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With a Novel llse of GLMs for Credit Insurance 

Abstract: 

This paper discusses some methods that can be used to calculate classification relativities and reduce 

the error that would otherwise occur by using one-way analysis Section 2 will discuss the problem 

of risk classiftcation analysis from a mathematical and stattstical viewpoint and show some of the 

implied solutions from these approaches This exposition revisits the work pioneered in the USA by 

Bailey, Bailey and Simon and Brown, which are the foundations of American casualty practice in the 

area of classification ratemaking. We will then revisit another technique based on Generalized Linear 

Modeling (GLM) in Section 3 and discuss the advantages oftmplementing this technique For those 

who have a strong background in classification ratemaking and (iL\l. we recommend skipping to 

Sections 4 and S, where we present an application of thts technique to credit msurance and discuss 

the results. 
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Section 1. Introduction 

I .l Description of the General Problem 

A prernlum rating plan has two goals. First, it should ensure that the insurer receives 

premiums.at a level which is expected to be adequate to cover losses and expenses, while 

providing a fair rate of return. Second, it should allocate those premiums fairly between 

insureds, where “fairly” means that higher premiums are paid by those insureds with greater 

risk of loss and vice-versa, while all insureds contribute consistently to profit and expense. 

While we recognize that there may be considerations in which an insurer chooses not to price 

a risk with respect to these goals (regulatory, competitive, etc.), we will assume, for the 

Purposes of this paper, that these other considerations are addressed subsequent to 

determining the expected value premiums. 

To meet these goals, most ratemaking consists of two aspects. The first is the determination 

ofthe overall rate level. This addresses the first goal mentioned above. The second aspect 

ofratemaking is the risk classification analysis. It is through the risk classification plan and 

its rate relativities that the second goal of equity is installed in the pricing process. 

In determining classification relativities, it appears simple enough to analyze loss costs (loss 

per exposure) by variable to calculate the necessary factors. If married drivers have half of 

the loss cost of unmarried drivers, they should receive a relativity of 0.5 and so on. This 

single-variable analysis, however, makes an assumption that is generally not true - that the 

effects of a single variable are independent of all other rating variables. We introduce the 
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following example’ which appears in the SASLSTAT manual [l] to show some of the 

difftculty with this assumption. 

1.2 A Simple Example 

Consider claim count data which are modeled using two classification variables, age group, 

with two levels, and car type, with three levels The claim counts and exposures for each of 

the classes are as follows: 

Claims Exposures 

Actual Frequency Frequency Relativities 

As Car Size 

The actual frequency for a class is computed as the number of claims divided by the number 

of exposures for that class. Each class is a combination of values for each classification 

variable (e.g - age group 1 with a large car). The observed relativities in this example are 

I 
Reprmted with permss~on SAS lnstltute Inc , SAS’ Technical Report P-243, SAS/STAlb Software: The 
GENMOD Procedure, Release 6 09. Gary. NC: 1993, Copyrlghf SAS lnsitute Inc 88 pp 
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computed using claim frequency. (This approach assumes that the average claim size is the 

same for each class.) In addition, the large car size/age group one (Ll) class is assumed to 

be the ‘base class’, which has a relativity of 1 .O. The observed relativity of 25.3 for the small 

car siz&gegroup two (S2) class means that for each S2 car, we observed 25.3 times as many 

claims on average than for each Ll car Ifthe base rate (i.e. the premium rate for a single Ll 

car) is $100, the premium charged for a single S2 car would be $2,530 or 25.3 x $100. 

One Way Method 

ChSS Claims 

Large car size 15 

Medium car size 110 

Exposures Frequency 

400 ,038 

1700 .065 

Small car size 143 900 ,159 4.237 

Age Group 1 80 1800 ,044 1.000 

Age Group 2 188 1200 157 3.525 

The one-way method computes a relativity separately for each value of the car size variable 

and the age group variable. For example, based on this method, the relativity for a medium 

sized car is .065/.038, or 1 725, where ,038 is the total frequency for the base car size, large. 

Note that all of the data is used to determine the car size relativities and then used again to 

determine the age group relativities. 

The final overall rating class (car size/age group) relativity is then the product of the 

individual car size relativity and the individual age group relativity. For example, the S2 

relativity based on the one-way method would be 4.237 x 3.525, or 14.936. The table below 

summarizes the relativities based on the one-way method. 
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Age Group 

Level Relativity 

1 1.000 

2 3.525 

Large 

I .ooo 

1.000 

3.525 

Car Size 

Medium 

1.725 

I 725 

6 082 

Small 

4.237 

4 237 

14 936 

We can see that this method fails to make the relativities as steep as necessary to reflect the 

combined increased risk from both variables For example, the S2 car would be charged a 

premium of $1,493 60 instead of the $2,530 premium indicated by the data. Because this 

simple method uses the data to derive the relativity for each class variable indenendently of 

the other class variables, it produces results which are inconsistent with the data. 

This effect is not due to a quirky example There are very strong practical reasons that would 

lead us to reject one-way analysis Normally, we would expect to see some degree of 

association between rating factors. An insurer’s portfolio of risks is unlikely to be a random 

sample from the entire population of insurance risks - the insurer’s pricing structure may 

target specific segments of the market and so we would expect to see this reflected in the 

relative loss-costs We therefore prefer modeling techniques that can deal with these 

exposure-related issues directly. 

This paper discusses some methods that can be used to calculate classification relativities and 

reduce the error that would otherwise occur by using one-way analysis Section 2 will discuss 

the problem of risk classification analysis from a mathematical and statistical viewpoint and 

show some of the implied solutions from these approaches This exposition revisits the work 
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pioneered in the USA by Bailey [2], Bailey and Simon [3], and Brown [4], which are the 

foundations of American casualty practice in the area of classification ratemaking. We will 

then introduce another technique based on Generalized Linear Modeling (GLM) in Section 

3 and discuss the advantages of implementing this technique For those who have a strong 

background in classification ratemaking and GLM, we recommend skipping to Sections 4 and 

5, where we present an application of this technique to credit insurance and discuss the 

results. 
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Section 2. Mathematical Formulation of Solution 

2.1 Class Plan Objective - Minimum Bias Approach 

To better understand the techniques being introduced, it will be usefir to discuss the 

objectives of classification ratemaking and frame them in a mathematical context 

The objective of a classification plan is to replicate the actual loss cost relativities as closely 

as possible Let’s call the selected relativities x,, r; for the Ch. I”, (etc ) values of the 

respective rating variables 2 Let’s call r,, the actual loss cost relativity for the set of exposures 

that have both ofthese variable values (for example - youthful driver and large car). The goal 

is then, for all i, j, to have x+y, be as close to r ,, as possible (if we are designing an 

additive class plan, replace %y, with 1 + x, + y,), where “close” is measured by some bias 

fimction f(r,,,T,y,). 

2.2 Example - Least Squares 

For example, suppose we define a bias function as the weighted squared error. 

SSE = x,X, n,, (r,, - my,)’ where n,, is the number of exposures in the ij’” cell 3 

* While we are dealing mth hvo variables I” this example. we can generalize to n variables Stmilariy, we can 
generalize to allow for interacbons. If we know that two variables Interact (e g age and sex) then we can 
create a new composite vanable formed for each combmation of the categones of the original vanat?& 

3 ny is used as a weight to reflect the relabve exposure amount of the ij” cell 
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In minimizing SSE, we set dSSE/c?‘x, = 0, and solve for xk in terms of y, 

-2C,Y,4$ -%Y,)=o 

Zy,n,r, = x, Cn y2 
I I c’ 

X”,C,Y, 
x =/ 

Cn,c,5 

I h,,Yf 
and similarly’ y, = L--- 

I =$x,* 

We will call this the least squares multiplicative model. For this model, the solution of the 

partial derivative equations leads to forms which can be solved iteratively. This approach 

proceeds by selecting initial values for each y, and then using the model solutions to solve for 

each of the x’s The x’s are then substituted into the equations for the y’s to produce the 

next estimate of the yj’s The process is repeated until the solutions at each iteration 

converge 

The indicated class relatives for the auto example. using the least squares multiplicative 

model, are as follows 

Age Group 

Level Relativity 

1 1.000 

2 3.541 

Large 

I.000 

1 .ooo 

3 541 

Car Size 

Medium 

3.021 

3.021 

IO 697 

Small 

5.533 

5 533 

19.592 

4 
For the final x. solution, the pre~ous subscnpt of k is simply replaced wrth i to enable us to conbnue with the 
notation 
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A detailed example of the iterative calculations is presented in Section 2 4 for the Poisson 

maxrmum likelihood multiplicative model 

The loss cost relativity, r,, , is the loss cost for the ij” class divided by the loss cost for the base 

class, or by the total loss cost if there is no base class For purposes of this paper, we will 

assume that there is a base class, unless specifically noted The loss cost relativity can also 

be derived as the frequency relativity multiplied by the severity relativity. If each class has the 

same average claim size, then the severity relativity is unity for every class In this case, the 

loss cost relativity r8, is equal to the frequency relativity The example in Section I assumes 

the same average claim size by class. 

Allowing the subscript B to represent the base class, NC can formalize this discussion as 

Where /., is the total loss in the ij’” class, su is the average clarm in the ij’” class, and m,, is the 

number of claims in the ijlh class 

If the classes have the same average claim size, i e sd equals s for all i,, then: 

srn>, n f r =“=’ 
‘, smn "8 f8 

which equals the frequency relativity HereJ, is the frequency of the ij’” class 

2.3 Class Plan Objective - Maximum Likelihood Approach 
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An alternate approach centers on answering the question “which x+ 3’s are those that 

maximize the likelihood ofthe actual rY,‘s being generated?” This approach attempts to obtain 

the objective ofthe class plan via a firmer statistical setting, rather than minimizing a general 

subjective bias hmction. There are, of course, several items that could be considered random 

variables. For example, the class losses, L,,, class claim counts m,,, class severity s,,, and class 

loss cost relativity r fan each be viewed as having underlying statistical distributions in which 

the x,‘s and yj ‘s are parameters. In fact, the random variables could be placed at an 

individual exposure level, rather than a cell level. 

If the random variable is r,, at the individual class level and is drawn from the probability 

distribution g, then the likelihood function L, which is the product of the probabilities of 

independent observations, is L = ff g(r, ;x, ,v,) with the parameters x, and y,. 

We can maximize the likelihood hmction by maximizing its logarithm, so 

which we maximize by calculating the partial derivatives and setting them equal to zero 

2.4 Example - Possion Frequency 

Let’s work through the maximum likelihood estimate for a multiplicative model, 

r,, = x,x For this model, we will assume that the random variable is the number of claims 

per class, mj, and that each class has the same severity. The Poisson density would be: 
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Here, h&x) takes the role of the familiar lamda parameter. The parameter is a function 

of Xi and yj. In the multiplicative model, h(x, ,y,) = x,y,J8n, where i is the observed 

frequency of the base class. Because of the additive property of the Poisson distribution, 

this model will also result ifthe random variable is the number of claims per exposure and the 

lambda function equals x~,j~ 

Either way, the likelihood function is- 

(replacing k with i) 

which we will call the Poisson (multiplicative) model 
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Let’s illustrate the use of the Poisson model by applying it to the previously irnroduced 

example. x, will be car size, s; will be age group, nj will be the number of exposures, and 4 

will be the actual claim frequency relativity. The first iteration of calculations would be: 

XI = h, rll + n12 r12Y( 4 yI + n12 ~3 Assume y, = I, yr = 4, initially 

= (100*1.0+300*4.7)/( too* 1 +300*4) 

= 1500/ 1300 

=I 15 

X2 = (n2, rzI + n22 r22Y( n21 yI + nz2 y2) 

= (1200 * 3.1 +500 * 14 6)/( 1300 * 1 +500 * 4) 

= 11000/3200 

= 3.44 

X3 = (n,, bI + n12 rj2Y( nil yI + nj2 y2) 

= (500 * 8.4 + 400 * 25 3)/( 500 * I + 400 * 4) 

= 14300 / 2100 

=681 

YI = (n,, rll + n2! r21 + nJ1 rd4 nII xl + n2, x2 + 4 x3) 

= (lOO*l 0 + 1200’3.1 + 500*8 4)/(100*1 IS + 1200*3.44 + 500*6 81) 

= 8000 I7645 

= 1.05 

Y2 = (n,, r12 + nZ2 r2> + njz r,J( n,, x, + nz2 x2 + nj2 x3) 
= (300’4.7 + 500*14 6 + 400*25 3)/(300*1 15 + 500*3 44 + 400*6 81) 

= 18800 / 4789 

= 3 93 

5 While the steps are dlsplayed with I,,. q. and y, rounded, the exact figures are used I” each step of the 
calculations 
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After the first iteration, we would use the new yj’s to recalculate the x’s and so on, until the 

results converged. The subsequent iterations are shown in the table below. 

The rebased relativity for a specific class level is the converged solution divided by the base 

class level converged solution. For example the 2.920 relativity for the medium car size equals 

3.417/1.170. 

The resulting implied class relativities are as follows: 

Car Size 

which is a significant improvement over the one-way relativity calculations The improvement 

lies in the fact that the fitted class relativities for the Poisson model more “closely match” the 

relativities, r,,, in the data 
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2.5 Loss Ratio Relativities 

Before proceeding, it is worth digressing to discuss the meaning of “actual losses.” In standard 

ratemaking procedures, it is common to use loss ratios, rather than pure premiums, in a 

relativity analysis. However, loss ratios only give the required change in relativity, as the 

existing relativities are embedded in the denominator. Therefore, one must adjust the loss ratios 

to remove the effect of the existing relativities of any ratmg variables being analyzed in the 

study. This adjustment can be handled via the following steps: 

1. Calculate a matrix of existing differentials, D, , where for a multiplicative model D, is the 

product of the current rate relativities for row i and column j. In the additive model, D, 

= I + the sum ofthe current rate relativities for row i and column j. The base class should 

have D,j equal to 1. 

2. Calculate the matrix of loss ratios, L% 

3. Divide all of the loss ratios by the loss ratio for the base class. This will give “raw loss 

ratio relativities,” Wij. 

4. Multiply each of the Wij’s by D, to get the adjusted loss cost relativities, rd. 

This adjustment avoids double-correcting for the variables in the model. 

Bailey [2], Bailey and Simon [3], and Brown [4] introduce a number of other models. In the 

Appendix to this paper, we will derive some of these additional models as well as show the 

solution to the above example (but not the calculations) for each of these models. While this 

set of models is not exhaustive, it gives the reader an indication of how to construct maximum 

likelihood estimates given an underlying distributional assumption, as well as other types of 
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constraints Finally, it should be kept in mind that by using alternative notations, a single model 

may often be written in several different forms and may arise through the optimization of 

different criteria. 

48 



Section 3. Introduction to GLMs 

3.1 Introduction 

This section provides a brief introduction to Generalized Linear Models (GLMs). Those who 

are familiar with this theory may wish to skip ahead to Section 4, which contains an 

appltcation of GLMs for classification data Several good introductory texts include those 

by Aitkin [S] et al and the SAS* Institute Inc.[ I] The standard, complete reference is by 

McCullagh and Nelder [6] 

3.2 Traditional Linear Models 

Traditional linear models include the familiar simple and multiple regressions and Analysis of 

Variance (ANOVA) models, among others GLMs include all of these linear models and 

extend well beyond the traditional frameworks by broadening most of the major assumptions 

This implies that the use of multiple regression for classification ratemaking is a specific, albeit 

simpler, application of GLM 

Before proceeding to the general GLM framework, we will brtefly recap the traditional 

linear model in matrix form: 

p=xj+i: where 

v is the nxl vector of actual observed values; 

X is the nxp matrix of explanatory variables; 

P is the pxl vector of unknown parameters; and 
if representing the ‘error’ term, is the nxl vector of independent, identically 

distributed (iid) normal random variables, with common variance, oz. 
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Note that a single observation, y, , is modeled as y, = Z,‘p + 6, , where x, is the i”’ row of the 

matrix X and - is the matrix transpose operator. In the classification setting, the parameter 

vector,p, contains parameters for &l of the classification variables. The i” row of the matrix 

X would represent the actual risk characteristics of the ilh insured 

Analysis generally proceeds by estimating p via least squares, which is equivalent to 

maximum likelihood estimation for these models Confidence intervals, point estimates, and 

hypothesis tests can all be conducted using the estimated parameters, P 

The assumptions are reviewed by analyzing the residuals, r, . where 

e, = y, - j, andj, = ,T,‘j 

A very thorough reference for the theory underlying linear models is by Searle [7]. Residual 

diagnostics is covered in Belsley et. al. [8]. 

Shortcomings of Traditional Linear Modeling 

As GLM’s encompass traditional linear models, GLM theory, model structure, and model 

diagnostics all have their impetus in the traditional models One can view GLM theory 

positively as an extension of traditional linear model theory in which the traditional model 

assumptions are relaxed to include more real-life problems. Specifically, situations that 

GLM’s can handle but traditional models cannot, without resulting to pair&l transformations, 

are: 
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I. Non-normal response variables (y) - for example, there is no reason to believe that claim 

count data which is discrete and non-negative can be modeled appropriately by a 

continuous distribution which includes negative values in its range. 

2. Non-linear Structure The traditional model is 3, = E[Y, I?,] = m,r$ which is linear 

in fl Note that this implies that there exists some j, for which y, is negative. If, 

again, the data is count data or loss data, the mean will usually not be negative. 

3. Non-constant variance Traditional linear models assume that the variance is the same 

for each class However, the variance often fluctuates with the overall magnitude of the 

class mean. For example, in the Poisson case, the mean equals the variance There is 

nothing constant about it. 

3.4 GLM 

The general discussion in this section will use the traditional notation ofy for the response 

variable and x for the covariate vector. The x, and yj from Section 2 will appear in this 

section as well However, in the latter occurrences, Section 2 will usually be referenced and 

hopefully the context of the discussion will remove any confusion as to which x and y are 

being referenced. 
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GLM theory is built for probability distributions from the exponential families of the form 

where 6’are the underlying parameters, whose value may vary by class. and 4 represents a 

scale parameter 

Exponential families include the normal, Poisson, gamma, and binomial distributions The 

mean and variance of the exponential family are 

E[Y] = b’(o), which we denote ,u, 

Var[Y] = b”(B)qqv = V(p)& w 

where ’ and II denote first and second derivatives with respect to B, V(,) is a one-to-one 

variance function relating the mean and the variance, and W is the weight assigned to each 

observation. The weight is embedded in ~(4) and c(J.#) 

Two additional items that tend to arise are the link’ and offset functions The link function 

is a one-to-one function of the mean, g, such that g{p,j is modeled as .Y;,B Hence, a function 

of the mean, and not the mean itself, is modeled in a linear fashion The offset function is 

generally used with the Poisson distribution to account for the level of exposure in each class. 
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For example, in the Poisson distribution: f(Y) = e-* X/Y! = exp(ylogd - A)/y! 

and using the log link, B = Logp = LogA. = x’B 

f(y)= exp(Y@ - e”)lv! 

b(B)= es 

b’(8) = ee = A = ,u = E[Y] 

b”(8)= ee = A = p = Var[Y] = V(p) 

b=l andw=I. 

The fitted parameters,j , are obtained as in the traditional models, via maximum likelihood 

estimation. However, a closed form solution for the estimates does not usually exist, so an 

iterative process is used to obtain the estimates. 

Typically, for count data, for each class, the exposure, II,, and number of claims y, might 

be available. The Poisson model would become: f(Y,) = cm”‘“. (l,n,)” /Y, ! 

The log-likelihood contribution ofy, is: -R,n, + y, logil, + y, logn, 

Further, E[Y,] = +I, ,which on the log scale becomes: 

logEIYz] = logp, = log/I, + logn, = jsj+ logn, 

The exposure, n,, is usually handled via an offset. For the Poisson model, the offset is 

/og n,. Once the parameters are fit, the estimated means are obtained as p, = g-‘(0,). In a 

Poisson model with two variables and an intercept, ‘J = exp(!i’j)= exp(Intercept+ a, + 6, ) 
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The x, and y for a multiplicative Poisson model presented in Section Two could then be 

obtained as x, =e4/eaB andy, =e6’/e4 The estimated mean can be thought of as the 

predicted or fitted value 

3.5 The Poisson Example Revisited 

We now show how our previously introduced example would be handled with this method. 

The following SAS code generates the data set to be used for the analysis 

DATA insure; 

INPUT n m car S age; 

lnoffset = LOG(n); 

*exposure counts 

*n m car 

CARDS; 

500 42 small 

1200 37 medium 

100 1 large 

400 101 small 

500 73 medium 

300 I4 large 

RUN, 

car size 

age, 

age group; 

2 

So, for example, there are 500 small cars (exposures) in age group I and this class had 42 

claims The model could be written as log/l, = /n/ercep/ + n: + 6) , wherea, is the fitted 

parameter for car size i and??, is the fitted parameter for age group j 
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To fit the Poisson regression model in SAS, we use the GENMOD procedure in the 

SAYSTAT module. The SAS code for this analysis is: 

PROC GENMOD DATA = insure; 

CLASS car age; 

MODEL m = car age / 

DIST = Poisson 

LINK = log 

OFFSET = Inoffset; 

RUN: 

The parameter estimates along with their standard errors are displayed below: 

Parameter 

lnterceot 

Estimate Standard Error 

-1.3168 0.0903 

Large car size I -1.7643 I 0.2724 

Medium car size -0.6928 0.1282 

Small car size 0.0000 0.0000 

Age Group 1 -1.3199 0.1359 

Age Group 2 0.0000 0.0000 

Like linear regression, the model can be fitted either with or without an intercept. The above 

model has assumed that the small car size for age group 2 is the base class. The base class 

will have log 1, equal to the intercept. By taking the inverse link tmrction, g-’ = exp, a table 

of fitted expected frequencies can be constructed: 
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A, = exp( lnlercepf + a, + ~5,) 

Now if we wanted to use large cars and age group I as our base class for a rating plan, and 

ifthe severity for each class was the same, the class relativities could be obtained by dividing 

the previous table through by A,,. On the other hand, multiplicative class factors could be 

obtained for each level within the variable as exp(level parameter - base level) 

For example, if large cars for age group 1 are the base class, the medium car class relativity 

could be computed as exp(1.7643 - 6928) = 2.920 The resulting class relativities are 

displayed below: 

Age Group 
Laree 

Car Size 

Medium Small 

I[ Level ( Relativity ( 1 000 ( 2 920 I 5 837 

1 1.000 I .ooo 2.920 5 837 

2 3.743 3.743 10.929 2 I.850 

More detailed examples of using GLM’s in auto classification rate making in the United 

Kingdom are described in Reference 9 

3.6 Model Validation 
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We will discuss two types of goodness of fit or validation tests. First, we will introduce some 

more technical tests which do not usually get mentioned with traditional models. Then we 

will discuss some analogs of the more traditional residual plots and other less objective tests. 

The ‘fnore technical” tests center on two statistics, which often have asymptotic chi-square 

distributions. The first statistic centers on an item known as the deviance For a fixed 4, the 

scaled deviance is defined as: 

o’(p,l;) = 2(mr,(j,p) - PnL(Q)) 

where log I. is the log likelihood. This looks very much like the log of the likelihood ratio test 

statistic. 

For the Poisson distribution (with weight one, as shown previously): 

Pd (v.p)= -z p, + c y,Pn,u, - x en(y,!), 
CnL (Y,Y)= - x y, + z y,Pny, - c Pn(y,!),and 

n’O.s)= 2zrY,~n(Y,/P,)+ CP, - Y,)l 
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The second statistic used is Pearson’s chi-square statistic C? = cw’,(-L’< - fl,)‘/v(p,) 

This statistic should also have a somewhat familiar look In fact, y,+, is the residual, or actual 

less expected amount The scaled Pearson chi-square statistic is Q/4, which is Q in this 

Poisson case For the Poisson case. Q becomes the very fatniliar 

~ (oh.w/-ved - IipY.Yed)‘ 

IYxpecled 

This form can be used to evaluate the types of models presented in Section 2 

Both of the scaled statistics have an asymptotic chi-square distribution under various general 

conditions The degrees of freedom is equal to the number of obsenations less the number 

of estimated parameters 

The deviance lends itself readily to testing heirachical or nested model structures For two 

given models, MI and M2, where M2 contains all the predictors in !MI as well as some 

additional ones, then the difference of the deviances for Model I and Model 2 is equal to 

twice the difference in the log likelihoods under each model Thus the deviance can be 

compared to the chi-square distribution to test the significance of adding the new variables, 

as noted in Hogg & Klugman [IO]. The degrees of freedom for the statistic is equal to the 

number of new variables added 

As with traditional models, one may examine residual plots in an attempt to validate the 

model Three simple types of plots may be used - quantile plots, burst plots, and predictor 

plots. 
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Quantile plots are used to check the underlying distributional assumption. The traditional 

analog is the normality plot of the residuals. As with the traditional plot, a theoretical quantile 

- observed quantile (Q-Q) plot that is linear supports the distributional assumption made. 

Burst plots are used to test the randomness of the residuals. As in traditional models, the 

residuals are plotted against the fitted points. If the plot appears to be a random burst with 

no discernable pattern, then the model structure is supported. 

Predictor plots are used to ensure that the variables used in the model have been properly 

reflected. In these plots, the residuals are plotted against each of the variables. A good 

model will not display any patterns in these plots. The presence of a pattern usually indicates 

some sort of bias in the fit and may point to a more complex breakdown of model 

assumptions. For example, in fitting models to claim severities, a common problem is 

increasing variability with increasing severity and would be reflected in these plots. This 

problem often leads to a situation of systematic under-prediction and over-prediction and can 

go unnoticed without these diagnostic procedures. 

If there are points that prevent the plots from conforming to the above requirements 

(outliers), then corrective action is necessary The most common course is to look at the 

specific data points concerned, exclude them from the data set (if they are relatively few in 

number), and refit the model. If there is a significant number of outliers, then this indicates 

a more serious problem, such as the one discussed above, and may indicate the need for 

reconsidering basic model assumptions. 
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It is very important to be aware of the model structure when reviewing the residual plots 

Discrete data, or other model forms, may induce residual behavior which does not conform 

with the traditional expectations, but which is still acceptable. For example, consider a 

Bernoulli (binomial) model in which each observation is a claim (I), or not a claim (0) for 

each given exposure. Then the raw residual will either be l-p or -p This separation, which 

is not encountered in the traditional continuous normal models, leads to different expectations 

of what an acceptable burst or predictor plot would look like For discrete data, it is often 

more useful to examine the ratios of fitted versus actual data, as we discuss next 

A practical model validation procedure is to examine tables of the ratios of fitted to actual 

(F:A) number ofclaims or total cost ofclaims The aim of this analysis is to establish if there 

is any systematic bias in the model estimates. In general, for any subclass, we do not expect 

the F:A ratio to be 100% It may be greater or lesser than 100% depending on what model 

constraints are in place. For example, claim severities below a set amount may be excluded 

for the reason of financial insignificance and hence the average claim cost will be higher. This 

would cause the fitted total claim cost to be higher and hence the F:.r\ ratio to be greater than 

100%. As long as the F A ratio is reasonably consistent across all levels of the relativity 

factors, there is no cause for concern However, if the F A ratio declines as age of driver 

increases, for example, this would indicate a systematic bias in the model for age of driver. 

Correcting systematic bias would require firrther investigation as to the source of the bias 

It could be due to one or more variables being omitted from the final model or it may simply 
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be due to small amounts of exposure at young ages. Another possible cause of this bias may 

be a changing book of business over time. 

One final principle of practical model validation is “the eyeball axiom”. By graphing the 

indicated relativities for each variable, one can examine these estimates (and their confidence 

intervals) for reasonableness. These graphs can be telling in terms of data quality as well as 

implied relationships, 

Why use GLM? 

The astute reader may have noticed that the maximum likelihood example in Section 2 and 

the GLM example produce the same relativities. As the GLM estimates are also based on 

maximum likelihood, the solutions should be the same. This leads to the obvious question 

“Why bother with GLM if I can iterate?” 

There are several reasons to implement a model usmg GLM. There are a number of statistical 

software packages available which handle GLM. GLM and these software packages have the 

following advantages: 

1) The software packages include a general fitting routine that is applicable to any GLM. 

Simple closed form iterative solutions may not be available for a specific GLM. 

2) Continuous rating variables, such as actual age, can be incorporated into a model. 

3) Most of the common model forms, such as poisson, binomial, normal, lognormal, and 

gamma, are already included as standard models. Non-standard exponential family 
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models can be included with a few lines of code. The package saves one the time of 

deriving, programming, and verifying iterative models 

4) The process of exploring residual plots 1 goodness of tit statistics, variable groupings, 

and variable interactions is easier. 

5) Most packages produce “standard errors” for each parameter These can also be used 

to evaluate the model 

6) Most of the packages are fairly efficient For example. the model to be discussed in 

Section Four was fit to several hundred thousand records in a few mmutes using SAS 

7) Finally. when viewed as an extension of traditional linear models, the whole GLM 

modeling process may seem more natural than an Iterative formula, or at least less alien 

This will certainly assist the actuary in relating the analysis to non-technical decision 

makers, who may be somewhat familiar with regression 
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Section 4. Applications of GLMs 

4.1 Introduction 

GLM techniques are well established in rating for personal lines insurance in some areas of 

the world (auto and household). Typically, claim frequency and claim severity are modeled 

separately and the results combined to produce loss cost relativities. Claim frequency is oflen 

modeled using Poisson or negative binomial error structures, while claim severity is often 

modeled using gamma or log-normal error structures. Model structures are usually 

multiplicative, that is for a given cross-classification of risk-factors called the “base class,” the 

product of the various loss cost relativities is unity. Relativities greater than one indicate 

increased risk while relativities less than one indicate reduced risk, relative to the base class. 

As mentioned in Section I, a separate exercise is needed to establish the actual base premium 

for the base class. 

The above description, although brief, summarizes the situation for many insurance 

applications. However there is ongoing debate on issues such as multiplicative versus 

additive model structures, whether frequency and severity should be modeled separately or 

jointly, the correct treatment of no-claim-bonus scales, etc. The interested reader should 

consult the literature for discussion of these and other issues [S], [9]. 
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4.2 Credit Insurance 

The example we present in this paper is based on analysis of a U S. financial institution’s 

claims experience. In particular, our aim in modeling terms is to improve their ability at the 

time of extending credit to correctly assess high- and low- risk applicants, using information 

collected at the time of loan application. By developing these models, the loan default 

performance of the outstanding balances should improve, increasing profitability. 

A large amount of information is collected during the application process, including credit 

score, amount of the loan, type of collateral, income ratios, marital status, loan term, loan 

purpose, state, borrower age, gender, etc. Some of this information was not used because 

of insurance and lending nondiscrimination requirements 

Some ofthe information collected is naturally categorical in nature. such as type of collateral 

Some of the information, like age of borrower, is naturally continuous More generally, the 

categorical nature of many rating factors and the number of ratmg factors gives rise to the 

problem that there may be large number of cross-classified cells (classifications) However, 

the actual number of cells is usually much smaller and there is often a large number of cells 

with very small exposure. 
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4.3 GLM Model for Credit Insurance Claims 

As a loan (single exposure) only has two possible outcomes - claim or no claim - we chose 

to model claim frequency using a multiplicative model with a binomial error structure, using 

a logit link function. This approach is identical to logistic regression. The regression model 

equation is- 

where 

p, is the probability that the ith loan becomes a claim, 

- ’ X8 is the vector of risk factors for the ilh loan, and 

P is the vector of risk factor relativities 

The model is fitted by maximum likelihood. For our work, we have used The SAS System, 

in particular PROC GENMOD from the SAYSTAT module 

In the context of multiplicative relativities, the need for an interaction model means that 

there are significant exposure-related differences for the particular factors in question 

This is analogous to the assumption about equal underlying exposure breaking down for 

one-way analysis. In the GLM case, this can be corrected by fitting a model with terms 

like x,*x~ and excluding xj and s This is done even though testing for significance of 

the interaction effect would include all of the terms. 

Our model includes only main effects. We did not model any conditional relationships 

between variables that would take into account interaction effects During the model 

validation process, we did not see any sign of significant bias that suggested the need for these 

interaction terms. 
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4.4 Model Validation 

As discussed in Section 3, the usual statistical tool for model validation is residual analysis. 

This approach confirms that the underlying distributional assumptions have not been violated, 

as well as ensures that there is no systematic bias in the parameter estimates The first of 

these checks would often be conducted via two plots The first is a quantile plot of residuals 

versus quantiles from the assumed error distribution The second is a ‘burst’ plot of residuals 

versus actual values. Systematic bias would be explored with a series of plots of residuals 

versus the rating factors. Trends in the residuals would indicate a bias 

In the case ofa binomial error structure with (0.1) outcomes, the residual plots as described 

above may not provide much added value Due to the potential for many cells with small 

exposure, plots at a higher level of summarization may still not be much of an improvement. 

In this example, where the observed claim frequency is usually very low (generally less than 

IO%). these conditions are exacerbated 

We have relied upon examination of tables of actual versus expected scaled claim frequency 

to provide validation Since we fit models to loans originated in one year and validated them 

against loans originated in the following two years, it was necessary to scale the expected 

number ofclaims for latter two years to equal the obsencd number of claims. Any systematic 

departure from actual-to-expected ratios of 100% is evidence of bias The results of such 

validation for the loan data indicate that the models fitted were robust with no significant bias. 

4.5 Rating Factors 
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The five rating factors used for the models presented here are: 

Credit Score- Of the primary borrower, as assessed by an external credit rating agency. 

Credit scores range from about 400 to 800, with higher scores indicating a better rating. We 

grouped credit score into 10 bands (10~648, 649-677,678-697,698-7 14, 7 I S-728, 729-742, 

743-755, 756-768, 769-782, 783-high) selected to evenly divide the exposures. The base 

class band is 7 15-728. Credit scores are whole numbers. 

Loan Amount. In thousands of U.S. dollars, banded into seven groups (low-50, 50-75,75- 

100, 100-125, 125-150, 150-175, 175~high). The base class is 75-100. Actual loan amounts 

are in dollars. The groups are formed such that the 50-75 group includes loans of at least 

$50,000, but less than $75,000 

Financial Commitment Ratio; Loan commitments as a percentage of salary, banded into 8 

groups (low- 18, 18-20, 20-22, 22-24, 24-26, 26-28, 28-30, 30-high) The base class is ZO- 

22. As above, 20-22 means a commitment of at least 20%, but less than 22% 

Loan Term: The length of the loan payment schedule, presented in months and split into two 

groups (O-5 years, 5+ years). The base class is 5+ years 

Loan Purpose: Whether the loan is for a new venture or to refinance an existing loan. The 

base class is refinance. 
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Multiplying out the number of categories of rating factors gives a potential 2,240 cells for this 

particular model and requires 25 parameter estimates The base class loan is for a borrower 

who rates a credit score between 715 and 728, has borrowed between $75,000 and $100,000, 

has a financial commitment ratio of between 20% and 22%, a loan term of more than 5 years, 

and is refinancing an existing loan 

In general, the variable groupings proceeded along natural boundaries Some of the groups 

were selected to produce class levels ofequal width or exposure content The base class was 

generally selected as the largest or most central class. 
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Section 5. Binomial GLM Model Results 

5.1 Explanation of the Graphs 

The graphs which follow are relativity plots From the binomial model fit The relativities have 

had one subtracted from them. Therefore, positive relativities denote increased risk while 

negative relativities imply decreased risk relative to the base class. The right-pointing triangle 

indicates the relativity with the value displayed immediately to its right. The vertical bar to 

the left of the triangle indicates the uncertainty of the relativity estimate as measured by its 

standard deviation. In these plots, we have shown an 80% confidence interval, based on the 

asymptotic normality of the maximum likelihood estimates. In some cases, however, the 

extent of the confidence interval has been limited by placing an upper limit on the range 

displayed The base class for each rating factor has a relativity of one, which appears in the 

graphs as zero with no error bar The bars under each relativity indicate the level of exposure 

for each category of the rating variable 

To calculate the overall relativity for a given cross-classification, the relativities are multiplied 

together For example for a borrower with a credit score in the band 698-714, a loan 

between $50,000 and $75,000, a financial commitment ratio between 26% and 28%, a loan 

term less than 5 years, refinancing an existing loan, has a risk relativity of 43% relative to the 

base class (0.43 = I .42 x 0 77 x I 71 x 0 23 x 1 .OO) 
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5.2 Discussion of Results 

In this section, we present the raw results of the binomial GLM analysis In deference to the 

proprietary nature of these underwriting and rating models, and for ease of presentation, we 

have treated the data in the following manner for this paper 

n We have transformed the underlying data so the numeric relationships shown in this paper 

are only illustrative, 

w We have fitted a limited model of only five variables to the data, although there are 

additional explanatory variables, and 

n We have treated the continuous variables as categorical, although it is statistically sub- 

optimal 

Given these treatments, no quantitative conclusions should be drawn from the examples 

shown herein 
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52.1 Credit Score 

1w , 

The shape of relativities for credit score is as expected, an almost monotonically decreasing 

function ofcredit score. In practice, it may be preferable to use credit score as a continuous 

variable (albeit transformed) and fit only one parameter instead of nine. A sensible 

transformation might be ofthe exponential or logistic form. 
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5.2.2 Loan Amount 

The results for loan amount behave generally as expected We had thought that there would 

be a more gradual and monotonic pattern past %lSO,OOO. However, the error bars for the 

larger loan classes are particularly wide. It may well be that the apparent reduction in risk is 

a result of management action, such as increased underwriting for large loan values If the 

indications between $150,000-200,000 were lower, loan amount could be fit as a continuous 

quantity, using a suitable transformation such as the hyperbolic tangent 
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5.2.3 Commitment Ratio 

Again, the results for commitment ratio are largely in line with expectations, except perhaps 

for the apparent upturn for the lowest band. This hook may indicate that there is a base level 

of relative risk reduction. A hyperbolic tangent transformation may be appropriate for 

modeling this as a continuous variable. The transformation would also imply that at the upper 

end of the scale, there would be a limiting level of risk deterioration. 
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52.4 Loan Term 

24x% 

250% 

I 
203% I 

lM% 

100% 

+50% i 

0% 

-50% 

Loan terms of less than five years appear to be substantially less risky than loan terms greater than 

five years. This may be due to the quicker build-up of equity in the loan or more careful underwriting 

of shorter duration loans, which have lower profit potential. 
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5.2.5 Loan Purpose 
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Refinanced loans appear to be less risky than new ventures. This is likely due to the stable 

history required for a bank refinance, while new ventures may be more uncertain. 
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5.3 Smoothing Results 

The graphs presented in Section 5.2 display the raw relativities that come from the model 

fitting process. In practice, adjustments may be required before implementing the model The 

error bars, as well as the exposure measures give an indication of the reliability of the 

particular estimates and the potential for these adjustments In the case ofthe continuous 

variables, the shape of the relativities gives an indication for possible fimctional forms to be 

used for refitting In addition, a practical model must take account of the fact that manual 

management intervention may not be in place in the future (such as for loan-to-value) and 

hence the shape of the relativities may need to be altered to reflect this Finally, expense and 

profit allocation issues, as well as marketing focus, must be considered 
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Appendix - Additional Models and Examples 

As we’ve mentioned in the paper, Bailey [2], Bailey and Simon [3], and Brown [4] have 

introduced a number of models in their studies. The Poisson Maximum Likelihood and Least 

Squares Multiplicative models of earlier sections were from Bailey and Brown, respectively. 

However, Bailey did not develop his model as a MLE for the Poisson distribution. He had 

developed this model by assuming “the balance principle,” or that the average error for any 

given class should be zero. 

Expressed mathematically: For all i, 

which happens to be the Poisson model. The second line in the derivation above provides an 

additional interpretation of the balance principle. When viewing a fixed level of one of the 

row rating or column rating variables, we see that the total of the actual row (column), &,r,, 

must equal the total estimated by the rating factors, cn,x,y, for a row, 
I 

or Cn,X,y, for a column. 
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Bailey also developed an additive model using the same constraint, which can be shown as’ 

which is a the MLE for an additive Poisson model 

We have chosen to present the additive model in a slightly different format than Bailey and 

Brown Brown presents the “base rate” as HI<” + A; + ‘:, and fiItm~,~~: for the additive and 

multiplicative model, respectively. We have chosen to present these forms as, 

HK(I + x, + y,)md Hhy, 1 respectively The change in the additive form makes 

the discussion easier to follow because 

1) The loss cost relativity, rV is on the same scale for either model For example, a class 

that is 25% worse than the base class will have a relativity of I 2s. regardless of the 

model format. The scale in Bailey and Brown’s interpretation is not so clear for the 

additive model. For example rY X, a ~5 could equal $75 00 

2) The same scale certainly makes the loss cost -vs- loss ratio discussion in Section 2 

more easily understood 

In Bailey and Simon, a second multiplicative model was derived which minimizes the Chi- 

Squared value, rather than adhering to the balance principle The Chi-Squared statistic is 

equal to: 
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To minimize this, we set the partial derivatives equal to zero: s = 0 
k 

C2xknbrb -2x&y, +--2x,nbrb +n,,x:y, = 0 
I y, 

&$v; p-x&y, =0 
* y, 

Brown chose to approach the classification problem from the statistical standpoint. If the 

losses for ij” cell (class) L, equals nq rv fB , where PB is the pure premium for the base class, 

then q 4J = T/P&(<,) 

=nrpBx,y, (or n,, PB (x, + y, + f) for an additive model). 

Suppose we assume the losses in each cell to be distributed exponentially with parameter tI,, 

then E(L~)=8,,/(L,)=~e-4/a~ and nYpBx,y, =8,, so 
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f(L,) - ’ &4Pa/%Pa4 
n,PG;Yj 

1 ,-h/4 _ 
qw,Y, 

The likelihood function 
L=y(L,) 
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This approach can be used foradditivemodels and with different distributions. For example, 

L, - j&.~;) 
Fy=“ijPB(xi+Yj +I) 

2 
a ii = np ’ (see foolnote 7) 

f(L,)=+d 
-[++J] 

oii 2x 

aed 
” X22n4(re -xi -yj -l)=O 

ax,=202 

which is the same as the Bailey [Z] additive model. This solution can also be used for a 

multiplicative lognormal model by taking the logarithm of the data. 

These are obviously just samples of many possible models involving different distributional 

assumptions. For a three (or more) variable model, one could use a mixed additive- 

multiplicative model, where rvk= xi yj + z,. This would be solved using the same process. 

7 
This form essentially assumes lhat each exposure is independent and disuibuted N(f&, + y, + 1). 03. As the sum of 

normal random variables is normal. the distribution of the cell losses. L#,, follows. 



In concluding this appendix, we thought it might assist the reader in working with the models 

shown if we gave the values of the class plan, for the two variable example in the paper, 

solved using each of the models discussed. 

First Iteration 

Xl 
X2 
X3 
Y, 
Y. 
In;tial Y,.Y, 

Bailey Additive 

0.500 
4.588 

13 556 
-3.408 
8 Ill 
(0,3) 

Bailey-Simon Exponential 
Multiplicative Multiplicative 

I.155 I .083 
3.448 3 367 
6.867 7 356 
I.054 994 
3.91 I 4.026 
(1,4) (I.41 

Second Iteration 

Xl 
X, 
X, 
Y, 
Y, 

Bailey Additive 

-2.482 
5.490 

13 177 
-3 738 
8 607 

Bailey-Simon Exponential 
Multiplicative Multiplicative 

1 175 I 083 
3.439 3.365 
6.870 7.363 
1 054 ,994 
3 910 4.026 

Converged Solution 

+ 
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The Bailey additive model appears to be much more sensitive than the other two models to 

the choice of initial values. In fact, the implied rate for the base class is negative. This result 

occurs in part because Ll is the smallest class in terms of exposures and has the lowest 

frequency The failure of the simple additive model to reflect interactions contributes to the 

dilemma as well. These observations, coupled with the balance principle, result in a 

nonsensical model. Using another base class or Bailey’s original model, as previously noted, 

continues to produce the unreasonable result. If there were more levels for each class, the 

model could also be constrained to have x, and y, equal zero, but the iterative formulas 

would change. This entire problem is one argument in favor of multiplicative models rather 

than additive models. 

These relativities can be multiplied (or added) together, and compared to the actual relativities 

using validation techniques discussed in the paper. In the example, for the largest class, Ml, 

the various model relativities are displayed in the table below 

Ml Class Relativities 
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