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Abstract

We present a general methodology for fitting feed-forward neural networks when both
right censoring and covariate information (claim attributes) exist. Right censoring occurs
when only intermediate, but not final values of a time-dependent variable (such as claim
duration) are known for some data points, and final values of the variable are known for
all other observations. This situation frequently arises in casualty insurance when there are
active claims in an analysis data set. The techniques we develop afe applicable for estimating
the distribution of claim lifetimes when awards are disbursed over the unknown claim life.
The neural-network framework allows us to handle complex relationships between the claim
attributes and claim duration.

We will derive a generalization for right-censored data of the back-propagation method
used for fitting feed-forward neural networks. A connection between least squares estimation
and maximum likelihood estimation will be used to establish the generalization. A typical
cross-validation approach to modeling will be described to reduce over-fitting. An appli-
cation of our methods is demonstrated for predicting the duration of a claim in worker’s

compensation insurance in the presence of covariates.
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1 Introduction

In casualty insurance. it is common for the pavinents on a claim to be disbursed over time.
For example, in workers' compensation insurance, a claim is filed sowme time after injury
to the worker and pavments are made on the claiin over a period of several vears. In this
setting. most data samples contain claims that are still active and do not have complete
information. Therefore. when building models to estimate claim duration. we need to use
techniques designed to handle incomiplete observations.

When a claim is open at the time of sampling, the claim duration is said to be right
censored. The claim is right censored because all we know is the final claim duration exceeds
the current duration. From a graphical perspective. the right end of the claim’s timeline has
been hidden from view. For example. if the claim is open for 16 months prior to sampling.
we know that at closing the claim’s duration will exceed 16 months.

When estimating the duration of a claim. it is important to consider the point in the
claim’s life at which we are making the estimate. For example, if we make a prediction on
the day that a claim is reported, we will be limited to available information. Alternately, if
our prediction is made after three months of ¢laim activity. we will have more information.
Models should reflect the point in time at which data are available. For example, we may
want to use the total medical paid at six months as a predictor of duration. However, this
information will not be known at the beginning of a claim’s life. Therefore. this model
is applicable ounly for predictions at 6 mouths duration for claims that exceed 6 months
duration.

Estimating claim duration and the distribution of durations can be useful for a numbe:
of reasons. For example. there mav be a need to make an early assessment of the claim’s
severity based on all available claim information. This type of procedure may be useful in
providing an index of the claim’s severity relative to claim duration. Methods such as these
provide a svstematic way of evaluating a large amount of claim information in an efficient
and logical manner. Using a neural network to predicts duration provides a comprechensive

method that uses complete historical data to develop the predictions of duration.
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[n this paper, we develop methods to model the relationship between claim characteristics
and the duration of a claim. These methods use a generalization of the back-propagation
algorithm to right-censored data for feed-forward neural networks. Back-propagation is a
numerical optimization technique that is commonly used to estimate a ucural network's
parameters (often referred to as weights in the neural network literature).  Feed-forward
refers to the specific order in which each subject’s information is processed. The techniques
developed here build on ideas presented in  (Faraggi & Simon 1995, Liestol. Audersen &
Andersen 1994). We will generalize the neural network. back-propagation algorithin to

right-censored data using a likelihood-based approach.

1.1 Introduction to Neural Networks

Neural network models are closely related in form to many commonly used statistical tech-
niques.  (Wasserman 1989) provides a technical introdnetion to neural networks.,  (Sarle
1994) describes connections between several statistical procedures and neural networks.
Among the procedures he discusses are linear regression, logistic regression. discriminany
analysis, multivariate linear regression. and principal component analvsis. Most of these
techniques are shown to be special cases of newral networks. The flexibility ol neural net-
works to apply to a wide variety of modeling situations makes them valuable as a general
framework for statistical analysis. This paper will draw one more connection between neural
networks and statistical procedures. We will show how the neural network framework can
be used to model continuous outcome data with right censoring.

Figure 1 is a graphic representation of a tvpical neural network architecture. Such a
diagram is commonly used in literature on neural networks. In the figure, the flow of infor-
mation, or data processing sequence. is downward. Becanse the flow is only one-way and
begins with the input variables, the network is said to be a teed-forward network. Each circle
in the figure is called a node, or "processing unit.” In actuality, each node represents the
evaluation of a function. Estimation of the functional parameters is catled “fitting.” Thus.

each node can be thought of as a scparate regression. Also, each row of circles in Figure 1
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Figure 1: Diagram of a Feed-Forward Neural Network
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is referred to as a "layer.”

Consider the nonlinear regression
y = 4cos(7 + 3z).

For a given value of z, the function 7 + 3z is first evaluated and then the cosine of the
intermediate value is calculated. In neural network problems, z corresponds to the input
level, 7 + 3z refers to the input to the node in the hidden layer, and cos(.) is the activation
function of the hidden layer's node, and the result of cos(7 + 3z) is the output of the hidden
layer’s node. The layer of nodes is said to be "hidden” because it is unavailable to the
network's user. The output of the hidden layer is then multiplied by 4 and passed to the
output layer. The information flow is said to be one-way because a given « value determines
the value for 7+ 3z which in turn determines the output of the hidden layer and the output
layer through the model weights. In this setup, there is only one hidden node and the model

weights are 7, 3, and 4.
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In the general representation of Figure 1, the top layer of nodes represents the input data
or predictor variables, where each circle signifies one continuous variable, or one level of a
categorical variable. The middle layer represents the hidden layer of the network. There
are different projections of the input layer into each circle in the hidden layer. A projection
is simply a linear combination of the input variables. The output from each node of the
first hidden layer is typically scaled to the unit interval by an activation function. The final
bottom layer represents a single linear combination of the hidden layer and is called the
prediction or output layer. This diagram depicts a one hidden-layer model. but more hidden
layers can be added.

A neural network can model complex relationships between the input and output vari-
ables. Such relationships include interactions between multiple input variables and nonlinear
transformations of input variables. With more traditional analysis methods, discovering sub-
tle interactions and transformations may be time-consuming and difficult, if not impossible.
With a neural network, the network architecture is easily adapted to include subtle interac-
tions and transformations.

Neural networks can be powerful tools for modeling claim duration and costs. To in-
tuitively understand this assertion, assume that thce mean of the output variable can be
accurately approximated by a (possibly verv complex) continuous function. Consider Fig-
ure 1 with only one hidden layer and assume the output of each hidden node is a simple
continuous function. With linear combinations of the certain simple continuous functions,
the result can be made arbitrarily complex by utilizing a sufficiently large number of hidden
nodes. This allows the neural network to approximate a wide class of funictions.

Parameters of a feed-forward neural network are often estiinated using a technique known
as the back-propagation algorithm. The algorithm is an optimization technigue and is related
to the gradient descent algorithm. Some details of the algorithin are presented in section

2.2. Interested readers are referred to (Wasserman 1989) for more details.
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Example 1.1: Representing Nonlinear Deterministic Functions To demonstrate
the ability of neural networks to capture nonlinear relationships, we generated data randomly
from the polvnomial equation

1 s
z=-r"-r+1 1.1
37w (1.1)

We generated values of r from a uniform distribution on the interval [—3, 3] and determined
z values using equation 1.1.

Figure 2 shows the fit to these data of a fecd-forward neural network with one hidden laye:
and three nodes in the hidden layver. Methods for specifving the form, or architecture, of a
neural network and for estimating its parameters will he described in the next section. This
example is intended solely to demonstrate that neural networks can accurately approximate
nonlinear relationships.

The solid line in Figure 2 represents the ncural network equation and the superimposed
scatter plot represents the true values that were generated. Figure 2 demonstrates the ability
of the neural network to adapt to nonlinear relationships with relatively few nodes in the
hidden laver. The general mean structure of the neural network allows us to represent a

polvnomial relationship without specifving quadratic or nonlinear terms in our model.

2 Neural Networks for Right-Censored Data

The feed-forward neural network is analogous to a regression model because there is a set of
input values, typically called predictors in statistical models, and au output variable, usually

known as the response variable. In regression analvsis, the model is
L= 9N, + e, (2.1;

where Z; is the response, 3 is a p x 1 vector of parameters, Y, is a px 1! veetor of predictor

variables, 7 is a scale parameter, and ¢, is a random crror term with diseribution function

!'For simplicity of notation, the first clement of X, is assimmed to be identically 1. With this formulation,
the right hand side of 2.1 includes an additive term that is analogous to the intercept term in traditional

regression
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Figure 2: Neural Network (line) and Randomly Generated Values (scatter) versus x
74
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F and density function f. The covariate vector, X, is hypothesized to have an additive
relationship to the outcome Z; 2.

While properties of such a regression model are well known and parameter estimates are
straightforward to obtain, the model in equation 2.1 is often inappropriate due to model
misspecification. The primary misspecification issue is the additi\'rity in the mean structure.
An alternative to the linear model is a mean structure with a more general formulation.

In order to employ a neural network model, replace the linear mean structure, 3'X;, in

equation 2.1 with a more general mean function, k(8, X;), as
Z, = h.(g, A’i) -+ fof ¥ 8 (22)

Here, h is an arbitrary function with a univariate response and 8 is a parameter vector
corresponding to the mean structure being fit. By choosing h properly, we can represent
many feed-forward network architectures with equation 2.2. We will restrict our attention to
feed-forward neural networks with a single hidden layer. Our methods generalize to muitiple
hidden layers without much difficulty.
For a feed-forward neural network with one hidden layer, specify
H
ho,z) = f(ao + Z a;8,(8;2)). (2.3)
j=1
In this equation, ay,...,ay are scalars, f;,...,0y are p x 1 vectors, H is the number of
nodes in the hidden layer, f is known as the activation function of the ouput layer, s;(.)
are known as the activation functions for the hidden layer, and 8 = {ay, ..., an, 8}, ..., By V'
is the vector of all parameters in the neural network. For the work presented in this paper.
f(z) = z is assumed to be the identity function and s,{z) = ... = sy(z) are all assumed
to be equal. Using the same activation functions for sy, ..., sy is common in most neural
network literature, but this is not necessary. Some commonly chosen activation functions

are linear (s(z) = az +b) and logistic {s(z) = [1 +exp(—z)]™!). The reader should note that

2With the formulation of equation 2.1, interactions between and transformations of the input variables

are represented as additional covariates.

265



this model is a special case of projection pursuit regression which is described in (Huber
1985).

If all of the activation functions in the hidden layer s,,....sy are set to the identity
function, this procedure is equivalent to traditional regression analysis. In this setting,
many of the parameters in the neural network will not be identifiable, but the equation can
be reduced to identifiable elements that are equivalent to regression parameters.

The neural network’s ability to represent complex relationships between the input values
and the output value is derived through the activation functions. By taking linear combi-
nations of simple nonlinear functions, it is possible to represent complex relationships. By
coupling this ability with multiple projections (lincar combinations) of the input variables
onto the hidden layer, the nonlinear relationships and interactions can be represented by the
network structure.

Using Equation 2.2, we can develop a likelihood equation for the data when a form is
specified for the error distribution, F. In the next section, we will use this formulation to

generalize the back-propagation algorithm to accommodate right-censored data.

2.1 Parametric Estimation

Let 71, ..., T, represent a random sample of claim durations and let Oy, .... O, represent the
associated injury dates for the claims. Define the sampling date as S;. The associated fixed
censoring times for each claim are C; = Sy — 0,. We observe ¥; = min(T,.C;). If a claim
is open, Y; = C,, otherwise, ¥; = T;. Censoring is represented by an indicator variable
6; = I(Y; = T;). If §; = 1 the claim is uncensored and if , = 0, the claim is censored. Let
X; = (Xp, ... Xp;)' represent the p x 1 vector of covariates, or claim attributes, for the ¢""
individual.

Censored regression techniques are developed under the assumption that 7; is indepen-
dent of C; conditional on X;. We consider C; to be a fixed censoring time since our samples
are collected at a fixed point in time. When the censoring variable is considered fixed. but

each individual's censoring time can be different, then the censoring is often referred to as
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Figure 3: Diagram of Sample Worker’s Compensatibn Claims
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generalized Type I censoring. The independence assumption is satisfied when T is indepen-
dent of O; conditional on X;. This assumption implies that any association the duration of
claim has with injury date is explained by the covariates.

Consider the following situation to illustrate the notation. Suppose we sample on a par-
ticular day, say January 31, 1995. In our notation, January 31, 1995 minus the injury date, is
the censoring time. Since each claim has a different injury date, they have different censoring
times. The situation is depicted for five sample claims in Figure 3. In Figure 3, claims 2,
3, and 4 are uncensored, while claims 1 and 5 are censored. We have partial information
on the censored claims and would have technical difficulties accurately calculating the mean
duration of a claim without incorporating censored data analysis techniques.

Let © = (#',0) be the complete vector of model parameters. In equation 2.2, let Z; =
log(T:) and e; = (Z,—h(8, X;))/o. If € has a standard normal distribution, then the likelihood

of the data is

L(©) =i=ﬁ1 \/%0_2 [exp (—%ef)r‘ [/:o e_%uzdu]l—ﬁl |

With maximum likelihood estimation, estimates of members of the parameter vector, 9, will
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be those values which maximize L.
Rather than maximizing L, it is generally casier 1o maximize the log likelihood. 1{6©).
n

1O) = log(L(O)) = = 3 [1) log(2702) + é(s,(-,—' (=6 oy (/V %"v/u)} .

=1 -
For the back-propagation algorithmn, typically a cost funetion is nsed for estimation that
represents the amount of prediction error in omr model. This cost function is minimized to
obtain estimates of the model parameters. To accommaodate right-censored data. we propose
using the negative of the log likelihood as the cost function for parameter estimation.

Lol . 1 e 1

o) = Z [3 log(270?) + ;d,r'f — (1 - d)log (/ ¢ (IH)] . (2.4)

=1 = ! ’

If all of the data in equation 2.4 are uncensored and [ vepresents the normal density, equation

2.4 can be wrilten as

“1 . Lz =bX. O\
CO) = 3 ;log2ao) + ;( ’7()) (2.5)
pel T Y ‘ /
n P NP
= 51()g(‘2r) + nlog(o) + o] ;(4, 1AW (2.6)

The first two terms on the right-hand side of equation 2.6 do not depend on 6 and the value
of ¢ which minimizes the third term will be the same for all values o > 0. Therefore, the

value of ¥ which minimizes C(©) is the same # which minimizes

n
Cu@) =3 "(Z; - X, ). (2.7)

=t
This @ is known as the least squares estimate and € (0) is the cost function typically
used in firting feed-forward neural networks without censored data. Thus. the proposed cost

function given by equation 2.4 provides a generalization to the standard back-propagation

algorithin for fitting feed-forward neural networks.

2.2 Numerical Estimation Procedures

Minimization of equation 2.4 can be performed with a varicty of algorithms. We propose the

back-propagation algorithm because it has proven successful for fitting neural network mean
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structures. Unfortunately, since C(O) is not differentiable with respect to ¢ at o = 0, the
algorithm does not perform adequately for estimating 0. Therefore, we employ a two-step
estimation approach with 4 being estimated using back-propagation and ¢ being estimated
using maximum likelihood.

The back-propagation algorithm is related to the gradient-descent algorithm and can Le
found in its general form in many neural network textbooks (see for example (Hecht-Nielsen
1990)). The algorithm minimizes C{©) with respect to the parameter § while considering
o to be fixed. Unlike traditional optimization routines, estimates are typically updated one
observation at a time. The model parameters are updated for the i*" observation and the

p™ iteration by the following updating mechanism:
0i+n(p—1) = 01—I+n(p—1) + A91—1+n(p——1)1 (28)

where
Ay inp-1y = AVC(Bi14np-1), 7)),

A is known as the learning rate, and C;() represents the i*" term in the summation of equation
2.4, and VC;() is the partial derivative of C;() with respect to #. The reader should note
that the parameter estimates (network weights) are updated at each observation. Typical
values for A range from 0.0001 to 0.1 and are typically chosen by trial and error methods.

This defines the basic version of the back-propagation algorithm. Many modifications
for adjusting the learning rate, A, for estimating the parameters have been proposed. The
learning rate is typically decreased if there is an increase in the cost function through one
pass of the data. For more details on this algorithm see (Wasserman 1989).

We assume that o is fixed through each pass of the data. After each pass through the
data, o is re-estimated using maximume-likelihood techniques treating 8 as fixed. Considering

@ to be fixed, we estimate o by using the Newton-Raphson algorithm
Oj+1 = 05 — [VgC(G,aj)]_lng(H, 0']'). (29)

This procedure can be initialized by choosing oy to be the previous value of o or by using

oo \/>::;,<z,- ~ h(8,X.))?

n
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where # represents the most recent value for the © parameters. The reader should note that

choosing a good initial value for o is crucial for the stability of our algorithm *

3 Example of a Neural Network With Simulated Data

In this section an example with simulated data is used to demonstrate the prediction potential
of neural networks. In this example, simulated data were used so we could reconstruct the
true values that would be censored in a real data set. This example will provide some
indication of the accuracy of our proposed methods for prediction.

For this example, we randomly generated data from a model with true values distributed
as

T, = exple? + 0.5 xe,).
and censoring values distributed as

C; = exp(0.25 + Jf + 0.5 % fy;).
where €;; and € are deviates from a standard normal distribution and Y, is a uniform
random deviate on the interval (—3,3). We consider the minimum of these two quantities,
Y, = min(T;, G,), to be the observation when censoring is present.

Both T; and C, follow log-normal distributions conditional on X, To sec this, note that

log(T;) = XZ+e¢, and

lOg(Cl) /\';’ + €,

il

where
€, ~ N(0.0.25) and

e ~ N(0.25,0.25).

3The Newton-Raphson procedure still contains derivatives of ('(©) with respect to o. Therefore, it will
experience similar problems near o = 0. We have found that with a good starting value, this problem is

minimized and the above algorithm is reasonably stable.
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Thus, conditional on X,

log(T;) ~ N(X?,0.25) and

log(C;) ~ N{X?+0.25,0.25).
We generated 1000 observations and achieved approximately 35% censoring. This level of
censoring is moderately heavy. We fit this data with the algorithms described in section
2.2. The architecture employed was a five-node, feed-forward neural network with a single
hidden layer and normally distributed error terms. This network can be described with the

following model equation,

5
log(T) = ap + Z a;s(Bo; + B, X) + oe.

j=1
In this equation s(u) = [1 + exp(—u}}]~! is the logistic function, and epsilon has a standard
normal distribution.

Our data set of 1000 observations was split randomly into two parts with approximately
75% in the training set and 25% in the testing set. The data in the training set were used
to fit or "train” the network. The data in the test set were used to assess or "test” the
network’s predictive abilities. Historically, the 75/25 split has been found to be adequate
in most circumstances and is the common choice for training networks, but this choice is
somewhat arbitrary.

The graph in Figure 4 shows values for the cost equation 2.4 plotted against p from
equation 2.8 for the training set and the testing set. The algorithm described by equations
2.8 and 2.9 was applied to the training set only. In this graph the dashed lines (- - - -)
represent the loss function calculated on the testing set and the solid line (——-) represents
the cost function calculated on the training set. Convergence was considered obtained when
the testing set’s cost function failed to decrease for 40 consecutive iterations. The point
at which the testing set’s cost function stopped decreasing was considered the convergence
point. This approach guards against the dangers of over fitting that can occur in over-
parameterized models.

After the neural network model was fit, we reconstructed the log predictions and plotted

them against the log of the true observations log(T;) for the test set. Figure 5 shows a plot of
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Figure 4: Loss function values for the testing and training data sets
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the estimated relationship between z and E(log(T')|x) (shown by the solid line) superimposed
on a scatter plot of the log of the true values, T;. With this comparison, we demonstrate the

ability of neural networks to produce accurate predictions of true values even with censoring.

4 Application of Neural Networks to Workers’ Com-
pensation Data

In this section we apply the methods outlined in this paper to a single state insurance carrier.
Our data set consisted of all claims that opened after December 31, 1987. The data were
sampled in June of 1997 and all claims that were open at that time are considered to be
right censored. We construct a prediction model for estimating the duration on an individual
claim with data containing right-censored observations.

Our prediction model uses several covariates that are typically available early on in a
claim’s life so that our models will be valid from the beginning of a claim. The characteristics
used for the model are accident code, gender, weekly wage, zip code, injury type, class code,
body part, nature of injury, and age at the time of injury. Accident code, injury type, class
code, body part, and nature of injury variables are encoded using the National Council on
Compensation Insurance (NCCI) standards.

The duration of a claim is considered to be the duration since the claim was reported
to the insurance carrier. Only claims with indemnity payments were used in modeling
and claims with permanent total disabilities were excluded since they typically last until a
claimant is deceased. The assumptions on the distribution of the error term and censoring
mechanism are defined in section 2.1.

Figure 6 demonstrates the ratio of the neural network model prediction to the actual du-
ration against the actual duration in days. The axes are displayed in log-base 10 increments.
For open cases, the duration to date was used in the plot. If all predictions are perfect, the
cloud of points would lie directly on the line ”1/1.” Typically, the model under-predicts long

duration claims and over-predicts short duration claims. The plot demonstrates that most
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Figure 5: Predictions of log(T) (line) and log(true) values (scatter) versus x (test set only)
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predicted durations are reasonably close to the actual duration.

5 Conclusions

This paper presented a generalization of a commonly used algorithm for neural networks
using a likelihood-based approach. A connection between this algorithm and the typical least
squares approach to estimation was demonstrated. We showed that our algorithm could make
accurate predictions in the presence of right-censored data. The example with the simulated
data demonstrated the ability of neural networks to identify nonlinear relationships even in
the presence of right censoring. The example from workers' compensation insurance showed
how this method can be applied to estimating duration in the presence of many covariates.

The ideas presented in this paper arc general in nature and there are many other applica-
tions that could benefit from these techniques. We merely scratched the surface of possibie
applications. Neural networks have proven very useful in modeling complex situations. By
adding a generalization to handle the problem of right censoring, this powerful technique

can be applied to a new range of actuarial problems.
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Figure 6: Error ratio plot. (prediction)/(actual duration) versus actual duration
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