 observations in the meta-analysis. Regard-
less, combining the raw data produced a number needed to harm
in contrast to the number needed to treat in the majority of stud-
ies.

A discipline has risen centered around the optimum method
to be used to combine such studies. In general, methodologies
focus on calculating a variance for each study. The reciprocal of
this variance is used to weight the size effects themselves rather
than the raw observations.

This treatment is analogous to calculating class relativities for
each year and state and weighting those relativities to arrive at
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a composite relativity for each class. As such, it has some sim-
ilarities to credibility weighting. However, one major difference
between typical medical research and insurance ratemaking is
that medical research results are binary outputs and insurance
ratemaking results are relativities or rates on a continuous scale.
Therefore, although meta-analysis provides an interesting exam-
ple of the effect and treatment of confounding in medical re-
search, it does not appear to have any direct application to in-
surance pricing.

5.5. Controlling Confounding Through the Use of Scaling
Factors

In this section, we introduce a practical approach, called “scal-
ing factors,” to treat the confounding effect that may commonly
exist in insurance rating applications. We believe that this ap-
proach was first proposed by Stenmark in his 1990 paper [15],
and we are revisiting the approach from the perspective of con-
founding variables and Simpson’s paradox. This approach is im-
portant because there are some confounding variables that are
not optimally addressed using any of the treatments mentioned
above.

It is not usually desirable or practical to include a multivariate
analysis of most aggregation confounding variables as described
in Section 4.2, since if data from several states are included,
a multiplier by state is probably not a necessary rating model
output. This is because each state’s overall rate change require-
ments will be calculated through a statewide indication, possibly
at some indeterminate time in the future. In addition, a multiplier
for each experience year has no direct application or interpreta-
tion. Regardless, recognition of such variables in multivariate
analysis, through the use of dummy variables, is an accepted
and effective practice as will be discussed in Section 5.6. An
alternative to that approach will be discussed in this section.

Is there a way that data from several experience years and
several states can be aggregated to increase data volume without
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possibly confounding the results of the study and without the
necessity of inclusion of the confounding variable in the
analysis?

As stated previously, there are two conditions necessary for a
variable to confound the results of an analysis:

1. There must be a relationship between that variable and
the experience variable.

2. There must be a relationship between that variable and
at least one of the rating variables under analysis.

If either of those two conditions is not met then there is no
confounding of the results.

This leads to the question: if both conditions are met, can
the data be modified so that one of the conditions is no longer
met, eliminating the confounding? This must be done in such a
manner that the important underlying relationships in the data are
not disturbed. In the following sections, we will show the scaling
factors approach using a class plan analysis example with two
potential confounding variables—states and years.

5.5.1. The Loss Experience Model

To eliminate the confounding effect, it is first necessary to
quantify that effect on a classification loss model. The model
need not be complex and is composed, at the atomic level,
of exposures, base rate, current rating factors, required rat-
ing factors and base class loss ratio. Appendix A outlines this
model and the quantification of the impact of confounding.
For example, the total earned premiums for class i on present
rates= F, = > €;,,Bc; and the total incurred losses for class
i =L; =3, s€ylyBysf;- The notation introduced in Appendix
A will be used throughout the remainder of Section 5.

The impact on indicated class relativities due to the confound-
ing effect of aggregation of experience by year and by state is
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displayed for three classification ratemaking methods: the loss
ratio method, the pure premium method and the modified loss
ratio method. The modified loss ratio method bears some de-
scription. The premiums are calculated at base class rates so that
the output of the method is the class relativity, not the indicated
change to that relativity.

In addition to the three methods presented there is another
subtle variation in methodology. It is possible to develop each
class relativity as a ratio of the selected statistic (e.g., loss ra-
tio) to that of a base class (special case) or to the statistic of
the all-class experience (general case). The words “special” or
“general” are used to identify each method. For example, in Per-
sonal Automobile Insurance it is common to divide the class
loss ratio by the loss ratio for adult driver (pleasure use). This
is the special case. It is not always the case that the base class
has a large portion of the business, so the all-class loss ratio
may provide a more stable base. This is the general case. The
class relativities can be normalized back to the base class af-
ter the indicated relativities have been credibility weighted and
selections have been made from those credibility-weighted rel-
ativities. The model introduced by Stenmark [15] was for the
special case only. Including the general case adds further flexi-
bility.

The bias produced by confounding is derived in Appendix A
and is reproduced below:

Bias arising from confounding using pure premium method
(special case):

& D TenBe S S
fi Zy Zselys Z Z €hysTys }Yf;

Zyzsezys ys ys .ﬂ 1. (51)
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Bias arising from confounding using loss ratio method (special
case):

8i - 2y 205 CiysTys Bys . 2oy 2serysB ys
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— 1. (5.2)

Bias arising from confounding using modified loss ratio method
(special case)

& _ Z) Zvezyvrva)v o Zy ZsebysBys 1
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Each of the above utilizes the base class experience as the
base. If the relativity is calculated utilizing, instead, the all-class
experience (general case), then the bias for the modified loss
ratio method is shown in Equation (5.4).

&_ Z ZsezysrysByS . Zyzsebys ys 1. (54)

f,’ Z) Zsez)s ys Cp Z) Zsebys ys )S

1. (5.3)

5.5.2. Derivation of the Scaling Factor

Is it possible to scale the premiums or losses (or both) in
such a manner that the bias is removed when the data from one
state and/or year are combined with that of another state or year?
What characteristics should such a scaling factor possess? Two
criteria must be met by any scaling factor candidate:

Criterion I: The scaling factors should maintain the rela-
tionship between class loss ratios by year and state (the scaling
factors should not change the underlying relativities).

Criterion 2: The scaling factors should reduce the bias due
to confounding to zero.
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Any scaling factor that is applied uniformly to each class
within a specific state for a particular year or is applied to both
premiums and losses for a specific class will fulfill the require-
ments of Criterion 1. When either the exposure distribution or the
base class loss ratio remains constant, the distortion is not present
and any scaling factor that stabilizes either the base or total class
loss ratio (in the special case or general case, respectively), or the
exposure distribution should fulfill the requirements of Criter-
ion 2.

A clue as to how to approach the derivation of a scaling factor
was discussed in the section on experiment design. If the expe-
rience is balanced or there is no relationship between the expe-
rience and the confounding variable, then confounding does not
occur. If a scaling factor candidate can promote either character-
istic, then confounding should be mitigated.

Appendix B displays the evaluation of four types of scaling
factors that meet the needs of both criteria. These scaling fac-
tors can be broken into two categories. One category applies to
the special case and the other applies to the general case. Each
category has one scaling factor that is used to address the non-
independence of the confounding variable and the loss statis-
tic (loss ratio, pure premium, etc.). The other scaling factor ad-
dresses the non-independence of the confounding variable and
the rating element(s) under study (balance). Only one type of scal-
ing factor need be used in a rate analysis. The type of factor to
use is the choice of the actuary.

Please note that these factors were arrived at by inspection.
This was not a trivial process, but the authors believe that a
mathematical derivation of the factor is not possible. The fac-
tors are tested within Appendix B to display that the bias from
confounding is eliminated.

The first scaling factor that is considered is the reciprocal of
the base class loss ratio for each state and year. By applying
this factor uniformly to the losses for each class, the relationship
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between each of the class loss ratios is maintained (Criterion 1)
while the method error is reduced to zero (Criterion 2). This is
shown in Appendix B.

The example given in Exhibits 1-5 is used to examine the
scaling factors. Exhibit 2 displays the effect of scaling losses
with the reciprocal of the base class loss ratio. Both Exhibits
2 and 3 utilize input parameters that were set forth in Exhibit
1. The modified loss ratio method is utilized in Exhibit 2. The
premium is modified to the base class rate level by dividing by
the class factor prior to calculating the loss ratio. For each class,
the losses are scaled by the base class adjusted loss ratio for that
year and state. For example, the incurred losses for state 01, year
1 ($500,000) are multiplied by the reciprocal of class 01 loss ra-
tio (1.00/0.50 = 2.00) to yield the scaled losses of $1,000,000.
The class 02 incurred losses ($525,000) are also multiplied by
this factor to yield the scaled losses for that class of $1,050,000.
These scaled losses maintain the relationship between the class
loss ratios, but lose any information regarding the actual base
class loss ratio. It is possible to apply a scaling factor (the base
class loss ratio in this case rather than its reciprocal) to the pre-
mium rather than the losses. This method should be used only
for larger, more stable lines of business. In cases where even the
base class loss ratio can fluctuate wildly, it is more appropriate
to scale the losses. The reason is that scaled losses are equal, in
total, to premium. If the scaling factor were applied to premium,
the result would be equal to (the more volatile) losses.

The second scaling factor derived in Appendix B addresses
the different exposure distribution by year and state. The ratio
of the total exposures for each class to the total exposures for
the base class is multiplied by the ratio of the base class ex-
posures in each state and year to the class exposures in each
state and year to provide the scaling factor (algebraically, S;,,
(Zy Zs eiys/Zy Zs ebys) i (ebys/eiys))- As OppOSGd to the first scal-
ing factor, the second scaling factor is unique for each class, year
and state. However, since the factor is applied to both premiums
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and losses, this scaling factor also satisfies the requirements of
Criterion 1. When e¢j,; replaces ¢, in the equation for the error
developed in Appendix A, error is reduced to zero, thus satisfy-
ing the requirements of Criterion 2. Exhibit 3 displays the effect

of utilizing the second scaling factor.

The third scaling factor is for the general case and it addresses
the non-independence of the confounding variable and the loss
experience, as did Scaling Factor 1. Appendix B displays the
derivation of this factor. The reciprocal of the loss ratio for the
state and year is shown to eliminate the bias in the loss experi-
ence.

The fourth scaling factor is similarly tested in Appendix B.
This factor is applied in the general case and addresses bal-
ance. As displayed in the appendix this scaling factor is S;,, =

(Zy Zs eiys/Zi Zy Zs eiys) o (Zl eiys/eiys)- ”

The advantages of Scaling Factors 1 and 3 are:

1. Ease of use: The base class and statewide loss ratios are
directly obtainable from the data already necessary for
the modified loss ratio method.

2. Since the scaling factor is applied uniformly for each
class, the premium distribution by class for each year
and state is left unaltered.

3. Many of the traditional adjustments to premium and loss
data are no longer necessary. Any adjustment that ap-
plies uniformly to the premiums or losses of all classes
is nullified by the application of that scaling factor. These
adjustments would include present level adjustments for
overall rate changes, development factors and trend fac-
tors. If, however, an adjustment is not applied uniformly
by class, it will still be necessary. For example, if trend
factors are applied by cause of loss, these factors will
need to be applied prior to the scaling process.
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TABLE 10

RESULT OF MINIMUM Bi1AS
USING DUMMY VARIABLES FOR STATE AND YEAR

Raw Output
Number of
1 2 Iterations
State 1.1544 1.3853 11
Year 0.7432 1.1148
Class 0.5828 1.2238
Normalized
1 2
State 0.5000 1.8900
Year 1.0000 1.5000
Class 1.0000 2.1000

The advantage of Scaling Factors 2 and 4 is that if the ex-
posure distribution is more stable than the loss ratios from year
to year, then Scaling Factors 2 and 4 will result in less abrupt
adjustments for most classes than will Scaling Factors 1 and 3.

5.6. Comparison of Multivariate Analysis vs. Scaling

It is common practice to include dummy variables for poten-
tial aggregation confounding variables in a multivariate analy-
sis. Inclusion of a dummy variable for both year and state, for
example, would allow the non-independence of those variables
with the dependent variable (e.g., loss ratio) to be reflected in
the dummy variables. Does this methodology compensate for
the confounding observed previously? If it does, is this method
more or less effective than the use of one of the scaling factors
discussed in the previous section? Table 10 displays the results
of such a computation. The resulting factors for States 1 and 2,
Years 1 and 2 and Classes 01 and 02 are shown. In eleven iter-
ations the minimum bias equations converged to the raw output
displayed in Table 10.
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The raw output was then normalized to base class (year and
class) and the state factors were adjusted to correct for the nor-
malization. The normalized class 02 factor is equal to the correct
value, 2.10. It appears that both the scaling factors discussed in
Section 5.5 and the multivariate analysis discussed above yield
the correct factor in this deterministic scenario.

The world in which we live is hardly deterministic. It is nec-
essary to test each method in a stochastic model. The determin-
istic model was used to parameterize such a model. Separate
frequency and severity averages were derived assuming a fre-
quency of 0.01 adjusted by the class and year loss ratio. The state
loss ratio was reflected in the severity. The frequency distribu-
tion was assumed to be Poisson and the severity distribution was
assumed to be Lognormal. Exhibit 4 displays the model output.
One thousand iterations were simulated. Within each iteration
for each exposure for each year, state, and class a number of
claims was derived from the Poisson. For each of these claims,
a claim size was determined from the Lognormal distribution.
The loss ratio for each year, state, and class was determined and
from these the Class 02 relativity was derived using the univari-
ate (traditional) method, each of the four scaling factor methods,
as well as Bailey’s minimum bias. The authors acknowledge that
the use of a linear model based on the Lognormal might have
been more appropriate.

The values that emerged from the deterministic model are
displayed as the expected values. Below these are the average
values from all one thousand iterations. Finally, the next row
displays the mean square error (MSE) for each column. The
value used to calculate this error for the univariate method was
the correct class relativity rather than the relativity emerging from
the deterministic model (i.e., 2.10 rather than 2.2958).

The presence or absence of a loss limit might affect the sen-
sitivity of each method to variability in losses. Therefore, the
model was repeated, but this time losses were limited to $25,000.
Of course, the Lognormal parameters had to be adjusted upward
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to compensate for the excluded losses at the top end of the dis-
tribution.

The mean square error for the univariate method was some-
what higher than that for the other methods with or without the
loss limitation. This was expected since the method possessed a
relatively large bias in the first place. On the other hand, there
was no significant difference between the errors for Bailey’s min-
imum bias and the four scaling methods. It appears that while
use of an iterative bias reducing methodology does, in fact, re-
duce bias, so do each of the scaling factors described earlier in
this paper.

6. CONFOUNDING VARIABLES AND CURRENT ACTUARIAL
PRACTICE

6.1. Areas Where Confounding Variables Have Been Recognized

Bailey and Simon [2] first recognized the potential for bias
from confounding in 1960, though they did not identify it as
such. Are there other areas where actuaries have recognized this
bias and compensated for it?

One answer is in the trending process that actuaries frequently
employ in their rating and reserving applications to adjust pre-
mium and loss data. It is customary when preparing a rate indi-
cation to trend losses to recognize the increase in severity and
changing frequency. It is also necessary to trend premium to rec-
ognize that some loss trend is from factors that will increase the
premium over time. These inflation and coverage-sensitive rat-
ing factors confound the loss trends necessitating an adjustment.
Since deductible, for example, is both the trend measure, pure
premium, or frequency and severity, as well as time (deductibles
tend to increase over time), deductible is a confounding variable
for trend data. Other confounding variables for trend might be
symbol, model year, limit of liability, and amount of insurance,
to name just a few.
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6.2. Areas Where Confounding May Be an Unrecognized
Problem

Confounding is a frequent and serious problem in ratemak-
ing. Obviously, almost all the rating variables can confound each
other because their distributions are hardly independent. As dis-
cussed above, the premium and loss on-leveling and trending is
a process that actuaries employ to deal with such confounding
to the best we can. However, the process may not be able to
remove all the potential confounding relationships between the
variables.

Moreover, there are other potential confounding variables that
exist outside the rating variables that may not be fully recognized
and explored, i.e., lurking confounding variables. The following
are a few examples, some of which have been discussed previ-
ously:

e Geographic Information: While a rating plan may include
geographic rating variables, such as state and territory, these
variables may not be enough to fully explain the confounding
relationship in the rating data. The real underlying drivers for
such geographic factors include the underlying demographic,
consumer, economic, traffic, and weather information. This in-
formation includes, but is not limited to, information such as ed-
ucation, employment, credit, lifestyle, consumer spending, traffic
volume, crime, cold, heat, hail, storms, etc. Especially for com-
mercial lines of business, such geographic information is usually
under-represented in the rating process.

e Market Segment: The distribution of rating variables is
significantly influenced by market segments. For example, a
non-standard book of business might be expected to have a
much higher distribution of younger drivers, more risks with
prior claims and violations, and insurance with lower coverages.
Therefore, it might be prudent to aggregate or stratify data along
different market segments. In many instances, companies or tier-
ing will be used to separate different market segments. It is highly
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likely that classification experience will be confounded by rating
tier or company. Variables used in company placement or tiers
typically include both rating variables and non-rating variables.
Company or rating tier can be used as a variable with classifica-
tion in a linear model, or the experience should be treated with
one of scaling factors introduced in Section 5.5.

e Distribution Channels: Our experience indicates that dis-
tribution channels will also affect the composition of and the
information gathered for a book of business. This issue has be-
come even more significant as many companies are marketing
online in addition to the two traditional channels of direct writ-
ers and independent agents. We have found that business flowing
through different channels may be of very different quality and
contain differing amounts of information.

e External Environment: The insurance industry is not op-
erating within an isolated world, and its performance is a part
of the increasingly more integrated national or even worldwide
economies. Therefore, in this fast-changing world, issues such as
technological development, economic cycles, and recent terrorist
activity will affect the insurance industry. The current hard mar-
ket condition is clear evidence of how the insurance underwriting
cycle is influenced by the external world. Therefore, combining
multiple years with possible year-to-year changes and insurance
cycles requires special care. Additional care must be rendered
when projecting historical information into the future.

7. CONCLUSIONS

E. H. Simpson introduced the concept now known as Simp-
son’s paradox. It is the extreme case of a phenomenon known
as confounding. While such extreme cases may not occur fre-
quently in actuarial calculations, the change in relationship due
to confounding does.

A variable can confound the results of an insurance rate struc-
ture analysis only if it is related (non-independent) to both the
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experience measure (loss ratio, pure premium, etc.) and at least
one of the other rating variables in the analysis. Confounding
variables can be categorized as either a stratification confound-
ing variable, an aggregation confounding variable, or a lurking
confounding variable.

Several methods for the treatment of confounding were dis-
cussed including no treatment, experimental design, multivariate
analysis, meta-analysis, and use of scaling factors.

The combination of data from more than one year may cause
distortion in traditional classification ratemaking techniques if
each set of data represents a different base rate adequacy and
different exposure distribution by class. The combination of data
from more than one state may cause distortion in the traditional
pure premium method if the base rate from each state is differ-
ent and possesses different exposure distributions by class. The
combination of data from more than one state may cause distor-
tion in both of the traditional methods if the base rate from each
state is different, the base class loss ratio is different, and the
state/year data exhibit a different exposure distribution by class.
It is more than likely that these conditions will exist within most
sets of ratemaking data. These distortions may be remedied by
the application of a scaling factor to the data from each year and
each state. This scaling factor may address either the exposure
distribution or the base rate adequacy. An investigation of the ef-
fectiveness of multivariate analysis in comparison with the use of
scaling factors reveals that both methodologies reduce the effect
of confounding, probably to the same degree.

The authors have encountered the confounding experience nu-
merous times in their work, and it is with this motivation that we
introduce Simpson’s paradox and the concept of confounding
to the actuarial community. We believe that understanding these
concepts is a key for actuaries in understanding the “correlation”
issue that exists frequently in our actuarial work, and the impact
of such “correlation” on analysis results.
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EXHIBIT 1
PART 1

MULTIPLE STATE—MULTIPLE YEAR SITUATION
DIFFERENT LOSS RATIOS—DIFFERENT DISTRIBUTION

Assumptions
Class Factors Underlying Experience Class 01 Loss Ratio
Current Required Loss Ratios
Class Factor Factor State Year 1 Year 2
01 1.00 1.00 1 50% 75%
02 2.00 2.10 2 60% 90%
Distribution of Exposures
State 1 State 2
Class Year 1 Year 2 Year 1 Year 2 Total
01 10,000 15,000 10,000 15,000 50,000
02 5,000 15,000 15,000 45,000 80,000
Total 15,000 30,000 25,000 60,000 130,000

State 1 Base Rate = $100
State 2 Base Rate = $200

(The Derived Loss Experience is shown on the next page.)

Indicated Class 02 Relativity

Loss Ratio Method: (84.56%/73.67%) x 2.00 = 2.30
Pure Premium Method: 295.97/110.50 = 2.68
Modified Loss Ratio Method: (169.13%/73.67%) = 2.30
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EXHIBIT 4
PArT 1

STOCHASTIC MODEL WITH LOGNORMALLY DISTRIBUTED LLOSSES
(UNLIMITED)

Iterations: 1000

Class 02 Factor

. . . . . Minimum Bias
Univariate| Scaling | Scaling | Scaling | Scaling

Iteration Method [Factor 1 | Factor 2 | Factor 3 | Factor 4 | State | Year | Class

Expected  2.2657 2.1000 2.1000 2.1000 2.1000 1.1478 1.4403 2.1016
Observed  2.3129  2.1573  2.1149 21330 2.1183 1.2071 1.5166 2.1128
MSE 0.1020  0.0643 0.0474 0.0465 0.0554 0.0168 0.0276  0.0461

1 23935 21936 21631 2.1932 2.1736 1.2049 1.5474 2.1476
2 1.8113  1.7371 1.6567 1.6791 1.7141 1.0902 1.6097 1.6514
3 22538 2.0191 2.0735 2.0988 1.9792 12186 1.5926 2.1182
4 24408 24355 21858 2.1875 23471 1.2026 1.4451 2.1536
5 2.1421 2.0335 19766 2.0229 1.9670 1.1834 1.4379 1.9186
6 24667 23157 23354 23564 23083 1.0514 1.4017 2.3349
7 25048 24576 22818 2.3519 22324 1.2738 15613 2.1804
8 23571 22147 21329  2.1659 2.1591 13534 13752 2.0514
9 2.1105 19180 1.8851 1.8830 1.9294 1.1960 1.7415 1.8736
10 24410 23869 21701 2.1827 23078 1.2407 1.4736  2.0896
11 2.1020 1.9224 19825 19872 19249 1.1422 1.3841 2.0751
12 2.0084 1.8736 1.8714 1.9208 1.7754 1.1715 15789 1.8671
13 2.2959 22104 2.089 2.1382 2.1279 1.1512 1.6218 1.9925
14 2.1490 19574 19076 1.9281 1.9514 1.4529 13877 1.9140
15 2.2361 19854 2.0147 2.0346 19838 1.3287 1.5561 2.0263
16 2.1911 2.0321 19674 2.0141 1.9646 12217 1.7060 1.9186
17 2.2988 22033 2.0942 2.0757 2.1698 1.0465 1.7953  2.1426
18 2.5449 25903 23678 24434 24114 1.0333 1.5893 2.2433
19 23596  2.1615 2.1741 21971 2.1472 1.1520 1.6126  2.1583
20 22831 2.0866 2.0896 2.1006 2.0688 1.1301 1.5666 2.1466
21 19180 1.6937 1.7110 1.7552 1.6477 1.3537 1.6972 1.7397
22 2.1284 20116 2.0323 2.0510 2.0127 1.0356 13674 2.0325
23 1.9500 1.7895 1.7802 1.7939 1.7911 1.1713 1.4976 1.8193
24 25896 24719 23317 23935 22911 1.2323 1.6382  2.2866
25 2.5466 24214 24049 24214 23956 1.1283 1.3022 2.3517
26 22363 2.0273 2.0281 2.0448 2.0267 1.2561 15132 2.0196
27 24753 23979 22668 23078 22603 1.2619 1.3369 2.1870
28 23489 21869 2.1419 2.1741  2.1485 1.1248 1.6669 2.1070
29 2.1399  2.0637 19157 19197 2.0193 1.1871 1.5602 1.9278
30 24339 22187 21744 2.1927 2.1946 1.2553 1.7265 2.1142

W
—

2.6216 24300 24392 24183 24331 1.1500 1.4939 24109
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EXHIBIT 4

PART 2

STOCHASTIC MODEL WITH LOGNORMALLY DISTRIBUTED LLOSSES

(UNLIMITED

)

Loss Ratios

State 1 State 2
Year 1 Year 2 Year 1 Year 2
Class 01| Class 02 | Class 01 | Class 02 |Class 01 | Class 02 | Class 01 [Class 02
Expected 0.5000 0.5250 0.7500 0.7875 0.6000 0.6300 0.9000 0.9450
Observed  0.4985 0.5240 0.7530 0.7865 0.5956 0.6283 0.9019 0.9445
MSE 0.0140 0.0130 0.0150 0.0070 0.0159 0.0057 0.0168 0.0032
1 0.6534 0.5833 0.6450 0.7317 0.4710 0.5502 0.8950 0.9649
2 0.5139 04857 1.0362 0.7646 0.7784 0.5104 0.9056 0.8667
3 0.4053 0.4337 0.6989 0.8902 0.5492 0.6797 1.0675 0.9460
4 0.5763 04172 0.7978 0.7673 0.6987 0.6395 0.6964 0.9671
5 0.5296 0.5573 0.8452 0.6703 0.4758 0.6336 09148 0.8664
6 0.5477 0.6310 0.6757 0.8165 0.4827 0.6095 0.7831 0.8729
7 0.2809 0.5142 0.9039 0.6999 0.3743 0.7287 09168 0.9460
8 03796 04685 0.8075 0.5984 0.5284 0.7062 0.8134 0.8825
9 0.5170 0.5689 0.8034 0.6887 0.5964 0.4380 0.8943 0.9327
10 0.5652 03443 0.9224 0.7652 0.5930 0.7358 0.7854  0.9980
11 0.4327 04029 0.6272 0.8902 0.7467 0.6580 0.9062 0.8275
12 0.4173 0.4809 0.8150 0.7818 0.4637 0.6358 1.0940 0.8493
13 0.4549 0.6291 0.9469 0.6585 0.4334 0.5548 0.8385 0.9222
14 0.4469 0.3350 0.6642 0.6383 0.7410 0.6557 0.8636  0.8857
15 0.4699 0.5356 0.7201 0.7646 0.6318 0.6411 1.0427 1.0069
16 0.4701 04849 0.9358 0.7629 0.4819 0.6214 1.0280 0.9842
17 0.3373  0.3505 0.8378 0.9307 0.7147 0.5039 0.7264 0.8976
18 0.3690 0.5303 1.0123 0.8015 0.3737 0.6576 0.7376  0.8971
19 0.3948 0.6219 0.8550 0.8306 0.5561 0.6195 0.9290 0.9851
20 0.6618 0.4523 0.6090 0.9025 0.5637 0.5814 0.9532 0.9476
21 0.6081 0.4859 0.6171 0.7104 0.5322 0.5148 1.2337 0.9360
22 0.5790 0.6386 0.8475 0.8545 0.6246 0.6556 0.8901 0.8771
23 0.6768 0.4714 0.7298 0.8152 0.7343  0.5626 1.0024 0.9137
24 0.4986 04616 0.6781 0.7542 0.3279 0.6220 0.9056 0.9541
25 0.5320 0.7422 0.7481 0.7485 0.5069 0.6984 0.7892 0.9311
26 0.5480 0.5858 0.7793 0.7667 0.6260 0.6374 0.9919 1.0059
27 0.5829 0.5300 0.7134 0.6655 0.4030 0.7254 0.8618 0.9127
28 0.4914 0.5183 0.9033 0.8609 0.4984 0.6278 0.9344 0.9938
29 0.5140 0.3776 0.8174 0.7764 0.7685 0.5537 0.7845 0.9145
30 0.4255 0.6517 0.8581 0.7072 0.4974 0.5526 09187 1.0407
31 0.4136 0.8439 0.7312 0.7344 0.5475 0.5574 0.7777 0.9875
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EXHIBIT 5
PArT 1

STOCHASTIC MODEL WITH TRUNCATED LOGNORMALLY DISTRIBUTED
LossEs ($25,000 LiMiIT)

Iterations: 1000

Class 02 Factor

. . . . . Minimum Bias
Univariate| Scaling | Scaling | Scaling | Scaling

Iteration Method [Factor 1 | Factor 2 | Factor 3 | Factor 4 | State | Year | Class

Expected  2.2657 2.1000 2.1000 2.1000 2.1000 1.1478 1.4403 2.1016
Observed  2.3053  2.1271 2.1088 2.1271 2.1095 1.2030 1.5084 2.1083
MSE 0.0658 0.0249 0.0207 0.0206 0.0228 0.0099 0.0149 0.0213

1 23802 2.1588  2.1801 22083  2.1394 1.2469 14534 2.1771

2 2.0924 19451 19030 1.9097 1.9427 1.1631 1.5583 1.9315

3 2.1894 19774 2.0200 2.0371 19742 1.1944 1.5059 2.0514
4 22927 21755 2.0755 2.0928 2.1518 1.2505 1.3676 2.0510

5 23338  2.1908  2.1298  2.1655 2.1426 1.1665 1.5365 2.0773

6 23500 22127 22156 2.2302 22132 1.0679 13904 2.2182
7 24182 21886 2.1941 2.2289 2.1514 13159 1.5362 2.1689

8 22514 20719 2.0278 2.0596 2.0368 13684 1.4208 1.9732

9 2.0880 1.9078 19158 1.9279 19166 1.1744 1.5555 1.9314
10 23873 22889 21538 2.1701  2.2455 1.1996 1.4365 2.1102
11 2.2490  2.0481 2.0324 2.0433 2.0486 1.2785 1.4612 2.0641
12 23228 21178 21601 2.1825 2.1109 1.1420 1.5201 2.1736
13 23093 22093 2.0827 2.1137 21556 12011 1.5610 2.0053
14 2.0638 1.8534 1.8354 1.8600 1.8543 13891 1.4913 1.8448
15 2.1417 19027 19514 19829 1.8830 1.2770 1.6096  1.9699
16 2.0675 1.9028 1.8807 1.9202 1.8672 1.2018 1.5927 1.8508
17 2.2452  2.0472 2.0482 2.0599 2.0556 1.1755 1.5753 2.0882
18 24198 23042 22645 23026 22484 1.0750 1.5073 2.2190
19 2.3490  2.1635 2.1565 2.1792 2.1507 1.1715 1.5553  2.1383
20 23280 21199 21324 2.1408 2.1210 1.1385 1.5696 2.1678
21 2.1259 1.8874 19175 19436 1.8794 1.2672 1.6252 1.9396
22 2.1688 2.0283 2.0268 2.0478 2.0267 1.1261 13799 2.0264
23 2.2252  2.0744 2.0476 2.0590 2.0720 1.1920 1.4154 2.0694
24 24252 22689 21816 2.2237 2.1666 12822 1.5327 2.1346
25 23196  2.1454  2.1753 2.1842 2.1531 1.1397 1.3929 2.1718
26 2.1485 1.9262 19610 1.9834 1.9253 1.1609 1.7169 1.9640
27 24424 22630 22040 22237 22470 12571 14515 2.1820
28 2.1618 2.0127 19780 2.0022 1.9958 1.1605 1.5399 1.9492
29 2.2255  2.1499 1.9920 19877 2.0999 1.2164 1.5028 2.0116
30 24324 22201 21840 2.1841 22225 1.2327 1.6465 2.1610

W
—

2.7787 2.5628  2.5558 25526 25620 1.1933 1.4861 2.5268
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EXHIBIT 5
PART 2

STOCHASTIC MODEL WITH TRUNCATED LOGNORMALLY DISTRIBUTED
LossEs ($25,000 LiMiIT)

Loss Ratios

State 1 State 2

Year 1 Year 2 Year 1 Year 2

Class 01| Class 02 | Class 01 | Class 02 |Class 01 | Class 02 | Class 01 [Class 02

Expected  0.5000 0.5250 0.7500 0.7875 0.6000 0.6300 0.9000 0.9450
Observed  0.4973  0.5229 0.7530 0.7890  0.5969 0.6309 0.9005 0.9448
MSE 0.0077  0.0077 0.0083 0.0043 0.0065 0.0024 0.0065 0.0013

1 0.5754 0.6351 0.6206 0.7198 0.5008 0.6076 0.9345 0.9533

2 0.5050 0.4458 0.7667 0.7910 0.7212  0.5417 0.8576  0.8932

3 0.4305 0.4164 0.7654 0.8759 0.6392 0.6960 0.9926  0.9237

4 0.6062 0.4894 0.7510 0.7166 0.6680 0.6652 0.8156  0.9430

5 0.5885 0.6086 0.8329 0.7549 04763 0.6185 09199 0.9774

6 0.5641 0.6105 0.7519 0.8485 0.5819 0.6475 0.8220 0.9058

7 0.3439 05371 0.7703  0.7359 0.5369 0.6851 0.9492 0.9785

8 0.4277 04732 0.7943 0.6271 0.5626 0.6907 0.9059 0.9142

9 0.4561 05476 0.7536  0.7320 0.6524 0.5204 0.8835 0.8741
10 0.5993 0.3873 0.8301 0.7960 0.5989 0.7115 0.8115 0.9646
11 05112 04113 0.6639 0.7816  0.6937 0.6421 0.8956  0.9346
12 0.4277 0.5407 0.7578 0.8461 0.5572 0.6457 09186 0.9228
13 04600 0.5396 09565 0.7053 0.5594 0.6241 0.8322  0.9640
14 0.4575 03483 0.6963 0.6661 0.6889 0.6096 0.9341  0.8825
15 04153 05242 0.7279 0.7735 0.5746 0.6100 1.0758  0.9454
16 0.5335 05326 0.8806 0.7403  0.5319 0.6038 1.0331  0.9360
17 0.3894 03630 0.6886 0.7945 0.6294 0.5661 0.8089  0.8480
18 0.4358 0.5631 0.8784 0.8425 04735 0.6724 0.8431 0.9165
19 04207 05548 0.8551 0.8276 0.5852 0.6575 09104 0.9774
20 0.6114 05239 0.6711 0.8798 0.5741 0.5867 0.9348 0.9741
21 0.5512  0.5160 0.6732 0.7589  0.5653 0.5557 1.0586  0.9532
22 0.5676  0.5579 0.7885 0.8012 0.6365 0.6578 0.8857 0.8938
23 0.4954 0.5022 0.7312 0.7877 0.7174 0.6319 0.8392 0.9097
24 0.5059 0.4322 0.7337 0.7261 0.4233 0.6761 0.9291  0.9475
25 0.5268 0.7172 0.7390 0.7731 0.6009 0.6251 0.8721  0.9348
26 04864 05932 0.8073 0.8001 0.5366 0.5285 1.0234  0.9589
27 0.5085 0.4261 0.6857 0.7220 0.5505 0.6438 0.7971 0.9153
28 0.5388 0.5572 09476 0.8214 0.6261 0.6596 0.9785  0.9905
29 0.5729 0.4374 0.7486 0.7783  0.7889 0.5675 0.7865 0.9569
30 0.4480 05968 0.7583 0.7247 0.5706 0.5350 0.8382  0.9898

31 04251 0.7158 0.6981 0.7751 0.5259 0.6301 0.7727 1.0163
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APPENDIX A

The symbolic representation of the impact of confounding on
class relativity analysis due to the aggregation of more than one
year and more than one state.

The Loss Experience Model
Let

¢;ys = Earned exposures for class i, year y, state s
rys = Base class loss ratio for year y, state s

By, = Base Rate for year y, state s

b = Base class subscript

C:

; = Current class factor for class i (¢, = 1)

f; = Required factor for class i (f, = 1)
g; = Factor yielded by method for class i
E.

1

= Total earned exposures for class i = ZZeiys
y N

P, = Total earned premiums for class i on present rates

= Z Z eiysBysCi
y s

= Total incurred losses for class i =» Y e, B, f;
y s

i

An “O” superscript indicates that the variable is relative to
overall (all class) rather than the base class. For example:

0 =

ys = Overall class loss ratio for year y, state s

fi% = Required factor for class i where overall class factor for
year y, state s is unity
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Special Case

If each class’s loss ratio is related to the base class loss ratio,
use the Special Case below to determine relativities. The bias re-
sulting from the Loss Ratio Method, the Pure Premium Method,
and the Modified Loss Ratio Method have been derived.

Pure Premium Method

Zy Zvei)vrvayvﬁ

¢ = Doy 25 Ciys
2y 25 ChyslysByst

Doy 2 €hys

The bias in the method is

& _ Zy Zsezys ys ys Zy Zsebys 1

fi Zy Zs iys Zy Zvebyv ys )vf;
Zy Zcelyv ys yv ﬂ 1
E; ‘L,

Loss Ratio Method

Zyzseiyf Bysf'

_ Zyzsezyf ysCi
L Zy ZsebysrysBysfb
Zy Zs ebysByst

The bias in the method is

Zy ds ezysrysBys o Zy 25 ebys )’S
fi ZyZS‘elyS ysz ZyZSebyY ys yr

Zyzsetys s ys i
P Lb

1

-1

—1.
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Modified Loss Ratio Method
Z) Zs eiys B)sf'

_ Z) 2s ezys ys€
Z ZsebysrysBysfb
Zy Zs ebysByscb
The bias in the method is
8i Z ZsezysrysBys o Zy Zs ebys ys 1

f;' Z) Zsez)s ys Cp Z) Zsebys ys )S
_ ZyZvelyvrva)Y . i
Zy Zs ezysByscb Ly

General Case

—1. (A.1)

If each class’s loss ratio is related to the overall loss ratio
rather than the base class loss ratio, to determine relativities use
the General Case below. Only the error resulting from the mod-
ified loss ratio method has been derived.

Modified Loss Ratio Method

Zy Zveiyv B)vf;"
go Z Zv iys yv
' Z Zy Zsetys Bysf'
Z Z) Zvelyv ys€

The bias in the method is

£71=12271yvy7y€f; ZZZ;WV” 1

f[)?s f[y Zy Zs ezys yscb Z Zy Zsezys Bysf
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APPENDIX B

DERIVATION OF SCALING FACTORS

Criterion I: The scaling factor should maintain the relation-
ship between class loss ratios by year and state.

Criterion 2: The scaling factor should reduce the method
error to zero.

Let primed variables indicate variables after the application of
a scaling factor (e.g., g/ is the factor yielded by a method after
the application of a scaling factor).

First Special Scaling Factor—Scaling Factor 1
Consider Equation (A.1) (from Appendix A):

The bias in the method is
8 | = Zy Zs ezysrysB o Zy Zs ebys ys
fi Zy Zs etysByscb Zy Zs ebys ys ys
ZyZvSyvetyvrvayv ZyZvehyv ys

= [ ] 1 = 0
Z)ZYel)Y yv Z)Zv )vebyvrvayv

If each ry; = 1, then error in method = 0; therefore 1/ is a
scaling factor and Sy, = 1/r,; and will be applied to each loss.

-1

Second Special Scaling Factor—Scaling Factor 2

Consider a scaling factor S, to be applied to premiums and

losses:
Zy Zs eiys ebys
Let S, = X0 o 00,
Zy Zs ebys eiys

Also (for convenience)

Let €, = 2y Los iy o
= XSS g
iys Zy » Chys ys
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The bias in the method is

g_fi _ 2y ZvStyvelw”vayv 2y 2 Siys€iysBys |
fi >y 25 Siys€iysBysCh Z 25 Siys€iystysBys
Zy s etysrysB Z) Zvebyf yY 1
Z) ZYetys vsCb Z) ZYebyv ysoys
€0y D s ChyslysByg . €, >y 2 s ChysB ys _1=o,

ei Zy Zs ebysByst eb Zy ZS ebys ys yr
/
where e = Zy Do e,-ys/Zy 2s €hys-
So this scaling factor satisfies Criterion 2.

Since this scaling factor is applied to premiums and losses by
class, each class loss ratio remains unchanged satisfying Crite-
rion 1.

Second Special Scaling Factor:

S. = Z Zvel)v ebys
l Zy Zs ebys eiys

General Scaling Factors

If each class’s loss ratio related to the overall loss ratio is
used rather than the base class loss ratio, another set of scaling
factors (generalized scaling factors) is used. First it is necessary
to establish some relationships:

Define
f‘O — fl Zi Ciys
e Zi eiysfi

Then
0 Zi eiys Bysf' rys Zi eiysfi — rysf;'

Y. = =
ys 0
Zz ezys ys Zi eiys iys
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and ry

lys = Ty f;- Also
1o} ieiyg Bysf' Zi eiysryOSBys iys
Tyg = =
Zzezys ysC Ztetys ysC
ys yszl lysfz _ ryOs Zieiysfi)?s
- Bys Zieiyscb Zi eiys ’

0 _
therefore 3, ;y fivs = 22i €y

First General Scaling Factor—Scaling Factor 3

Consider a scaling factor, to be applied to losses only.

Zz tvstB
S el)S Zl l)S _ ezys _ iyos —
Zz iys vsf;B)s Zz iys )sfz rvs Zl iys z rysfi
tezvs
Z ZS lVS y\ y&fl‘ Z Z ZS ly\ y\
&_ _ Z Z\ iys ys Z Zst iys vs vsz 1
fi )s
— L Z Zselys }s }sfz Z Z Zs iys ys 71
fl)os Z Zv iys ys Z Z Zv iys ys )sz
g_f_ - L Zny tvsSvsrvsBysfz Z Z Es z)s )s
f;' ]l;)OS Z Zs iys Vs Z Z Zs iys ys y\ y\fl‘
0
, Z Zs 1ys< f) ys‘ yff;
& _1 _ l N vs i
fi )Os Z Zs iys )s
Z Z Zv iys y\

-1

0
Z Z Zs iys <I"w}l> y\ y\f;

70"
s

-1
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g,' — 1 Z Zs iys 1vsB)s Z Z Zs tys ys
f;‘ ]l;)OS Z Zs iys y\ Z Z Z\ iys IVS ys

I:L. ZZ‘ ’YS )’S ZZ Z\ iys ys
fi fu?s Z Zs iys }s Z Zs )szl is

g_§ 1= Z}Z ezvsts Z Z Zs iys vs .

ﬁ Zyz el)S Z Zs Vs £ai tys
D VI i 5 o M, MY
f;' Zyz l)S Z Z ES iys ys

Second General Scaling Factor—Scaling Factor 4

Consider a scaling factor, to be applied to premiums and
losses.

S, = Zsteiys .Zieiys
i Zi Zy Zs eiys eiys

Z Zse' s
Let e/. = Y STYS ° g e ..
o Zi Zy Zs eiys i s

The bias in the method is
gllo l Z Zselvér\)B)Xj; Z Z ZselVA ys

1:—. 1

fl‘)?s flf)s Z Zsel}s ys Z Z Zsel)srystsf;

LZZ<% S ) 28,18
1 Zz(% W>B
2o 2o <zzisz’2m +Tee, ) B,

oziz,zs(gzzi:‘;m e ) B

-1
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() n e,
(S5 ) D (S

[yt ) B (S ) S T (S8,
(st ) S5 S 5,5 () s,

-1

<zzzzimm>z et
<ZZZZZ> St

So this scaling factor satisfies Criterion 2.

Since this scaling factor is applied to premiums and losses by
class, each class loss ratio remains unchanged, satisfying Crite-
rion 1.

Second General Scaling Factor:
L Zy Zs eiys o Zi eiys )
He Zi Zy Zs €iys €iys






