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The emergence of Bayesian Markov Chain Monte-Carlo (MCMC) models has provided 
actuaries with an unprecedented flexibility in stochastic model development. Another 
recent development has been the posting of a database on the CAS website that consists 
of hundreds of loss development triangles with outcomes. This monograph begins by 
first testing the performance of the Mack model on incurred data, and the Bootstrap 
Overdispersed Poisson model on paid data. It then will identify features of some Bayesian 
MCMC models that improve the performance over the above models. The features 
examined include (1) recognizing correlation between accident years; (2) introducing a 
skewed distribution defined over the entire real line to deal with negative incremental paid 
data; (3) allowing for a payment year trend on paid data; and (4) allowing for a change in 
the claim settlement rate. While the specific conclusions of this monograph pertain only 
to the data in the CAS Loss Reserve Database, the breadth of this study suggests that the 
currently popular models might similarly understate the range of outcomes for other loss 
triangles. This monograph then suggests features of models that actuaries might consider 
implementing in their stochastic loss reserve models to improve their estimates of the 
expected range of outcomes.
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This is the inaugural volume of the new CAS Monograph Series. A CAS monograph is 
an authoritative, peer reviewed, in-depth work on an important topic broadly within 
property and casualty actuarial practice.

In this monograph Glenn Meyers introduces a novel way of testing the predictive power  
of two loss reserving methodologies. He first demonstrates that the method commonly 
used for incurred losses tends to understate the range of possible outcomes. For paid losses, 
both methods tend to overstate the range of expected outcomes. Then he proceeds to  
apply Bayesian Markov Chain Monte-Carlo models (Bayesian MCMC) to improve the 
predictive power by recognizing three different elements implicit in the data histories. He is 
careful to note that the results are based on the histories contained in the CAS Database (of 
loss development triangles), which prevents one from making broad unqualified statements 
about the conclusions drawn in this work.

This monograph lays a solid foundation for future development and research in the 
area of testing the predictive power of loss reserving methods generally and in the use 
of Bayesian MCMC models to improve confidence in the selection of appropriate loss 
reserving methods. Glenn Meyers manages to show the way for raising the performance 
standard of what constitutes a reliable loss reserving methodology in any given situation.

C. K. “Stan” Khury
Chairperson

Monograph Editorial Board
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The recent attempts to apply enterprise risk management principles to insurance has 
placed a high degree of importance on quantifying the uncertainty in the various 
necessary estimates with stochastic models. For general insurers, the most important 
liability is the reserve for unpaid losses. Over the years a number of stochastic models have 
been developed to address this problem. Two of the more prominent nonproprietary 
models are those of Mack (1993, 1994) and England and Verrall (2002).

While these, and other, models provide predictive distributions1 of the outcomes, 
very little work has been done to retrospectively test, or validate,2 the performance of 
these models in an organized fashion on a large number of insurers. Recently with the 
permission of the National Association of Insurance Commissioners (NAIC), Peng 
Shi and I, in Meyers and Shi (2011), were able to assemble a database consisting of a 
large number of Schedule P triangles for six lines of insurance. These triangles came 
from insurer NAIC Annual Statements reported in 1997. Using subsequent annual 
statements we “completed the triangle” so that we could examine the outcomes and 
validate, the predictive distribution for any proposed model.

Sections 3 and 4 attempt to validate the models of Mack (1993, 1994) and 
England and Verrall (2002). As it turns out, these models do not accurately predict the 
distribution of outcomes for the data included in the subject database. Explanation for 
these results include the following.

• The	insurance	loss	environment	is	too	dynamic	to	be	captured	in	a	single	stochastic
loss reserve model. I.e., there could be different “black swan” events that invalidate
any attempt to model loss reserves.3

• There	could	be	other	models	that	better	fit	the	existing	data.
• The	data	used	to	calibrate	the	model	is	missing	crucial	information	needed	to	make

a reliable prediction. Examples of such changes could include changes in the way the
underlying business is conducted, such as changes in claim processes or changes in
the direct/ceded/assumed reinsurance composition of the claim values in triangles.

1 In this monograph, the term “predictive distribution” will mean the distribution of a random variable, X, given 
observed data x.	By	this	definition	the	range	of	outcomes,	X, could be quite wide. This, in contrast to the common 
usage of the term “predict,” connotes an ability to foresee the future and, in the context of the subject matter of 
this monograph, implies a fairly narrow range of expected outcomes.

2 An explanation of “validate” will be given in Section 3.
3 The term “black swan,” as popularized by Taleb [2007], has come to be an oft-used term representing a rare high-

impact event.
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Possible	ways	to	rule	out	the	first	item	above	are	to	(1)	find	a	better	model;	and/or	
(2) find	better	data.	This	monograph	examines	a	number	of	different	models	and	data
sources that are available in Schedule P. The data in Schedule P includes net paid losses,
net incurred losses, and net premiums.

A characteristic of loss reserve models is that they are complex in the sense that 
they have a relatively large number of parameters. A major difficulty in quantifying the 
uncertainty in the parameters of a complex model has been that it takes a fair amount 
of effort to derive a formula for the predictive distribution of outcomes. See Mack’s 
(1993, 1994) papers and Bardis, Majidi and Murphy’s (2012) paper for examples of 
analytic solutions. Taking advantage of the ever-increasing computer speed, England 
and Verrall (2002) pass the work on to computers using a bootstrapping methodology 
with the overdispersed Poisson distribution (ODP). Not too long ago, the Bayesian 
models4 were not practical for models of any complexity. But with the relatively recent 
introduction of Bayesian Markov Chain Monte Carlo (MCMC) models, complex 
Bayesian stochastic loss reserve models are now practical in the current computing 
environment.

Although Markov chains have long been studied by probability theorists, it took a 
while for their application to Bayesian statistics to be recognized. Starting in the 1930s, 
physicists began using statistical sampling from Markov chains to solve some of the 
more complex problems in nuclear physics. The names associated with these efforts 
include Enrico Fermi, John von Neumann, Stanislaw Ulam and Nicolas Metropolis. 
This led to the Metropolis algorithm for generating Markov chains. Later on, W. Keith 
Hastings (1970) recognized the importance of Markov chains for mainstream statistics 
and published a generalization of the Metropolis algorithm. That paper was largely 
ignored by statisticians at the time as they were not accustomed to using simulations for 
statistical inference. Gelfand and Smith (1990) provided the “aha” moment for Bayesian 
statisticians. They pulled together a relevant set of existing ideas at a time when access 
to fast computing was becoming widely available. In the words of McGrayne (2011, 
Part V): “Almost instantaneously MCMC and Gibbs sampling changed statisticians’ 
entire method of attacking problems. In the words of Thomas Kuhn, it was a paradigm 
shift. MCMC solved real problems, used computer algorithms instead of theorems, 
and led statisticians and scientists into a world where ‘exact’ meant ‘simulated’ and 
repetitive computer simulations replaced mathematical equations. It was a quantum 
shift in statistics” (p. 225).

As was the case for the other social sciences, Bayesian MCMC should eventually 
have a profound effect on actuarial science. And in fact, its effect has already begun. 
Scollnik (2001) introduced actuaries to Bayesian MCMC models. De Alba (2002) 
along with Ntzoufras and Dellaportas (2002) quickly followed by applying these 
models to the loss reserving problem. Verrall (2007) applied them to the chain ladder 
model. In the time since these papers were written, the algorithms implementing 

4	By	 a	 “Bayesian	model”	 I	mean	a	model	with	 its	parameters	having	 a	prior	distribution	 specified	by	 the	user.	
By “Bayesian estimation” I mean the process of predicting the distribution of a “statistic of interest” from the 
posterior distribution of a Bayesian model.
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Bayesian MCMC models have gotten more efficient, and the associated software has 
gotten more user friendly.

Here is the situation we now face. First, we are able to construct a wide variety of 
proposed models and predict their distribution of outcomes with the Bayesian MCMC 
methodology. Second, we are able to validate a proposed stochastic loss reserve model 
using a large number of insurers on the CAS Loss Reserve Database. If the insurance 
loss environment is not dominated by a series of unique “black swan” events, it should 
be possible to systematically search for models and data that successfully validate. This 
monograph describes the results I have obtained to date in my pursuit of this goal.

While	 I	 believe	 I	 have	made	 significant	 progress	 in	 identifying	models	 that	 do	
successfully validate on the data I selected from the CAS Loss Reserve Database, it 
should	be	stressed	that	more	work	needs	to	be	done	to	confirm	or	reject	these	results	
for different data taken from different time periods.

The intended audience for this monograph consists of general insurance actuaries who 
are familiar with the Mack (1993, 1994) and the England and Verrall (2002) models. 
While I hope that most sections will be readable by a “generalist” actuary, those desiring a 
deeper understanding should work with the companion scripts to this monograph.5

The computer scripts used to implement these models is written in the R programming 
language. To implement the MCMC calculations the R script contains another script 
that is written in JAGS. Like R, JAGS is an open source programming language one can 
download for free. For readers who are not familiar with R and JAGS, here are some links 
to help the reader get started.

• http://r-project.org	 The	home	page	of	the	R-Project.
• http://mcmc-jags.sourceforge.net/	A	link	to	download	JAGS.
• http://www.rstudio.com/	A	currently	popular	editor	for	R	and	JAGS	script.

5 Scripts are available at https://www.casact.org/sites/default/files/2021-03/Monograph_Tables_and_Scripts.xlsx

http://r-project.org
http://mcmc-jags.sourceforge.net/
http://www.rstudio.com/
https://www.casact.org/sites/default/files/2021-03/Monograph_Tables_and_Scripts.xlsx
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2. The CAS Loss Reserve Database

In order to validate a model, one need not only the data used to build the model, but 
also the data with outcomes that the model was built to predict. Schedule P of the 
NAIC Annual Statement contains insurer-level run-off triangles of aggregated losses 
by line of insurance. Triangles for both paid and incurred losses (net of reinsurance) 
are reported in Schedule P.6 To get the outcomes, one must look at subsequent Annual 
Statements.

To illustrate the calculations in this monograph, I selected incurred and paid loss 
triangles from a single insurer in the database, whose data are in Tables 1, 2 and 3. 
The data in the loss triangles above the diagonal lines are available in the 1997 Annual 
Statement. These data are used to build the models discussed below. The outcome data 
below the diagonal lines were extracted, by row, from the Annual Statements listed in 
the “Source” column. These data are used to validate the models.

The database, along with a complete description of how it was constructed and 
how the insurers were selected, is available on the CAS website at http://www.casact. 
org/publications-research/research/research-resources/loss-reserving-data-pulled-
naic-schedule-p.

This monograph will fit various loss reserve models, and test the predictive 
distributions, to a set of 200 insurer loss triangles taken from four Schedule P (50 from 
each of Commercial Auto, Personal Auto, Workers Compensation and Other Liability) 
lines of insurance. An underlying assumption of these models is that there have not 
been any substantial changes in the insurer’s operation. In our real world, insurers 
are always tinkering with their operations. Schedule P provides two hints of possible 
insurer operational changes:

• Changes	in	the	net	premium	from	year-to-year
• Changes	in	the	ratio	of	net	to	direct	premium	from	year	to	year

The criteria for selecting the 200 insurer loss triangles rests mainly on controlling
for changes in the above two items. Appendix A gives the group codes for the selected 
insurers by line of insurance and gives a detailed description of the selection algorithm.

6 Paid losses are reported in Part 3 of Schedule P. Incurred losses are the losses reported in Part 2 minus those 
reported in Part 4 of Schedule P.

https://www.casact.org/publications-research/research/research-resources/loss-reserving-data-pulled-naic-schedule-p
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Table 1.  Illustrative Insurer Net Written Premium

AY 1 2 3 4 5 6 7 8 9 10

Premium 5812 4908 5454 5165 5214 5230 4992 5466 5226 4962

Table 2.  Illustrative Insurer Incurred Losses Net of Reinsurance

AY/Lag 1 2 3 4 5 6 7 8 9 10 Source

1988 1722 3830 3603 3835 3873 3895 3918 3918 3917 3917 1997

1989 1581 2192 2528 2533 2528 2530 2534 2541 2538 2532 1998

1990 1834 3009 3488 4000 4105 4087 4112 4170 4271 4279 1999

1991 2305 3473 3713 4018 4295 4334 4343 4340 4342 4341 2000

1992 1832 2625 3086 3493 3521 3563 3542 3541 3541 3587 2001

1993 2289 3160 3154 3204 3190 3206 3351 3289 3267 3268 2002

1994 2881 4254 4841 5176 5551 5689 5683 5688 5684 5684 2003

1995 2489 2956 3382 3755 4148 4123 4126 4127 4128 4128 2004

1996 2541 3307 3789 3973 4031 4157 4143 4142 4144 4144 2005

1997 2203 2934 3608 3977 4040 4121 4147 4155 4183 4181 2006

Table 3.  Illustrative Insurer Paid Losses Net of Reinsurance

AY/Lag 1 2 3 4 5 6 7 8 9 10 Source

1988 952 1529 2813 3647 3724 3832 3899 3907 3911 3912 1997

1989 849 1564 2202 2432 2468 2487 2513 2526 2531 2527 1998

1990 983 2211 2830 3832 4039 4065 4102 4155 4268 4274 1999

1991 1657 2685 3169 3600 3900 4320 4332 4338 4341 4341 2000

1992 932 1940 2626 3332 3368 3491 3531 3540 3540 3583 2001

1993 1162 2402 2799 2996 3034 3042 3230 3238 3241 3268 2002

1994 1478 2980 3945 4714 5462 5680 5682 5683 5684 5684 2003

1995 1240 2080 2607 3080 3678 2004 4117 4125 4128 4128 1997

1996 1326 2412 3367 3843 3965 4127 4133 4141 4142 4144 2005

1997 1413 2683 3173 3674 3805 4005 4020 4095 4132 4139 2006
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3. Validating the Mack Model

Probably the two most popular nonproprietary stochastic loss reserve models are the 
Mack (1993, 1994) chain-ladder model and the England and Verrall (2002) bootstrap 
ODP model. This section describes an attempt to validate the Mack model on the 
incurred loss data from several insurers that are included in the CAS database. Validating 
the bootstrap ODP model will be addressed in the following section.

Let’s begin with the classic chain-ladder model. Let Cw, d denote the accumulated loss 
amount, either incurred or paid, for accident year, w, and development lag, d, for 1 ≤ w ≤ K  
and 1 ≤ d ≤ K. Cw, d is known for the “triangle” of data specified by w + d ≤ K + 1. The 
goal of this model is to estimate the loss amounts in the last column of data, Cw, K for  
w = 2, . . . , K. To use the chain-ladder model, one first calculates the age to age factors 
given by

∑

∑
= -

+
=

-

=

- for = 1, . . . , 1.
, 1

1

,
1

f
C

C
d Kd

w d
w

K d

w d
w

K d

The chain-ladder estimate of Cw,K is the product of the latest reported loss, Cw, K + 1 - w, 
and the subsequent age-to-age factors fK + 1 - w • . . . • fK - 1. Putting this together, we have

i i i= + - + - -
. . . ., , 1 1 1C C f fw K w K w K w K

Taylor (1986, p. 40) discusses the origin of the chain-ladder model and concludes that 
“It appears that it probably originated in the accounting literature, and was subsequently 
absorbed in to, or rediscovered in, the actuarial.” He goes on to say that “Of course, 
one must bear in mind that both the chain-ladder model and estimation method are 
fairly obvious and might have been derived several times in past literature.” Taylor 
believes that the rather whimsical name of the model was first used by Professor R. E. 
Beard as he championed the method in the early 1970s while working as a consultant 
to the U.K. Department of Trade.

Mack (1993, 1994) turns the deterministic chain ladder model into a stochastic 
model by first treating � ,Cw d as a random variable that represents the accumulated loss 
amount in the (w, d ) cell. He then makes three assumptions.7

7 Depending on the context, various quantities, such as Cw,d , will represent observations, estimates or random 
variables. In situations where it might not be clear, let’s adopt the convention that for a quantity X, 

~
X will indicate 

that X is being treated as a random, or simulated, variable, X̂ will denote an estimate of X, and a bare X will be 
treated as a fixed observation or parameter.
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1. � i[ ] =+E , . . . ,, 1 ,1 , ,C C C C fw d w w d w d d

2. For any given d, the random variables � ,Cv d and � ,Cw d are independent for v ≠ w.
3. Var � i[ ] = α+ , . . . ,, 1 ,1 , ,

2C C C Cw d w w d w d d

The Mack estimate for �[ ] =E for 2, . . . ,,C w Kw K  is given by

i i i= + - + - -
ˆ ˆ . . . ˆ

, , 1 1 1C C f fw K w K w K w K
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∑
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Given his assumptions above, Mack then derives expressions for the standard deviations 
C Cw K w Kw

KSD and SD, ,2∑   =
� � . Table 4 applies Mack’s expressions to the illustrative 

insured data in Table 2 using the R “ChainLadder” package.
In addition to the loss statistics calculated by the Mack expressions, Table 4 

contains the outcomes { },10Cw  from Table 2. Following Mack’s suggestion, I calculated
the percentile of ∑ = ,101

10 Cww  assuming a lognormal distribution with matching the mean 
and the standard deviation.

Taken by itself, an outcome falling in the 86th percentile gives us little information, 
as that percentile is not unusually high. If the percentile was, say, above the 99.5th per-
centile, suspicion might be warranted. My intent here is to test the general applicability 
of the Mack model on incurred loss triangles. To do this, I selected 200 incurred loss 

Table 4. Mack Model Output for the Illustrative Insurer Incurred Losses

w Ĉw,10 SD CV Cw,10 Percentile

1 3917 0 0.000 3917

2 2538 0 0.000 2532

3 4167 3 0.001 4279

4 4367 37 0.009 4341

5 3597 34 0.010 3587

6 3236 40 0.012 3268

7 5358 146 0.027 5684

8 3765 225 0.060 4128

9 4013 412 0.103 4144

10 3955 878 0.222 4181

Total 38914 1057 0.027 40061 86.03
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triangles, 50 each from four different lines of insurance, and calculated the percentile 
of the ∑ = ,101

10 Cww  outcome for each triangle. My criteria for “general applicability of the 
model” is that these percentiles should be uniformly distributed. And for a sufficiently 
large sample, uniformity is testable! Klugman, Panjer, and Willmot (2012, Section 16.3) 
describe a variety of tests that can be applied in this case.

Probably the most visual test for uniformity is a plot of a histogram. If the percentiles 
are uniformly distributed, we should expect the height of the bars to be equal. Unless 
the sample size is very large, this will rarely be the case because of random fluctuations. 
A visual test of uniformity that allows one to test for statistical significance is the  
p–p plot combined with the Kolmogorov–Smirnov (K–S) test. Here is how it works. 
Suppose one has a sample of n predicted percentiles ranging from 0 to 100 and sort  
them into increasing order. The expected value of these percentiles is given by 

i { }{ } ) ) )( ( (= + + +100 1 1 ,2 1 , . . . , 1e n n n ni . One then plots the expected per-
centiles on the horizontal axis against the sorted predicted percentiles on the vertical 
axis. If the predicted percentiles are uniformly distributed, we expect this plot to lie 
along a 45° line. According to the K–S test as described by Klugman, Panjer, and 
Willmot (2012, p. 331), one can reject the hypothesis that a set of percentiles { }pi  is 
uniform at the 5% level if ≡ -maxD p fi i  is greater than its critical value, 136 n

i { }{ } =where 100 1 ,2 , . . . ,f n n n ni . This is represented visually on a p–p plot by 
drawing lines at a distance 136 n  above and below the 45° line.8 We reject the 
hypothesis of uniformity if the p–p plot lies outside the band defined by those lines. 
For the purposes of this monograph, a model will be deemed “validated” if it passes the 
K–S test at the 5% level.

Klugman, Panjer, and Willmot (2012, p. 332) also discusses a second test of uniformity 
that is applicable in this situation. The Anderson–Darling (A–D) test is similar to the 
Kolmogorov–Smirnov test, but it is more sensitive to the fit in the extreme values (near 
the 0th and the 100th percentile) of the distribution. I applied the A–D test along with the 
K–S test on the models described in this monograph with the result that almost all A–D 
tests failed. If in the future someone develops a more refined model, we can raise the bar 
to the more stringent A–D test. Until that happens, I think the K–S test is the best tool to 
differentiate between models.

Figure 1 shows both histograms and p–p plots for simulated data with n =100. The 
plots labeled “Uniform” illustrate the expected result. The K–S D statistic accompanies 
each p–p plot. The “*” indicates that the D statistic is above its critical value.

Figure 1 also shows p–p plots for various departures from uniformity. For example, 
if the predicted distribution is too light in the tails, there are more than expected high 
and low percentiles in the predicted outcomes and we see a p–p plot that looks like a 
slanted “S” curve. If the predicted distribution is too heavy in the tails, there are more 
than expected middle percentiles in the predicted outcomes and we see a p–p plot that 
looks like a slanted backward “S” curve. If the model predicts results that are in general 
too high, predicted outcomes in the low percentiles will be more frequent.

8 This is an approximation as fi ≈ ei.
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To validate the Mack model, I repeated the calculations for the 200 selected 
incurred loss reserve triangles.

Figure 2 shows the p–p plots for the Mack model. The plots were first done 
separately for the outcome percentiles in each line of insurance. Although the plots 
fall inside the K–S band for three of the four lines, the plots for all four of the 
lines resemble the slanted “S” curve that is characteristic of a light tailed predicted 
distribution. When we combine the outcome percentiles of all four lines, the p–p plot 
lies outside the K–S band and we conclude that the distribution predicted by the 
Mack model is too light in the tails for these data. In all the validation plots below 
the K–S critical values are 19.2 and 9.6 for the individual lines and all lines combined 
respectively.
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Figure 2. p–p Plots for the Mack Model  
on Incurred Loss Triangles
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4. Validating the Bootstrap ODP Model

This section does an analysis similar to that done in the last section for the bootstrap 
ODP model as described by England and Verrall (2002) and implemented by the 
R “ChainLadder” package. This model was designed to work with incremental losses, Iw,d, 
rather than the cumulative losses Cw,d, where Iw,1 = Cw,1 and Iw,d = Cw,d - Cw,d - 1 for d > 1.

A key assumption made by this model is that the incremental losses are described 
by the overdispersed Poisson distribution with

� �i i i[ ] [ ]= α β = φ α βand, ,E I Var Iw d w d w d w d

The parameters of the model can be estimated by a standard generalized linear model 
(GLM) package.9 They then use a bootstrap resampling procedure to quantify the volatility 
of the estimate.

England and Verrall point out that the using the ODP model on incremental losses 
almost all but requires one to use paid, rather than incurred, losses since the overdispersed 
Poisson model is defined only for nonnegative losses. Incurred losses include estimates 
by claims adjusters that can (and frequently do) get adjusted downward. Negative  
incremental paid losses occasionally occur because of salvage and subrogation, but a 
feature of the GLM estimation procedure allows for negative incremental losses as long 
as all column sums of the loss triangle remain positive.

Table 5 gives the estimates of the mean, the standard deviation for both the ODP 
(with 10,000 bootstrap simulations) and Mack models on the data in Table 3. The 
predicted percentiles of the 10,000 outcomes are also given for each model.

The validation p–p plots, similar to those done in the previous section, for both the 
ODP and the Mack models on paid data, are in Figures 2 and 3. The results for both 
models are quite similar. Neither model validates on the paid triangles. A comparison 
of the p–p plots in Figures 3 and 4 with the illustrative plots in Figure 1 suggests that 
the expected loss estimates of both models tend to be too high for these data.

Let’s now consider the results of this and the prior section. These sections show that 
two popular models do not validate on outcomes of the 200 Schedule P triangles drawn 
from the CAS Loss Reserve Database. These models do not validate in different ways 
when we examine paid and incurred triangles. For incurred triangles, the distribution 

9 England and Verrall (2002) use a log link function in their GLM. They also note that the GLM for the ODP 
maximizes the quasi-likelihood, allowing the model to work with continuous (non-integer) losses.
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Table 5. ODP and Mack Model Output for the Illustrative Insurer Paid Losses

w

ODP Mack Outcome

Ĉw,10 SD CV Ĉw,10 SD CV Cw,10

1 3912 0 0 3912 0 0.0000 3912

2 2532 21 0.0083 2532 0 0.0000 2527

3 4163 51 0.0123 4162 3 0.0007 4274

4 4369 85 0.0195 4370 28 0.0064 4341

5 3554 96 0.027 3555 35 0.0098 3583

6 3211 148 0.0461 3213 157 0.0489 3268

7 5161 240 0.0465 5167 251 0.0486 5684

8 3437 332 0.0966 3442 385 0.1119 4128

9 4220 572 0.1355 4210 750 0.1781 4144

10 4635 1048 0.2261 4616 957 0.2073 4139

Total 39193 1389 0.0354 39177 1442 0.0368 40000

Percentile 73.91 72.02
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Figure 3. p–p Plots for the Bootstrap  
ODP Model on Paid Loss Triangles
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predicted by the Mack model has a light tail. For paid triangles, the distributions 
predicted by both the Mack and the bootstrap ODP models tend to produce expected loss 
estimates that are too high. There are two plausible explanations for these observations:

1. The insurance loss environment has experienced changes that are not observable at the 
current time.

2. There are other models that can be validated.

To disprove the first explanation, one can develop models that do validate. Failing to 
develop a model that validates may give credence to, but does not necessarily confirm, 
that the first explanation is true. This monograph now turns to describing some efforts 
to find models that do validate.

Figure 4. p–p Plots for the Mack Model  
on Paid Loss Triangles
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I will begin this section on Bayesian MCMC models by quoting the advice of Verrall 
(2007). “For the readers for whom this is the first time they have encountered MCMC 
methods, it is suggested that they simply accept that they are a neat way to get the 
posterior distributions for Bayesian models and continue reading the paper. If they 
like the ideas and would like to find out more . . .” they should read the introduction 
in Appendix B. Keep in mind that the state of the art (e.g., faster multi-core personal 
computers, more efficient algorithms and more user-friendly software) is still rapidly 
advancing. Appendix C explains what I did with the current state of the art, as I perceived 
it, at the time I was writing this monograph.

Now let’s get to the loss reserve models. As pointed out in Section 3, the Mack 
model did not validate on the insurers listed in Appendix A using the loss data that are 
in the CAS Loss Reserve Database. This section presents two Bayesian MCMC models 
that were proposed in an attempt to find a model that does validate on these data.

The way the Mack model did not validate, i.e., it underestimated the variability of 
the ultimate loss estimates, suggested a direction to go in order to fix it. Here are two 
ways to improve the recognition of the inherent variability of the predictive distribution.

1. The Mack model multiplies the age-to-age factors by the last observed loss, -,11Cw w. 
One can think of the - s,11Cw w  as fixed level parameters. A model that treats the level 
of the accident year as random will predict more risk.

2. The Mack model assumes that the loss amounts for different accident years are 
independent. A model that allows for correlation between accident years could 
increase the standard deviation of �∑ = ,101

10 Cww .

I propose two different models to address the underestimation of the variability of 
the ultimate loss. The first model replaces the fixed level parameters, given by the last 
observed accident year, in the Mack model with random level parameters. As we shall 
see, this model improves the estimation of the variability, but does not go far enough. The 
second, and more complicated model, considers correlation between the accident years.

The Leveled Chain Ladder (LCL) Model
Let:

1. µ = α + β,w d w d .
2. � ,Cw d  has a lognormal distribution with log mean µw,d and log standard deviation σd 

subject to the constraint that σ1 > σ2 > . . . > σ10.

5. Bayesian Models for Incurred Loss Data
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To prevent overdetermining the model, set β10 = 0. The parameters { } { }α σ,w d  and 
the remaining { }βd  are assigned relatively wide prior distributions as follows:

1. Each αw ∼ normal( )( ) +log , 10Premium logelrw  where the parameter logelr ∼ 
uniform(-1, 0.5).10

2. Each βd ∼ uniform(-5, 5) for d < 10.
3. Each 10∑σ =

=
ad ii d

 where ai ∼ uniform(0, 1).

The hierarchical structure of the priors in (3) above assures that σ1 > σ2 > . . . > σ10. 
The rationale behind this structure is that as d increases, there are fewer claims that are 
open and subject to random outcomes.

The next model adds a between-year correlation feature.11

The Correlated Chain-Ladder (CCL) Model
Let:

1. Each αw ∼ normal ( )( ) +log , 10Premium logelrw  where the parameter logelr ∼ 
uniform(-1, 0.5).

2. µ = α + β1, 1d d .
3. ( )( )µ = α + β + ρ - µ >• - -log for 1., 1, 1,C ww d w d w d w d

4. � ,Cw d  has a lognormal distribution with log mean µw,d and log standard deviation σd 
subject to the constraint that σ1 > σ2 > . . . > σ10.

Note that the CCL model reduces to the LCL model when ρ = 0.
If the parameters { }{ }α β,w d , and ρ are given, the parameter ρ is equal to the 

coefficient of correlation between �( )-log 1,Cw d  and �( )log ,Cw d . To see this we first note 
that unconditionally:

�

�

( )
( )

( )
( )

= µ

= α + β + ρ - µ

= α + β

• - -

log

log

, ,

1, 1,

E C

C

w d w d

w d w d w d

w d

Given Cw-1,d we have that:

� i

i

i

( )( )( ) ( )
( )

( )

( )
( )

( )
( )

( )
( )

- α + β - µ

= µ - α + β - µ

= ρ - µ

- -

- -

- -

log log

log

log

, 1, 1,

, 1, 1,

1, 1,

2

E C C

C

C

w d w d w d w d

w d w d w d w d

w d w d

10  The JAGS expression for a normal distribution uses what it calls a “precision” parameter equal to the reciprocal 

of the variance. The standard deviation, 10 , corresponds to the rather low precision of 0.1.
11 Some of the models I tried before getting to this one are described in my working paper Meyers (2012). Note 

that what I call the LCL model in that paper is different from the LCL model above.
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Then the coefficient of correlation between � ,Cw d  and � -1,Cw d  is given by:

�

� �

i

i

( )

( )( )

( ) ( )- α + β
σ

- µ
σ













=
ρ - µ

σ








 = ρ

- -
-

- -

-

-

log log

log

, 1, 1,
1,

1, 1,

2

2

1, ,

1,

E E
C C

C

E
C

C C
w d w d

d

w d w d

d
w d

C
w d w d

d

w d w d

w d

To prevent overdetermining the model, set β10 = 0. The parameters { } { }α σ ρ, ,w d  
and the remaining { }βd  are assigned relatively wide prior distributions as follows:

1. Each αw ∼ normal( )( ) +log , 10Premium logelrw  where the parameter logelr ∼ 
uniform(-1, 0.5).12

2. Each βd ∼ uniform(-5, 5) for d < 10.
3. ρ ∼ uniform(-1, 1)—The full permissible range for ρ.
4. Each ∑σ =

=
ad ii d

K  where ai ∼ uniform(0,1).

I deliberately chose rather diffuse13 prior distributions since I had no direct 
knowledge of the claims environment other than the data that are reported in Schedule P.  
While preparing annual statements, actuaries with more direct knowledge of the claims 
environment normally attempt to reflect this knowledge in their unpaid loss estimates. 
Bornhuetter and Ferguson (1972) describe a very popular method where one can reflect 
knowledge of an insurer’s expected loss ratio in their estimates. With minor modifications 
of the JAGS script, one can reflect this knowledge by specifying more restrictive priors for 
{ }αw  parameters and the logelr parameter.

The predictive distribution of outcomes is a mixed distribution where the mixing is 
specified by the posterior distribution of parameters. Here is what the script for the CCL 
model does.

The predictive distribution for ∑ = ,101

10 Cww  is generated by a simulation. For each 
parameter set { }{ }{ } { }α β σ ρ, , and ,w d d  start with the given C1,10 and calculate the 
mean, µ2,10. Then simulate �2,10C  from a lognormal distribution with log mean, µ2,10, and 
log standard deviation, σ10. Similarly, use the result of this simulation to simulate 
� �, . . . ,2,10 10,10C C . Then form the sum �∑+ =1,10 ,102

10C Cww . The script generates 10,000 
simulations that make up a sample from the predictive distribution from which one 
can calculate various statistics such as the mean, standard deviation and the percentile 
of the outcome. Here is a more detailed explanation of this process.

Given the group code for an insurer in the CAS Loss Reserve Database, the R script 
for the CCL Model performs the following steps:

1. Reads in the data triangle { },Cw d  for the insurer identified by the group code.
2. Runs the JAGS script and gets a sample of 10,000 parameter sets, { }{ } { }α β σ, ,w d d  

and ρ from the posterior distribution of the CCL model.

12 The JAGS expression for a normal distribution uses what it calls a “precision” parameter equal to the reciprocal 
of the variance. The standard deviation, corresponds to the rather low precision of 0.1.

13 One might also use a “noninformative” prior distribution. Noninformative prior distributions are usually 
attached to a specific mathematical objective. See, for example, Section 3.3 of Berger (1985).



Casualty Actuarial Society 17

Stochastic Loss Reserving Using Bayesian MCMC Models

3. Simulates 10,000 copies, one for each parameter set in (2) above, of �{ } =,10 2

10
Cw d

. The 
simulation proceeds as follows.
•	 Set µ = α + β1,10 1 10. Recall that C1,10 is given in the original data.
•	 Set � i ( )( )µ = α + β + ρ - µlog .2,10 2 10 1,10 1,10C . Simulate �2,10C  from a lognormal distri-

bution with log mean µ2,10 and log standard deviation σ10.
•	 Set � �( )( )µ = α + β + ρ - µ• log .3,10 3 10 2,10 2,10C  Simulate �3,10C  from a lognormal 

distribution with log mean µ2,10 and log standard deviation σ10.
•	 . . .
•	 Set � � �i ( )( )µ = α + β + ρ - µlog .10,10 10 10 9,10 9,10C  Simulate �10,10C  from a lognormal dis-

tribution with log mean µ10,10 and log standard deviation σ10.
4. For each w, calculate summary statistics �( )=ˆ mean,10 ,10C Cw w  and SD = standard 

deviation �( ),10Cw . Calculate similar statistics for the total �∑+ = .1,10 ,102

10C Cww

5. Calculate the percentile of the outcome by counting how many of the 10,000 instances 
of �∑ = ,102

10 Cww  are ≤ the actual outcomes ∑ = ,102

10 Cww .

Table 6 gives the results from the first five MCMC samples produced by the script 
for the CCL model applied to the losses for the illustrative insurer in Table 2. The top 
31 rows of that table were generated in Step 2 of the simulation above. The remaining 
rows were generated in Step 3.

Table 6.  Illustrative MCMC Simulations

MCMC Sample Number

1 2 3 4 5

α1 8.2763 8.2452 8.2390 8.2591 8.2295

α2 7.8226 7.7812 7.8008 7.8048 7.7810

α3 8.2625 8.3200 8.2929 8.2883 8.2642

α4 8.3409 8.3286 8.3539 8.3622 8.3159

α5 8.2326 8.1166 8.1093 8.1855 8.1523

α6 8.1673 8.0307 8.0491 8.1727 8.0470

α7 8.6403 8.4776 8.4113 8.5815 8.4871

α8 8.2177 8.2488 8.2708 8.0752 8.1763

α9 8.3174 8.2007 8.2589 8.3744 8.2653

α10 7.4101 8.0036 8.7584 8.4241 8.8420

β1 -0.5125 -0.5180 -0.6504 -0.4947 -0.7384

β2 -0.2756 -0.1014 -0.1231 -0.2138 -0.0844

β3 -0.1271 -0.0313 -0.0622 -0.0758 -0.0498

β4 -0.1013 -0.0090 0.0165 0.0439 0.0479

β5 0.0518 -0.0109 0.0060 0.0034 0.0610

β6 0.0180 0.0885 0.0139 0.0175 0.0709

β7 0.0105 0.0583 0.0205 0.0427 0.0362
(continued on next page)
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Table 6.  Illustrative MCMC Simulations

MCMC Sample Number

1 2 3 4 5

β8 0.0400 -0.0090 0.0612 0.0444 0.0338

β9 0.0005 0.0287 0.0419 0.0116 0.0333

β10 0.0000 0.0000 0.0000 0.0000 0.0000

σ1 0.3152 0.2954 0.3164 0.1895 0.2791

σ2 0.2428 0.1982 0.2440 0.1858 0.1711

σ3 0.1607 0.1632 0.2078 0.1419 0.1089

σ4 0.1245 0.1133 0.0920 0.0842 0.0800

σ5 0.0871 0.0830 0.0694 0.0747 0.0794

σ6 0.0733 0.0649 0.0626 0.0508 0.0463

σ7 0.0324 0.0281 0.0294 0.0368 0.0352

σ8 0.0279 0.0247 0.0172 0.0270 0.0330

σ9 0.0171 0.0239 0.0130 0.0267 0.0329

σ10 0.0170 0.0237 0.0105 0.0241 0.0244

ρ 0.1828 0.4659 0.4817 0.1901 0.2155

µ1,10 8.2763 8.2452 8.2390 8.2591 8.2295

C1,10 3917 3917 3917 3917 3917

µ̃2,10 7.8221 7.7942 7.8172 7.8074 7.7904

C̃2,10 2520 2468 2480 2432 2453

µ̃3,10 8.2643 8.3278 8.2924 8.2862 8.2674

C̃3,10 3893 4190 3939 4090 3802

µ̃4,10 8.3414 8.3345 8.3474 8.3679 8.3107

C̃4,10 4229 4212 4233 4346 4075

µ̃5,10 8.2341 8.1219 8.1109 8.1873 8.1527

C̃5,10 3761 3285 3269 3597 3676

µ̃6,10 8.1670 8.0192 8.0400 8.1728 8.0593

C̃6,10 3450 3127 3120 3552 3196

µ̃7,10 8.6365 8.4910 8.4140 8.5819 8.4893

C̃7,10 5488 4719 4441 5299 4765

µ̃8,10 8.2129 8.2340 8.2634 8.0739 8.1720

C̃8,10 3652 3847 3933 3295 3708

µ̃9,10 8.3156 8.2106 8.2655 8.3794 8.2752

C̃9,10 4112 3538 3949 4426 3914

µ̃10,10 7.4112 7.9853 8.7659 8.4271 8.8414

C̃10,10 1613 3001 6511 4507 6763

 (continued)
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Table 7 gives the estimates of the mean and standard deviation, by accident year and 
in total, for the LCL, the CCL, and the Mack Models for the illustrative insurer. The 
predicted percentiles of the 40,061 outcome are also given for each model. Note that 
the standard deviations of the predicted outcomes were significantly higher for the CCL 
and the LCL models than they were for the Mack Model. This is generally the case, as 
can be seen in Figure 5. This figure plots the standard deviations (in the log scale) of 
the CCL and LCL models against those of the Mack Model for the 200 loss triangles 
listed in Appendix A. The higher standard deviations of the CCL model over the LCL 
model can be attributed to the generally positive correlation parameters that are shown 
in Figure 6 for the illustrative insurer. Generally this is the case for other insurers as can 
be seen in Figure 7.

The validation p–p plots for the LCL and CCL models run on the selected 200 
triangles are given in Figures 8 and 9. For the LCL model:
•	 The	p–p plots combined lines of insurance lie within the Kolmogorov–Smrinov 

bounds for Commercial Auto, Personal Auto and Workers Comp.
•	 All	four	lines	have	the	slanted	S	pattern	that	characterizes	models	that	are	too	thin	

in the tails. This pattern is reinforced in the combined plot, and the resulting plot 
does not lie within the Kolmogorov–Smirnov bounds. But the combined plot is an 
improvement over the corresponding Mack p–p plot.
For the CCL Model:

•	 The	p–p plots for all four lines lie within the Kolmogorov–Smirnov bounds, but 
just barely so for the Other Liability line.

•	 While	the	combined	p–p plot lies within the Kolmogorov–Smirnov bounds, the 
slanted S pattern indicates a mildly thin tail predicted by the model.

Table 7.  CCL, LCL, and Mack Models on Illustrative Insurer Incurred Data

CCL LCL Mack Outcome

w Cw,10 SD CV Cw,10 SD CV Cw,10 SD CV Cw,10

1 3917 0 0.000 3917 0 0.000 3,917 0 0.000 3,917

2 2545 57 0.022 2544 59 0.023 2,538 0 0.000 2,532

3 4110 113 0.028 4110 106 0.026 4,167 3 0.001 4,279

4 4314 130 0.030 4307 122 0.028 4,367 37 0.009 4,341

5 3549 123 0.035 3545 115 0.032 3,597 34 0.010 3,587

6 3319 146 0.044 3317 132 0.040 3,236 40 0.012 3,268

7 5277 292 0.055 5315 265 0.050 5,358 146 0.027 5,684

8 3796 331 0.087 3775 301 0.080 3,765 225 0.060 4,128

9 4180 622 0.149 4203 561 0.134 4,013 412 0.103 4,144

10 4155 1471 0.354 4084 1157 0.283 3,955 878 0.222 4,181

Total 39161 1901 0.049 39116 1551 0.040 38,914 1,057 0.027 40,061

Percentile 73.72 76.38 86.03
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Figure 9.  p–p Plots for the CCL Model on the 
Incurred Loss Triangles
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Given the improved validation of the CCL model on incurred loss data, it seems 
appropriate to try it out on paid loss data. Table 8 shows the CCL and ODP estimates. 
As should be expected given the results in Section 5, the standard deviation of the 
outcomes produced by the CCL model are noticeably higher than those produced by 
the ODP model.

The validation p–p plots for the CCL model applied to paid data are in Figure 10. 
When comparing this plot with the validation p–p plots for the ODP model (Figure 3) 
and the Mack model (Figure 4), we see that all three models show tend to produced 
estimates that are too high for these loss triangles.

Given the improved validation of the CCL model with incurred loss data, it is 
tempting to conclude that the incurred loss data contains crucial information that is 
not present in the paid loss data. However, there is also the possibility that a model 
other than the ODP or the CCL may be appropriate. A feature of such a model might 
be that it has a trend along the payment year w d 1)(= + - . Models with a payment 
year trend have been proposed in the writings of Ben Zehnwirth over the years. See, 
for example, Barnett and Zehnwirth (2000). The inclusion of a payment year trend in 
a model has two important consequences.

1. The model should be based on incremental paid loss amounts rather than cumulative 
paid loss amounts. Cumulative losses include settled claims which do not change 
with time.

2. Incremental paid loss amounts tend to be skewed to the right and are occasionally 
negative. We need a loss distribution that allows for these features.

One distribution that has these properties is the skew normal distribution. This 
distribution is starting to be applied in actuarial settings. See, for example, Pigeon, 
Antonio and Denuit (2013) Here is a description of this distribution taken from 
Frühwirth-Schnatter and Pyne (2010). This distribution has three parameters.

1.	 µ—the location parameter.
2.	 ω—the scale parameter, with ω	>	0.
3.	 δ—the shape parameter, with δ	∈	(-1,	1).14

14 The reference calls the shape parameter α and then define δ = α + α1 .2  The parameter designation, α, was 
already taken in this monograph.

6. Bayesian Models for Paid Loss Data
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Table 8.  CCL and ODP Models on Illustrative Insurer Paid Data

CCL ODP
Outcome 

Cw,10w Ĉ w,10 SD CV Ĉ w,10 SD CV

1 3912 0 0 3912 0 0.0000 3912

2 2568 114 0.0444 2532 21 0.0083 2527

3 4157 199 0.0479 4163 51 0.0123 4274

4 4330 234 0.0540 4369 85 0.0195 4341

5 3574 212 0.0593 3554 96 0.0270 3583

6 3417 259 0.0758 3211 148 0.0461 3268

7 5235 465 0.0888 5161 240 0.0465 5684

8 3664 463 0.1264 3437 332 0.0966 4128

9 4444 870 0.1958 4220 572 0.1355 4144

10 5036 1961 0.3894 4635 1048 0.2261 4139

Total 40337 2692 0.0667 39193 1389 0.0354 40000

Percentile 49.18 73.91

The skew normal distribution is defined as the sum of two random variables

X Z 1 2µ + ω δ + ω - δ ε∼ i i i i

where Z ∼ truncated normal[0,∞) (0,1) and ε ∼ normal(0,1). This distribution can also 
be expressed as a mixed truncated normal-normal distribution by setting

X Znormal , 1 .2( )µ + ω δ ω - δ∼ i i i

In looking at either expression for the skew normal distribution one can see that when 
δ	 =	 0, the skew normal becomes a normal distribution. As δ approaches one, the 
distribution becomes more skewed and becomes a truncated normal distribution when 
δ	=	1. Figure 11 plots15 the the density functions for µ	=	0,	ω	=	15 and δ close to one.16

It should be apparent that the coefficient of skewness can never exceed the co-
efficient of skewness of the truncated normal distribution, which is equal to 0.995. 
As it turns out, this constraint is important. I have fit models with the skew normal 
distribution that otherwise are similar to what will be described below and found that 
for most triangles, δ is very close to its theoretical limit. This suggests that a distribution 
with a higher coefficient of skewness is needed.

15 Using the R “sn” package.
16 The parameters in Figures 11 and 12 are representative of what one could expect in the later settlement lags where 

negative incremental losses frequently occur.
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The formulation of the skew normal distribution described by Frühwirth-Schnatter 
and Pyne (2010) suggests an alternative. Simply replace the truncated normal distribution 
with another skewed distribution, such as the lognormal distribution. Here is one way 
to do that. Define

normal , , where lognormal , .X Z Z∼ ∼( ) ( )δ µ σ

Let’s call this distribution the mixed lognormal-normal (ln-n) distribution with parameters 
given by δ,	µ and σ. Figure 12 plots the density functions for µ	=	2, σ	=	0.6, and two 
different values of δ.

Now that we have a loss distribution with the desired features of skewness and a 
domain that includes negative numbers, let’s describe a model for incremental paid 
losses with a calendar-year trend.

The Correlated Incremental Trend (CIT) Model
Let:

1.  w dw d w d 1 ., ( )µ = α + β + τ + -i

2.  Zw d w d dlognormal ,, ,( )µ σ∼  subject to the constraint that . . .1 2 10σ < σ < < σ .

3.  I Zd dnormal , .1, 1,( )δ∼�

4.  I Z I Z e ww d w d w d w dnormal , for 1., , 1, 1,( )( )+ ρ - δ >- -
τ� ∼ �i i

When comparing the CIT model with the CCL model (as it might be applied to 
incremental losses) there are some differences to note.

•	 The	CCL	model	was	applied	to	cumulative	losses.	One	should	expect	σd	to decrease 
as d increases as a greater proportion of claims are settled. In the CIT model, one 
should expect that the smaller less volatile claims to be settled earlier. Consequently, 
σd should increase as d increases.

•	 In	the	CCL	model,	the	autocorrelation	feature	was	applied	to	the	logarithm	of	the	
cumulative losses. Since there is the possibility of negative incremental losses, it 
was necessary to apply the autocorrelation feature in Step 4 above after leaving the 
“log” space. The hierarchical feature of the mixed lognormal-normal distribution 
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Normal Distribution
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provides the opportunity to do this. For a given set of parameters, ρ is the coefficient 
of correlation between I Iw d w dand1, ,-

� � .
• The trend factor, τ, is applied additively in the “log” space in Step 1 above. As 

the autocorrelation feature in Step 4 above is applied outside of the “log” space, 
it is necessary to trend the prior payment year’s difference by multiplying that 
difference by eτ.

To prevent overdetermining the model, set β10	=	0. The parameters w d, ,{ } { }α σ ρ , 
and the remaining d{ }β  are assigned prior distributions as follows:

1. Each αw ∼	normal log Premium logelrw , 10( )( ) +  where logelr ∼ uniform(-5,1).
2. Each βd ∼ uniform(0, 10) for d	=	1	to 4	and βd  ∼ uniform(0, βd -1) for d	>	4.	This 

assures that βd decreases for d	>	4.
3.	 ρ ∼	uniform(-1, 1)—The full permissible range for ρ.
4.	 τ ∼	normal(0, 0.0316)—corresponding to a precision parameter used by JAGS of 

1000.
5.  d d duniform 0,0.5 , uniform , 0.1 .1

2 2
1

2
1

2( )( )σ σ σ σ +- -∼ ∼
6.	 δ ∼	uniform(0, Average Premium)

There are two deviations from the selection of diffuse prior distributions that are 
in the CCL model.

•	 I	first	tried	a	wider	prior	for	τ. In examining the MCMC output I noticed that 
quite often, the value of τ was less than -0.1, which I took to be unreasonably 
low. This low value was usually compensated for by offsetting high values for the 
α and/or β parameters. This could have a noticeable effect on the final result, so I 
decided to restrict the volatility of τ to what I considered to be a reasonable range 
of payment year changes.

•	 In	examining	the	MCMC	output,	I	noticed	that,	occasionally,	high	values	of	σd 
would occur. This led to unreasonably high simulated losses in the output, so I 
decided to limit how fast σd could increase with d.

The predictive distributions of the sum, Iw dd ,1

10∑ =
�  for each w, and the overall sum, 

Iw ddw ,1

10

1

10 ∑∑ ==
�  are simulated 10,000 times with a Bayesian MCMC model. The details 

are very similar to those described in Section 5 and will not be given here.
By setting the prior distribution of ρ equal to zero, we eliminate the between 

accident year correlation. Following the naming convention of the last section, let’s call 
this model the Leveled Incremental Trend (LIT) model.

Table 9 shows the estimates of for the illustrative insurer with the CIT and the LIT 
model on paid data.

Before producing these distributions, I had no particular expectation of how ρ 
would be distributed for paid data. However, I did expect τ to be predominantly 
negative since the p–p plots in Figures 3, 4 and 10 indicted that the all the other models 
predicted results that were too high.

Let’s first examine the effects of between-year correlation in the CIT model. 
Figure 13 gives the posterior distributions for ρ for the illustrative insurer. Figure 14 
gives the histograms of the posterior means ρ for each insurer by line of business.
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Table 9.  CIT and LIT Models on Illustrative Insurer Paid Data

CIT LIT
Outcome

Cw,10w Ĉw,10 SD CV Ĉw,10 SD CV

2 2539 9 0.0035 2538 9 0.0035 2527

3 4183 21 0.0050 4185 20 0.0048 4274

4 4395 40 0.0091 4393 32 0.0073 4341

5 3553 42 0.0118 3566 32 0.0090 3583

6 3063 101 0.0330 3151 40 0.0127 3268

7 5062 123 0.0243 5065 111 0.0219 5684

8 3512 514 0.1464 3355 234 0.0697 4128

9 4025 707 0.1757 4138 594 0.1435 4144

10 4698 1482 0.3155 4703 1489 0.3166 4139

Total 38942 1803 0.0463 39006 1723 0.0442 40000

Percentile 79.04 79.69
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Figure 13.  Posterior Distribution of  
and for the Illustrative Insurer

As seen in Figure 14, the posterior means of ρ for the paid data were not as 
overwhelmingly positive as we saw in the incurred data shown in Figure 7. Figure 15 
shows a small but noticeable difference between the standard deviations of the CIT 
and LIT models.

My efforts to rein in the correlation between the w{ }α , the d{ }β , and the τ 
parameters were, at best, only partially successful, as Figure 16 indicates. The analogous 
plot for the LIT model is very similar. With the given data, it is hard for the CIT and 
the LIT models to sort out the effects of the level plus the development and the trend.

As seen in Figure 17, the posterior means of τ were predominantly negative.  
But as pointed out above, a negative might be offset by higher w{ }α s and d{ }β s. 
Figure 18 shows only a handful of triangles where there was a noticeable decrease 
in the final expected loss estimates. And most of those differences appeared in the 
Other Liability line of business.

Figures 19 and 20 show the validation p–p plots for the CIT and the LIT models. As 
do the Mack, ODP and CCL models on paid data indicate, the predictive distributions 
for the CIT and LIT models tend to overstate the estimates of the expected loss.
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Figure 17.  Posterior Mean of  by Line and 
Insurer for Paid Loss Data (continued)
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Figure 19.  p–p Plots for the CIT Model
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So, in spite of a serious attempt to improve on the results produced by the earlier 
models on paid data, the CIT and LIT models did not achieve the desired improvement. 
This result tends to support the idea that is generally accepted, that the incurred data 
reflects real information that is not in the paid data.

A reviewer of this monograph checked with some colleagues and found that claims 
are “reported and settled faster today due to technology,” and suggested that the CIT 
model might not fully reflect this change. A model that addresses the possibility of a 
speedup of claim settlement is the following.

The Changing Settlement Rate (CSR) Model
Let:

1. Each αw ∼	 normal log Premium logelrw , 10( )( ) + where the parameter logelr ∼ 
uniform(-1,0.5).

2.	 βd ∼	uniform(-5,5) for d	=	1,	.	.	.	,	9,	β10 =	0.
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Figure 20.  p–p Plots for the LIT Model
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3.  w d w d
w1,

1( )µ = α + β - γ ( )-
i  γ ∼	normal(0, 0.025).

4. Each 10∑σ =
=

ad ii d
 where ai ∼	uniform(0, 1).

5.  C ∼
w,d has a lognormal distribution with log mean µw,d and log standard deviation σd 

subject to the constraint that . . .1 2 10σ > σ > > σ .

Since β10	= 0 and cumulative paid losses generally increase with the development 
year, d, βd for d < 10 is usually negative. Then for each d < 10, a positive value of γ will 
cause d

w1 1
i )(β - γ )( -

 to increase with w and thus indicate a speedup in claim settlement. 
Similarly, a negative value of γ will indicate a slowdown in claim settlement.

Table 10 shows the results for the CSR model on the illustrative insurer.
Figure 21 shows that the posterior distribution of γ is predominantly positive. 

This confirms the reviewer’s contention that the claim settlement rate is, in general, 
increasing.

The validation p–p plots in Figure 22 shows that for three of the four lines of 
insurance, the CSR model corrects the bias found in the earlier models. This model 
also correctly predicts the spread of the predicted percentile of the outcomes for those 
lines. While the CSR model still exhibits bias for the personal auto line of business, the 
bias is significantly smaller than that of the other models.

It appears that the incurred loss data recognized the speedup in claim settlements.

Table 10.  CIT and CSR Models on Illustrative Insurer Paid Data

CIT CSR
Outcome

Cw,10w Ĉw,10 SD CV Ĉw,10 SD CV

1 3912 0 0 3912 0 0 3912

2 2539 9 0.0035 2559 103 0.0403 2527

3 4183 21 0.0050 4135 173 0.0418 4274

4 4395 40 0.0091 4285 198 0.0462 4341

5 3553 42 0.0118 3513 180 0.0512 3583

6 3063 101 0.0330 3317 216 0.0651 3268

7 5062 123 0.0243 4967 404 0.0813 5684

8 3512 514 0.1464 3314 402 0.1213 4128

9 4025 707 0.1757 3750 734 0.1957 4144

10 4698 1482 0.3155 3753 1363 0.3632 4139

Total 38942 1803 0.0463 37506 2247 0.0599 40000

Percentile 79.04 87.62
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Figure 22.  p–p Plots for the CSR Model
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7.  Process Risk, Parameter Risk and Model Risk

Let us now address a topic that frequently comes up in stochastic modeling discussions –  
process risk, parameter risk and model risk. One way to describe process and parameter 
risk is to consider the relationship for a random variable X conditioned on a parameter q.

[ ][ ] [ ][ ] [ ]= q + qq q .Var X E Var X Var E X

Let’s call the left side of the above equation the “Total Risk.” Let’s call the first term of the 
right side the “Process Risk” as it represents the average variance of the outcomes from 
the expected result. Finally, let’s call the second term the “Parameter Risk” as it represents 
the variance due to the many possible parameters in the posterior distribution. Another 
often-used term that overlaps with parameter risk is the “range of reasonable estimates.”

For the CCL model, the parameter q is represented by the vector

( )a a β β σ σ ρ, . . . , , , . . . , , , . . . , , .1 10 1 9 1 10

The MCMC sample simulates 10,000 parameters denoted by qi. We then have the 
illustrative insurer:

�∑= 





=
=

Total Risk 1901 .,10
1

10
2Var Cw

w

The random variables mw,10 are derived from the posterior distribution of the aw. One 
can then use the formula for the mean of a lognormal distribution to calculate:

�∑ ∑= q











= 





=q
=

m + σ

=
Parameter Risk 1893 .,10

1
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For this example, the parameter risk is very close to the total risk, and hence there is 
minimal process risk. I have repeated this calculation on several (including some very 
large) insurers and I obtained the same result that process risk is minimal.

Model risk is the risk that one did not select the right model. If the possible models 
fall into the class of “known unknowns” one can view model risk as parameter risk. It 
is possible to formulate a model as a weighted average of the candidate models, with 
the weights as parameters. If the posterior distribution of the weights assigned to each 
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model has significant variability, this is an indication of model risk. Viewed in this 
light, model risk is a special case of parameter risk.

As a thought experiment, one can consider what happens if we were to run this model 
on a very large dataset. The parameter risk will shrink towards zero and any remaining 
risk, such as model risk, will be interpreted as process risk.

This thought experiment is of largely academic interest since all aggregated loss 
triangles one finds in practice are small datasets. But it does serve to illustrate some of the 
theoretical difficulties that occur when one tries to work with the parameter/process/
model classifications of risk. My own preference is to focus on total risk, as that it is the 
only risk that we can test by looking at actual outcomes.



Casualty Actuarial Society 39

The central thrust of this monograph is twofold.

•	 It	implements	the	idea	of	large-scale	retrospective	testing	of	stochastic	loss	reserve	
models	 on	 real	 data.	The	 goal	 is	 not	 to	 comment	 on	 the	 reserves	 of	 individual	
insurers.	Instead	the	goal	is	to	test	the	predictive	accuracy	of	specific	models.

•	 As	shortcomings	in	existing	models	are	identified,	it	demonstrates	that	Bayesian	
MCMC	models	can	be	developed	to	overcome	some	of	these	shortcomings.

The	principle	behind	the	retrospective	testing	is	that	a	specific	model	is	built	with	
data	that	we	customarily	observe.	The	model	is	used	to	predict	a	distribution	of	outcomes	
that	we	will	observe	in	the	future.	When	we	do	observe	outcomes	for	a	large	number	of	
predictions,	we	expect	the	percentiles	of	the	outcomes	to	be	uniformly	distributed.	If	they	
are	not	uniformly	distributed,	we	look	for	a	better	model.	We	may	or	may	not	find	one.

The	data	used	in	this	study	comes	from	the	CAS	Loss	Reserve	Database.	It	consists	
of	hundreds	of	paid	and	incurred	loss	triangles	that	Peng	Shi	and	I	obtained	from	a	
proprietary	database	maintained	by	the	NAIC.	We	are	grateful	that	the	NAIC	allowed	us	
to	make	these	data	available	to	the	public.	The	data	I	used	to	build	the	models	came	from	
the	1997	NAIC	Annual	Statements.	The	outcomes	came	from	subsequent	statements.

Here	is	a	high-level	summary	of	the	results	obtained	with	these	data.

•	 For	incurred	data,	the	variability	predicted	by	Mack	model	is	understated.	One	of	
its	key	assumptions	is	that	the	losses	from	different	accident	years	are	independent.	
This	monograph	proposes	the	correlated	chain	ladder	(CCL)	model	as	an	alternative.	
This	model	allows	for	a	particular	form	of	dependency	between	accident	years.	It	
finds	that	the	CCL	model	predicts	the	distribution	of	outcome	correctly	within	a	
specified	confidence	level.

•	 For	paid	data,	the	bootstrap	ODP	model,	the	Mack	model	and	the	CCL	model	
tend	to	give	estimates	of	the	expected	ultimate	loss	that	are	high.	This	suggests	that	
there	is	a	change	in	the	loss	environment	that	is	not	being	captured	in	these	models.	
This	monograph	proposes	three	models,	the	Leveled	Incremental	Trend	(LIT),	the	
Correlated	Incremental	Trend	(CIT)	model,	and	the	Changing	Settlement	Rate	
(CSR)	as	alternatives.	The	first	two	models	allow	for	payment	year	trends.	While	
the	introduction	of	a	payment	year	trend	seems	plausible	given	the	bias	identified	
in	the	earlier	models,	the	performance	of	the	LIT	and	CIT	models	are	similar	to	
the	earlier	models	in	the	validation	p–p	plots.	The	CSR	model	corrects	the	bias	
identified	in	the	previous	models	for	three	of	the	four	lines	of	insurance,	and	has	
significantly	less	bias on the fourth line of insurance.

8. Summary and Conclusions
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•	 Note	 that	 for	 the	“Other	Liability”	 line	of	 insurance,	 the	Mack	and	ODP	models	
validate	better	than	any	of	the	new	models	proposed	in	this	monograph.	While	it	
might	be	a	small	sample	problem,	the	sample	is	not	all	that	small.	This	suggests	that	
more	study	is	needed.	Note	that	these	results	are	for	a	specific	annual	statement	year—
1997.	Studies	such	as	this	should	be	repeated	on	other	annual	statement	years	to	see	if	
the	above	conclusions	still	hold.

In	preparing	this	monograph	I	have	made	every	effort	to	adhere	to	the	“open	source”	
philosophy.	The	data	is	publicly	available.	The	software	is	publicly	available	for	free.	The	
R	and	JAGS	scripts	used	in	creating	these	models	are	to	be	made	publicly	available.	I	
have	purposely	restricted	my	methods	to	widely	used	software	(R,	JAGS	and	RStudio)	
in	order	to	make	it	easy	for	others	to	duplicate	and	improve	on	these	results.

In	building	the	Bayesian	models	I	used	prior	distributions	that	were	as	diffuse	
as	I	could	make	them.	The	restrictions	I	did	make	(for	example,	the	restriction	that		

. . .1 2 10σ > σ > > σ 	in	the	CCL	model)	reflected	my	experience	over	several	years	of	
general	model	building.	I	did	not	have	intimate	knowledge	of	each	insurer’s	business	
operations.	Those	with	knowledge	of	an	insurer’s	business	operation	should	be	able	to	
incorporate	this	knowledge	to	obtain	better	results.	As	all	probabilities	are	conditional,	
the	 Bayesian	methodology	 allows	 for	 one	 to	 incorporate	 additional	 information	 by	
adjusting	the	prior	distributions.	I	made	every	effort	to	code	the	models	transparently	
so	that	such	adjustments	are	easy	to	make.

The	models	proposed	in	this	monograph	are	offered	as	demonstrated	improvements	
over	current	models.	I	expect	to	see	further	improvements	over	time.	The	Bayesian	MCMC	
methodology	offers	a	flexible	framework	with	which	one	can	make	these	improvements.
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When selecting the loss triangles to use in this monograph my overriding consideration 
was that the process should be mechanical and well defined. There are two potential 
mistakes one can make in selecting the insurers to analyze.

•	 If	one	were	to	take	all	the	insurers	in	the	database,	or	randomly	select	the	insurers,	there	
could be some insurers who made significant changes in their business operations 
that could violate the assumptions underlying the models.

•	 If	one	is	too	selective,	one	runs	the	risk	of	selecting	only	those	data	that	best	fit	
a	chosen	model.	For	example,	let’s	suppose	that	I	wanted	the	CCL	model	to	fit	
the	incurred	data	even	better	than	it	does.	As	an	extreme	case,	noting	that	CCL	
model	still	appears	to	be	a	bit	light	in	the	tails,	I	could	have	replaced	some	of	the	
insurers that have outcomes in the tail with other insurers that have outcomes in 
the middle.

While	I	did	not	have	inside	information	on	any	changes	in	the	business	operations,	
Schedule	 P	 provides	 some	 hints	 in	 their	 reporting	 of	 both	 net	 and	 direct	 earned	
premium	by	accident	year.	Both	of	these	data	elements	are	in	the	CAS	Loss	Reserve	
Database.

•	 If	an	insurer	makes	significant	changes	in	its	volume	of	business	over	the	10-year	
period	covered	by	Schedule	P,	a	change	in	business	operation	could	be	inferred.

•	 If	an	insurer	makes	significant	changes	in	its	net	to	direct	premium	ratio	over	the	
10-year	period,	a	change	in	its	reinsurance	strategy	could	be	inferred.

To	carry	out	an	analysis	of	this	sort,	I	needed	a	large	number	of	insurers.	After	
looking	at	the	quality	and	consistency	of	the	data	available	in	the	CAS	Loss	Reserve	
Database,	I	decided	to	use	50	insurers	in	each	of	four	major	lines	of	insurance—
Commercial	Auto,	Personal	Auto,	Workers	Compensation,	and	Other	Liability.	Early	
on	 I	 concluded	 that	 there	were	 an	 insufficient	 number	 of	 insurers	 in	 the	 Products	
Liability	and	the	Medical	Malpractices	lines	to	obtain	an	adequately	sized	selection.

To	 implement	 these	 considerations,	 I	 calculated	 the	 coefficients	of	 variation	 for	
the net earned premiums and the net to direct premium ratios over the ten available 
years.	By	trial	and	error,	I	then	set	up	limits	on	these	coefficients	(CV)	of	variation	that	
obtained	the	desired	number	of	insurers.	This	procedure	should	have	eliminated	some	
of	the	insurers	that	changed	their	business	operations.

After	some	provisional	testing,	I	eliminated	insurer	group	38997	from	the	Personal	
Auto	and	Workers	Comp	lines,	and	insurer	groups	16373,	44598	and	14885	from	the	

Appendix A. The Data Selection Process
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Other	Liability	line	because	the	R	“ChainLadder”	package	produced	“NA”	results	for	
the	Mack	calculation	of	the	standard	deviation.	I	also	eliminated	insurer	group	14451	
from	the	Other	Liability	line	because	the	MCMC	algorithm	took	very	long	to	converge	
for	paid	losses.	After	eliminating	these	insurer	groups	I	adjusted	the	CV	limits	to	give	
50	insurers	for	each	line.	The	final	CV	limits	are	given	in	Table	11.	The	final	list	of	the	
selected	insurer	groups	are	in	Table	12.

Table 11. CV Limits for Insurer Triangles

Commercial Auto Personal Auto Workers’ Comp Other Liability

CV(Premium) <0.399 <0.450 <0.950 <0.390

CV(Net/Direct) <0.125 <0.125 <0.200 <0.125

Table 12. Group Codes for Selected Insurers

Commercial Auto Personal Auto Workers’ Comp Other Liability

353 13420 353 13641 86 13528 620 14370

388 13439 388 13889 337 14176 669 14915

620 13641 620 14044 353 14320 671 15113

833 13889 692 14176 388 14508 683 15148

1066 14044 715 14257 671 14974 715 15210

1090 14176 1066 14311 715 15148 833 15571

1538 14257 1090 14443 1252 15199 1538 17043

1767 14320 1538 15199 1538 15334 1767 17450

2135 14974 1767 15393 1767 18309 2003 17493

2208 15199 2003 15660 2135 18538 2135 18163

2623 18163 2143 16373 2712 18767 2143 18686

2712 18767 3240 16799 3034 18791 2208 24830

3240 19020 4839 18163 3240 21172 3240 26797

3492 21270 5185 18791 5185 23108 5185 27065

4839 25275 6947 23574 6408 26433 5320 28550

5185 27022 7080 25275 6807 27529 6459 30449

6408 27065 8427 27022 7080 30589 6947 30651

6459 29440 8559 27065 8559 32875 7625 32301

6947 31550 10022 27499 8672 33499 10657 33049

7080 32301 13420 27766 9466 34576 13501 36315

8427 34606 13439 29440 10385 35408 13919 38733

10022 35483 13501 31550 10699 37370 13994 41068

10308 37036 13528 34509 11347 38687 14044 41580

11037 38733 13587 34592 11703 38733 14176 42439

11118 44598 13595 34606 13439 41300 14257 43354
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Since the recognition of Markov Chain Monte Carlo as a powerful tool for doing 
Bayesian analyses in 1990, there have been many efforts to create software to aid in 
these analyses. Progress in making the available software faster and more user friendly is 
still being made. In spite of this progress, I believe that it is necessary for an actuary to 
have a picture of what is happening inside the black box. The purpose of this appendix 
is to provide a brief description of what is inside the black box.

A Markov chain is a random process where the transition to the next state depends 
only on its current state, and not on prior states. Formally, a Markov chain, Xt, for 
t = 1, 2, . . . is a sequence of vectors satisfying the property that

X x X x X x X x X x X xt t t t t tPr , , . . . , Pr .1 1 1 2 2 1( ) ( )= = = = = = =+ +

The properties of Markov chains have been well studied by scholars. Those interested 
in these studies can start with Chapter 4 of Jackman (2009). What actuaries need to 
know about Markov chains in Bayesian MCMC analyses can be summarized as follows.

•	 There	is	a	certain	class	of	Markov	chains,	generally	called	“ergodic,”	for	which	the	
vectors, {Xt}, approaches a limiting distribution. That is to say that as T increases, 
the distribution of {Xt} for all t > T approaches a unique limiting distribution.

•	 The	Markov	chains	used	in	Bayesian	MCMC	analyses,	such	as	the	Metropolis	
Hastings algorithm, are members of this class.

•	 Let	x be a vector of observations and let y be a vector of parameters in a model. 
In Bayesian MCMC analyses, the Markov chain is defined in terms of the prior 
distribution, p( y), and the conditional distribution, f (x  y). The limiting distribution 
is the posterior distribution, f ( y x). That is to say, if we let the chain run long 
enough, the chain will randomly visit all states with a frequency that is proportional 
to their posterior probabilities.

The	operative	phrase	in	the	above	is	“long	enough.”	In	practice	we	want	to:	(1)	develop	
an	algorithm	for	obtaining	a	chain	that	is	“long	enough”	as	quickly	as	possible;	and	
(2)	develop	criteria	for	being	“long	enough.”

Here is how Bayesian MCMC analyses work in practice.

1. The user specifies the prior distribution, p( y), and the conditional distribution,  
f ( xy ).

Appendix B. Introduction to Bayesian 
MCMC Models
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2. The user selects a starting vector, x1, and then, using a computer simulation, runs the 
Markov chain through a sufficiently large number, t1, of iterations. This first phase of 
the	simulation	is	called	the	“adaptive”	phase,	where	the	algorithm	is	automatically	
modified to increase its efficiency.

3. The user then runs an additional t2	iterations.	This	phase	is	called	the	“burn-in”	phase.	
t2 is selected to be high enough so that a sample taken from subsequent t3 periods 
represents the posterior distribution.

4. The user then runs an additional t3  iterations and then takes a sample, {xt}, from the  
(t2 + 1)th step to the (t2 + t3)th step to represent the posterior distribution f ( y x).

5. From	the	sample,	one	then	constructs	various	“statistics	of	interest”	that	are	relevant	
to the problem addressed by the analysis.

The most common algorithms for generating Bayesian Markov chains are variants 
of	the	Metropolis-Hastings	algorithm.

Given a prior distribution, p( y), and a conditional distribution, f (x  y),	the	Metropolis-
Hastings algorithm introduces a third distribution, J( yt  yt-1),	 called	 the	 “proposal”	 
or	“jumping”	distribution.	Given	a	parameter	vector,	yt-1, the algorithm generates a 
Markov chain by the following steps.

1. Select a candidate value, y*, at random from the proposal distribution, J( yt  yt-1).
2. Compute the ratio
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3. Select U at random from a uniform(0,1) distribution.
4. If U < R then set yt = y*. Otherwise set yt = yt-1.

The first part of the ratio, R1, represents the ratio of the posterior probability of 
the proposal, y*, to the posterior probability of yt-1. The higher the value of R1, the 
more likely will be accepted into the chain. Regardless of how the proposal density 
distribution is chosen, the distribution of yt can be regarded as a sample from the 
posterior	distribution,	after	a	suitable	burn-in	period.

To	 see	 the	 issues	 that	 can	 arise	when	 implementing	 the	Metropolis-Hastings	
algorithm,	let	us	examine	the	following	made-up	example.

Sample Claim Data

 484 1407 2262 5015  6500
 603 1565 2654 5354  6747
 631 1894 2672 5464  9143
1189 2140 4019 5598 12782
1229 2244 4318 6060 18349

We want to model the losses using a lognormal distribution with unknown 
parameter m and known parameter σ = 1.
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The prior distribution of m is a normal distribution with mean 8 and standard 
deviation 1. For the proposal distribution of ( mt mt-1), I chose a normal distribution with 
mean mt-1 and standard deviation σProp. The starting value, m1, was set equal to 7.00. For 
this	example,	there	is	no	adaptive	phase	and	the	burn-in	phase	was	1,000	iterations.

To illustrate the effect of the choice of the proposal distribution, I ran the 
Metropolis-Hastings	algorithm	using	the	normal	proposal	distributions	with	σProp = 0.02 
(low volatility), σProp = 20 (high volatility) and σProp =	0.4	(volatility	just	about	right).	
Figure 23 shows plots of the value of mt as the chain progresses for each choice of σProp. 
These plots are generally called trace plots in the MCMC literature.

Note that while the starting value m1 = 7 was outside of the high density region 
of the posterior distribution of m, as t increases mt moves rather quickly into the high 
density region for σProp = 20 and σProp = 0.4. It takes a bit longer for σProp = 0.02, as the 
differences between m* and mt-1 tend to be small.

If σProp = 0.02, m* will be close to mt-1 and the ratio in Step 2 of the Metropolis–
Hastings algorithm will be relatively high and thus mt will be close to mt-1. In the first 

Figure 23. Trace Plot 1: Metropolis— 
Hastings Example
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trace plot of Figure 23 we see a high degree of autocorrelation between successive 
iterations. If σProp = 20, m* could be quite far from mt-1 and the ratio in Step 2 could 
be relatively low and thus mt will equal mt-1. In the second trace plot of Figure 23 we 
still see a high degree of autocorrelation. If σProp = 0.4, m* can be far enough away from 
mt-1	to	reduce	the	autocorrelation,	and	close	enough	to	avoid	rejection	and	the	setting	
of mt = mt-1. Getting a good value for σProp is balancing act. The third trace plot in 
Figure 23 shows a relatively low degree of autocorrelation and suggests that mt for  
t = 1001, . . . , 11000 is a representative sample from the posterior distribution.

For a single parameter model, like the one in this example, it is relatively easy 
to scale the proposal distribution by trial and error to minimize autocorrelation. For 
models with many parameters, like the ones in the next section, such manual scaling is 
not practical. This problem has been studied extensively and here is a short description 
of the current state of the art.

A	good	statistic	to	look	at	when	trying	to	minimize	autocorrelation	in	the	Metropolis-
Hastings algorithm is the acceptance rate of y* into the Markov chain. I have scanned 
a number of sources, e.g., Chapter 5 in Jackman (2009), or Chapter 4 of Brooks et al. 
(2011), that suggest that an acceptance rate of about 50% is near optimal for a one 
parameter model. The optimal acceptance rate decreases to about 25% as we increase 
the number of parameters in our model. Also, the researchers have developed methods 
to	 automatically	 adjust	 the	 proposal	 density	 function	 in	 the	 Metropolis-Hastings	
algorithm. Chapter 4 of Brooks et al. (2011) provides a recent description of the state 
of the art. We shall see below that all this has been mechanized in JAGS. The phase of 
generating the Markov chain where the proposal density function is optimized is called 
the	“adaptive”	phase.

As models become more complex, adaptive MCMC may not be good enough to 
eliminate the autocorrelation. While the theory on Markov chain convergence still 
holds, there is no guarantee on how fast it will converge. So if one observes significant 
autocorrelation after the best scaling effort, the next best practice is to increase t3 
until there are a sufficient number of ups and downs in the trace plot and then take a 
sample of the t1 + t2 + 1 to t1 + t2 + t3	iterations.	This	process	is	known	as	“thinning.”	
Figure 24 shows what happens when we increase t3 to 250,000 and record every 25th 
observation.

Before leaving this example, let us examine how one might turn the posterior 
distribution of m into something of interest to actuaries. One reason actuaries fit a 
lognormal distribution to a set of claims is that they want to determine the cost of 
an excess layer. Given the parameters m and σ of a lognormal distribution, there are 
formulas	in	Appendix	A	of	Klugman,	Panjer,	and	Willmot	(2012)	that	give	the	cost	
of an excess layer of loss. The functions that calculate these formulas are included in 
the	R	“actuar”	package.	As	the	posterior	distribution	of	m reflects the parameter risk 
in our model, it is also possible to reflect the parameter risk in the expected cost of a 
layer by calculating the expected cost of the layer for each m in the simulated posterior 
distribution. Also, it is possible to simulate an actual outcome of a loss, X, in a layer 
given each m in the posterior distribution. The distribution of X calculated in this way 
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Figure 24. Trace Plot 2: Metropolis—Hastings 
Example with Thinning
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reflects both the parameter risk and the process risk in the model. Figure 25 shows the 
predictive distribution of the expected cost of the layer between 10,000 and 25,000, 
E[X ], and the predicted outcome of losses X in that layer.

As statisticians and practitioners became aware of the potential for Bayesian 
MCMC	modeling	 in	 solving	 real-world	 problems,	 a	 general	 software	 initiative	 to	
implement	Bayesian	MCMC	analyses,	called	the	BUGS	project,	began.	BUGS	is	an	
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acronym for Bayesian inference Using Gibbs Sampling.17	The	project	began	in	1989	in	 
the MRC Biostatistics Unit, Cambridge, and led initially to the ‘Classic’ BUGS program, 
and	then	onto	the	WinBUGS	software	developed	 jointly	with	the	Imperial	College	
School	of	Medicine	at	St	Mary’s,	London.	The	project’s	web	site	is	at	http://www.mrc-bsu. 
cam.ac.uk/bugs/.	The	various	software	packages	associated	with	the	BUGS	project	have	
captured many of the good techniques involved in Bayesian MCMC modeling.

On the advice of some colleagues I chose to use the JAGS ( Just Another Gibbs 
Sampler) package. It has the additional feature that it runs on a variety of platforms 
(Window,	Mac,	Linux	and	several	varieties	of	Unix).	Like	R,	it	can	be	downloaded	for	free.

I use JAGS with R. My typical MCMC program begins by reading in the data, calling 
the	JAGS	script	using	the	R	package	“runjags.”	I	then	fetch	the	sample	of	the	posterior	
back	into	the	R	program	where	I	calculate	various	“statistics	of	interest.”

While I realize that JAGS is doing something more sophisticated, I find it helpful to 
“think”	of	JAGS	as	using	a	simple	version	of	the	Metropolis–Hasting	algorithm	similar	
to that illustrated in the example above. Once a model is specified, there are three stages 
in	running	a	JAGS	program:

1. The	adaptive	stage	where	JAGS	modifies	the	proposal	distribution	in	the	Metropolis-
Hastings algorithm. JAGS will issue a warning if it thinks that you haven’t allowed 
enough	iterations	for	adapting.	Let’s	denote	the	number	of	iterations	for	scaling	by	t1.

2. The	burn-in	stage	runs	until	we	have	reached	the	limiting	posterior	distribution.	
JAGS	has	diagnostics	 (described	below)	 that	 indicate	 convergence.	The	burn-in	
stage runs from iterations t1 + 1 to t1 + t2.

3. The sampling stage that produces the sample of the posterior distribution. The 
sampling stage runs from iterations t1 + t2 + 1 to t1 + t2 + t3.

JAGS has a number of convergence diagnostics that are best illustrated with an 
example. We are given the total losses from a set of thirty insurance policies in the 
following table.

Exposure	 Loss	 Exposure	 Loss	 Exposure	 Loss

51  23 226 273 368 410
66 138 231 275 374 482
119  53 254 259 377 500
125  88 255 200 381 424
131  80 258 123 392 242
152 136 268 275 444 431
196 165 279 327 449 337
197 136 295 509 478 399
225 328 340 457 484 458
225 347 364 317 495 553

17 Gibbs sampling is an MCMC algorithm that is a special case of the Metropolis Hastings algorithm. This is 
demonstrated in Chapter 1 of Brooks et al. (2011).
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Our task is to use these data to estimate the expected cost of losses in excess of 
1000 for an insurance policy with an exposure of 800. Note that in our data, there is 
no insurance policy with an exposure as high as 800, and no loss over 1000.

Let’s	use	the	collective	risk	model	with	a	Poisson	distribution	for	the	claim	count,	
and a distribution for the claim severity. Here is the description of the model using the 
notation	in	Klugman,	Panjer,	and	Willmot	(2012).18

1. λ = k • Exposure
2. n ∼ Poisson(λ)
3. Loss ∼ Γ(n • a, θ)
4. k ∼ Uniform(0.05, 0.15)
5. a ∼ Uniform(0.1, 10)
6. θ ∼ Uniform(5,200)

In JAGS, the script looks pretty much like the model description above after a 
change	 in	 notation	 for	 the	 distribution	 parameters.	 Let’s	 first	 consider	 convergence	
diagnostics. First of all, with JAGS one can run multiple independent chains. I first ran 
this	model	with	1,000	iterations	for	the	adaptive	stage,	10,000	iterations	for	the	burn-in	
stage and then 2,500 iterations for the sampling stage. JAGS then produces trace plots 
for all four chains, colored differently, superimposed on each other. A visual indication 
of convergence is that all the chains bounce around in the same general area. Figure 26 
shows the trace plots produced by JAGS for the three parameters in this example.

18 This particular version of the collective risk model is called a Tweedie distribution. See Meyers (2009).
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Figure 26. Trace Plots Without Thinning— 
CRM Example
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As we can see from the trace plots, the chains are very distinct, so we should 
conclude that the chains have not converged.

A	second	diagnostic	provided	by	JAGS	is	the	Gelman-Rubin	statistic	for	each	
parameter. Here is a heuristic description of the statistic.19 First estimate the within 
chain variability, W, and the between chain variability, B. Gelman and Rubin then 
recommend that one use the statistic

R
W B

W
.

� �
�

� = +

The R� 	is	called	the	“potential	scale	reduction	(or	‘shrink’)	factor.”	or	PSRF.	This	
statistic will approach one as the number of iterations increases, since the between 
chain variability will approach zero. What we need to know is how long the chains have 
to be before we can stop and get a representative sample of the posterior distribution. 
Chapter 6 of Brooks et al. (2011) recommends that we accept convergence if the 
PSRF	is	1.1	or	below	for	all	parameters.	The	default	for	the	“runjags”	package	is	1.05,	
which is what I used in for the models in this monograph. The PSRFs for this JAGS 
run were 1.87, 1.21 and 1.92 for the parameters a, k and θ, respectively.

Continuing the example, I reran the JAGs model with same parameters but thinned 
the chains to take every 25th iteration. The results are in Figure 27. The PSRFs for this 
JAGS run were 1.03, 1.02 and 1.01 for the parameters a, k and θ respectively. So we can 
accept that the run has converged.

JAGS then sent 10,000 parameter sets {at, kt, θt} back to the R script. R then 
simulated losses to the insurance policy as follows.

For t = 1 to 10,000.

1. Set λ = kt • 800.
2. Select nt at random from a Poisson distribution with mean λ.
3. Select Losst at random from a Γ(nt • at, θt) distribution.20

Figure 28 shows a histogram of the ground up losses from the above simulation 
and the expected cost of the layer in excess of 1,000.

The examples in this appendix illustrate the ideas behind Bayesian MCMC models, 
those	being	the	adaptive	phase,	the	burn-in	phase,	the	sampling	phase,	and	convergence	
testing. Understanding these concepts should enable one to start running these kinds 
of models. When running these models one should keep in mind that the state of the 
art is still evolving, so one should periodically check the current literature and software 
developments on Bayesian MCMC modeling for recent developments.

19 See Jackman (2009, Section 6.2) or Hartman (2014) for a more detailed description of this statistic.
20 If each Xi has a Γ(a, θ) distribution, then X1 + . . . + Xn has a Γ(n • a, θ) distribution.
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Figure 27. Trace Plots With Thinning— 
CRM Example
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Appendix C. Bayesian MCMC  
Model Implementation

The state of the art and the software for Bayesian MCMC modeling is still evolving. 
Since there may be upgrades by the time the reader sees this monograph, I think that it 
is important for me to describe the computing environment in which I ran the models 
in this monograph.

My computer was a Macbook Pro with a quad core processor. On this computer 
I used R version 3.0.2 and JAGS version 3.3, implementing JAGS with the “runjags” 
package. The main consideration in selecting the “runjags” package was that made 
it easy to run the four chains in parallel with my quad core computer. Running the 
chains in parallel made a significant improvement in the run time.

For the LCL, CCL, and CSR models I used 1,000 iterations for the adaptive phase, 
and 10,000 iterations for the burn-in phase. I ran the model inside a loop, with the 
sampling phase initially set at 10,000 iterations with a thinning parameter equal to four. 
If the maximum PSRF for the parameters I monitored was greater than 1.05, I doubled 
the number of iterations in the sampling phases and the thinning parameter and ran 
the simulation again—continuing until the target PSRF target was achieved.

For most of the LCL and CCL models on incurred data, the initial run achieved the 
PSRF target. The highest thinning parameter was 32. Convergence was somewhat slower 
for the CCL and CSR models on the paid data. There was one triangle that required a 
thinning parameter equal to 512.

For the CIT and LIT models on the paid data, I increased the burn-in to 50,000 
iterations. Convergence was noticeably slower. Far fewer triangles met the PSRF target 
with a thinning parameter set equal to four.

The R/JAGS scripts for all models are in a spreadsheet that will be distributed with 
this monograph. For each model, I put these scripts inside a loop that ran all 200 triangles 
while I was otherwise occupied. Summary statistics for all 200 triangles are also included 
in the spreadsheet and because I fixed the random number seed, the scripts are able to 
reproduce the summary statistics for any of the triangles.
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