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APPLICATIONS OF RESAMPLING METHODS IN
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Abstract

Actuarial analysis can be viewed as the process of
studying profitability and solvency of an insurance firm
under a realistic and integrated model of key input ran-
dom variables such as loss frequency and severity, ex-
penses, reinsurance, interest and inflation rates, and as-
set defaults. Traditional models of input variables have
generally fitted parameters for a predetermined family
of probability distributions. In this paper we discuss ap-
plications of some modern methods of non-parametric
statistics to modeling loss distributions, and possibili-
ties of using them for modeling other input variables
for the purpose of arriving at an integrated company
model. Several examples of inference about the sever-
ity of loss, loss distributions percentiles and other re-
lated quantities based on data smoothing, bootstrap es-
timates of standard error and bootstrap confidence in-
tervals are presented. The examples are based on real-
life auto injury claim data and the accuracy of our
methods is compared with that of standard techniques.
Model adjustment for inflation and bootstrap techniques
based on the Kaplan–Meier estimator, useful in the pres-
ence of policies limits (censored losses), are also con-
sidered.
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1. INTRODUCTION

In modern analysis of the financial models of property-
casualty companies the input variables can be typically classi-
fied into financial variables and underwriting variables (e.g., see
D’Arcy, Gorvett, Herbers and Hettinger [6]). The financial vari-
ables generally refer to asset-side generated cash flows of the
business, and the underwriting variables relate to the cash flows
of the liabilities side. The process of developing any actuarial
model begins with the creation of probability distributions of
these input variables, including the establishment of the proper
range of values of input parameters. The use of parameters is
generally determined by the use of parametric families of distri-
butions. Fitting of those parameters is generally followed either
by Monte Carlo simulation together with integration of all in-
puts for profit testing and optimization, or by the study of the
effect of varying the parameters on output variables in sensitiv-
ity analysis and basic cash flow testing. Thus traditional actuar-
ial methodologies are rooted in parametric approaches, which fit
prescribed distributions of losses and other random phenomena
studied (e.g., interest rate or other asset return variables) to the
data. The experience of the last two decades has shown greater
interdependence of basic loss variables (severity, frequency, ex-
posures) with asset variables (interest rates, asset defaults, etc.),
and sensitivity of the firm to all input variables. Increased com-
plexity has been accompanied by increased competitive pres-
sures, and more frequent insolvencies. In our opinion, in order
to properly address these issues one must carefully address the
weaknesses of traditional methodologies. These weaknesses can
be summarized as originating from either ignoring the uncertain-
ties of inputs, or mismanaging those uncertainties. While early
problems of actuarial modeling could be attributed mostly to ig-
noring uncertainty, we believe at this point the uncertain nature of
model inputs is generally acknowledged. Note that Derrig and
Ostaszewski [9] used fuzzy set techniques to handle the mix-
ture of probabilistic and non-probabilistic uncertainties in asset/
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liability considerations for property-casualty claims. In our opin-
ion it is now time to proceed to deeper issues concerning the
actual forms of uncertainty. The Central Limit Theorem and its
stochastic process counterpart provide clear guidance for practi-
cal uses of the normal distribution and all distributions derived
from it. But one cannot justify similarly fitting convenient dis-
tributions to, for instance, loss data and expect to easily survive
the next significant change in the marketplace. What does work
in practice, but not in theory, may be merely an illusion of ap-
plicability provided by powerful tools of modern technology. If
one cannot provide a justification for the use of a parametric dis-
tribution, then a nonparametric alternative should be studied, at
least for the purpose of understanding the firm’s exposures. In
this work, we will show such a study of nonparametric method-
ologies applied to loss data, and will advocate the development
of an integrated company model with the use of nonparametric
approaches.

1.1. Loss Distributions

We begin by addressing the most basic questions concerning
loss distributions. The first two parameters generally fitted to the
data are average claim size and the number of claim occurrences
per unit of exposure. Can we improve upon these estimates by
using nonparametric methods?

Consider the problem of estimating the severity of a claim,
which is, in its most general setting, equivalent to modeling the
probability distribution of a single claim size. Traditionally, this
has been done by means of fitting some parametric models from
a particular continuous family of distributions (e.g., see Daykin,
Pentikainen, and Pesonen [7, Chapter 3]). While this standard
approach has several obvious advantages, we should also realize
that occasionally it may suffer some serious drawbacks:

! Some loss data has a tendency to cluster about round num-
bers like $1,000, $10,000, etc., due to rounding off the claim
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amount and thus in practice follows a mixture of continuous
and discrete distributions. Usually, parametric models simply
ignore the discrete component in such cases.

! The data is often truncated from below or censored from above
due to deductibles and/or limits on different policies. In par-
ticular, the presence of censoring, if not accounted for, may
seriously compromise the goodness-of-fit of a fitted paramet-
ric distribution. On the other hand, trying to incorporate the
censoring mechanism (which is often random in its nature,
especially when we consider losses falling under several in-
surance policies with different limits) often leads to a cre-
ation of a very complex model which is difficult to work
with.

! The loss data may come from a mixture of distributions de-
pending upon some known or unknown classification of claim
types.

! Finally, it may happen that the data simply does not fit any of
the available distributions in a satisfactory way.

It seems, therefore, that there are many situations of practical
importance where the traditional approach cannot be utilized, and
one must look beyond parametric models. In this work we point
out an alternative, nonparametric approach to modeling losses
and other random parameters of financial analysis, originating
from the modern methodology of nonparametric statistics based
on the bootstrap or resampling method.

To keep things in focus we will be concerned here only with
applications to modeling the severity of loss, but the methods
discussed may be easily applied to other problems such as loss
frequencies, asset returns, asset defaults, and the combination
of variables into models of Risk Based Capital, Value at Risk,
and general Dynamic Financial Analysis (DFA), including Cash
Flow Testing and Asset Adequacy Analysis.
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1.2. The Concept of Bootstrap

The concept of bootstrap was first introduced in the semi-
nal piece of Efron [10], and relies on the consideration of the
discrete empirical distribution generated by a random sample of
size n from an unknown distribution F. This empirical distribu-
tion assigns equal probability to each sample item. In the dis-
cussion which follows, we will write !Fn for that distribution. By
generating an independent, identically distributed (IID) random
sequence (resample) from the distribution !Fn or its appropriately
smoothed version, we can arrive at new estimates of various pa-
rameters and nonparametric characteristics of the original distri-
bution F. This idea is at the very root of the bootstrap methodol-
ogy. In particular, Efron [10] points out that the bootstrap gives
a reasonable estimate of standard error for any estimator, and it
can be extended to statistical error assessments and to inferences
beyond biases and standard errors.

1.3. Overview of the Article

In this paper, we apply bootstrap methods to two data sets
as illustrations of the advantages of resampling techniques, es-
pecially when dealing with empirical loss data. The basics of
bootstrap theory are covered in Section 2, where we show its
applications in estimating standard errors and calculating con-
fidence intervals. In Section 3, we compare bootstrap and tra-
ditional estimators for quantiles and excess losses using some
truncated wind loss data. The important concept of smoothing
the bootstrap estimator is also covered in that section. Applica-
tions of bootstrap to auto bodily injury liability claims in Section
4 show loss elimination ratio estimates together with their stan-
dard errors in a case of lumpy and clustered data (the data set
is enclosed in Appendix B). More complicated designs that in-
corporate data censoring and adjustment for inflation appear in
Section 5. Sections 6 and 7 provide some final remarks and con-
clusions. The Mathematica 3.0 programs used to perform boot-
strap calculations are provided in Appendix A.
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2. BOOTSTRAP STANDARD ERRORS AND CONFIDENCE
INTERVALS

As we have already mentioned in the previous section, the
central idea of bootstrap lies in sampling the empirical cumula-
tive distribution function (CDF) !Fn. This idea is closely related
to the following, well-known statistical principle, henceforth re-
ferred to as the “plug-in” principle. Given a parameter of interest
µ(F) depending upon an unknown population CDF F, we esti-
mate this parameter by µ̂ = µ(!Fn). That is, we simply replace F in
the formula for µ by its empirical counterpart !Fn obtained from
the observed data. The plug-in principle will not provide good
results if !Fn poorly approximates F, or if there is information
about F other than that provided by the sample. For instance,
in some cases we might know (or be willing to assume) that F
belongs to some parametric family of distributions. However, the
plug-in principle and the bootstrap may be adapted to this latter
situation as well. To illustrate the idea, let us consider a paramet-
ric family of CDF’s "F¹# indexed by a parameter ¹ (possibly a
vector), and for some given ¹0, let !¹0 denote its estimate calcu-
lated from the sample. The plug-in principle in this case states
that we should estimate µ(F¹0 ) by µ(F!¹0 ). In this case, bootstrap is
often called parametric, since a resample is now collected from
F!¹0 . Here and elsewhere in this work, we refer to any replica
of µ̂ calculated from a resample as “a bootstrap estimate of µ(F)”
and denote it by µ̂$.

2.1. The Bootstrap Methodology

Bickel and Freedman [2] formulated conditions for con-
sistency of bootstrap, which resulted in further extensions of
Efron’s [10] methodology to a broad range of standard applica-
tions, including quantile processes, multiple regression and strat-
ified sampling. They also argued that the use of bootstrap did not
require theoretical derivations such as function derivatives, influ-
ence functions, asymptotic variances, the Edgeworth expansion,
etc.
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Singh [19] made a further point that the bootstrap estimator of
the sampling distribution of a given statistic may be more accu-
rate than the traditional normal approximation. In fact, it turns out
that for many commonly used statistics the bootstrap is asymptot-
ically equivalent to the one-term Edgeworth expansion estimator,
usually having the same convergence rate, which is faster than the
normal approximation. In many more recent statistical texts the
bootstrap is recommended for estimating sampling distributions
and finding standard errors and confidence sets. The extension
of the bootstrap method to the case of dependent data was con-
sidered for instance by Künsch [15], who suggested a moving
block bootstrap procedure which takes into account the depen-
dence structure of the data by resampling blocks of adjacent
observations rather than individual data points. More recently,
Politis and Romano [16] suggested a method based on circular
blocks (i.e., on wrapping the observed time series values around
the circle and then generating the blocks of the bootstrap data
from the circle’s “arcs”). In the case of the sample mean this
method, which is known as circular bootstrap, again was shown
to accomplish the Edgeworth correction for dependent, station-
ary data.

The bootstrap methods can be applied to both parametric and
non-parametric models, although most of the published research
in the area is concerned with the non-parametric case since that
is where the most immediate practical gains might be expected.
Let us note though that a simple, non-parametric bootstrap may
often be improved by other bootstrap methods taking into ac-
count the special nature of the model. In the IID non-parametric
models, for instance, the smoothed bootstrap (bootstrap based on
some smoothed version of !Fn) often improves the simple boot-
strap (bootstrap based solely on !Fn). Since in recent years sev-
eral excellent books on the subject of resampling and related
techniques have become available, we will not be particularly
concerned here with providing all the details of the presented
techniques, contenting ourselves with making appropriate ref-
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erences to more technically detailed works. Readers interested
in gaining some basic background in resampling are referred
to Efron and Tibisharani [11]. For a more mathematically ad-
vanced treatment of the subject, we recommend Shao and Tu
[17].

2.2. Bootstrap Standard Error Estimate

Arguably, one of the most important applications of bootstrap
is to provide an estimate of the standard error of µ̂ (seF(µ̂)). It
is rarely practical to calculate it exactly; instead, one usually
approximates seF(µ̂) with the help of multiple resamples. The
approximation to the bootstrap estimate of standard error of µ̂
(or BESE) suggested by Efron [10] is given by

!seB =
"

B#
b=1

[µ̂$(b)% µ̂$(&)]2=(B%1)
$1=2

, (2.1)

where µ$(&) =%B
b=1 µ̂

$(b)=B, B is the total number of resamples
(each of size n) collected with replacement from the plug-in es-
timate of F (in the parametric or non-parametric setting), and
µ̂$(b) is the original statistic µ̂ calculated from the bth resample
(b = 1, : : : ,B). By the law of large numbers

lim
B'(

!seB =BESE(µ̂),
and, for sufficiently large n, we expect

BESE(µ̂)) seF(µ̂):
Let us note that B, the total number of resamples, may be as large
as we wish since we are in complete control of the resampling
process. It has been shown that for estimating the standard error,
one should take B to be about 250, whereas for different resam-
pled statistics this number may have to be significantly increased
in order to reach the desired accuracy (see [11]).
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2.3. The Method of Percentiles

Let us now turn to the problem of using the bootstrap method-
ology to construct confidence intervals. This area has been a ma-
jor focus of theoretical work on the bootstrap, and several differ-
ent methods of approaching the problem have been suggested.
The “naive” procedure described below is not the most efficient
one and can be significantly improved in both rate of conver-
gence and accuracy. It is, however, intuitively obvious and easy
to justify, and seems to be working well enough for the cases
considered here. For a complete review of available approaches
to bootstrap confidence intervals, see [11].

Let us consider µ̂$, a bootstrap estimate of µ based on a re-
sample of size n from the original sample X1, : : : ,Xn, and let G$
be its distribution function given the observed sample values

G$(x) = P"µ̂$ * x + X1 = x1, : : : ,Xn = xn#:
Recall that for any distribution function F and p , (0,1) we de-
fine the pth quantile of F (sometimes also called pth percentile)
as F%1(p) = inf"x : F(x)- p#. The bootstrap percentiles method
gives G%1$ (®) and G%1$ (1%®) as, respectively, lower and upper
bounds for the (1%2®) confidence interval for µ̂. Let us note that
for most statistics µ̂, the distribution function of the bootstrap es-
timator µ̂$ is not available. In practice,G%1$ (®) andG%1$ (1%®) are
approximated by taking multiple resamples and then calculating
the empirical percentiles. In this case the number of resamples B
is usually much larger than for estimating BESE; in most cases
B - 1000 is recommended.

3. BOOTSTRAP AND SMOOTHED BOOTSTRAP ESTIMATORS VS
TRADITIONAL METHODS

In making the case for the usefulness of bootstrap methodol-
ogy in modeling loss distributions, we would first like to compare
its performance with that of the standard methods of inference
as presented in actuarial textbooks.



job no. 1969 casualty actuarial society CAS journal 1969D04 [10] 11-08-01 4:58 pm

APPLICATIONS OF RESAMPLING METHODS IN ACTUARIAL PRACTICE 331

3.1. Application to Wind Losses: Quantiles

Let us consider the following set of 40 losses due to wind-
related catastrophes that occurred in 1977. These data are taken
from Hogg and Klugman [12], where they are discussed in de-
tail in Chapter 3. The losses were recorded only to the nearest
$1,000,000 and data included only those losses of $2,000,000
or more. For convenience they have been ordered and recorded
below.

2, 2, 2, 2, 2, 2, 2, 2, 2, 2
2, 2, 3, 3, 3, 3, 4, 4, 4, 5
5, 5, 5, 6, 6, 6, 6, 8, 8, 9
15, 17, 22, 23, 24, 24, 25, 27, 32, 43

Using this data set we shall give two examples illustrating
the advantages of applying the bootstrap approach to modeling
losses. The problem at hand is a typical one: assuming that all
the losses recorded above have come from a single unknown
distribution F, we would like to use the data to obtain some
good approximation for F and its various parameters.

First, let us look at an important problem of finding the ap-
proximate confidence intervals for the quantiles of F. The stan-
dard approach to this problem relies on the normal approxi-
mation to the sample quantiles (order statistics). Applying this
method, Hogg and Klugman [12] have found the approximate
95% confidence interval for the 0.85th quantile of F to be be-
tween X30 and X39, which for the wind data translates into the
observed interval (9,32). They also have noted that “this is a
wide interval but without additional assumptions this is the best
we can do.” Is that really true? To answer this question let us
first note that in this particular case the highly skewed binomial
distribution of the 0.85th sample quantile is approximated by a
symmetric normal curve. Thus, it seems reasonable to expect that
normal approximation could be improved here upon introducing
some form of correction for skewness. In the standard normal
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approximation theory this is usually accomplished by consider-
ing, in addition to the normal term, the first non-normal term in
the asymptotic Edgeworth expansion of the binomial distribution.
The resulting formula is messy and requires the calculation of a
sample skewness coefficient, as well as some refined form of the
continuity correction (e.g., see Singh [19]). On the other hand,
the bootstrap has been known to make such a correction auto-
matically (Singh [19]) and hence we could expect that a boot-
strap approximation would perform better here.1 Indeed, in this
case (in the notation of Section 2) we have µ(F) = F%1(0:85) and
µ̂ = !F%1n (0:85)) X(34), the 34th order statistic, which for the wind
data equals 23. For sample quantiles the bootstrap distribution G$
can be calculated exactly (Shao and Tu [17, p.10]) or approxi-
mated by an empirical distribution obtained from B resamples as
described in Section 2. Using either method, the (1%2®) confi-
dence interval calculated using the percentile method is found to
be between X(28) and X(38) (which is also in this case the exact
confidence interval obtained by using binomial tables). For the
wind data this translates into the interval (8,27), which is con-
siderably shorter than the one obtained by Hogg and Klugman
[12].

3.2. The Smoothed Bootstrap and its Application to Excess
Wind Losses

As our second example, let us consider the estimation of the
probability that a wind loss will exceed a $29,500,000 threshold.
In our notation that means that we wish to estimate the unknown
parameter (1%F(29:5)). A direct application of the plug-in prin-
ciple gives the value 0.05, the nonparametric estimate based on
relative frequencies. However, note that the same number is also
an estimate for (1%F(29)) and (1%F(31:5)), since the relative

1This turns out to be true only for a moderate sample size (here, 40); for a binomial
distribution with large n (i.e., large sample size) the effect of the bootstrap correction
is negligible. In general, the bootstrap approximation performs better than the normal
approximation for large sample sizes only for continuous distributions.
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frequency changes only at the threshold values present in re-
ported data. In particular, since the wind data were rounded off
to the nearest unit, the nonparametric method does not give a
good estimate for any non-integer threshold. This problem with
the same threshold value of $29,000,000 was also considered
in [12, Example 4 on p. 94 and Example 1 on p. 116]. As in-
dicated therein, one reasonable way to deal with the non-integer
threshold difficulty is to first fit some continuous curve to the
data. The idea seems justified since the clustering effect in the
wind data has most likely occurred due to rounding off the
records. In their book Hogg and Klugman [12] have used stan-
dard techniques based on method of moments and maximum
likelihood estimation to fit two different parametric models to
the wind data: the truncated exponential with CDF

F¹(x) = 1% e%(x%1:5)=¹, 1:5< x <( (3.1)

for ¹ > 0, and the truncated Pareto with CDF

F®,¸(x) = 1%
&

¸

¸+ x%1:5
'®
, 1:5< x <( (3.2)

for ® > 0, ¸ > 0.

For the exponential distribution the method of moments esti-
mator as well as maximum likelihood estimator (MLE) of ¹ was
found to be ¹̂= 7:725. The MLE’s for the Pareto distribution
parameters were ˆ̧ = 28:998 and ®̂= 5:084; similar values were
obtained using the method of moments.

The empirical distribution function for the wind data along
with two fitted maximum likelihood models are presented in Fig-
ure 1. The solid smooth line represents the curve fitted from the
exponential family (3.1), the dashed line represents the curve fit-
ted from the Pareto family (3.2), and a vertical line is drawn for
reference at x= 29:5. It is clear that the fit is not good at all,
especially around the interval (16,24). The reason for the bad fit
is the fact that both fitted curves are consistently concave down
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FIGURE 1

EMPIRICAL AND FITTED CDF’S FOR WIND LOSS DATA

for all the x’s and F seems to be concave up in this area.2 The
fit in the tail seems to be much better.

Once we determine the values of the unknown model param-
eters, MLE estimators for (1%F(29:5)) may be obtained from
(3.1) and (3.2). The numerical values of these estimates, their
respective variances and their 95% confidence intervals are sum-
marized in the second and third row of Table 1. All the confi-
dence intervals and variances for the first three estimates shown
in the table are calculated using the normal theory approxima-
tion. The variance and confidence intervals for the fourth esti-
mate based on the moving-average smoother are calculated by

2In practice, this drawback could be possibly remedied by fitting a mixture of the distri-
butions shown in (3.1) and (3.2). However, this approach could considerably complicate
the parametric model and seems unlikely to provide much improvement in the tail fit,
which is of primary interest here.
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TABLE 1

COMPARISON OF THE PERFORMANCE OF ESTIMATORS FOR
(1%F(29:5)) FOR THE WIND DATA

Estimate of Approx. 95% c.i.
Fitted Model (1%F(29:5)) Approx. s.e. (two sided)

Non-parametric (Plug-in) 0.05 0.034 (%0:019,0:119)
Exponential 0.027 0.015 (%0:003,0:057)
Pareto 0.036 0.024 (%0:012,0:084)

3-Step Moving
Average Smoother 0.045 0.016 (0:013,0:079)

means of the approximate BESE and bootstrap percentile meth-
ods described in Section 2. In the first row the same charac-
teristics are calculated for the standard non-parametric estimate
based on relative frequencies. As we may well see, the respective
values of the point estimators differ considerably from model to
model and, in particular, both MLE’s are quite far away from the
relative frequency estimator. Another thing worth noticing is that
the confidence intervals for all three models have negative lower
bounds—they are obviously too long, at least on one side. This
also indicates that their true coverage probability may in fact be
greater than 95%.

In order to provide a better estimate of (1%F(29:5)) for the
wind data, we will first need to construct a smoothed version of
the empirical CDF. In order to do so we employ the following
data transformation widely used in image and signal processing
theory, where a series of raw data "x1,x2, : : : ,xn# is often trans-
formed to a new series of data before it is analyzed. The pur-
pose of this transformation is to smooth out local fluctuations in
the raw data, so the transformation is called data smoothing or a
smoother. One common type of smoother employs a linear trans-
formation and is called a linear filter. A linear filter with weights
"c0,c1, : : : ,cr%1# transforms the given data to weighted averages%r%1
j=0 cjxt%j for t= r,r+1, : : : ,n. Notice that the new data set has
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FIGURE 2

EMPIRICAL AND SMOOTHED CDF’S FOR WIND LOSS DATA

length (n% r%1). If all the weights ck are equal and they sum
to unity, the linear filter is called an r-term moving average. For
an overview of this interesting technique and its various appli-
cations, see Simonoff [18]. To create a smoothed version of the
empirical CDF for the wind data, we have first used a three-term
moving average smoother and then linearized in between any
two consecutive data points.

The plot of this linearized smoother along with the origi-
nal empirical CDF is presented in Figure 2. A vertical line is
once again drawn for reference at x= 29:5. Let us note that the
smoother follows the “concave-up-down-up” pattern of the data,
which was not the case with the parametric distributions fitted
from the families (3.1) and (3.2).

Once we have constructed the smoothed empirical CDF for
the wind data, we may simply read the approximate value of
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(1%F(29:5)) off the graph (or better yet, ask the computer to
do it for us). The resulting numerical value is 0.045. What is the
standard error for that estimate? We again may use the bootstrap
to answer that question without messy calculations. An approx-
imate value for BESE (with B = 1000, but the result is virtually
the same for B = 100) is found to be 0.016, which is only slightly
worse than that of the exponential model MLE and much bet-
ter than the standard error for the Pareto and empirical models.
Equivalently, the same result may be obtained by numerical in-
tegration. Finally, the 95% confidence interval for (1%F(29:5))
is found by means of the bootstrap percentile method with the
number of replications set at B = 1000. Here the superiority of
the bootstrap is obvious, as it gives an interval which is the sec-
ond shortest (again exponential MLE model gives a shorter in-
terval) but, most importantly, is bounded away from zero. The
results are summarized in Table 1. Let us note that the result
based on a smoothed empirical CDF and bootstrap dramatically
improves that based on the relative frequency (plug-in) estimator
and standard normal theory. It is perhaps of interest to note also
that the MLE estimator of (1%F(29:5)) in the exponential model
is simply a parametric bootstrap estimator. For more details
on the connection between MLE estimators and bootstrap, see
[11].

4. CLUSTERED DATA

In the previous section we have assumed that the wind data
were distributed according to some continuous CDF F. Clearly
this is not always the case with loss data, and in general we may
expect our theoretical loss distribution to follow some mixture
of discrete and continuous CDF’s.

4.1. Massachusetts Auto Bodily Injury Liability Data

In Appendix B we present the set of 432 closed losses due to
bodily injuries in car accidents, under bodily injury liability (BI)
policies reported in the Boston Territory (19) for calendar year
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1995 (as of mid-1997). The losses are recorded in thousands and
are subject to various policy limits but have no deductible. Pol-
icy limits capped 16 out of 432 losses which are therefore con-
sidered right-censored. The problem of bootstrapping censored
data will be discussed in the next section; here we would like
to concentrate on another interesting feature of the data. Mas-
sachusetts BI claim data are of interest because the underlying
behavioral processes have been analyzed extensively. Weisberg
and Derrig [20] and Derrig, Weisberg and Chen [8] describe
the Massachusetts claiming environment after a tort reform as
a “lottery” with general damages for non-economic loss (pain
and suffering) as the prize. Cummins and Tennyson [5] showed
signs of similar patterns countrywide, while Carroll, Abrahamse
and Vaiana [3] and the Insurance Research Council [13] docu-
mented the pervasiveness of the lottery claims in both tort and
no-fault state injury claim payment systems. The overwhelming
presence of suspected fraud and buildup claims3 allow for dis-
torted relationships between the underlying economic loss and
the liability settlement. Claim negotiators can greatly reduce the
“usual” non-economic damages when exaggerated injury and/or
excessive treatment are claimed as legitimate losses. Claim pay-
ments in such a negotiated process with discretionary injuries
tend to be clustered at some usual mutually-acceptable amounts,
especially for the run-of-the-mill strain and sprain claims. Con-
ners and Feldblum [4] suggest that the claim environment, rather
than the usual rating variables, are the key elements needed to
understand and estimate relationships in injury claim data. All
the data characteristics above tend to favor empirical methods
over analytical ones.

Looking at the frequencies of occurrences of the particular
values of losses in Massachusetts BI claim data, we may see that
several numerical values have especially high frequency. The loss

3In auto insurance, fraudulent claims are those in which there was no injury or the injury
was unrelated to the accident, whereas buildup claims are those in which the injury is
exaggerated and/or the treatment is excessive.
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FIGURE 3

APPROXIMATION TO THE EMPIRICAL CDF FOR THE BI DATA
ADJUSTED FOR THE CLUSTERING EFFECT

of $5,000 was reported 21 times (nearly 5% of all the occur-
rences), the loss of $20,000 was reported 15 times, $6,500 and
$4,000 losses were reported 14 times, a $3,500 loss was only
slightly less common (13 times), and losses of size $6,000 and
$9,000 occurred 10 times each. There were also several other
numerical values that have occurred at least five times. The clus-
tering effect is obvious here and it seems that we should incor-
porate it into our model. This may be accomplished for instance
by constructing an approximation to the empirical CDF, which
is linearized in between the observed data values except for the
ones with high frequency, where it behaves like the original, dis-
crete CDF. In Figure 3 we present such an approximate CDF for
the BI data. We have allowed our adjusted CDF to have discon-
tinuities at the observed values which occurred with frequencies
of five or greater. The left panel of Figure 3 shows the graph
plotted for the entire range of observed loss values (0,25). The
right panel zooms in on the values from 3.5 to 5.5. Discontinu-
ities can be seen here as the graph’s “jumps” at the observed loss
values of high frequency: 3.5, 4, 4.5, 5.

4.2. Bootstrap Estimates for Loss Elimination Ratios

To give an example of statistical inference under this model,
let us consider a problem of eliminating part of the BI losses
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by purchasing a reinsurance policy that would cap the losses at
some level d. Since the BI data is censored at $20,000, we would
consider here only values of d not exceeding $20,000. One of the
most important problems for the insurance company considering
purchasing reinsurance is an accurate prediction of whether such
a purchase would indeed reduce the experienced severity of loss
and if so, by what amount. Typically this type of analysis is done
by considering the loss elimination ratio (LER) defined as

LER(d) =
EF(X,d)
EFX

, (4.1)

where EFX and EF(X,d) are, respectively, expected value and
limited expected value functions for a random variable X fol-
lowing a true distribution of loss F. Since LER is only a theo-
retical quantity unobservable in practice, its estimate calculated
from the data is needed. Usually, one considers the empirical loss
elimination ratio (ELER) given by the obvious plug-in estimate

ELER(d) =
E!Fn(X,d)
E!FnX =

n#
i=1

min(Xi,d)

n#
i=1

Xi

, (4.2)

where X1, : : : ,Xn is a sample.

The drawback of ELER is in the fact that (unlike LER) it
changes only at the values of d equal to the observed values
of X1, : : : ,Xn. It seems, therefore, that in order to calculate an
approximate LER at different values of d, some smoothed ver-
sion of ELER (SELER) should be considered. SELER may be
obtained from Equation 4.2 by replacing the empirical CDF !Fn
with its smoothed version, obtained for instance by applying a
linear smoother (as for the wind data considered in Section 3) or
a cluster-adjusted linearization. Obviously, the SELER formula
may become quite complicated and its explicit derivation may be
tedious (as would be the derivation of its standard error). Again,
the bootstrap methodology can be applied here to facilitate the
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FIGURE 4

APPROXIMATE GRAPH OF SELER(d)

computation of an approximate value of SELER(d), its standard
error and confidence interval for any given value of d. In Fig-
ure 4 we present the graph of the SELER estimate for the BI
data calculated for the values of d ranging from 0 to 20 (lowest
censoring point) by means of a bootstrap approximation. This
approximation was obtained by resampling the cluster-adjusted,
linearized version of the empirical CDF (presented in the left
panel of Figure 3) a large number of times (B = 300) and repli-
cating µ̂ = SELER each time. The resulting sequence of boot-
strap estimates µ̂$(b) for b = 1, : : : ,B was then averaged to give
the desired approximation of SELER. The calculation of stan-
dard errors and confidence intervals for SELER was done by
means of BESE and the method of percentiles, as described in
Section 2. The standard errors and 95% confidence intervals of
SELER for several different values of d are presented in Ta-
ble 2. The approximate BESE and bootstrap percentile methods
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TABLE 2

VALUES OF SELER(d)

Standard 95% Confidence Interval
d SELER(d) Error (two-sided)

4 0.505 0.0185 (0:488,0:544)
5 0.607 0.0210 (0:597,0:626)

10.5 0.892 0.0188 (0:888,0:911)
11.5 0.913 0.0173 (0:912,0:917)
14 0.947 0.0127 (0:933,0:953)
18.5 0.985 0.00556 (0:98,0:988)

described in Section 2 were used to calculate the standard errors
and confidence intervals for the BI data in Table 2.

5. EXTENSIONS TO MORE COMPLICATED DESIGNS

So far in our account we have not considered any problems
related to the fact that often in practice we may have to deal with
truncated (e.g., due to deductible) or censored (e.g., due to policy
limit) data. Another frequently encountered difficulty is the need
for inflation adjustment, especially with data observed over a
long period of time. We will address these important issues now.

5.1. Bootstrapping Censored Data for Policy Limits and
Deductibles

Let us consider again the BI data presented in Section 4. There
were 432 losses reported, of which 16 were at the policy lim-
its.4 These 16 losses may therefore be considered censored from
above (or right-censored), and the appropriate adjustment for this
fact should be made in our approach to estimating the loss dis-
tribution F. Whereas 16 is less then 4% of the total number of
observed losses for the BI data, these censored observations are
crucial in order to obtain a good estimate of F for the large loss
values.

4Fifteen losses were truncated at $20,000 and one loss was truncated at $25,000.
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Since the problem of censored data arises naturally in many
medical, engineering, and other settings, it has received consid-
erable attention in statistical literature. For the sake of brevity
we will limit ourselves to the discussion of only one of the sev-
eral commonly used techniques, the so-called Kaplan–Meier (or
product-limit) estimator.

The typical statistical model for right-censored observations
replaces the usual observed sample X1, : : : ,Xn with the set of
ordered pairs (X1,±1), : : : , (Xn,±n), where

±i =

"
0 if Xi is censored,

1 if Xi is not censored

and the recorded losses are ordered X1 = x1 * X2 = x2 * && & *
Xn = xn (with the usual convention that in the case of ties the
uncensored values xi (±i = 1) precede the censored ones (±i = 0)).
The Kaplan–Meier estimator of 1%F(x) is given by

!S(x) = (
i :xi*x

&
n% i

n% i+1
'±i
: (5.1)

The product in the above formula is that of i terms, where i is
the smallest positive integer less than or equal to n (the num-
ber of reported losses) and such that xi * x. The Kaplan–Meier
estimator, like the empirical CDF, is a step function with jumps
at those values xi that are uncensored. In fact, if ±i = 1 for all i,
i= 1, : : : ,n (i.e., no censoring occurs), it is easy to see that Equa-
tion 5.1 reduces to the complement of the usual empirical CDF.
If the highest observed loss xn is censored, Equation 5.1 is not
defined for the values of x greater then xn. The usual practice is
to then add one uncensored data point (loss value) xn+1 such that
xn < xn+1, and to define !S(x) = 0 for x- xn+1. For instance, for
the BI data the largest reported loss was censored at 25 and we
had to add one artificial “loss” at 26 to define the Kaplan–Meier
curve for the losses exceeding 25. The number 26 was picked
quite arbitrarily; in actuarial practice a more precise guess of
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FIGURE 5

THE KAPLAN–MEIER ESTIMATOR

the maximum possible value of loss (e.g., based on past expe-
rience) should be easily available. The Kaplan–Meier estimator
enjoys several optimal statistical properties and can be viewed
as a generalization of the usual empirical CDF adjusted for the
case of censored losses. Moreover, truncated losses or truncated
and censored losses may be easily handled by some simple mod-
ifications of Equation 5.1. For more details and some examples,
see Klugman, Panjer and Willmot [14, Chapter 2].

In the case of loss data coming from a mixture of discrete and
continuous CDF’s as, for instance, the BI data, the linearization
of the Kaplan–Meier estimator with adjustment for clustering
seems to be appropriate. In Figure 5 we present the plots of a
linearized Kaplan–Meier estimator for the BI data and the ap-
proximate empirical CDF function (which was discussed in Sec-
tion 4), not corrected for the censoring effect. It is interesting to
note that the two curves agree very well up to the first censoring
point (20), where the Kaplan–Meier estimator starts to correct
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for the effect of censoring. It is thus reasonable to believe that,
for instance, the values of SELER calculated in Table 2 should
be close to the values obtained by bootstrapping the Kaplan–
Meier estimator. This, however, does not have to be the case in
general. The agreement between the Kaplan–Meier curve and the
smoothed CDF of the BI data is mostly due to the relatively small
number of censored values. The estimation of other parameters
of interest under the Kaplan–Meier model (e.g. quantiles, proba-
bility of exceedance, etc.) as well as their standard errors may be
performed using the bootstrap methodology outlined in the pre-
vious sections. For more details on the problem of bootstrapping
censored data, see Akritas [1].

5.2. Inflation Adjustment

An adjustment for the effect of inflation can be handled quite
easily in our setting. If X is the random variable modeling the
loss which follows CDF F, when adjusting for inflation we are
interested in obtaining an estimate of the distribution of Z =
(1+ r)X, where r is the uniform inflation rate over the period of
concern. If Z follows a CDF G, then obviously

G(z) = F
&

z

1+ r

'
(5.1)

and the same relation holds when we replace G and F with the
usual empirical CDF’s or their smoothed versions.5 In this set-
ting, bootstrap techniques described earlier should be applied to
the empirical approximation of G.

6. SOME FINAL REMARKS

Although we have limited the discussion of resampling meth-
ods to the narrow scope of modeling losses, we have presented

5Subclasses of losses may inflate at different rates (soft tissue versus hard injuries for
the BI data is an example). The theoretical CDF G may be then derived using multiple
inflation rates as well.
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only some examples of modern statistical methods relevant to
the topic. Other important areas of application which have been
purposely left out here include kernel estimation and the use
of resampling in non-parametric regression and auto-regression
models. The latter includes, for instance, such important prob-
lems as bootstrapping time-series data, modeling time-correlated
losses and other time-dependent variables. Over the past several
years some of these techniques, like non-parametric density esti-
mation, have already found their way into actuarial practice (e.g.,
Klugman, Panjer and Willmot [14]). Others, like bootstrap, are
still waiting. The purpose of this article was not to give a com-
plete account of the most recent developments in non-parametric
statistical methods, but rather to show by example how easily
they may be adapted to real-life situations and how often they
may, in fact, outperform the traditional approach.

7. CONCLUSIONS

Several examples of the practical advantages of the boot-
strap methodology were presented. We have shown by ex-
ample that in many cases the bootstrap technique provides a
better approximation to the true parameters of the underly-
ing distribution of interest than the traditional, textbook ap-
proach relying on the MLE and normal approximation the-
ory. It seems that bootstrap may be especially useful in
the statistical analysis of data which do not follow any ob-
vious continuous parametric model (or mixture of models)
or/and contain a discrete component (like the BI data pre-
sented in Section 4). The presence of censoring and trunca-
tion in the data does not present a problem for the boot-
strap which, as seen in Section 5, may be easily incorpo-
rated into a standard non-parametric analysis of censored or
truncated data. Of course, most of the bootstrap analysis is
typically done approximately using a Monte Carlo simulation
(generating resamples), which makes the computer an indis-
pensable tool in the bootstrap world. Even more, according
to some leading bootstrap theorists, automation is the goal
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[11, p. 393]:

One can describe the ideal computer-based statistical
inference machine of the future. The statistician en-
ters the data: : :the machine answers the questions in a
way that is optimal according to statistical theory. For
standard errors and confidence intervals, the ideal is in
sight if not in hand.

The resampling methods described in this paper can be used
(possibly after correcting for time-dependence) to handle the em-
pirical data concerning all DFA model input variables, including
interest rates and capital market returns. The methodologies also
apply to any financial intermediary, such as a bank or a life insur-
ance company. It would be interesting, indeed it is imperative,
to make bootstrap-based inferences in such settings and com-
pare their effectiveness and applicability with classical paramet-
ric, trend-based, Bayesian, and other methods of analysis. The
bootstrap computer program (using Mathematica 3.0 program-
ming language; see Appendix A) that we have developed here to
provide smooth estimates of an empirical CDF, BESE, and boot-
strap confidence intervals could be easily adapted to produce ap-
propriate estimates in DFA, including regulatory calculations for
Value at Risk and Asset Adequacy Analysis. It would also be in-
teresting to investigate further all areas of financial management
where our methodologies may hold a promise of future appli-
cations. For instance, by modeling both the assets side (interest
rates and capital market returns) and the liabilities side (losses,
mortality, etc.), as well as their interactions (crediting strategies,
investment strategies of the firm), one might create nonparamet-
ric models of the firm and use such a whole-company model to
analyze value optimization and solvency protection in an inte-
grated framework. Such whole company models are more and
more commonly used by financial intermediaries, but we propose
an additional level of complexity by adding the bootstrap estima-
tion of their underlying random structures. This methodology is
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immensely computationally intensive, but it holds great promise
not just for internal company models but also for regulatory su-
pervision, hopefully allowing for better oversight and avoiding
problems such as the insolvencies of savings and loans institu-
tions in the late 1980s, the insolvencies of life insurance firms
such as Executive Life and Mutual Benefit, or the catastrophe-
related problems of property-casualty insurers.
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APPENDIX A

MATHEMATICA BOOTSTRAP FUNCTIONS

The following computer program written in Mathematica 3.0
programming language was used to calculate bootstrap replica-
tions, bootstrap standard errors estimates (BESE) and bootstrap
95% confidence intervals using the method of percentiles.

(* Here we include the standard statistical libraries to be used in
our bootstraping program *)

<<Statistics’DataManipulation’
<<Statistics’ContinuousDistributions’

(* Here we define resampling procedure “boot” as well as
empirical cdf functions: usual empirical cdf “empcdf” and its
smoothed version “cntcdf”. Procedure “inv” is used by “boot” *)

(* Arguments for the procedures are as follows:

“boot” has two arguments: “lst” (any data list of numeri-
cal values) and , “nosam” (number of resamples, usually no-
sum=Length[lst]

“empcdf” and “cntcdf” both have two arguments “lst” (any data
list of numerical values) and “x” -the numerical argument of
function *)

inv[x_, lstx_] :=
Module[{nlx=Length[lstx]},
If [x == 0 , lstx[[1]],
If[x == 1, lstx[[nlx]], k=Floor[(nlx - 1) x];
((nlx - 1) x - k ) (lstx[[k+2]] -

lstx[[k+1]])+lstx[[k+1]]
]

]
];
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boot[lx_, nosam_] := Module[{tt, i, a, n, lstx},
lstx=Sort[lx]; n=Length[lx];
lstx=Flatten[{{2 lstx[[1]] - lstx[[2]]},
lstx, {2 lstx[[n]] - lstx[[n - 1]]}}];
tt=RandomArray[UniformDistribution [0, 1], nosam];
For[i=1, i <= nosam , i++, a[i] = inv[tt[[i]],

lstx]];
Table[a[i], {i, 1, nosam}]
];

cntcdf[lst_, x_] := Module[{ll=Sort[lst],
n=Length[lst], i=1},

ll=Flatten[{{2 ll[[1]] - ll[[2]]}, ll, {2 ll[[n]] -
ll[[n - 1]]}}];
While[i <= n+2 && x > ll[[i]], i++];
If[i == 1, 0,

If[i == n+3,
1, ((x - ll[[i - 1]])/(ll[[i]] - ll[[i - 1]])+(i -
2))/(n+1)]]
];

empcdf[lst_, x_] :=Module[{ll=Sort[lst], n=Length[lst],
i=1},
While[i <= n && x > ll[[i]], i++];
If[i == 1, 0, (i - 1)/ n]
];

(* Here we define the bootstrap replications of statistic theta.
Procedure “theta” calculates a statistic from the list of data “lst”.
Procedure “replicate” replicates the statistic “theta” “norep”
number of times using procedure “boot “ with parameters “lst”
and “nosam”. As a result of this procedure we obtain a list of
replicated values of “theta” *)

theta[lst_] := 1; (* define your Theta statistic here*)
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replicate[lst_, norep_, nosam_] := Module[{i, ll = },
For [i=1, i <= norep, i++,

ll = Flatten[{ll, theta[boot[lst, nosam]]}]
]; ll

];

(*Here we calculate BESE and 95% confidence interval based
on the method of percentiles for 1000 replications *)

(* run “replicate” procedure, store the results in variable
“listofrep” *)

listofrep=replicate[lst, norep, nosam];

(* BESE*)

Variance[listofrep]

(* 95% confidence interval for number of replications (norep)=
1000 *)

95ci = {listofrep[[25]], listofrep[[975]]}

Mathematica is a registered trademark of Wolfram Research, Inc.
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APPENDIX B

MASSACHUSETTS BI DATA

The table below presents a set of 432 closed auto BI losses in
Boston Territory (19) for calendar year 1995 (as of mid-1997).
For each loss we have provided the injury type classification code
along with the actual payment amount, as well as the correspond-
ing policy limit. A description of the injury codes is provided on
the last page of the appendix.

No. Injury Type Total Amount Paid Policy Limit

1 5 $393 $20,000
2 1 $500 $20,000
3 6 $500 $20,000
4 8 $900 $20,000
5 6 $1,000 $20,000
6 5 $1,000 $20,000
7 5 $1,250 $20,000
8 5 $1,500 $20,000
9 5 $1,500 $20,000
10 5 $1,525 $20,000
11 5 $1,631 $100,000
12 4 $1,650 $20,000
13 5 $1,700 $20,000
14 5 $1,700 $20,000
15 5 $1,800 $20,000
16 5 $1,950 $20,000
17 5 $2,000 $20,000
18 5 $2,000 $25,000
19 5 $2,007 $20,000
20 5 $2,100 $20,000
21 5 $2,100 $20,000
22 5 $2,100 $20,000
23 5 $2,250 $20,000
24 5 $2,250 $20,000
25 5 $2,250 $20,000
26 5 $2,250 $20,000
27 5 $2,270 $20,000
28 5 $2,300 $20,000
29 6 $2,300 $20,000
30 5 $2,375 $20,000
31 5 $2,450 $20,000
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No. Injury Type Total Amount Paid Policy Limit

32 5 $2,500 $20,000
33 5 $2,500 $100,000
34 5 $2,500 $20,000
35 6 $2,500 $20,000
36 1 $2,600 $20,000
37 5 $2,750 $20,000
38 5 $2,800 $20,000
39 5 $2,813 $20,000
40 5 $2,900 $20,000
41 5 $3,000 $20,000
42 5 $3,000 $20,000
43 5 $3,000 $20,000
44 5 $3,000 $20,000
45 5 $3,000 $20,000
46 5 $3,000 $20,000
47 5 $3,000 $20,000
48 6 $3,000 $20,000
49 6 $3,000 $50,000
50 99 $3,000 $20,000
51 6 $3,000 $20,000
52 5 $3,000 $20,000
53 5 $3,000 $20,000
54 4 $3,000 $20,000
55 5 $3,150 $20,000
56 5 $3,250 $20,000
57 5 $3,300 $20,000
58 5 $3,300 $20,000
59 5 $3,300 $20,000
60 4 $3,500 $20,000
61 4 $3,500 $1,000,000
62 5 $3,500 $20,000
63 1 $3,500 $20,000
64 5 $3,500 $20,000
65 5 $3,500 $20,000
66 5 $3,500 $20,000
67 5 $3,500 $20,000
68 5 $3,500 $20,000
69 4 $3,500 $20,000
70 5 $3,500 $20,000
71 5 $3,500 $50,000
72 99 $3,500 $20,000
73 5 $3,650 $20,000
74 5 $3,700 $20,000
75 5 $3,700 $20,000
76 5 $3,700 $20,000
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77 5 $3,750 $20,000
78 5 $3,750 $20,000
79 5 $3,750 $20,000
80 5 $3,750 $20,000
81 6 $3,900 $20,000
82 5 $4,000 $20,000
83 5 $4,000 $1,000,000
84 5 $4,000 $20,000
85 5 $4,000 $20,000
86 5 $4,000 $20,000
87 4 $4,000 $20,000
88 6 $4,000 $20,000
89 5 $4,000 $20,000
90 5 $4,000 $20,000
91 5 $4,000 $20,000
92 5 $4,000 $20,000
93 5 $4,000 $20,000
94 1 $4,000 $20,000
95 5 $4,000 $25,000
96 5 $4,250 $20,000
97 6 $4,250 $20,000
98 6 $4,278 $50,000
99 5 $4,396 $25,000
100 5 $4,400 $20,000
101 5 $4,476 $20,000
102 5 $4,500 $20,000
103 5 $4,500 $20,000
104 5 $4,500 $25,000
105 5 $4,500 $20,000
106 10 $4,500 $20,000
107 5 $4,500 $20,000
108 5 $4,521 $20,000
109 5 $4,697 $20,000
110 5 $4,700 $20,000
111 5 $4,700 $20,000
112 5 $4,700 $20,000
113 4 $4,725 $20,000
114 5 $4,750 $20,000
115 5 $5,000 $20,000
116 5 $5,000 $100,000
117 5 $5,000 $20,000
118 5 $5,000 $20,000
119 5 $5,000 $20,000
120 5 $5,000 $20,000
121 5 $5,000 $20,000
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122 4 $5,000 $20,000
123 5 $5,000 $20,000
124 5 $5,000 $20,000
125 5 $5,000 $20,000
126 5 $5,000 $20,000
127 5 $5,000 $20,000
128 6 $5,000 $20,000
129 4 $5,000 $20,000
130 1 $5,000 $20,000
131 5 $5,000 $20,000
132 5 $5,000 $20,000
133 5 $5,000 $20,000
134 5 $5,000 $100,000
135 5 $5,000 $20,000
136 6 $5,100 $20,000
137 5 $5,200 $20,000
138 5 $5,200 $20,000
139 5 $5,200 $20,000
140 5 $5,200 $20,000
141 5 $5,200 $20,000
142 5 $5,200 $20,000
143 5 $5,200 $20,000
144 5 $5,225 $20,000
145 5 $5,250 $20,000
146 5 $5,250 $20,000
147 5 $5,292 $20,000
148 5 $5,296 $20,000
149 5 $5,300 $20,000
150 5 $5,300 $20,000
151 4 $5,300 $20,000
152 5 $5,333 $20,000
153 5 $5,333 $20,000
154 5 $5,333 $20,000
155 5 $5,333 $20,000
156 4 $5,344 $20,000
157 5 $5,366 $20,000
158 4 $5,400 $30,000
159 5 $5,400 $20,000
160 5 $5,415 $20,000
161 5 $5,497 $100,000
162 4 $5,500 $20,000
163 5 $5,500 $20,000
164 5 $5,500 $20,000
165 5 $5,500 $20,000
166 6 $5,500 $20,000
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167 5 $5,566 $20,000
168 5 $5,600 $25,000
169 5 $5,714 $20,000
170 5 $5,714 $20,000
171 5 $5,714 $20,000
172 5 $5,714 $20,000
173 5 $5,714 $20,000
174 5 $5,714 $20,000
175 5 $5,714 $20,000
176 5 $5,725 $20,000
177 6 $5,750 $20,000
178 5 $5,750 $100,000
179 5 $5,750 $20,000
180 5 $5,852 $20,000
181 6 $5,898 $20,000
182 5 $5,900 $20,000
183 5 $5,964 $20,000
184 6 $5,990 $20,000
185 5 $6,000 $25,000
186 5 $6,000 $20,000
187 5 $6,000 $20,000
188 5 $6,000 $20,000
189 1 $6,000 $20,000
190 5 $6,000 $20,000
191 5 $6,000 $20,000
192 5 $6,000 $20,000
193 5 $6,000 $20,000
194 5 $6,000 $20,000
195 4 $6,077 $20,000
196 5 $6,078 $20,000
197 5 $6,131 $20,000
198 5 $6,166 $20,000
199 5 $6,166 $20,000
200 5 $6,169 $20,000
201 5 $6,171 $20,000
202 5 $6,208 $20,000
203 5 $6,243 $20,000
204 5 $6,318 $20,000
205 5 $6,399 $20,000
206 5 $6,413 $20,000
207 5 $6,500 $20,000
208 5 $6,500 $20,000
209 5 $6,500 $20,000
210 5 $6,500 $20,000
211 5 $6,500 $20,000
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212 5 $6,500 $20,000
213 5 $6,500 $20,000
214 5 $6,500 $20,000
215 99 $6,500 $20,000
216 5 $6,500 $20,000
217 5 $6,500 $50,000
218 5 $6,500 $25,000
219 5 $6,500 $20,000
220 5 $6,500 $50,000
221 5 $6,519 $20,000
222 4 $6,536 $20,000
223 5 $6,549 $20,000
224 1 $6,558 $25,000
225 6 $6,600 $20,000
226 5 $6,600 $20,000
227 6 $6,620 $20,000
228 5 $6,700 $20,000
229 6 $6,703 $20,000
230 1 $6,743 $25,000
231 5 $6,750 $20,000
232 5 $6,800 $20,000
233 4 $6,870 $20,000
234 5 $6,893 $50,000
235 5 $6,898 $50,000
236 5 $6,907 $20,000
237 5 $6,933 $20,000
238 5 $6,935 $100,000
239 5 $6,977 $100,000
240 5 $7,000 $100,000
241 5 $7,000 $20,000
242 5 $7,000 $20,000
243 5 $7,000 $20,000
244 5 $7,000 $20,000
245 5 $7,000 $20,000
246 5 $7,000 $20,000
247 5 $7,014 $20,000
248 4 $7,043 $20,000
249 5 $7,079 $20,000
250 5 $7,118 $20,000
251 5 $7,163 $20,000
252 5 $7,191 $20,000
253 5 $7,200 $20,000
254 5 $7,200 $20,000
255 5 $7,250 $20,000
256 4 $7,252 $20,000
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257 5 $7,304 $20,000
258 1 $7,412 $25,000
259 1 $7,425 $100,000
260 5 $7,432 $20,000
261 5 $7,444 $50,000
262 5 $7,447 $20,000
263 5 $7,500 $20,000
264 5 $7,500 $20,000
265 5 $7,500 $25,000
266 5 $7,500 $20,000
267 5 $7,500 $20,000
268 5 $7,500 $20,000
269 99 $7,500 $20,000
270 1 $7,564 $20,000
271 5 $7,620 $20,000
272 18 $7,629 $20,000
273 5 $7,657 $20,000
274 1 $7,670 $20,000
275 5 $7,671 $20,000
276 4 $7,696 $100,000
277 4 $7,700 $100,000
278 5 $7,750 $20,000
279 5 $7,754 $20,000
280 5 $7,820 $20,000
281 4 $7,859 $20,000
282 5 $7,868 $20,000
283 1 $7,873 $25,000
284 5 $7,920 $100,000
285 5 $7,922 $20,000
286 5 $7,945 $20,000
287 5 $7,954 $20,000
288 5 $7,961 $20,000
289 5 $8,000 $100,000
290 5 $8,000 $100,000
291 5 $8,000 $20,000
292 10 $8,013 $50,000
293 5 $8,073 $20,000
294 5 $8,200 $20,000
295 1 $8,298 $25,000
296 6 $8,300 $20,000
297 1 $8,420 $20,000
298 5 $8,485 $20,000
299 5 $8,500 $50,000
300 5 $8,500 $20,000
301 99 $8,500 $20,000
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302 5 $8,500 $20,000
303 5 $8,515 $20,000
304 5 $8,612 $20,000
305 5 $8,634 $100,000
306 5 $8,686 $20,000
307 5 $8,785 $20,000
308 5 $8,786 $20,000
309 5 $8,794 $20,000
310 5 $8,805 $20,000
311 5 $8,815 $20,000
312 5 $8,856 $20,000
313 5 $8,861 $20,000
314 6 $8,882 $20,000
315 5 $8,911 $20,000
316 5 $8,914 $20,000
317 5 $8,988 $20,000
318 5 $9,000 $100,000
319 5 $9,000 $20,000
320 5 $9,000 $20,000
321 5 $9,000 $20,000
322 5 $9,000 $20,000
323 5 $9,000 $0
324 5 $9,000 $20,000
325 5 $9,000 $20,000
326 5 $9,000 $20,000
327 5 $9,000 $20,000
328 5 $9,009 $20,000
329 5 $9,020 $20,000
330 5 $9,030 $25,000
331 5 $9,051 $20,000
332 5 $9,053 $20,000
333 5 $9,073 $100,000
334 5 $9,100 $20,000
335 1 $9,129 $20,000
336 5 $9,200 $20,000
337 5 $9,208 $20,000
338 5 $9,300 $20,000
339 5 $9,355 $20,000
340 5 $9,356 $20,000
341 5 $9,392 $20,000
342 5 $9,395 $100,000
343 5 $9,423 $20,000
344 5 $9,428 $20,000
345 5 $9,451 $100,000
346 5 $9,500 $20,000
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347 5 $9,500 $20,000
348 5 $9,602 $20,000
349 5 $9,710 $20,000
350 4 $9,881 $25,000
351 5 $9,909 $20,000
352 8 $10,000 $20,000
353 6 $10,000 $20,000
354 5 $10,000 $100,000
355 6 $10,000 $20,000
356 4 $10,106 $20,000
357 5 $10,229 $20,000
358 5 $10,330 $20,000
359 5 $10,331 $20,000
360 5 $10,400 $20,000
361 5 $10,505 $100,000
362 4 $10,555 $20,000
363 1 $10,645 $20,000
364 8 $10,861 $20,000
365 5 $10,968 $20,000
366 5 $11,000 $50,000
367 4 $11,000 $100,000
368 5 $11,032 $20,000
369 5 $11,144 $20,000
370 5 $11,166 $20,000
371 1 $11,262 $25,000
372 5 $11,344 $50,000
373 99 $11,353 $20,000
374 5 $11,385 $20,000
375 1 $11,500 $20,000
376 5 $11,626 $20,000
377 5 $11,835 $20,000
378 99 $11,986 $20,000
379 5 $11,991 $20,000
380 4 $12,000 $20,000
381 5 $12,000 $20,000
382 5 $12,000 $20,000
383 5 $12,214 $100,000
384 5 $12,274 $20,000
385 5 $12,374 $20,000
386 99 $12,380 $20,000
387 3 $12,500 $20,000
388 5 $12,509 $20,000
389 5 $12,621 $100,000
390 5 $12,756 $20,000
391 5 $12,859 $20,000
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392 5 $12,988 $20,000
393 7 $13,000 $20,000
394 5 $13,009 $20,000
395 5 $13,299 $50,000
396 4 $13,347 $20,000
397 5 $13,500 $20,000
398 5 $13,570 $20,000
399 99 $13,572 $100,000
400 4 $14,181 $20,000
401 5 $14,700 $20,000
402 5 $14,953 $20,000
403 5 $15,500 $20,000
404 5 $15,500 $100,000
405 5 $15,765 $20,000
406 18 $16,000 $20,000
407 5 $16,668 $20,000
408 5 $16,794 $20,000
409 4 $17,267 $100,000
410 99 $18,500 $20,000
411 99 $18,500 $20,000
412 18 $19,000 $20,000
413 5 $19,012 $20,000
414 99 $20,000 $20,000
415 5 $20,000 $20,000
416 7 $20,000 $20,000
417 8 $20,000 $20,000
418 8 $20,000 $20,000
419 7 $20,000 $20,000
420 7 $20,000 $20,000
421 3 $20,000 $20,000
422 6 $20,000 $20,000
423 16 $20,000 $20,000
424 5 $20,000 $20,000
425 6 $20,000 $20,000
426 5 $20,000 $20,000
427 9 $20,000 $20,000
428 5 $20,000 $20,000
429 1 $22,692 $100,000
430 5 $24,500 $50,000
431 99 $25,000 $25,000
432 2 $25,000 $100,000
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INJURY CODE DESCRIPTION

Injury Injury
Type Description Type Description

1 MINOR LACERATIONS/ 13 PARALYSIS/PARESIS
CONTUSIONS

2 SERIOUS LACERATION 14 JAW JOINT DYSFUNCTION
3 SCARRING OR

PERMANENT
DISFIGUREMENT

15 LOSS OF A SENSE

4 NECK ONLY SPRAIN
STRAIN

16 FATALITY

5 BACK OR NECK & BACK
SPRAIN/STRAIN

17 DENTAL

6 OTHER SPRAIN/STRAIN 18 CARTILAGE/MUSCLE/TENDON/
LIGAMENT INJURY

7 FRACTURE OR WEIGHT
BEARING BONE

19 DISC HERNIATION

8 OTHER FRACTURE 20 PREGNANCY RELATED
9 INTERNAL ORGAN

INJURY
21 PRE-EXISTING CONDITION

10 CONCUSSION 22 PSYCHOLOGICAL
CONDITION

11 PERMANENT BRAIN
INJURY

30 NO VISIBLE INJURY

12 LOSS OF BODY PART 99 OTHER


