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Abstract

The minimum bias classification ratemaking proce-
dure, introduced by Robert Bailey and LeRoy Simon in
1960, determines rate relativities simultaneously for two
or more classification dimensions. This paper summa-
rizes the minimum bias procedure for the practicing ac-
tuary and provides the intuition for several bias func-
tions: balance principle, least squares, x-squared, and
maximum likelihood. The exposition is structured around
a series of illustrations using a two-dimensional private
passenger automobile classification system: male/female
and urban/rural.
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1. THE MINIMUM BIAS PROCEDURE

Introduction

This paper is geared to the practicing actuary or actuarial stu-
dent seeking to optimize classification relativities. It provides
the intuition underlying the minimum bias procedure along with
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simple illustrations to show the computations required for each
method.

Background

The minimum bias procedure was first introduced in a 1960
Proceedings' paper by Robert Bailey and LeRoy Simon, “Two
Studies in Automobile Insurance.” Bailey and Simon examined
models with two types of arithmetic functions (multiplicative and
additive), two types of bias functions (balance principle and x-
squared), and two data types (loss costs and loss ratios).

Bailey and Simon used their procedure (i) to judge the mer-
its of an additive versus a multiplicative classification model
for Canadian private passenger automobile business and (ii) to
choose optimal rate relativities.> They discuss the rationale for
the minimum bias procedure, the characteristics of a suitable rat-
ing model, and the rating scenarios that fit the various types of
models. The authors concluded that: (i) the additive model fits the
Canada private passenger automobile data better than the mul-
tiplicative model, and (ii) the y-squared function is the optimal
bias function. The first conclusion was based on a goodness-
of-fit test; the second conclusion was based on the credibility
assigned by the y-squared function.

In a 1963 Proceedings paper, “Insurance Rates with Minimum
Bias,” Robert Bailey summarized the minimum bias theory, out-
lining the considerations that support the use of the balance prin-
ciple as the bias function and explaining when loss ratios serve
better than loss costs. This paper was on the CAS examination
syllabus for many years.

In a 1988 Proceedings paper, “Minimum Bias with General-
ized Linear Models,” Robert Brown expanded the minimum bias

IReferences to the Proceedings are to the Proceedings of the Casualty Actuarial Society.
2The minimum bias procedure deals with loss cost relativities, which we refer to here as
pure premium relativities. In practice, actuaries determine rate relativities. The two types
of relativities may differ if expenses are not a fixed percentage of premiums.
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method to use two additional types of bias function. Brown re-
tained the balance principle and y-squared functions from the
Bailey and Simon papers. He added a least squares function
(similar to the y-squared function) and a maximum likelihood
function, which assumes certain distributions of claim frequency
or claim severity in the insured population. Brown also examined
generalized linear models (GLM), which have potential statistical
advantages and may accomplish the same objectives as the mini-
mum bias procedures, though he did not find that they produced
more accurate results.> For the Canadian private passenger auto-
mobile business, Brown found the multiplicative model superior
to the additive model.

In 1990, Gary Venter introduced several extensions of the ex-
isting procedures in a discussion of Brown’s paper, along with an
analysis of credibility consideration and other modeling issues.
Brown’s Proceedings paper, along with Venter’s discussion, was
placed on the CAS actuarial syllabus in the mid-1990s.

These papers have proved difficult for practicing actuaries
to understand and for actuarial candidates to master. The au-
thors wrote for experienced actuaries who were familiar with
the ratemaking issues and proficient with the statistical models.

This paper combines the theory of the original actuarial papers
with the teaching material prepared by the authors and used to
teach the minimum bias procedure to several hundred actuarial
candidates since 1995. It explains the rationale for the proce-
dure and shows its applications. It presents the method to new
actuaries and gives them the background to read the original
Proceedings papers.

The title of this paper is the “Minimum Bias Procedure,” since
that name is now common in the U.S. actuarial profession. The
subject of this paper should more properly be described as the de-
velopment of multidimensional classification systems. This sub-

30n generalized linear models, see Feldblum et al. [forthcoming].
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ject is broad. The paper covers part of this subject, of which one
component is the minimum bias procedure and the alternative
methods discussed here.

This paper does not cover generalized linear models, which
are commonly used in the United Kingdom and in continen-
tal Europe for multidimensional classification ratemaking; see
instead the companion paper by S. Feldblum, D. Anderson,
E. Schirmacher, D. Schirmacher, and N. Thandi [forthcoming],
“Generalized Linear Models: A Practitioner’s Guide.”

2. CLASSIFICATION MODELS
Introduction

Before Bailey and Simon introduced the minimum bias pro-
cedure, classification relativities were determined one dimension
at a time. This is suitable for a single-dimensional classifica-
tion system. Workers compensation, for example, uses industry
as the only classification dimension within each state. Insurers
are now examining other classification dimensions for workers
compensation; the minimum bias procedure and generalized lin-
ear models may prove valuable in this analysis.

The minimum bias procedure becomes useful when the clas-
sification system has multiple dimensions. In this paper, we use
examples with two dimensions; the extension to three or more
dimensions is straightforward, but the arithmetic and display are
cumbersome.

We define the minimum bias terms, explain the statistical pro-
cedures, and review the intuition underlying each method. It is
hard to grasp the intuition until one has a working knowledge of
the methods. We provide the explanations alongside a series of
heuristic illustrations.

The illustrations form the backbone of this paper. The basic
illustration has two dimensions with two values in each dimen-
sion. This prevents the intuition from getting submerged under
tedious mathematics. In practice, the minimum bias procedure
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is most useful for multidimensional classification systems with
many entries in each dimension.

We show the computations for one iteration in each illustra-
tion, followed by the series of values until convergence. The
illustrations here converge in a few steps. In practice, more iter-
ations are needed for convergence of larger models. The work is
tedious by hand but elementary with current spreadsheet appli-
cations. Some spreadsheets have built-in iterative functions, such
as “goal-seek” and “solver” in Excel. Some software packages,
such as SAS, have built-in routines for GLMs. Once the intuition
is clear, the programming is not difficult.

The Multiplicative Model

We are setting pure premiums; we do not deal with expenses
or profit by classification or with gross premiums. We base the
pure premiums upon the empirical observations in each cell of
an array. For a two-dimensional classification system, this means
each cell in a matrix. The observations can be average loss costs,
loss frequencies, or loss ratios. In practice, the data would con-
sist of losses and exposures (for loss costs), claim counts and
exposures (for loss frequencies), or losses and premiums (for
loss ratios).

Hllustration 1: A classification system for private passenger
automobile insurance has two dimensions: (i) urban versus rural
and (ii) male versus female. A company insures exactly four
drivers, one in each cell, with the following observed loss costs:*

Urban Rural
Male $600 $200
Female $300 $100

We determine pure premium relativities. We first compare all
males with all females, or $800 for two exposures compared to

4We deal with unequal cell populations later in the paper.
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$400 for two exposures. This gives a pure premium relativity of
male to female =2 to 1.

We do the same for urban versus rural, and we get a relativity
of 3 to 1. We arbitrarily choose “rural female” as the base class;
by convention, the lowest cost class or the class with the largest
number of exposures is often chosen as the base class. We get
the following relativities:

Male: 2.00 = s Urban: 3.00 =1
Female: 1.00 =5, Rural:  1.00 =1,.

The indicated pure premium for a male urban driver is the base
pure premium times the urban relativity times the male relativity,
or $100 x 2.00 x 3.00 = $600. More generally, the pure premium
in cell (7,7) is $100 x s5; x 1.

In this illustration, the indicated pure premiums exactly match
the observed loss costs. The minimum bias method is not needed
for this case.

The Additive Model

The indicated pure premiums may differ from the observed
loss costs because the model structure may be incorrect or be-
cause random loss fluctuation may affect the observed loss costs.
We treat the first reason, the model structure, in this section.

Illustration 2: The observed loss costs for four drivers are
shown below.

Urban Rural
Male $700 $500
Female $400 $200

We begin in the same fashion as before, using rural females as
the base class. We compare all males to all females, giving a pure
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premium relativity of $1,200 to $600, or 2 to 1. We compare all
urban to all rural, giving a pure premium relativity of $1,100 to
$700, or 1.571 to 1.

The indicated pure premium relativities no longer match the
observed loss costs. The indicated pure premium for rural males
is $200 x 2.000 = $400, but the observed loss cost is $500. The
indicated pure premium for urban females is $200 x 1.571 =
$314, but the observed loss cost is $400. The differences are
significant.

No multiplicative factors work perfectly. In urban territories,
the relationship of male to female is $700 to $400, or 1.75 to 1.
In rural territories, the relationship of male to female is $500 to
$200, or 2.50 to 1. A male-to-female relativity appropriate for
the urban territories is not optimal for the rural territories.

Similarly, the urban-to-rural relativity is $700 to $500, or 1.4
to 1, for male drivers, and $400 to $200, or 2 to 1, for female
drivers.

The discussion in the paragraphs above assumes that the rating
model is multiplicative; in this illustration, an additive model
works better. We add or subtract a dollar amount for each class
instead of multiplying by a factor. We choose rural females as
the base class, and we use the relativities below:

Male: +$300 Urban: +$200
Female: +$0 Rural: +$0.

The pure premium for any cell is the base pure premium plus
the male/female relativity plus the urban/rural relativity. The in-
dicated pure premiums now match the observed loss costs. Rural
male = $200 + $300 + $0 = $500; urban male = $200 + $300 +
$200 = $700; urban female = $200 + $0 + $200 = $400. The ad-
ditive method provides an exact match to the observed loss costs
because the dollar differences are the same in each row ($200)
and in each column ($300).
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Additive and Multiplicative Intuition

Some actuaries implicitly assume that pure premium relativi-
ties should be multiplicative, not additive. If urban male drivers
have twice the accident frequency that rural male drivers have,
urban female drivers should have twice the accident frequency
that rural female drivers have. This assumption is most persua-
sive when class dimensions are independent, that is, when the
high accident frequency of urban drivers is not correlated with
the high accident frequency of male drivers.> Most multidimen-
sional class systems for the casualty lines of business use multi-
plicative factors.

Regulators sometimes harshly criticize insurers for using mul-
tiplicative factors that compound increases in the rates for high-
risk insureds. This criticism is often—but not always—political.
When two or more dimensions of the classification system are
correlated, multiplicative systems are often biased. For some
types of insurance, multiplicative systems may be biased even
when classification dimensions are not correlated.b

Hllustration 3: The 1960 Bailey and Simon paper discusses
two rating dimensions: (i) class group and (ii) merit rating class.

1. Class group refers to the driver characteristics, such as
age, sex, and marital status, and use of the vehicle, such
as pleasure use or business use.

2. Merit rating class refers to the number of immediately
preceding accident-free years, ranging from O to 3 or more.

>This assumption is rarely tested, and the independence of classification dimensions
does not necessarily imply a multiplicative model. The authors’ impressions from private
passenger automobile loss costs is that neither the additive nor the multiplicative model
is perfect, but the multiplicative model is usually better.

SLife insurance rating systems provide an example. If smokers have twice the mortality of
non-smokers, and persons with high-blood pressure have twice the mortality of persons
with average blood pressure, should high-blood pressure smokers have four times the
mortality of average blood pressure non-smokers? Life insurance underwriters employ
judgment to assess the rating for applicants with multiple causes of high mortality. A
pure multiplicative rating system would not be appropriate.
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These two rating dimensions are correlated. For example,
young, unmarried male drivers have a high average class rel-
ativity. Because these drivers either are new drivers or (if not
new) are more likely to have had an accident in the past year,
they have relatively few accident-free years, and a multiplicative
model would penalize many young male drivers twice for the
same risk factor.

3. BIAS FUNCTIONS

In practice, the indicated pure premiums do not perfectly
match the observed loss costs for either an additive model or
a multiplicative model. We illustrate with the same 2-by-2 clas-
sification system. The observed loss costs are shown in the table
below:

Urban Rural
Male $800 $500
Female $400 $200

Neither an additive model nor a multiplicative model provides
a perfect match. If we use a model that does not perfectly match
the observed data, we must determine how to minimize the mis-
match between the observed loss costs and the indicated pure
premiums. A “bias function” is a means of comparing two or
more models to see which fits the data with the smallest degree
of mismatch.” To choose the optimal model, we proceed along
three steps:

1. We choose a rating method, such as an additive model
or a multiplicative model.

"The bias function is not a standard statistical term, and the balance principle is not a
standard principle. As used here, the bias function determines how “close” the indicated
pure premiums are to the observed loss costs or how great the mismatch is between
these two sets of data. The sum of the squared deviations and the y-squared deviation
are common statistical bias functions. The balance principle, introduced by Bailey and
Simon in 1960 and endorsed again by Bailey in 1963, minimizes the bias along the
dimensions of the classification system, thereby leading to the term “minimum bias.”
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2. We select a bias function and use it to optimize the rat-
ing method. This paper discusses the balance principle,
least squares, x-squared, and maximum likelihood bias
functions. For models using a maximum likelihood bias
function, we must also choose a probability density func-
tion for losses within each cell.

3. For each optimized rating method, we examine the
goodness-of-fit of the indicated pure premiums to the
observed loss costs.

We begin with the balance principle, since it is the bias func-
tion most commonly used.

The Balance Principle

The balance principle requires that (after optimizing the rela-
tivities) the sum of the indicated pure premiums equals the sum
of the observed loss costs along every row and every column.

Hllustration 4:  'We examine the balance principle for both the
additive and the multiplicative models. There is one exposure in
each cell. On the left are the observed loss costs; on the right are
the indicated pure premiums. We begin with the multiplicative
model.3

Urban Rural terr, terr,
Male $800 $500 sex, 200 x s, x 1, 200 x s, xt,
Female $400 $200 sex, 200 x s, x 1, 200 x 5, x 1,

To balance along the first row (the “male” row), we must have

800 + 500 = 200 x s, x t; +200 X 5, X t,.

8To keep the notation simple, we use rating dimensions of male versus female and
urban versus rural throughout this paper. For the formulas in the illustrations, we
use sex; = s, = male, sex, = s, = female, terr; = ¢, = urban, and terr, =, = rural. The
recursive equations use variable names of x, y, and z, and rating dimensions of i
and j.
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To balance along the second row (the “female” row), we must
have

400 + 200 = 200 x 5, X #; + 200 X 8, X 1.

To balance along the first column (the “urban” column), we must
have

800 + 400 = 200 x s, x t; + 200 X s, X ;.

To balance along the second column (the “rural” column), we
must have

500 + 200 = 200 x 5; X f, + 200 X 5 X 1.

Although we have four equations in four unknowns, we do not
have a unique solution for the classification relativities. There
are two special considerations we must be aware of. These two
considerations offset each other so as to yield a unique set of
indicated pure premiums for each cell of the matrix (see below).

Dependence among the equations: These equations are re-
lated by a totality constraint—using any three equations we can
derive the fourth, since the sum of the rows equals the sum of
the columns. For instance, the fourth equation equals the first
equation plus the second equation minus the third equation.

More generally, the equation for any column equals the sum
of the equations for the rows minus the sum of the equations for
the other columns, and likewise for the equation in any row.

Invariance under reciprocal scalar multiplication: We can set
one of the variables arbitrarily, and we can still solve the sys-
tem of equations. To see this most clearly, suppose that we have
solved these equations for values of the four variables s, s,, #{,
and #,. Another solution is 2s;, 2s,, %tl, and %tz. We could use
any constant in place of 2. But no matter which set of relativities
we pick, the values in the cells remain the same. The values in
the cells are the product of an s relativity and a ¢ relativity, so
the additional constant cancels out.
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We have an additional variable. The pure premium in each
cell depends on the base pure premium. If the relativities sy, s,,
11, and 1, optimize the rating model for a base pure premium of
$200, the relativities 2s;, 2s,, t;, and ¢, optimize the rating model
for a base pure premium of $100.°

The minimum bias procedure makes the relationship of the
rating variables along each dimension of the classification system
constant. If s; = 2 x s, for a given base pure premium and a given
set of territorial relativities, then s; = 2 x s, for any other base
pure premium and for any constant multiple of the territorial
relativities.

We choose a base class in each classification dimension. This
is often the largest class or the lowest-cost class, though any class
may be used. The base class in each classification dimension is
given a relativity of 1. This determines the values of the base
pure premium and of all other rating variables.

Solving the Equations

The equations are not linear, so there is no closed-form solu-
tion. We begin with an arbitrary (but reasonable) set of relativities
for one dimension, and we solve the equations iteratively.

Illustration 5:  'We choose an urban relativity of 2.00 and ru-
ral relativity of 1.00; this choice does not affect the final pure
premiums.

Urban Rural terr; =2 terr, = 1
Male $800 $500 sex, 200 x s, x2 200 x s, x 1
Female $400 $200 sex, 200 x s, x 2 200 x s, x 1

9With so much leeway in choosing the classification relativities, one might ask what we
are “optimizing.” We are optimizing the indicated pure premiums. Each set of classifi-
cation relativities give the same indicated pure premiums. The optimization is relative
to the bias function. For example, the optimal pure premiums have the least bias or the
least y-squared value.
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The balance equation for the first row (the “male” row) says
that

800 + 500 =200 x 57 x 2 +200 x s; x 1,
or s;=1,300/600 = 13/6.
Balancing along the second row (the “female” row) gives

400 + 200 = 200 x 5, x 2 +200 x 55 x 1,
or s, =600/600= 1.

We now have intermediate values for the male and female rela-
tivities of 13/6 and 1. We discard the initial values for the urban
and rural relativities of 2.00 and 1.00, and we solve for new in-
termediate values by balancing along the columns. The balance
equation for the first column (the “urban” column) says that

800 + 400 = 200 x (13/6) x t; +200 x 1 x 1,
or t; =1,200/633.33 = 1.895.

Balancing along the second column (the “rural” column) gives

500 + 200 =200 x (13/6) x t, +200 x 1 x t,,
or t,=1.105.

We continue in this fashion. We discard the previous male and
female relativities, and we solve for new ones. Balancing along
the first row (the “male” row) gives

800 + 500 =200 x 57 x 1.895 +200 x s; x 1.105,
and balancing along the second row (the “female” row) gives
400 + 200 = 200 x 5, x 1.895 + 200 x s, x 1.105.

We solve these two equations for new values of the male and
female relativities, we discard the previous values of the urban
and rural relativities, and we balance along the columns for new
values of the urban and rural relativities.
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We continue in this fashion until the relativities converge, i.e.,
the change in the relativities from an additional iteration is not
material. Calculating minimum bias relativities is tedious by hand
but easy with a spreadsheet. In this case, convergence is rapid,
since there are only four cells. Once the series converges, com-
mon practice is to normalize the base class relativities to unity
and change the base pure premium (to $221.05), as we do below:

Iteration Urban Rural Male Female
Initial 2.0000 1.0000
1-a 2.1667 1.0000
1-b 1.8947 1.1053
2-a 2.1667 1.0000
Final 1.8947 1.1053
Normalized 1.7143 1.0000 2.1667 1.0000

Normalized Base Pure Premium: $200 x 1.1053 = $221.05

The initial territorial relativities of 2.00 and 1.00 were arbi-
trary; we generally begin with starting values determined by a
one-way relativities procedure. The starting values have no ef-
fect on the final rates in each cell, though better starting values
reduce the iterations required to reach convergence. In this il-
lustration, the urban to rural relativity is 12 to 7. If we choose
a pure premium relativity of 1.000 as the starting value for the
rural class, we would choose a starting value of 127 =1.714
for the urban class. With a starting value of #; = 1.714, the se-
ries converges immediately. We used a different starting value to
show the steps of the procedure.

The Additive Model

There are several equivalent formulas for the additive model.
The pure premium in cell (7, j), or row i and column j, is

A. Base pure premium + x; + y;,
B. Base pure premium x (1 +u; +v;), or

C. Base pure premium X (p; + ;).
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To see the equivalence of these formulas, suppose the base
pure premium in formula A is $10.

e In formula B, the base pure premium is also $10, each u value
is one tenth the corresponding x value in formula A, and each
v value in formula B is one tenth the corresponding y value in
formula A: u; = 0.1 xx; and v; =0.1 x y;.

e Formula C is equivalent to formula B, except that either the
p values are all increased by 1, the g values are all increased
by 1, or the p values are increased by a constant (c¢) and the
q values are increased by the complement of that constant
(I =) pi=1+u; or g; =1+v; (but not both) or p; =c +y;
and g;=1—-c+v;,.

We use the first form—formula A—for our example, since it
shows the method most clearly.'”

Illustration 6: We choose initial values for urban and rural
relativities of $250 and $0. These initial values are based on
the traditional pure premium relativities procedure; the average
differential between the urban and rural observed loss costs is
1 [(800 — 500) + (400 — 200)] = $250.

Urban Rural terr; =250 terr, =0
Male $800 $500 sex, 200 +s, +250 200 +s, +0
Female $400 $200 sex, 200 +s, +250 200 +s, +0

Balancing along the first row (the “male” row) gives
800 + 500 =200 + s; + 250 +200 + s; + O,
or s; =650/2 =325.
10Tn practice, formulas B or C might be preferred, since only the base pure premium need

be increased for inflation. In formula A, the base pure premium and all the relativities
must be increased for inflation.
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Balancing along the second row (the “female” row) gives

400 + 200 =200 + s, + 250 + 200 + 5, + 0,
or s,=-50/2=-25.

We discard the initial values for the urban and rural relativities,
and we balance along the columns. We use the intermediate val-
ues of the male and female relativities to get new values for the
urban and rural relativities. We continue this iterative process
until the series converges.

The relativity of —$25 for females seems odd at first. In truth,
the relativity for female drivers is not inherently negative; this
is an artifact of the base pure premium and the starting values.
We could make the relativity for females positive by adding a
constant to the male and female relativities and subtracting the
same constant from the rural and urban relativities. For instance,
we could add $75 to the male and female relativities to get rel-
ativities of $400 and $50, and we would subtract $75 from the
rural and urban relativities.

Iteration Urban Rural Male Female
Initial $250.00 $0.00
1-a $325.00 ($25.00)
1-b $250.00 $0.00
Normalized $250.00 $0.00 $350.00 $0.00

Normalized Base Pure Premium: $200.00 — $25.00 = $175.00

We can even make all the relativities negative by adjusting the
base pure premium. For instance, by choosing a base pure pre-
mium of $1,000, we obtain negative relativities for all classes.!!
In this illustration, we added dollar amounts to make the base
class relativities equal to zero.

"Companies may do this for marketing reasons. All drivers get discounts from the base
pure premium, so all drivers feel they are gaining from the classification system.
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Exposures

The illustrations above assume one driver in each cell or the
same number of drivers in each cell. In practice, there are gen-
erally different numbers of risks in each cell. Two adjustments
are needed, one to the bias function and another for credibil-

ity:

e We adjust the bias function for the relative volume of business
in each cell.

e We may make a credibility adjustment based on the absolute
volume of business in a cell.

Hllustration 7—Credibility: We note the credibility issue, but
we defer the possible adjustments until later. Suppose insurer A
has 100 exposures per cell, and insurer B has 10,000 exposures
per cell. Insurer A may rely more heavily on the minimum bias
procedure. Insurer B may give greater weight to the empirical
observations.

We deal here with the adjustment to the bias function. The bal-
ance principle requires that the sum of the observed loss costs
in each row or column equal the sum of the indicated pure pre-
miums in the corresponding row or column. If there are two
drivers in a cell, we double both the observed loss cost and the
indicated pure premium in that cell. If there are n drivers in a
cell, we multiply both the observed loss cost and the indicated
pure premium by n. When the number of drivers varies by cell,
we need an additional matrix of the number of drivers in each
cell.

Illustration 8: For the multiplicative model, suppose that the
number of drivers is as follows:

Male urban: 1,200 Male rural: 600
Female urban: 1,000 Female rural: 800.

We include the number of drivers in the equations.
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Urban Rural terr, terr,

Male 1200 x $800 600 x $500 sex; 1200 x 200 x s, x#, 600 x 200 x 5, X 1,
Female 1000 x $400 800 x $200 sex, 1000 x 200 x s, x#; 800 x 200 x 5, X 1,

To balance along the first row (the “male” row), we must have

1200 x 800 + 600 x 500
= 1200 x 200 x s1 x t; + 600 x 200 x 51 X t,.

To balance along the second row (the “female” row), we must
have

1000 % 400 + 800 x 200
= 1000 x 200 x s, x #; + 800 x 200 X 55 X t,.

To balance along the first column (the “urban” column), we must
have

1200 x 800 + 1000 x 400
= 1200 x 200 x s; x #; + 1000 x 200 x s, X t;.

To balance along the second column (the “rural” column), we
must have

600 x 500 + 800 x 200
= 600 x 200 x s; X t, + 800 x 200 x 55 X 15.

Empirical Observations versus Modeled Pure Premiums

One might wonder: Why not use the observed loss costs, ap-
propriately developed and trended, as the indicated pure premi-
ums for the coming policy period? Instead of fitting either multi-
plicative or additive models to the observed data, let us use $800
as the indicated pure premium for urban male drivers, $400 for
urban female drivers, $500 for rural male drivers, and $200 for
rural female drivers.
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The common answer is that the individual cells are “not fully
credible.” This answer is correct, though the terminology is not
ideal. The term “credible” is vague. To understand the situation,
we must be more precise.

Credibility is a relative concept. No cell is inherently credible
or not credible. A cell’s credibility depends on the reliability of
its own experience in comparison with information in other cells.
Consider our basic illustration with the following observed loss
costs:

Urban Rural
Male $800 $500
Female $400 $200

The urban male observed pure premium of $800 represents
a mixture of expected losses and random loss fluctuations. How
might we judge whether this figure is higher or lower than the
true expected loss costs?

Suppose that the rating values combine additively to generate
the expected losses. The observed loss cost for urban males of
$800 is $300 more than the observed loss cost of rural males
of $500. This suggests that the urban attribute of the vehicle’s
location adds about $300 to the expected loss costs.

However, the urban female observed loss cost of $400 is only
$200 more than the rural female observed loss cost of $200. This
suggests that the extra cost associated with the urban attribute is
only $200, not $300, and it implies that the observed urban male
loss cost of $800 might be too high.

We perform a similar analysis for male versus female. Com-
paring urban drivers suggests that the male attribute adds about
$400 to the expected loss costs, since male/urban = $800 and
female/urban = $400. However, comparing rural drivers suggests
that the extra cost associated with the male attribute is only $300,
not $400, since male/rural = $500 and female/rural = $200. In
other words, the urban male loss cost of $800 might be too high.
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The $800 observed loss cost in the urban male cell does not
tell us what part of this observed loss cost is expected and what
part is distorted by random loss fluctuations. If we know the
mathematical function linking the cells—that is, if the pure pre-
miums of the driver and the vehicle have some additive or mul-
tiplicative relationship—we can use additional cells to provide
information about the true expected costs for urban male drivers,
as we have here.

If we assume that the cells are linked multiplicatively, our
inferences change. The urban male observed value of $800 is
160% of the rural male observed value of $500. This suggests
that the urban attribute adds about 60% to the expected loss costs.

The urban female observed loss cost of $400 is twice the rural
female observed loss cost of $200. This suggests that the extra
cost associated with the urban attribute is +100%, not +60%.
The urban male loss cost of $800 might be too low.

Using a similar analysis for male versus female using the
urban column suggests that the male attribute adds about 100% to
the expected loss costs. The rural column suggests that the extra
cost associated with the male attribute is +150%, not +100%.
The urban male loss cost of $800 might be too low.

If the cells are linked additively, we infer that the urban male
observed loss costs of $800 might be too high. If the cells are
linked multiplicatively, we infer that the urban male observed
loss costs of $800 might be too low.!?

If the exposures in a 2 by 2 matrix are evenly distributed
among the cells, each cell has 25% of the total exposures,
whether there is 1 car or 10,000 cars in each cell. We give much

12In most cases, the direction of the bias does not depend on the type of rating model. The
more common scenario might show an observed loss cost of $600, an additive model
indicated pure premium of $550, and a multiplicative model indicated pure premium
of $530. We might infer that the random loss fluctuations underlying these cell values
have had a net positive effect. For very high rated or very low rated classifications, the
multiplicative and additive models often give opposite results, as is the case here.
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credence to the observed value in that cell compared to our in-
ferences from other cells. With a larger array, such as a 10 by 10
by 10 array, there are many more cells. The average cell contains
only 0.1% of the total exposures. We give less credence to the
observed loss costs in that cell compared to our inferences from
other cells.

This is the intuition for the minimum bias procedure. The
rating model—such as additive, multiplicative, or combined—
tells us the relationship joining the cells. The bias function—such
as balance principle, x-squared, least squared error, or maximum
likelihood—provides a method of drawing inferences for one cell
using the information in the other cells.

Credibility—Original Papers

The original papers on the minimum bias procedure differ
regarding credibility.

The 1960 Bailey and Simon paper uses credibility consider-
ations to pick a bias function. The authors’ view that credibility
should be inversely proportional to the variance of the observa-
tions led them to choose the x-squared bias function over the
balance principle.

The 1963 Bailey paper, which advocates the balance principle,
has no explicit discussion of credibility. The balance principle
has an implicit credibility component, since it weights the ob-
served loss costs and pure premiums in each cell by the number
of exposures in the cell.

This implicit credibility examines the relative weights of dif-
ferent cells in the minimum bias procedure. Venter looks at cred-
ibility from a different angle—the relative weight given to the
indicated pure premium from the minimum bias procedure ver-
sus the observed loss costs from the experience. We said above
that the $800 observed loss cost for urban male drivers might
be overstated under an additive model or understated under a
multiplicative model. The over- or understatement stems from
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random loss fluctuations. If there is a single exposure in each
cell, an over- or understatement is likely. If there are 10,000 ex-
posures in each cell, the degree of over- or understatement is
likely to be smaller.

Iterative Formulas

We have so far presented simple illustrations. To program
more complicated versions of this procedure, we need general
formulas.

We derive the iterative formulas for the multiplicative balance
principle model. We designate the base pure premium by b, the
number of exposures in row i and column j by n;;, and the
observed pure premiums in row i and column j by r;;. With a
multiplicative model, the balancing equation for row i is

> (i) = 3 (bnixiy;).
J J
Similarly, the balancing equation for column j is
> (myjrip) =Y _(bnypxiy;).
i i

In these equations, x is a row relativity and y is a column rel-
ativity.'> We solve these equations to get the indicated x and y

relativities in each row and column:!4
> NijTij 2oilijtij
X = =——— and VisEo=——
> jbniiy; >ibn;x;

When the series converges, we set the relativity for the base class
in each classification dimension to unity, and we adjust the base
pure premium to offset this.

13In the illustrations, we use s for the row relativity and ¢ for the column relativity as
abbreviations for the classification dimensions (sex and territory). The variables x and y
are commonly used in the literature.

14We sum over the j subscript when we balance along the rows (the i subscripts). We
do this separately for each i. When we balance along the columns, we sum over the i
subscripts separately for each j.
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We used two dimensions in this formula. One might assume
that the two dimensions correspond to the two variables x and
y. That is not correct. The two dimensions correspond to the
two subscripts i and j. The x and y variables correspond to two
sets of relativities. A model can have two or even more sets of
relativities in a single dimension.

Hllustration 9:  The classification system has two dimensions:
male versus female and territory A versus territory B. Territory
A has more attorneys than territory B has, resulting in a higher
propensity to sue and higher loss costs per claim. Territory B
has several blind intersections, leading to more accidents. We
might presume that the higher attorney involvement in territory
A increases the cost of all claims, so a multiplicative factor is
appropriate, whereas the blind intersections in territory B add
additional hazards, so an additive factor is appropriate. The rating
model might take the form

indicated pure premium relativity = x; X y; + z;,

where i represents the male/female classification dimension and j
represents the territory dimension. The variable x is the relativity
for the male/female dimension, and the variables y and z are the
relativities for the urban/rural dimension. In this model, x and y
are multiplicative factors, and z is an additive factor.

The arithmetic is similar for any number of dimensions. The
multiplicative model has one set of relativities for each dimen-
sion. With three dimensions, for example, the iterative formula
for the i dimension is

o >k Mijitijk
l' _——— .
> ixbniiyiz

15To optimize this rating model, the balance principle is not sufficient; we would have to
employ one of the other bias functions. The balance principle provides i + j equations,
but we have i +2; variables. The other bias functions discussed in this paper provide
i +2j equations.
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We develop the general formula for the balance principle additive
model by assuming a base pure premium of $0. The balance
principle equation is

D (mri) =D om0 +y)),
J J

and the iterative formula is
.Xl' = .
> jTj

Exercise: Multiplicative Model

Hllustration 10: We use the balance principle to optimize a
multiplicative rating model with two dimensions and two classes
in each dimension. The observed loss costs and exposures in
each class are shown below:

Loss Costs Exposures
Y1 hp) RS Y
X 300 300 100 150
X, 200 400 100 100

We assume a base pure premium of $100, so the indicated
pure premiums are $100x;y;. To simplify the mathematics, we
compute all values in units of $100. The indicated pure premi-
ums are x; X y;, and the observed loss costs are $3, $3, $2, and

$4.

We form a matrix of observed loss costs and indicated pure
premiums:

3 Y2 N Y2

X 3 3 X X Xy, X| XY,
X, 2 4 X, Xy XY, Xy X Y,
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We multiply each figure by the exposures in the cell:

Y1 h%) N Y2
X 100 x 3 150 %3 X 100 x x; x y, 150 X x; Xy,
X, 100 x 2 100 x 4 X, 100 x x, Xy, 100 x x, Xy,

We choose 1.00 and 1.50 as the starting values for y; and y,.
We use the balance principle to obtain intermediate values for x;
and x,:

100 x 3 + 150 x 3 = 100 x x; x 1.00 + 150 x x; x 1.50,
or 3004450 =100 x x; + 225 x xy,
or x; =2.308;
and
100 x 2 + 100 x 4 = 100 x x, x 1.00 + 100 x x, x 1.50,
or 200+ 400 =100 x x, + 150 x x,,
or x,=2.400.

We now discard the initial values for y; and y,, and we balance
along the columns:

100 x 3 + 100 x 2 =100 x 2.308 x y; + 100 x 2.400 x y,,
or 300+ 200 =230.8 xy; +240 x y;,
or y; =1.062;
and
150 x3 + 100 x4 =150 x 2.308 x y, + 100 x 2.400 X y,,
or 450 +400 =346.2 x y, + 240 X y,,
or Yy, =1.450.

This completes one iteration. To solve for the optimal relativities,
we continue in this fashion until convergence. We comment on
several items in this exercise.
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Data and Assumptions

The number of exposures in each cell is a credibility measure.
We give 50% more credence to the observed loss costs in the x;y,
cell than to the loss costs in the other cells.

e The observed loss costs in the x; row indicate that there is no
difference between y; and y,. The observed loss costs in the
x, row indicate that the y, class should have twice the pure
premium that y, has. We give more credence to the first of
these two relationships.

e The observed loss costs in the y; column indicate that the
x, class should have a pure premium 33% lower than the x;
class. The observed loss costs in the y, column indicate that
the x, class should have a pure premium 33% higher than the
x; class. We give more credence to the second of these two
relationships, so the x, relativity is slightly higher than the x;
relativity.

Exercise: Additive Model

lllustration 11: An additive model with two dimensions has
the observed loss costs shown below. Each cell has 1,000 ex-
posures. The base loss cost is $100. The formula for loss costs
by cell is Loss Cost;; = (Base Loss Cost) x (x; +y;). We use the
starting values shown below to compute intermediate values for

v and y,.

Average Loss Costs per Exposure ~ Starting

N Yy Values
X 500 750 4.500
Xy 250 475 3.000
X3 150 400 2.000

Since the number of exposures is the same in each cell, we
may assume that there is a single exposure in each cell; the 1,000
cancels out of every equation.
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The base pure premium is $100. To simplify, we use units of
$100 and a base pure premium of unity. The matrix of observed
loss costs and indicated pure premiums is shown below:

Observed Values Indicated Values

Y1 Yy Y1 Y2
X 5 7.5 Xty x t+y,
X, 2.5 4.75 Xty Xty
X3 1.5 4 X34y, X3ty,

We balance along the columns. For the first column, we
have

5.00+2.50+1.50 = (xl +y1) + (X2 +y1) + (X3 +y1),
5.00 +2.50 + 1.50 = (4.50 + y;) + (3.00 + y;) + (2.00 + y,),
or 3y; =9.00—-9.50, or y, =-0.167.

For the second column, we have

7.50+4.75+4.00 = (x; +y,) + (x5 + y5) + (x3 + 1,),
7.50 +4.75+4.00 = (4.50 + y,) + (3.00 + y,) + (2.00 + y,),
or 3y, =1625-9.50, or y,=2.25.

We have finished balancing along the columns. The next step is
to balance along the rows. We take the new y values, y; = —0.167
and y, = +2.25, and we compute new values for x; and x, by
balancing along each row. We continue this process—alternately
balancing along rows and columns—until we reach conver-
gence.

During the iterative process, the plan is alternately balanced
along the rows or along the columns, but not along both. We
have just balanced along the columns. To see that we are not yet
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balanced along the rows, we examine the first row:
5.00 +7.50 = (.Xl + yl) + (.Xl + y2)

Substituting the starting values of the xs and the first iterative
values of the ys, we get

12.50 =4.50 + (—0.167) +4.50 + 2.25 = 11.083.

The equality does not hold, since the plan is not yet balanced.
The final values, after convergence, are shown below.

Iteration X X, X3 N2 Vs
Initial 4.50000 3.00000 2.00000
l-a —0.16667 2.25000
1-b 5.20833 2.58333 1.70833
2-a —0.16667 2.25000
Final 5.20833 2.58333 1.70833 —0.16667 2.25000

4. OTHER CLASSIFICATION DIMENSIONS

The basic illustrations use the minimum bias procedure to
set pure premium relativities simultaneously for the male/female
dimension and the urban/rural dimension. There may be other di-
mensions to the classification plan as well, such as age of driver,
marital status, type of vehicle, use of the car, driver education,
prior accident history, and so forth.

Suppose that we analyze the male/female dimension and the
urban/rural dimension on a statewide basis, and we set relativities
for other classification dimensions on a countrywide basis. We
use a minimum bias method for the statewide analysis.

If all the classification dimensions are independent, the anal-
ysis should work well. If one or more of the other classification
dimensions is correlated with the male/female or urban/rural di-
mensions, the rating analysis may be distorted.

Illustration 12: Suppose that young people migrate to ur-
ban areas for university education, work opportunities, and the
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glamor of urban social activities. Older people move to the sub-
urbs and rural areas to buy homes and raise families away from
the vices of urban areas. The age and marital status of the driver
are correlated with the urban/rural garaging location.

The statewide analysis may indicate an urban to rural relativity
of 2 to 1. The countrywide analysis, summing over all territories,
may indicate a relativity for young unmarried male drivers of 3
to 1 when compared to adult drivers. The relativity for young
unmarried urban male drivers is not 6 to 1, even if a multiplicative
model is appropriate for automobile insurance.

Multiple Dimensions

Ideally, we would use a multidimensional minimum bias pro-
cedure to set all classification relativities simultaneously. In prac-
tice, this may not be possible. Some relativities may be analyzed
each year, whereas other relativities may be analyzed every sev-
eral years. Some relativities, such as territory, must be set on a
statewide basis. Certain driver characteristics and vehicle char-
acteristics may be analyzed on a countrywide basis, for two rea-
sons: 1

1. The relativities are not expected to vary by state, as long
as the states use the same insurance compensation Sys-
tem.

2. Some classification cells would have few exposures in a
state analysis, and the results may be distorted by random
loss fluctuations. The countrywide analysis uses more
data, providing more credible results. For example, we
may wish to analyze driver age in yearly increments: age
17, age 18, age 19, and so forth. Single-state data may
be too sparse to give credible results.

16The countrywide analysis may actually be done on all tort liability states or all no-fault
states, since the bodily injury rate relativities may be higher for SUVs (sports utility
vehicles) than for sedans in tort liability states, whereas the reverse may be true in no-
fault states.
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Some classification dimensions, such as driver education, have
a minor effect on overall loss costs. We may analyze these
classification dimensions every five years or so, not every
year.

Loss Ratios

One method of dealing with an uneven distribution of business
along other classification dimensions is to use loss ratios instead
of loss costs in the minimum bias procedure.!”-18

Suppose the empirical experience consists of the following
loss ratios by classification.

Urban Rural
Male 75% 85%
Female 90% 80%

We could take either of two approaches:

First Approach: We treat the unadjusted loss ratios as though
they were loss costs. Instead of using pure premium relativities,
we develop loss ratio relativities. These relativities are adjust-
ments to whatever pure premium relativities are embedded in
these loss ratios.

In this scenario, the minimum bias procedure will indicate a
loss ratio relativity close to 1.000 for urban versus rural and a
relativity slightly higher than 1.000 for females versus males.
This does not mean that urban risks are similar to rural risks,
or that female drivers have more accidents than male drivers
have. If the current rate relativities are reasonable, we would
expect the loss ratios in all cells to be about equal. Suppose that

71n practice, we use loss ratios adjusted to the base rates for the classification dimensions
included in the minimum bias analysis, though this is not shown in the illustration.
I18This section assumes that the pure premium relativities are the same as the rate
relativities.
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the current male-to-female rate relativity is 2.4 to 1. Since
the average female loss ratio of 85% is higher than the average
male loss ratio of 80%, the loss ratio relativities would indi-
cate that we should slightly reduce the male-to-female rate rel-
ativity.

Second Approach: We convert the raw loss ratios to base
class loss ratios. Suppose the current rate relativities are 2.4 to
1 for male to female and 1.8 to 1 for urban to rural. We must
divide the male premiums by 2.4 and the urban premiums by 1.8.
This is equivalent to multiplying the male loss ratios by 2.4 and
the urban loss ratios by 1.8. We multiply the raw loss ratios
by the current classification relativities, as shown in the table
below.

Urban Rural
Male 75% x 2.4 x 1.8 = 324% 85% x 2.4 x 1.0 = 204%
Female 90% x 1.0 x 1.8 = 162% 80% x 1.0 x 1.0 = 80%

We apply the minimum bias procedure to the adjusted loss
ratios. The resulting loss ratio relativities would be the same as
the indicated rate relativities.

To see this, suppose that the base rate is $100. For the male ur-
ban cell, the premium is $100 x 2.4 x 1.8 = $432. The observed
loss ratio is 75%, so the loss cost is 75% x $432 = $324. We
may verify this for the other three cells in the same fashion.

To set the rate relativity to unity for the base class in each
dimension, we divide each adjusted loss ratio in the matrix by
the adjusted loss ratio for the base class.

Urban Rural

Male 324%/80% = 405.0% 204%/80% = 255.0%
Female 162%/80% = 202.5% 80.0%,/80% = 100.0%
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Loss Ratio Intuition

We have shown how to convert loss ratios to reflect the loss
costs in each cell. This might be useful if the observed data were
loss ratios and we wanted to use loss costs for the minimum bias
procedure. But if observed data are loss costs, we must convert
the observed loss costs to loss ratios before converting back to
loss costs. The purpose of this conversion from loss costs to loss
ratios and then back to loss costs is to eliminate the potentially
distorting effects of other classification dimensions that are not
being analyzed in the minimum bias procedure.

Illustration 13: We explain by illustration. We have average
observed bodily injury loss costs for four groups of drivers, with
1,000 drivers in each cell.

Urban Rural
Male $800 $500
Female $400 $200

Other dimensions in the classification system are correlated
with the two dimensions above.

Type of Vehicle: For bodily injury rating, cars are subdivided
between (a) large cars, such as sports utility vehicles (SUVs), sta-
tion wagons, and light trucks, and (b) small cars, such as sedans.
The large vehicles provide better protection for their occupants,
but they cause greater damage to others. Smaller vehicles cause
less damage to others, but they provide less protection for their
occupants. Sedans and other small cars are more common in
urban areas; SUVs and light trucks are more common in rural
areas. The distribution of vehicle types between urban and rural
areas, along with the appropriate surcharge or discount for each
type of vehicle, affect the observed loss costs.

Suppose that SUVs and other large vehicles receive a 20%
surcharge for bodily injury. In this state, SUVs comprise 40%
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of the rural vehicles and 10% of the urban vehicles. The pricing
actuary may not actually have this distribution for the state under
review. This is not necessary; the use of loss ratios instead of loss
costs corrects for the effects of vehicle type.

Age of Driver: 'The male/female rate relativity applies to all
male and female drivers. Unmarried male drivers under the age
of 21 receive additional surcharges, ranging from 25% for 20-
year-old drivers to 125% for 16-year-old drivers. In this state,
10% of male drivers are unmarried and under the age of 21. The
average surcharge for these drivers is 50%. (For this illustration,
there is no corresponding surcharge for unmarried female drivers
under the age of 21.) The pricing actuary may not actually have
a distribution of male drivers by age and marital status. Again,
this is not necessary; the loss ratios are sufficient.

Double Counting and Offsetting

If we do not take vehicle type and driver age into account, we
overcharge male drivers and rural drivers.

Male Drivers: The male/female relativity is based on the
statewide analysis. The surcharges for young unmarried male
drivers are determined from a separate countrywide analysis.
The poor driving experience of young unmarried male drivers is
counted twice: once at the countrywide level for the surcharges
and once at the state level for the male/female relativity. To de-
termine accurately the male/female relativity, we must remove
the hazardous effects of being young and unmarried from the
male driver classification.

Rural Drivers: Rural drivers are less hazardous than urban
drivers, but they drive vehicles more dangerous to others. The
vehicle surcharge is determined in a countrywide analysis. To
properly determine the urban/rural relativity, we must remove
the effects of vehicle type from the statewide experience.

To remove the effects of vehicle type and driver age from the
statewide analysis, we assume that the countrywide relativities
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are accurate. We examine each risk in the minimum bias proce-
dure. We divide the actual loss costs by the vehicle type relativ-
ity and by the driver age relativity. This gives the relative loss
costs that we would have expected to see were the vehicle types
and driver ages evenly distributed over all other rating dimen-
sions.

Hllustration 13, continued: A four-door sedan is the base ve-
hicle type and age 21+ is the base age. A two-door compact
has a bodily injury discount of 10%, and an unmarried 20-year-
old male driver has a surcharge of 25%. Suppose the observed
loss costs for a 20-year-old unmarried male driver of a two-door
compact car are $450. The loss costs adjusted for driver age and
vehicle type are $450/(0.90 x 1.25) = $400.

It is not practical to make these adjustments car by car. Using
loss ratios adjusts for all classification dimensions simultane-
ously. Using observed loss ratios instead of observed loss costs
adjusts for driver age, driver sex, territory, vehicle types, and all
other rating dimensions. We then restore the current rating rela-
tivities for the classification dimensions that we are analyzing—
male/female and urban/rural in this illustration.

The average observed loss costs for the 1,000 drivers in each
of four classes are displayed in the table after illustration 13.
The current relativities are 2.4 to 1 for male to female and 1.8
to 1 for urban to rural. The average SUV-to-sedan relativity is
1.2 to 1. SUVs account for 40% of rural cars and 10% of urban
cars. Unmarried males under the age of 21 make up 10% of
male drivers, and their average surcharge is 50%. Ideally, we
would convert the observed loss costs to adjusted loss costs for
the minimum bias analysis in the following manner.

e Rural female: SUVs are 40% of rural cars, increasing the loss
costs by a factor of 1 + (20% x 40%) = 1.08. Were the cars all
sedans, the observed loss costs would be reduced by a factor
of 1/1.08 = 92.59%.
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e Urban female: The vehicle type factor is 1 + (20% x 10%) =
1.02. Were the cars all sedans, the observed loss costs would
be reduced by a factor of 1/1.02 = 98.04%.

e Rural male: The vehicle type factor is 1 + (20% x 40%) =
1.08 and the driver age factor is 1+ (10% x 50%) = 1.05.
Were the cars all sedans driven by adult drivers, the observed
loss costs would be reduced by a factor of 1/(1.08 x 1.05) =
88.18%.

e Urban male: The vehicle type factor is 1 +(20% x 10%) =
1.02 and the driver age factor is 1+ (10% x 50%) = 1.05.
Were the cars all sedans driven by adult drivers, the observed
loss costs would be reduced by a factor of 1/(1.02 x 1.05) =
93.37%.

We have made all the adjustments by our knowledge of the
distribution of other classification dimensions in the four cells
of the matrix. This information is generally not available, and
the procedure is complex when there are several classification
dimensions. A simple alternative is to divide the losses by the
premium charged in each cell, and then multiply by the base rate
times the current relativities for the two classification dimensions
which we are examining.

For each vehicle, we divide the losses by the premium, which
is the base rate times the classification relativities for all classifi-
cation dimensions. We multiply the result by the base rate times
the classification relativities for male/female and urban/rural.
This is equivalent to dividing by the classification relativities
for the remaining dimensions.

Exercise: Loss Ratio Method

The incurred losses and earned premium in each cell are
shown in the following table.
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Incurred Losses Earned Premium
Urban Rural Urban Rural
Male $2,700 $2,000 $3,000 $4,000
Female $1,500 $1,200 $2,400 $1,600

The current relativities by sex of driver and by garaging location

are
Male: 1.50 Urban: 1.20

Female: 1.00 Rural: 1.00.

Causes of Unequal Loss Ratios

To correct for potential distortions caused by an uneven dis-
tribution of insureds by other classification dimensions, we use
loss ratios instead of loss costs. If the rate relativities match the
loss cost differences, the loss ratios should be equal in all cells,
except for random loss fluctuations. In this example, the loss
ratios are not all equal.

Loss Ratios

Urban Rural
Male 90.00% 50.00%
Female 62.50% 75.00%

There are several possible causes for the unequal loss ratios.

Cause 1—Random loss fluctuations: Random loss fluctua-
tions are a credibility issue. This paper assumes either that the
data are fully credible or that the pricing actuary has already
made (or will make) whatever adjustments are warranted by cred-
ibility considerations. Credibility adjustments for sparse data are
an important actuarial issue, though they are beyond the scope
of this paper.

Cause 2—Improper rate relativities in other classification di-
mensions combined with an uneven distribution of insureds by these
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other classification dimensions: For example, perhaps the rates
for a certain type of vehicle are too low, and the proportion
of urban males driving that type of vehicle is greater than the
proportions of the insureds in the other cells driving that type of
vehicle.

If this is the cause of the differences, there is no perfect solu-
tion.!” But if the distribution of insureds by the other classifica-
tion dimension is not too uneven, an inaccuracy in the rates will
not distort our analysis too much. We may restate our assumption
as follows:

For other classification dimensions, either the current
rate relativities are accurate or the mix of insureds is
relatively even across these other dimensions.

In many instances, this assumption is not perfect. Neverthe-
less, even if the use of loss ratios does not perfectly correct for
distortions caused by an uneven distribution of insureds along
other classification dimensions, it provides a partial correction.

Cause 3—Inaccuracies in the rate relativities for the two clas-
sification dimensions that we are examining (sex and territory):
This is corrected by the minimum bias procedure, since the loss
ratios by cell times the current relativities by cell equal the rela-
tive loss costs by cell.

Hllustration 14: Suppose the loss ratio for male drivers is
90% and the loss ratio for female drivers is 62.5%. If the current
male-to-female rate relativity is 1.5 to 1, the male-to-female loss
cost relativity is 1.5 x90% to 1 x 62.5% = 2.16 to 1.

For the illustration in this section, we form a matrix of rela-
tivities by sex and territory:

19Without information about the other classification dimensions, we cannot optimize the
class system.
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Current Rate Relativities

Urban Rural
Male 1.80 1.50
Female 1.20 1.00

The relative loss costs by sex and territory are the product of
the relativities and the loss ratios:

Loss Cost Relativities

Urban Rural
Male 1.62 0.75
Female 0.75 0.75

We can now determine optimal rate relativities by any of the
minimum bias models discussed in this paper.

Cause 4—Improper model specification: We may be using
a multiplicative model when an additive model would be more
proper (or vice versa). Sometimes neither a multiplicative nor an
additive model is ideal. We discuss the choice of model further
below.

5. THE SQUARED ERROR BIAS FUNCTION

In this section, we examine other bias functions, beginning
with the squared error function and the y-squared function. We
continue with our simple 2 by 2 illustration for both additive and
multiplicative models using these bias functions. We review argu-
ments for and against specific bias functions. We examine two
goodness-of-fit tests—average absolute error and y-squared—
and we consider the relationship between the bias function cho-
sen and the goodness-of-fit test.

We review also the maximum likelihood bias function and the
distributions commonly used with it. We discuss the potential ad-
vantages and drawbacks of the more sophisticated bias functions
compared to the balance principle.
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Hllustration 15: We return to the simple illustration with
which we began, as reproduced below.

Urban Rural terr, terr,
Male $800 $500 sex, 200 x s, Xt 200 x s) xt,
Female $400 $200 sex, 200 x 5, x 1, 200 x 5, X 1,

The left-hand side of the matrix shows the observed loss costs;
the right-hand side shows the indicated pure premiums. Our ob-
jective is to pick classification relativities such that the indicated
pure premiums are “as close as possible” to the observed loss
Ccosts.

Statisticians would fit the classification relativities using one
of the methods below:

1. Minimize the average absolute error between the indi-
cated and observed figures.

2. Minimize the sum of the squared errors between the in-
dicated and observed figures (i.e., the least squares bias
function).

3. Minimize the sum of the relative squared errors between
the indicated and observed figures (i.e., minimize the x-
squared error).

4. Maximize the likelihood of obtaining the observations
given the classification relativities.

Although minimizing the average absolute error makes sense
to practitioners, it is rarely used in statistics, because it is less
mathematically tractable.”® We use the average absolute error

20See, however, Cook [1967], p- 200: “Why then do we use the method of least squares?
Simply because absolute values are alleged to be mathematically inconvenient.” Cook
provides an algorithm for minimizing the average absolute error, which is simple to
compute and even easier to program.



THE MINIMUM BIAS PROCEDURE 235

as one of the goodness-of-fit tests. Given a set of classification
relativities, it is easy to calculate the average absolute error. (It
is less easy to determine the set of classification relativities that
minimize the average absolute error.)

The three other methods result in relatively simple iterative
equations for the minimum bias procedure. We first show the
procedures, and then we discuss the intuition for each.

The squared error for each cell is the square of the difference
between the observed loss costs and the indicated pure premium.
For urban male drivers, this is ($800 — $200 x s, x #;)?.

We sum the squared errors for the four cells to get the sum
of squared errors (SSE):

SSE = ($800 — $200 x s, x t;)*> urban male
+($500 — $200 x 5, x 1,)> rural male
+ ($400 — $200 x 5, x t;)> urban female
+($200 — $200 x 5, x 1,)> rural female.

To minimize the sum of the squared errors, we set the partial
derivatives with respect to each variable equal to zero. For the
“male” classification relativity (s;), we have

0 = 9SSE/ds; = 2 x ($800 — $200 x 5; x #;) x (—$200 x #,)
+2 % ($500 — $200 x 5, X £5) x (—$200 x £,).

We need to consider the cells only in the male (s;) row. The
other cells do not have an s; term in the squared error, so the
partial derivative with respect to s; is zero.

Taking partial derivatives with respect to each of the classi-
fication relativities gives four equations in four unknowns. The
equations are not linear, so we solve them iteratively.
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Let us choose the same starting values for the squared error
bias function as we chose for the balance principle (namely #; = 2
and 1, = 1):

Urban Rural terr; =2 terr, =1
Male $800 $500 sex, 200 x 5, X2 200 x s, x 1
Female $400 $200 sex, 200 x 5, x 2 200 x 5, x 1

Using the squared error bias function, we solve for the male
relativity s,. To avoid dealing with multiples of 100, we choose
a base pure premium of $2 and we evaluate the observed pure
premiums in multiples of $100.

0=0SSE/0s; =2 x ($8 —$2 x 5y X 2) x (—$2 x 2)
+2x($5-%$2xs; x 1) x(—=$2x 1)

—64 +325;, —20+8s; =0
40s; = 84
51 =2.1.
Similarly, we solve for the female relativity (s,):
0=0SSE/0s, =2 x ($4 —$2 x 5, X 2) x (—$2 x 2)
+2x($2-$2 x5, x 1) x(=$2x 1)

*32+3252*8+8S2 =0
40 + 405, = 0
S2:1.

We now discard the starting values of #{ =2 and #, = 1. Using
the intermediate values of s; = 2.1 and 5, = 1, we set the partial
derivatives of the sum of the squared errors with respect to #;
and t, equal to zero and we solve for new values of #; and #,.
We continue in this fashion until the series converges.
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Iteration Urban Rural Male Female
Initial 2.0000 1.0000
1-a 2.1000 1.0000
1-b 1.9224 1.1553
2-a 2.1029 0.9940
2-b 1.9223 1.1555
Normalized 1.6636 1.0000 2.1155 1.0000

Normalized Base Pure Premium  $200.00 x 1.1555 x 0.9940 = $229.71

Squared Error and x-Squared Intuition

The properties of squared-error minimization in the minimum
bias procedure are unlike the properties of squared-error mini-
mization in other statistical problems, as explained below. We
note first that the bias function makes a difference, even in this
simple illustration.

A. The balance principle bias function gives s; = 2.1667
and 5, = 1.

B. The squared error bias function gives s; = 2.1155 and
Sy = 1.

The balance principle ensures that the total error in each clas-
sification dimension is zero. The squared-error bias function
minimizes the aggregate squared error, and the y-squared bias
function minimizes the aggregate squared error as percentages of
the expected values. The squared-error and y-squared bias func-
tions place more weight on outlying cells, where the squares of
the errors are large. The balance principle and the squared-error
bias function place more weight on the cells with large dollar
values.

Illustration 16: A classification system with two dimensions
has male versus female in one dimension and territories 1, 2, and
3 in the other dimension. The starting relativities are 1.00, 2.00,
and 3.00 for territories 1, 2, and 3. The observed loss costs for
the three territories in the male row are $2, $4, and $12, with
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equal exposures in each cell. We assume a base pure premium
of $1.00.

Territory 1 (1.00) Territory 2 (2.00) Territory 3 (3.00)

Male $2.00 $4.00 $12.00
Female — — —

We want to determine the indicated relativity for males. Our
concern here is not to solve this problem but to understand the
effects of the different bias functions.

o If the male relativity is 2.00, the indicated pure premiums are
$2, $4, and $6. The first two cells have a perfect fit, and the
third cell is too low by $6.

o If the male relativity is 4.00, the indicated pure premiums are
$4, $8, and $12. The first two cells are too high by a total of
$6, and the third cell has a perfect fit.

The balance principle considers the first power of the errors.
The average observed loss cost is ($2 + $4 + $12)/3 = $6.00.
The average territory relativity is 2.00. To achieve balance, we
choose a male relativity of 3.00. The indicated pure premiums
are $3, $6, and $9. The first two cells are too high by a total of
$3, and the third cell is too low by $3. The indicated male/female
relativity is $6/$2 = 3.00.

If we optimize with the balance principle, the sum of the
squared errors is (3 —2)? + (6 —4)> + (9 — 12)> = 14. We com-
pare this figure with the result of the least squares bias func-
tion.

The squared error bias function is more concerned with the
large error in territory 3 than with the small errors in territories
1 and 2. To minimize the sum of squared errors, we increase
the male relativity slightly, reducing the error in territory 3 and
increasing the errors in territories 1 and 2.
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Squared Error Minimization

To solve the problem using a squared error bias function, we
minimize the sum of squared errors:

SSE = (2 —x)> + (4 —2x)* + (12 — 3x)%.

Taking the partial derivative with respect to x and setting it equal
to zero gives

OSSE/0x =22 —x)(—1) +2(4 —2x)(—2) + 2(12 - 3x)(—-3) =0

4+16+72=2x+8x+ 18x
92 =28x
x =92/28 = 3.286.

The sum of the squared errors is (3.286 —2) + (6.571 —4)* +
(9.857 — 12)> = 12.857, which is less than the squared error of 14
under the balance principle. Minimizing the sum of the squared
errors yields 3.286, not the average, which is 3.00.

Squared Error Minimization

The illustration above seems odd to some statisticians. We
are choosing a value to minimize the squared error among a
series of observations. An elementary statistical theorem is that
the average minimizes the sum of the squared errors. This seems
inconsistent with the comments above.

When we set rates in a single dimension class system, min-
imizing the squared error produces the arithmetic average. The
following illustration explains this.

Illustration 17: We are measuring a patient’s fever with
an old, imprecise thermometer. The thermometer is unbi-
ased, but the observed readings are distorted by sampling
error. We perform nine trials, and we observe readings of
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(100.1,100.2,...,100.9). (The readings were not in this order,
so there is no trend; we have simply arranged them in as-
cending numerical order.) Using the least squared error func-
tion, we determine the best estimate of the patient’s tempera-
ture.

We rephrase the illustration mathematically. We have ob-
served values of zy,2,,...,z,, and we must choose a single
value—call it z*—to minimize the squared error.

The sum of the squared errors is Y(z; —z*)>. The partial
derivative of this sum with respect to z* is > 2(z; — z*)(—1). Set-
ting this equal to zero gives z* = (3_z;)/n. The indicated z* is the
average of the zs.

In the temperature measurement illustration, the average of
the nine observations is 100.5. This is the solution using the
squared error bias function.

If we had chosen instead some other value, such as 100.3, we
could correct this estimate by the average of the errors. The error
in each observation is the observation minus 100.3. This is the
series (—0.02,—0.01,0,+0.01,...,+0.06). The average is +0.02.
The corrected estimate is 100.3 + 0.02 = 100.5.

This is not true for multidimensional systems. In a multiplica-
tive model with two dimensions, the z;s are the observed values.
The z* is the indicated relativity for one of the two dimensions.

The other dimension has relativities of y;,y,,...,¥,,.

The sum of the squared errors is »- > (z; —y; X 7). The par-
tial derivative of this sum with respect to z* is >°>°2(z; — y;
xz*)(—y;)- Setting this equal to zero gives z* = (ZZz,-)/Zy]z.

The indicated z* is no longer the average of the z;s. Rather,
this result is the solution to the minimum bias procedure using
the squared error bias function, as we show next.
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Balance Principle Optimization

When we seek a pure premium for one dimension, mini-
mizing the squared error produces the arithmetic average. With
two or more dimensions, the balance principle selects the multi-
dimensional equivalent to the mean of each class across the other
dimension(s).

The balance principle provides an unbiased solution; Bailey
[1963] considers it the only unbiased solution (see below). Some
actuaries believe that an unbiased solution is more likely to max-
imize the firm’s profitability than a biased solution.?!

General Squared Error Minimization, Multiplicative Model

We consider a more general two dimensional classification
system. The base pure premium is B. We again assume one ex-
posure per cell (or the same number of exposures per cell) to
keep the equations simple. In practice, one must multiply all
terms by the number of exposures.

Suppose we have two dimensions, age of driver and territory,
with n age classes and m territories. The observed loss cost in
the ith age class and the jth territory is r;;. The indicated pure
premium in the ith age class and the jth territory is B x x; X y;.

The squared error in any cell is (r;; — Bx;y j)z_ The sum of the
squared errors is

0= ZZ(”ij - Bxiyj)z-

i=1j=1

We take partial derivatives with respect to each variable and set
them equal to zero. The (n + m) equations are not linear, so we
must search for a solution by numerical methods. We choose

2 There are exceptional scenarios when a different bias function may be better. In a
jurisdiction that places restrictions on risk classification, the bias function may have to
be changed to accommodate these restrictions. If the insurer seeks to expand in certain
classifications for competitive or marketing reasons, the minimum bias procedure may
not accommodate the insurer’s strategy. In most scenarios, however, the balance principle
serves the economic interests of the firm.
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starting values for one dimension—say, the y;. To solve for the
value of x;, we take the partial derivative with respect to x; and
set it equal to zero:

> 2(r;; — Bx;y;)(—By;) = 0.
j=1

This gives
m m
xi = Z(rij Xy])/ZByjz.
j=1 j=1

The x; is a variable. The y values are fixed; they are not variables
once we have assigned starting values to the y values.

We use this procedure to solve for x;,x,,...,x,. We then dis-
card the starting y values and solve for new values of the y vari-
ables using the same procedure as we used for the x variables.

We have (n + m) variables, and we have (n + m) equations.
The constraints for least squares minimization are the same as
the constraints for the balance principle. There is one totality
constraint, since taking the sum of the squared errors along the
rows is the same as taking the sum of the squared errors along the
columns. This means that we have only (n + m — 1) independent
equations. In addition, we could multiply all the relativities along
any dimension by a constant and divide the base pure premium
by the same constant.

Squared Error Minimization, Additive Model

We can also use an additive model with the least squares bias
function. We first show the results for the elementary 2 by 2
illustration. Below are the same observed loss costs and indicated
pure premiums we have been using.

Urban Rural terr, terr,

Male  $800 $500  sex,  200+s, +1,  200+s +1,
Female $400 $200 sex, 200 + s, +1 200 + s, +1,
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As mentioned earlier, there are three mathematically equiva-
lent ways of defining the additive model; the solution method is
the same for each of them. The pure premium in cell x;y; is

A. Base pure premium + x; + y;,
B. Base pure premium X (1 +u; +v;), or

C. Base pure premium x (p; + ¢;).

We use the first of these three equations here for its intuitive
simplicity. Note that a multiplicative relationship between the
base pure premium and the relativities does not make the model
multiplicative. If the relationship among the factors is additive,
the model is additive. A combined multiplicative and additive
model has relationships among the relativities that are both mul-
tiplicative and additive.

The method used here is the same as the method used for the
multiplicative model above. For the male urban cell, the squared
error is ($800 — $200 — s, —#,)?>. The sum of the squared errors
for all four cells is

0 = ($800 — $200 — s; — 1) + ($500 — $200 — 5, — 1,)?
+ ($400 — $200 — 5, — ;)% + ($200 — $200 — 5, — 1,)°.

We take partial derivatives with respect to each variable and set
them equal to zero. The partial derivative with respect to s; is

80 /9s, = 2($800 — $200 — s, —£,)(—1)
+2($500 — $200 — 5, —1,)(—1) = 0,
or

§1 = ($900 *l‘l *l‘z)/z

For the additive model with the least squares bias function,
the simultaneous equations are linear, and we can solve them
directly. Nevertheless, it is easier to program the solution using
numerical methods. If we choose starting values of #; = $250
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and 1, = $0, we get 5; = $325. We leave it to the reader to verify
that the relativities converge to the same figures as the additive
model with the balance principle.

General Squared Error Minimization, Additive Model

For the general formula, we let B = the base pure premium.
The sum of the squared errors is

SSE=>">"(r;;—B—x—y)™.
i=1j=1

We take the partial derivative with respect to x; and set it equal
to zero:

OSSE &
j=

or .
X = Z(rij *)’j)/m*B-
j=1

6. THE Y-SQUARED BIAS FUNCTION

The x-squared bias function is similar to the squared error
bias function, except that each squared error is divided by the
expected value in that cell. We define the y-squared bias function,
and then we apply it to the minimum bias procedure.

Illustration 18: Suppose the expected distribution in two
cells is 40%—-60% and the observed distribution is 30%-—
70%. The squared error is (40% — 30%)?* + (60% — 70%)* =
2.00%; the x-squared error is (40%—30%)2/4O%+(60%—
70%)?/60% = 4.17%.

We show the application of the yx-squared bias function to the
multiplicative illustration.
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Urban Rural terr,; terr,
Male $800 $500 sex, 200 x s, x 1, 200 x s; xt,
Female $400 $200 SEX, 200 x s, x 1, 200 x s, X t,

The x-squared value for each cell is (observed value —
expected value)? /expected value. For urban male drivers in our
basic illustration, this number is

($800 — $200 x 5, x 1) /($200 x 5, X 1,).

We sum the squared errors for the four cells to get the sum of
x-squared values:

SSE = ($800 — $200 x 5, x ,)*/($200 x 5, x t,) urban male
+($500 — $200 x 5, x 1,)*/($200 x 5, X t,) rural male
+ ($400 — $200 x 5, x #,)*/($200 x 5, x t,) urban female
+($200 — $200 x s, x 1,)*/($200 x 5, x t,) rural female.

To minimize the sum of the squared errors, we take partial deriva-
tives with respect to each variable and set them to zero. For the
male classification relativity (s;), we have??

0 = OSSE/ds,
=[($200 x 5, x ;) x 2 x ($800 — $200 x 5, x ;) x (—=$200 x 1,)
— ($800 — $200 x 5, x £,)* x ($200 x 1,)]1/($200 x 5, x t,)*
+ [($200 x s, x 1,) X 2 x ($500 — $200 x s, x 1,) x (—$200 x t,)
— ($500 — $200 x 5, X 1,)* x ($200 x £,)]/($200 x 5, X t,)*
+0+0.

Although the arithmetic looks cumbersome, the equation can be
simplified. To avoid needless arithmetic, we derive the general
solution, and we then resume the illustration.

22We use the quotient rule that if y(x) = f(x)/g(x), then dy/dx = [g(x) x df /dx — f(x) x
dg/dx]/g*(x).
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x-Squared Recursive Equations

We show the general recursive equations for the y-squared
bias function with two classes in each of two dimensions; the
extension to three or more dimensions is straightforward. To save
space, we include the number of exposures and derive the final
recursive equations.

Y1 Yy Y1 Y2
X ny ny, X Bxx Xy, B xx; xy,
X, ny) Ny X, B xxy xy, B xx, xy,

We form the x-squared bias function as a double summation
covering all the cells in the array.

SSE = anzm: ik nijBXiyj)Z
i=1j=1 n;iBx;y;
We factor out the number of exposures in each cell from the
summand to give
SSE = Zn:i n(r;; — Bxiyj)2
o B,

We seek to minimize the y-squared value. To simplify the math-
ematics, we use a base pure premium of $1.00. In practice, we
would choose the base pure premium at the end of the procedure
to set the base relativities in each dimension to unity.

As before, given starting values for either dimension, we de-
termine the intermediate values for the other dimension. As-
sume we have chosen starting values for the y relativities and
we are solving for an intermediate value of x;. Only the cells
in the ith row have terms with x; in them. We take the partial
derivative of this row with respect to x;, and we set it equal
to 0.
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In the equation below, we have differentiated with respect to
x;, and the summation is over the j dimension. The value of i is
fixed.

=0.

i nilxy 2(r; —xy ) (=y;) — (r; — xi)’j)Z)’j]
=1 (xiyj)z

The value x; = 0 does not minimize the equation (or all the indi-
cated pure premiums would be zero), so we multiply both sides
of the equation by (x;)>. Simplifying further,

m n.:
> [Z”ijxi(”ij —xy;) — —L(r;; xiyj)2‘| =0.
=1 Yj

We expand the square and combine like terms:

Ms

[ n;
J
2nuxlru+2nl]xlyj (y)r +2nuxlrl] n;; lyJ] =0,
J

~.
Il
—

i Mij\ 2
Al lJ l Jj yj 12

This gives a relatively simple expression for each x; in terms of
the y; values:

Ms

~.
1l

0.5

m
X = Z( . U) Z"ij

=1\ Vi

In the illustration used here, there is one exposure in each cell.
The starting values are f; =2 and #, = 1. We use a base pure
premium of $200, and we divide all cells by $200.

Urban Rural terr; =2 terr, = 1

Male $4 $2.5 sex, §; %2 s x 1
Female $2 $1 sex, 5, %2 5, x 1
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Using the y-squared bias function along the first row, we
get

sy (male relativity) = [(4%/2 +2.5%/1)/2 + 1)]*> = 2.179.
Using the y-squared bias function along the second row, we get
s,(female relativity) = [(22/2 + 12/1)/(2 + D]*> = 1.000.

The male-to-female relativity is 2.179 to 1. The series converges.

Iteration Urban Rural Male Female
Initial 2.0000 1.0000
1-a 2.1794 1.0000
1-b 1.8887 1.1029
2-a 2.1739 1.0055
2-b 1.8884 1.1032
3-a 2.1739 1.0055
Normalized 1.7118 1.0000 2.1620 1.0000

Normalized Base Pure Premium  $200.00 x 1.1032 x 1.0055 = $221.85

The final relativities are 2.1620 for the y-squared bias func-
tion and 2.1155 for the least squares bias function. The dollar
values in the urban male cell are larger than the dollar values in
the rural male cell, so the least squares bias function gives more
weight to the urban male cell as compared to the rural male cell
than the y-squared bias function gives.

Additive Model with x-Squared

The y-squared bias function can be used with any type
of model, whether multiplicative, additive, or combined. If an
additive model is used, we minimize the following expres-
sion:

SSE =" ny(r; —x; —y)*/(xi + y)).

i=1j=1
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We set the partial derivative with respect to each relativity equal
to zero. It is easiest to solve the resulting set of simultaneous
equations by iteration, solving for Ax; rather than for x;. Bailey
and Simon [1960], followed by Brown [1988], give the recursive

equations as
2
T
j
13 1
_ ’(xﬁyj) T

Ax; =

1 r 2 1 °
22'”“( l.] > ( >
P\ X+, X+,

The series converges along the following path.

Iteration Urban Rural Male Female
Initial $250.00 $0.00
1 $96.81 ($15.53)
2 $334.23 $63.18
3 $193.97 ($115.14)
4 $349.61 $97.35
5 $220.32 ($112.08)
6 $336.84 $103.42
7 $224.64 ($113.40)
Final $233.43 $0.00 $338.04 $0.00
Base Pure Premium $190.02

7. MAXIMUM LIKELIHOOD

Some statisticians prefer a maximum likelihood bias function
to either a y-squared or a least squares bias function when fitting
a distribution to observed data. In his 1988 Proceedings paper,
Rob Brown used a maximum likelihood bias function to optimize
classification relativities. The maximum likelihood bias function
is rarely used in practical work, and not all actuaries are familiar
with it.

The maximum likelihood bias function requires an assump-
tion about the distribution of values in each class. The appropriate
distribution for loss costs is not evident. It probably is not a sim-
ple parametric distribution, such as an exponential distribution
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or a Poisson distribution. If there is not support for a specific
distribution, the merits of a maximum likelihood bias function
are less clear.

Likelihood and Probability

We use the term likelihood, not probability. For a continu-
ous distribution, the probability of observing a specific value is
zero. If the exponential distribution function has A of 0.0001, the
likelihood of a loss of size $20,000 is 0.0001 x 2.

Illustration 19: We are fitting an exponential curve to a set
of insurance losses. For the exponential distribution function, the
likelihood of a loss of size x is Ae~**. We use integration by parts
to solve for the mean of the exponential distribution function:

> A |
/ xde Ydx = <x>\e’\x ——e x> = —,
0 A 0 A
To fit an exponential curve to a set of insurance losses, we must

determine \. After discussing two methods outlined above (for
comparison), we show the maximum likelihood method.

1

Method of Moments

The mean of the exponential distribution is 1/\. We take the
average of the observations, and we set A equal to the reciprocal
of this average.

Least Squares

We divide the loss sizes into ranges, such as $0 to $5,000,
$5,001 to $25,000, $25,001 to $100,000, and so forth. We cal-
culate the percentage of observed losses that fall into each range.
For any given A\, we determine the percentage of theoretical
losses that would fall into each range.

For each range, we calculate the squared difference between
the observed percentage and the theoretical percentage. We sum
the squared differences over all the ranges. The result is a func-
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tion of \. To minimize this squared difference, we set the deriva-
tive with respect to A equal to zero.

x-Squared

The y-squared procedure is similar to the least squares pro-
cedure, but instead of taking the squared difference we take the
x-squared difference. For each range, we divide the squared dif-
ference by the expected value.

Maximum Likelihood

We explain the method by means of an illustration. Sup-
pose we have observed five losses with sizes of $3,000, $5,000,
$15,000, $20,000, and $80,000. For a given value of ), the like-
lihood of a loss equal to $3,000 is Ae ***0% The likelihood
of five losses for the values listed above is the product of the
likelihoods of each individual loss, or

L= )\e*)\XS,OOO % )\ef)\x5,000 % )\ef)\x15,000 > )\ef)\XZ0,000

% )\e—)\XS0,000.

We simplify the likelihood to A2e=**123:000 (123,000 is the sum
of the losses). To find the A that gives the greatest likelihood, we
set the derivative with respect to A equal to zero.

Before taking the derivative, we make one simplification.
Maximizing a strictly increasing function, like the likelihood
function, is the same as maximizing its logarithm. The logarithm
of the likelihood (the log-likelihood, or LL) is

LL =InL =5In\— 123,000 x A
d(nL)/d) =5/ —123,000=0, or X=5/123,000.

Maximum Likelihood and Minimum Bias Procedure

The rating model uses the classification relativities to deter-
mine the expected loss in each cell. The maximum likelihood test
is most practicable as a bias function when a single parameter
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distribution is used and the mean of the distribution equals the
parameter itself or some simple function of the parameter, such
as its reciprocal. It is most valuable when the distribution is a
reasonable reflection of the insurance process.

The exponential and Poisson distributions have these prop-
erties. We illustrate a multiplicative model with the exponential
distribution function, using the same illustration as before.

Urban Rural terr, terr,
Male $800 $500 sex, 200 x s, Xt 200 x s, xt,
Female $400 $200 sex, 200 x s, X 1, 200 x s, X t,

Each class has an assumed exponential distribution of loss
costs. If the indicated pure premium is $200, we expect the ob-
served losses to follow an exponential distribution with a mean
of $200. The A differs by cell. The indicated pure premium in
each cell is 1/\.

Illustration 20:  For the urban male cell, the loss costs have an
exponential distribution with the parameter A equal to 1/($200 x
S X1 )

We choose starting values for #; = 2.00 and #, = 1.00. We de-
termine the likelihood of the observed loss costs. The value of A
for the urban male cell is 1/(200 x s; x t;) = 1/(400 x s;). The
likelihood of the $800 loss cost in the urban male cell is

1 o —800/400s, _
400s, 400s,

The likelihoods of the observed values in the other cells are de-
termined in the same manner. To maximize the likelihood, we
maximize the log-likelihood. To repeat,

e—2/s1 )

e The likelihood of four observed values is the product of the
four individual likelihoods.
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e The log-likelihood of four observed values is the sum of the

four individual log-likelihoods.

The partial derivative of the log-likelihood with respect to s,
depends on the log-likelihoods in the male row only. This is the
same simplification that we used for the least squares method
and the y-squared method.

The log-likelihood of the values in the male row is

LL = —In(400s,) — (800/400) x 1 /s, — In(200s,)
—(500/200) x 1/s,

OLL/Os; = —1/s; + 2572 —1/s; +2.5572 =0
—s;+2—5;+25=0, because s;#0
§1 = 225

The log-likelihood of the values in the female row is

LL = —In(400s,) — (400/400) x 1/s, — In(200s,)
—(200/200) x 1/s,

OLL/Dsy = —1/s, + 15y 2 — 1 /s, + 15,2 =0

*S2+1*52+1=0

s, = 1.00.

The series converges to the following relativities.

Iteration Urban Rural Male Female
Initial 2.0000 1.0000
1-a 2.2500 1.0000
1-b 1.8889 1.0556
2-a 2.2430 1.0031
2-b 1.8886 1.0557
3-a 2.2430 1.0031
Normalized 1.7889 1.0000 2.2361 1.0000

Normalized Base Pure Premium

$200.00 x 1.0557 x 1.0031 = $211.80
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Justification

If the distribution of loss costs is a simple mathematical func-
tion, such as a Poisson distribution, a normal distribution, a log-
normal distribution, or an exponential distribution, we can derive
simple recursive equations; see Brown [1988]. In practice, we
don’t know the proper distributions. The distributions that have
been suggested for use in the minimum bias procedure are not
necessarily correct. They are simply tractable.

The Poisson distribution is a reasonable model for loss fre-
quency distributions, though not for loss severity distributions.
The normal, lognormal, and exponential distributions may not
be ideal fits to the loss costs distribution. However, maximum
likelihood estimation is particularly useful when examining loss
frequency and loss severity with generalized linear models; see
Feldblum et al. [forthcoming].

The Bias Function

The optimal class relativities for a given data set depend on
the choice of the bias function. The choice of bias function can
be viewed from three perspectives:

1. Mathematical tractability,
2. Social equity, or

3. Economic optimization.

Mathematical tractability was of concern when computational
capacity was limited and some bias functions gave simple rela-
tionships while other bias functions gave intractable equations.
The minimum bias procedure gives simple equations for the bias
functions discussed in this paper. With modern spreadsheets,
however, even the average absolute error does not pose tractabil-
ity issues. Just as the solution for the balance principle is the
mean, the solution for the average absolute error is the median.
It is not uncommon for actuaries to use the median instead of
the mean in practical problems.
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Social equity is subjective, though it is vital to the success of
a highly regulated industry like insurance. The balance principle
sometimes results in large errors for outlying cells. The errors
may be particularly large for high-rated cells. If a multiplicative
model is used when an additive model is more appropriate, the
errors for outlying cells are frequently overcharges.

Of the bias functions that we consider in this paper, the
squared-error bias function is the best at reducing large over-
charges for individual cells. Ferreira’s critique of insurance in-
dustry classification systems in Massachusetts illustrates this so-
cial position.??

Economic optimization drives the behavior of firms in free
markets. Firms seek to maximize profits and to minimize losses
(among other firm objectives). Suppose an insurer issues three
policies. It must choose between two rating systems:

A. Under rating system A, it expects to lose $1.00 each
on the first two policies and to break even on the third
policy.

B. Under rating system B, it expects to break even on the
first two policies and to lose $1.50 on the third policy.

Rating system A is off by $2.00 using the balance principle
while rating system B is off by $1.50. Using the squared error
bias function, rating system A is off by 2.00 dollars-squared
while rating system B is off by 2.25 dollars-squared. The balance
principle says we should choose rating system B, and the squared
error bias function says we should choose rating system A.

To maximize profits (or minimize losses), we would probably
prefer rating system B, as the balance principle says. In practice,

23See Ferreira [1978], as well as Cummins et al., [1983] chapter 4. We are not endorsing
Ferreira’s views, which are inconsistent with competitive insurance markets; see the
discussion in the text of this paper.
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economic forces are more complex than short-term profit maxi-
mization. There are many reasons for avoiding errors, including
consumer dissatisfaction, consumer switching, and public rela-
tions. In democratic systems where social opinion and political
pressures are strong, firms may sacrifice short-term profit max-
imization to achieve other ends; objectives such as workforce
diversity and environmental protection are examples. Further-
more, manager incentives may encourage the pursuit of other
goals, such as corporate growth instead of profit maximization.
Nevertheless, profit maximization remains the dominant corpo-
rate goal. The pricing actuary should keep these social and eco-
nomic considerations in mind when choosing a bias function for
the minimum bias procedure.

8. COMBINED MODELS

Throughout this paper, we have used simple multiplicative
and additive models, not combined models. This reflects current
insurance practice.

In truth, business practice reflects ratemaking capabilities. Ac-
tuaries have not had simple methods to optimize combined mod-
els, so these models have not gained wide acceptance.

The rationale for combined models is strong. Since the least
squares and y-squared bias functions provide simple recursive
equations for many combined models, these models may become
more popular in the future.?*

Hllustration 21: Rating territory may have a variety of effects
on insurance loss costs.

1. High-crime areas may have a greater incidence of car
theft and claim fraud. Thefts would raise comprehensive
pure premiums, and fraud would raise liability pure pre-
miums.

24Generalized linear models allow the optimization of even more complex rating models;
see Feldblum et al. [forthcoming].
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2. Areas with more sophisticated medical facilities may
have higher loss costs for bodily injury claims.

3. Territories with a higher number of attorneys per capita
may experience a higher incidence of bodily injury
claims per physical accident.?

The first effect argues for an additive model; the third ef-
fect suggests a multiplicative model; and the second effect may
have both additive and multiplicative components. The greater
incidence of theft may be unrelated to other hazards, whereas
a higher proportion of attorneys may affect claim filing for all
hazards.?® Intuition alone, though, is rarely sufficient to optimize
a rating model. The minimum bias method allows the pricing ac-
tuary to determine the optimal rating structure from the observed
loss costs.

Lllustration 22: Combined Model: We keep the same male/
female and urban/rural classification system. We assume now
that the male/female rating dimension has a multiplicative
effect on loss costs, and the rating territory dimension has both a
multiplicative and an additive effect on loss costs. We show the
structure of this rating model, and we explain how to optimize it.

For the male/female classification dimension, we use pure pre-
mium relativities of s; and s,. For the urban/rural dimension,
each class has two relativities: a multiplicative relativity denoted
by t; and 1,, and an additive relativity denoted by z; and z,. We
denote the base pure premium as B.

The indicated pure premium for any class is B x (s; X t; + z;).
The subscripts i and j denote the classification dimension. The
indicated pure premiums are shown in the following table.

25See Conners and Feldblum [1998] for the effects of territory on private passenger
automobile claim frequency.

260n reviewing this paper, Ginda Fisher suggested that rating variables such as fire pro-
tection, theft protection devices, and age of dwelling may be additively related for Home-
owners insurance, though there may also be some multiplicative relationships among
them.
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Observed Loss Costs Indicated Pure Premiums
Urban Rural Urban (¢,,z,) Rural (t,,z,)

Male r;; =$800 r, =$500 Male (s;) Bx(s; xt;+z;) Bx(s; xt,+2,)
Female r,, =$400 r,, =$200 Female (s,) B X (s, xt; +2;) Bx (s, X1, +2,)

If we use the balance principle as the bias function, we bal-
ance along the two rows and the two columns. This gives four
equations, of which only three are independent, since there is a
totality constraint. We must solve for six classification relativi-
ties.

When there are more unknowns than equations, the iterations
will not necessarily converge. If they do converge, the conver-
gence is generally not unique. If the balance principle is used
with a multidimensional combined multiplicative and additive
model, there are more relativities than there are equations.

If we use a least squares or a y-squared bias function, the
combined model is not conceptually different from a simple mul-
tiplicative or additive model. We set the partial derivative with
respect to each rating variable equal to zero. This guarantees the
same number of equations as rating variables.

The use of the minimum bias procedure with combined mod-
els is a powerful rating tool. But as the rating models grow more
complex, there are more classification dimensions, more cells,
and fewer exposures in each cell. The potential rating errors
become more serious as the effect of random loss fluctuations
Srows.

Outliers

The least squares and y-squared bias functions are particu-
larly sensitive to outliers. Outliers are observed values that differ
substantially from their expected values because of random loss
fluctuations. Distortions stemming from random loss fluctuations
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can be controlled in several ways:

e Losses can be capped at basic limits or similar retentions.
e Low-volume classes can be assigned limited credibility.

e The data in each cell can be examined for unusual values.

The use of low retentions or low credibility conflicts with the
objective of basing rates on observed experience as much as pos-
sible. The examination of the observed data for unusual values is
sometimes too time-consuming for practical work. In any case,
one should choose a bias function that is not too sensitive to
outliers.

Hllustration 23: A classification system has two dimensions:
male/female along one dimension and ten territories along the
other dimension. The current driver relativities are 1.00 for fe-
male and 2.00 for male. The current territorial relativities are
1.00,2.00,...,10.00 for the ten territories, labeled (01,02,...,10).
The base pure premium is $100, and a multiplicative model is
used.

Scenario A: The observed loss costs are shown below, in
units of 100 dollars.

Territory: 01 02 03 04 05 06 07 08 09 10

Male $2 $4 $6 $8 $10 $12  $14 $16  $18  $20
Female  $1 $2 $3 $4 $5 $6 $7 $8 $9 $10

The observed loss costs exactly match the indicated pure pre-
miums in the current rating system. No change to the current
relativities is indicated.

Scenario B: Because of a random large loss, the observed
loss costs for the males in territory 10 are $10,000 instead of
$2,000. The “territory 10 male” cell shows $100 instead of $20.
This type of random loss fluctuation is common in classifica-
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tion analysis for small populations. We have starting values of
(1.000,2.000,...,10.000) for the ten territories. We determine the
intermediate value for the male relativity.

The balance principle selects the male relativity s; such that
(on the first iteration)

(spxt) +(sy X))+ -+ (s X)) =r|+rip+-+r 0

5, % $55 = $190
§1 = 3.455.

The least squares bias function selects the male relativity to
minimize the squared error:

SSE = (ry; —s; x1,)
j—1

OSSE/ds; = > 2(ryj— s x 1)) x (—1;) =0
j=1

_ > =1 (ryj X))

[(1X2)+2x4)+(BX6)+---+(9x18) + (10 x 100)]/
[12+2%+3%+---92+10%] = 4.078.

Compared with the balance principle, the least squares bias func-
tion exacerbates the distortion caused by random loss fluctua-
tions. In this instance, the y-squared bias function magnifies the
distortion less than the least squares bias function does. This
is not always the case; in other instances, the y-squared bias
function magnifies the distortion more than the least squares
bias function does. Since combined models are more sensitive
to random loss fluctuations than simple models are, and since
the least-squares or y-squared bias function must be used, the
pricing actuary must be particularly careful to exclude outliers
from the data.
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9. GOODNESS-OF-FIT

For a given rating model and bias function, the minimum bias
procedure optimizes the relativities. We now wish to optimize the
rating system by choosing the best rating model and bias func-
tion. The choice of rating model, such as multiplicative, additive,
or combined, depends on the characteristics of the observed loss
costs. The choice of the bias function depends on the objective:

e The statistician seeking the best fit might use a maximum like-
lihood function if a tractable distribution function is appropri-
ate for this coverage, or a x-squared function if the probability
distribution function is not known or not tractable.

e The regulator seeking to avoid large dollar mismatches be-
tween observed loss costs and indicated pure premiums might
use a least squares function.

e The insurer seeking to avoid monetary losses might use the
balance principle.

The preferences listed above are examples; other preferences
are also possible. In particular, a regulator might prefer the bal-
ance principle to provide the most efficient rating system.

Empirical Tests
We can test the choice of rating model empirically.

Illustration 24: We are using a y-squared bias function to
optimize classification relativities. We do not know whether a
multiplicative model or an additive model is more appropriate.

We perform the minimum bias procedure twice with a x-
squared bias function: once with the multiplicative model and
once with an additive model. After optimizing the relativities for
each model, we compare the final y-squared difference between
the observed loss costs and the indicated pure premiums for each
model. The model with the lower y-squared is preferred.
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Hllustration 25: We are using the balance principle to opti-
mize classification relativities. We do not know whether a mul-
tiplicative model or an additive model is more appropriate.

We perform the minimum bias procedure twice with a balance
principle bias function: once with the multiplicative model and
once with an additive model. After optimizing the relativities for
each model, we compare the average absolute difference between
the observed loss costs and the indicated pure premiums for each
model. The model with the lower average absolute difference is
preferred.

We cannot empirically test the suitability of the bias function,
as explained below.

Hllustration 26: We are using a multiplicative model, and we
are deciding between the balance principle and the y-squared
function.

We perform the minimum bias procedure twice: once with the
multiplicative model and the balance principle and once with the
multiplicative model and a y-squared bias function.

If we test the performance of the models by using a x-squared
test to measure the difference between the observed loss costs
and the indicated pure premiums, the y-squared bias function
does better. This result is tautological, since the x-squared bias
function minimized the y-squared difference between the ob-
served loss costs and the indicated pure premiums.

If we test the performance of the two models by using the
average absolute difference between the observed loss costs and
the indicated pure premiums, the balance principle generally does
better. The x-squared bias function minimizes large percentage
errors. The balance principle and the average absolute difference
minimize dollar differences.

The choice of bias function is a qualitative choice, depend-
ing on the objectives of the rating system. It is not subject to a
quantitative test of suitability.
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Squared Error versus x-Squared

The squared error bias function is similar to the y-squared bias
function, but whereas the squared error test looks at absolute
differences, the y-squared test looks at percentage differences.
Some statisticians prefer the y-squared test to a least squares
test.

Hllustration 27: We are fitting a distribution to two empirical
data points:

e Point A has an observed value of $101 and a fitted value of
$100.

e Point B has an observed value of $1.50 and a fitted value of
$1.00.

We examine the errors for each point:

e The squared error is (101 —100)? = 1.00 for point A and
(1.50 — 1.00)% = 0.25 for point B. This distribution fits point
B better.

e The y-squared value is (101 — 100)2/100 = 0.01 for point A
and (1.50 — 1.00)2 /1.00 = 0.25 for point B. This distribution
fits point A better.

The statistician might prefer the y-squared test to the squared
error test. The practical businessperson might argue that the in-
surance enterprise is not concerned with optimizing a statistical
fit. It is concerned with optimizing net income. At point A, the
insurer has a gain or loss of $1.00. At point B, the gain or loss
is $0.50. The squared error test is preferred.

This argument does not fully reflect the purpose of the mini-
mum bias procedure. The argument would be correct if we fully
believed the observed values—that is, if the observed values were
fully credible. But if the observed values were fully credible, we
would have no need to use the minimum bias procedure; we
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would just use the rates indicated by the observed loss costs in
each cell.

We are using the minimum bias procedure because the in-
dividual observed values are not fully credible, and we believe
that the relationships among all the cells in the observed ma-
trix provide useful information for choosing the true expected
values. When we say that a particular fit X has less of an error
than another fit Y, we do not mean that we know the true values
and that model X is closer to these true values. We generally do
not know the true values, but we presume that these true values
might be represented by a mathematical function. When we say
that fit X is better, we mean that model X is more likely to be a
better model. The y-squared bias function perhaps does a better
job of choosing the better model. If so, the businessperson might
also prefer the y-squared bias function.

Balance Principle versus x-Squared

The 1960 Bailey and Simon paper prefers the x-squared bias
function to the balance principle, whereas the 1963 Bailey paper
argues for the balance principle. In defense of the x-squared bias
function, the 1960 Bailey and Simon paper says (p. 10):

...the indication of each group should be given a
weight inversely proportional to the standard deviation
of the indication.

This is a traditional justification for classical credibility, as
Bailey and Simon continue:

The standard deviation of the indication is inversely
proportional to the square root of the expected number
of losses for the group.?’

27Bailey and Simon [1960] assume that if all claims are independent, the variance is
proportional to the number of claims, so the standard deviation is proportional to the
square root of the number of claims (see also Longley-Cook [1962]). After the writings
of Hans Buhlmann, Gary Venter, Howard Mahler, and others, this assumption is no longer
the standard rationale for credibility.
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The 1963 Bailey paper prefers the balance principle because
it is unbiased, whereas the x-squared bias function may be bi-
ased. By “unbiased,” Bailey means that the balance principle
constrains the relativities so that the total indicated pure pre-
miums along any dimension equal the total observed loss costs
along that dimension.

The balance principle uses the first-order departure, which is
generally preferred by firms seeking to maximize profits. This is
perhaps the strongest argument for the balance principle.

Common practice among casualty actuaries is to use the bal-
ance principle. One might presume that since more effective pro-
cedures drive out less effective procedures in a competitive mar-
ket, the balance principle is perhaps the most effective bias func-
tion.

In truth, many ratemaking procedures are selected for ease of
implementation, not necessarily for accuracy. The balance prin-
ciple was easier to implement before the widespread use of desk-
top computers. Few actuaries have tried the y-squared bias func-
tion or the least squares bias function. No conclusions should be
drawn from the current practice.

10. CREDIBILITY

Many practitioners combine the minimum bias procedure with
credibility weighting of the indicated pure premiums, either with
the observed loss costs or with the underlying pure premiums.
We show illustrations of each method.

The minimum bias procedure gives the indicated pure pre-
miums for each class in an array. One may choose the pure
premiums used for the final rates as a weighted average of the
indicated pure premiums and the observed loss costs for that
class. The credibility for the observed loss costs is a function of
the volume of business in the class. Classes with greater volume
place more weight on the observed loss costs; see Venter [1992].
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Classical credibility formulas are the most commonly used.
Classes with a certain volume of claims or of exposures are given
full credibility. The square root rule is used for classes with lower
volume of claims or exposures.

Illustration 28: Suppose that classes with exposure of 10,000
or more car-years are accorded full credibility. A class with
3,600 car-years of exposure has an $800 observed loss cost. The
minimum bias indicated pure premium for this class is $700.
The credibility assigned to the class is (3,600/ 10,000)0'5 = 60%
credibility. The credibility weighted pure premium is

60% % $800 + (1 —60%) x $700 = $760.

Illustration 29: For premises and operations ratemaking,
Insurance Services Office (ISO) uses a balance principle mini-
mum bias procedure with observed loss ratios to determine the
indicated changes to class group and type of policy relativities.?®

e An indicated relativity change of 1.08 for type of policy 12
means that the existing relativity for type of policy 12 should
be increased by 8%.

e The full credibility standard is based on the number of claims
in the class during the experience period. These standards are
2,500 claims for OL&T BI, 3,000 claims for M&C BI, and
7,500 claims for M&C PD.

e Partial credibility is based on the square root rule. For exam-
ple, 1,080 claims in M&C BI gives (1,080/3,000)% = 60%
credibility.

e The indicated relativity change for the class is raised to the
power of the credibility. If the indicated relativity change is
1.08 and the credibility is 60%, the credibility weighted rela-
tivity change is 1.080°¢ = 1.047.

2Type of policy refers to monoline versus multiline policies (and type of multiline
policy). See Graves and Castillo [1990] for a more complete discussion of the ISO
procedure.
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These two illustration show different uses of credibility. ISO
credibility weights the indicated classification relativities with
the current classification relativities to dampen the changes from
year to year. The observed loss costs in the first illustration are
credibility weighted with the indicated pure premiums to increase
the accuracy of the final pure premiums.?’

Embedded Credibility

The minimum bias procedure has credibility embedded in the
calculations, since each cell is weighted by the number of expo-
sures in that cell.

A comparison with the single-dimensional classification rate-
making procedure should clarify this. Suppose there are three
territories in a state with the experience shown below. The ex-
posures are car-years, and the dollar figures are in thousands.

Exposures Claims  Premium  Losses Loss Ratio Indication

Terr 01 5,000 500 5,000 3,500 70.0% 0.972
Terr 02 10,000 1,000 15,000 10,800 72.0% 1.000
Terr 03 2,000 200 4,000 2,980 74.5% 1.035

Total 17,000 1,700 24,000 17,280 72.0%

The unadjusted observed data suggest that

e Territory 01 should have a reduction of 2.8% in its base rate.
e Territory 02 should have no change in its base rate.

e Territory 03 should have an increase of 3.5% in its base rate.

The indications in the table do not consider the number of
exposures or claims in each territory. Since territory 03 has only
200 claims in the experience period, the +3.5% indication may

29See Venter’s [1992] distinction between classical credibility used to minimize rate
fluctuations from year to year and Bayesian-Buhlmann credibility used to increase the
accuracy of the estimate.
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be distorted by random loss fluctuations. To adjust for the vol-
ume of business in each territory, the raw indications may be
credibility weighted with the overall average of unity, where the
credibility depends on the number of exposures or claims.

In the minimum bias procedure, the number of exposures in
each cell affects the computation. The weight accorded to the
observed loss costs in the cell is proportional to the number of
exposures in the cell. From this perspective, credibility weighting
the observed loss costs by the number of exposures would be
applying credibility twice.

Nevertheless, some justification remains for a credibility ad-
justment. To determine the indicated pure premium for a cell,
the minimum bias procedure uses the type of rating model along
with all the cells in the array. The credibility embedded in the
minimum bias procedure deals with random loss fluctuations.
A second credibility adjustment deals with model specification
risk. We explain these concepts with an illustration.

Hllustration 30: The observed loss cost for young unmarried
urban male drivers is $2,500 per car. After applying a minimum
bias procedure, the indicated pure premium for these drivers is
$3,000 per car. There are two explanations for the difference.

1. Random loss fluctuations account for the difference. The
credibility embedded in the minimum bias procedure is
sufficient. No additional credibility adjustment should be
used.

2. The rating model is not correct. For example, the mini-
mum bias procedure may be using a multiplicative model
when an additive model is proper. This is model speci-
fication risk, and a second credibility adjustment is war-
ranted.

Classical credibility procedures are not an ideal compensation
for model specification risk. The ideal approach is to use several
models, such as multiplicative, additive, and combined models,
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and to test the goodness-of-fit for each model. Time constraints
preclude this ideal approach in many cases, and a credibility
adjustment may be a practical alternative.

Rate Fluctuations

When rating bureaus made advisory rates, they had more in-
centive to temper rate fluctuations from year to year than private
insurers have. ISO’s credibility procedure may not have firm sta-
tistical justification, but it fulfills the objective of tempering the
requested rate changes.

The use of credibility to temper rate fluctuations from year to
year is a dubious practice. In practice, most actuaries conceive of
credibility as a means to price more accurately. Although Venter
correctly notes that the stated rationale for classical credibility
deals with tempering rate fluctuations, even classical credibility
does serve the objective of increasing the accuracy of the rate
indications.3°

11. SUMMARY

For each model discussed in this paper, there are simple iter-
ative functions. The task of the pricing actuary is to determine a
rating function—such as multiplicative, additive, or combined—
and a bias function (balance principle, least squares, y-squared,
or maximum likelihood). If the maximum likelihood bias func-
tion is used, the actuary must also select a probability distribution
function for the loss costs (or other values) in each cell.

The type of data in each cell will generally be either loss
costs or loss ratios. If the pricing actuary is using all the dimen-
sions of the classification system in the minimum bias analysis,
it is easier to use loss costs. If there are significant classification
dimensions that are not included, and if there may be an uneven

30See Venter’s chapter on “Credibility” in any of the first three editions of the CAS
textbook, Foundations of Casualty Actuarial Science, and Mahler [1986]. As Mahler points
out, tempering rate changes and aiming for rate accuracy are different purposes, but they
usually have a similar result.
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distribution of exposures along these other classification dimen-
sions, the pricing actuary may prefer to use loss ratios.

We list here the models that have been proposed for insurance
use, along with their recursive equations.

Multiplicative model, balance principle:

Z] ij l]

l]yJ

X =

Additive model, balance principle:

Z] l_] y])

Jn]

i =
Multiplicative model, least squares:
xi = Z(I’lu X rl'j X yj)/Z(nl] X yjz).
Additive model, least squares:
_ Znij X (”ij *)’j)
xX; = —
Znij
Multiplicative model, y-squared:
) 0.5
= [Z(”ij X 13j/¥;) / Znijyj]

Additive model, x-squared:
- 2
ij
2.1 <Xi+yj> =2
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Multiplicative model, maximum likelihood, normal density func-
tion:

ZJ ij lJyJ
l]y]



THE MINIMUM BIAS PROCEDURE 271

Additive model, maximum likelihood, normal density function:
_ 2imii—yy)
X, = ——L———-.
> jTj
Multiplicative model, maximum likelihood, exponential density
function:

e
Zis
X: = ],

1
k
where k is the number of classes in the j dimension.

The recursive functions for a multiplicative model, maximum
likelihood, Poisson distribution function are the same as those
for the multiplicative model, balance principle.

Derivations of the formulas for the maximum likelihood mod-
els may be found in Brown [1988].

Accurate classification systems are the bedrock of insurance
pricing. Accurate and unbiased rating systems enable insurers to
attain competitive advantages over their peer companies. Inaccu-
rate rating systems lead to unsatisfactory profits and to loss of
market share.

As competition increases in the insurance industry, and as
companies are forced to rely on their own pricing instead of
bureau rates, the need for more accurate ratemaking increases.
The minimum bias procedure can be used to optimize a variety
of rating models.
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