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ABSTRACT 

The current syllabus of the Casualty Actuarial Society, especially parts four and ten 
thereof exposes actuaries to mathematical finance, particularly to the valuation and 
management of cash flows. The Society believes that financial matters will be even more 
important to actuaries of the twenty-first century, However, the syllabus readings do not 
take advantage of the mathematical proficiency of actuaries. As a result, their 
understanding is not as clear as it could be. This paper will apply$rst-year calculus to 
the concepts ofpresent value and duration. Also, the calculus will permit the deftnition 
of a powerful concept that may yet be unfamiliar to many actuaries, the forward rate. 
Perhaps actuaries will gain fresh insights into these concepts, be more con$dent and 
competent to use them, and be better equipped to study more advancedjinancial theory. 
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1. The Formulation of Present Value 

The common expression of a cash flow is discrete: an amount of cash cz is received a time 

t,. Normally the interest rate is denoted by i; however, since i will be a subscripting 

index, we will employ Y for the interest rate. This is apt, not only because r suggests 

‘rate’, but also because it suggests ‘risk-free rate’.’ Then we have a familiar formula for 

the present value of the cash flow at time 0: PV = c ” 
I (l+r)” * 

For now we will assume 

the yield curve to be flat; in Section 5 we will relax this assumption, 

The formula can be improved in two ways. Most obviously, it can be improved to handle 

continuous cash flows. Let C(t) represent the cumulative amount of cash received up to 

and including time t. If a discrete amount is received at time t, then C(t) will be 

discontinuous from the left. But we may safely assume that C(t) is continuous from the 

right.2 C(t) can decrease as well as increase, a decrease representing a negative cash 

receipt, or a positive cash disbursement. 

The other improvement is to express present value in terms of force of interest (p), rather 

than in terms of interest (r). The equivalency is that e - pt = ( 1 + r ) - ’ , which implies 

that ep = 1 + r and that p = In(1 + r) . That this expression is indeed an improvement will 

’ The cash flows of this paper are certain, or non-stochastic. Therefore, it is proper to present-value them at 
the risk-free interest rate. Appendix A touches on the valuation of stochastic cash flows. 
* For the adviseability of continuity from the right see Appendix B. 



be evident in Section 4, where we will differentiate PI/ with respect to p. Moreover, 

treatments of mathematical finance, e.g., [9], use the force-of-interest notation. 

Thus we arrive at the formula: PV = I 
me+’ 

0 
K(u). The summation has been replaced 

with an integral, in particular, with a Stieltjes integral. If C is differentiable over [0, co), 

this can be expressed as a Riemann integral: PV = ~ome~p”C~(~)d~. But the Stieltjes 

form is more versatile in that it can accommodate discrete cash flows as easily as it can 

continuous, as is discussed in [l: 12f.l and [2: 211. One should notice that present value 

is unaffected by the level of C, since for any constant k, d( k + C(U)) = K(U) . 

The first insight afforded by this formulation is the linearity of present value. If we have 

a grand cash flow composed of other cash flows, i.e., C(U) = c a ;C, (u) , then: 

PV = jfPW(u) 

= ig+CX;C~(U)] 

= 
= I a, m fFPUdC, (U) 

I 0 1 = c %PV, 

We know that present value must be a linear operator in order for pricing to be free of 

arbitrage; but now we know also that the linearity of present value follows from the 

linearity of integration. 



Since we will be interested in present value not only when the present is time 0, we will 

elaborate our formulation so as to mean the present value at time t of the future cash 

flow: PV(C;t,p) = me+-‘&X(u). Th e f orm on the left side of the equation makes 

explicit that PV is an operator on C with arguments t and p. 

2. An Insight into Total Return 

In order to see how PV changes with time, we will take the derivative of PV with respect 

to t. But t appears in the lower limit of the integral, as well as in the integrand. Rather 

than just claim a result from calculus, we will do the derivative from its definition: 

PV(t + At) = j e+(‘+‘%C(u) 
t+Al 

t+Al 

-p(u-(t+A$jc u _ 

() s 

e-~(u-(~+At))dc(~) 

1 t 

Therefore: 

APV(t) = PV(t + At) - PV(t) 
m 1+Al 

= e 
I 

-PW+qqu) _ je-P(~-(~+qqu) _ j: ,-Pb4&qu) 

f I t 
m t+Al 

= e s( -P(u-(t+u)) _ e-Pw)&yu) _ Je-P(“4”qqu) 

I I 

In the last equation we have assumed that C is differentiable in [t, t+At]. If this is true, 

then by the mean value theorem there is a <E [t, t+At], such that: 



In the limit as At + 0, 5 + t and ; 1 (e-PW) = pe-PWi. Therefore, 

provided that C be differentiable at t: 

$PV(t) = ~pe-p(~-f)dC(u)-e-P(f-f)C’(t) 
f 

= p~e-P(“-‘)dC(u)-C’(t) 

= pPV(t) - C’(t) 

Rearranging terms and dividing by PV(t), we have: 

1 a C’ (4 -- PV(t) + ___ = 
PV(t) at PV(t) p 

The first term of the left side represents the instantaneous capital appreciation, and the 

second represents the instantaneous dividend yield. The sum of these two must equal the 

force of interest at which the cash flow is present-valued. 

So we have attained to the insight that a differentiable cash flow is always earning its cost 

of capital (p), or working at “p-power.” Less rigorously but perhaps more vividly, we 

can understand this from the standpoint of arbitrage. If there were times during which a 

cash flow were earning more than its cost of capital, the flows of these times would be 

working harder than they were paid to work. And were a cash flow earning less than its 



cost of capital, it would not be working as hard as it was paid to work. These times could 

be packaged and traded at unfair prices. Such situations are intolerable in economics, 

where one should neither get nor let something for nothing. 

3. An Insight into Discounting Liabilities 

The fundamental equation of a balance sheet is that assets equal liabilities plus surplus, or 

A = L + S. The liabilities, L, are normally booked at nominal, or undiscounted, values. If 

L were discounted, it would be smaller and S would be larger. In particular, 

property/casualty insurance companies book nominal values for most of their unpaid 

losses. However, it may be years, even decades, before these losses are paid. Therefore, 

discounting losses would greatly increase the surplus of some insurance companies. Not 

assessing the pros and cons of discounting insurance losses, the author simply comments 

that three reasons argue for the eventual acceptance of discounting into insurance 

accounting: (1) the consideration of investment income in pricing, (2) the demand of the 

1986 Tax Reform Act that taxable income be based on discounted liabilities, and (3) that 

discounting underlies the NAIC’s risk-based capital calculation. This paper will show 

that accounting can handle the discounting of liabilities in two ways. 

Consider a balance sheet at time 0, with liabilities L(0). As these liabilities run off, L(t) 

will approach zero; in fact, f\m L(t) = L(a) = 0. Th e running off of liabilities represents 

a payout of cash; so there exists a cumulative cash payout function C(t) such that for all 

time t 2 0 C(t) + L(t) is constant. As mentioned in Section 1, the level of C is irrelevant; 



nonetheless, the simplest qualifier for C(t) is L(0) - L(t). But whatever C(t) is chosen, 

&Y(t) = 4(t). Th e p resent value at time 0 of the liabilities is PV = m e-P”dC(u) . 
I 0 

However, by integration by parts: 

PV = ~o~e-p”dC(u) 

=- I me-pudL(U) 
0 

= -e -““L(u)l; + jam L(u)de-p” 

= -e -pm L( co) + empo L(0) + I,me~p”(-p)~(u)du 

= L(0) - Jom e-P”pL(u)du 

= L(0) - D 

PVrepresents the present value of the liabilities, or the discounted liabilities; but the D of 

the last equation represents the discount from the nominal value. By definition, present 

value equals nominal value minus the discount. 

But consider the meaning of the discount D = ie-p”pL(u)du : pl(u)du represents the 
0 

income earned during [u, u + du] on the liability remaining at time U, and eVpu values this 

income to the present (time 0). Therefore, the present value of a liability equals the 

nominal value of the liability minus the present value of the investment income that can 

be earned on the liability while it runs off. 

Booking a liability now at its nominal value is not the same as paying the liability now. 

The liable entity would be averse to paying now, since it would forfeit investment 

income. Only if it received credit for the present value of the investment income would it 



be willing to pay the liability now. If accounting were to recognize this economic reality, 

it could do so in two ways. First, it could prescribe that the liabilities be booked at their 

present (discounted) value, i.e., at nominal value net of the present value of the 

investment income. Or second, it could prescribe that the liabilities be booked at nominal 

value, but that the assets be booked gross of the present value of the investment income. 

Letting D be the present value of the investment income, i.e., the discount, we see that in 

either case the resulting surplus will be the same: (A + 0) - L = A - (L - 0) = S. 

Accounting policy regarding whether to gross up assets or to net down liabilities would 

be similar in discounting as it is in reinsurance. 

4. Insights into Duration 

Many treatments of duration, particularly those on the actuarial syllabus, are guilty of a 

bait-and-switch tactic. They introduce the notion of duration by discussing the effect of a 

small discontinuous jump in the interest rate on the future value of a cash flow. If the 

rate decreases, the cash flow appreciates. But reinvestment is at a lower rate, so 

eventually the future value will fall behind what it otherwise would have been. And if 

the rate increases, the cash flow depreciates. But reinvestment is at a higher rate, so 

eventually the future value will exceed what it otherwise would have been. By the 

intermediate value theorem, there must be some time at which the future value of the cash 

flow is immune to interest rate changes. However, duration is commonly defined to be a 

weighted-average time, viz.: 



m 

I ueeP"dC( 2.4) 
0 

jeP’dC(2.d) 
0 

The time of immunity (the bait) is conceptually different from the weighted-average time 

(the switch); and most treatments do not prove that the two are equal, perhaps because the 

proof requires calculus. 

To prove the equality, let FV(t, p) denote the future value of the cumulative cash flow C 

at time t (the present is time 0). Thus FV(t,p) = ePt PV = ept 1 e-P”dC(u) = ieP@“)dC(u). 
0 0 

Differentiating with respect to p, we have: 

aw a * 
ap =dp, I eP('-')dC(u) 

m 

= I( ) t - u e p(‘-“)dC( u) 

= lp’ j(t - u)e-P”dC(u) 

= ept(tJ emP”dC(u) - j ue~p”dC(u)) 
0 0 

At the time of immunity (call it d(p), a function of p) this derivative will be zero. But 

co 

I ue -p”dC( u) 

the derivative is zero if and only if d(p) = “, 

' 

which proves the equality. 

j empudC( u) 
0 



d2FV m 
If we take the second derivative with respect to p, we have - = I( ) dP2 0 

t - u 2 eP(‘“)dC(u) . 

If C is non-decreasing, but at least sometimes increasing, as is normal for an asset, this 

second derivative will be positive. This means that FV(d(p), p + Ap) , considered as a 

function of Ap, has a local minimum at Ap = 0. A small instantaneous change in the 

interest rate will increase the future value of the cash flow at the duration time. 

In fairness, the bait-and-switch tactic of many treatments of duration is inadvertent, since 

the context of these treatments is asset/liability matching. But even in this context, a 

disregard for calculus hinders insight into the meaning of duration and asset/liability 

matching. 

Consider the present value (the present being time 0) of a cash flow as a function of the 

force of interest: PV(p) = JomemP”dC(u) . If we differentiate this function with respect to 

the force of interest, we will have y = W’(p) = +e -““K(u) . The higher-order 

derivatives are easily obtained: y = PV[“](p) = (-l)“~~u”e-P”dC(u). From this we 

will define the ylfh duration moment d,, as: 

I 

m 

d,= Om 

I 

u”e-P”dC(4 = (_1)” p;;;;y 

0 
eeP”dC( u) 

So d,, is the weighted-average nrh power of time, and it is proportional to the ylfh derivative 

of PV. do is unity, dl is called the Macaulay duration, and d2 is the called the convexity. 



These expressions are unnecessarily complicated, even cluttered, when interest rates are 

used. If we express present value in terms of rate r compounded s times per time period, 

the present value of a cash flow will be PV(Y) = jOm( 1 + b)-“&Y(u) . Differentiate: 

PV’(r) = gp( l+ ~)-sudc(u) 

= jom(-sa)(l+~)-‘u-l idC(u) 

= 
-1 WU l+C --s* 

i 1 

,( 1 l+C O 
s dC(u) 

S 

Define the rzfh modified-duration moment md,, as (-1)” 
PV[“l (r) 

PW * Then: 

mdl = _ ;;;;’ = ’ ’ 

r (I+;) %(L+:)ildC(u) (I+;) 
d, 

Thus, modified duration is the Macaulay duration with an adjustment factor [4: 6-81, an 

adjustment that approaches unity as s + co, the limit yielding the force-of-interest 

formulation. And the higher-order derivatives with respect to r are even more unwieldy, 

since the adjustment factor itself is a function of r. Therefore, it is better to employ 

force-of-interest formulations in cash-flow mathematics. 

Now, to borrow from Keith Holler [6], duration “hides a Taylor series:” 



PV(p + Ap) = 2 ";;")Apj 
J=o 

APV(P) = PV(P+ AP)- W(P) 

1 
c 
m pv[‘l(P)~pJ 

J=l j! 

Ape) = 2 ’ pv[J1(P)~pJ - 

WP) l=1 j! PV(p) 

= 2 (-1)J +&pJ 

J=l 

So the relative change in the present value of a cash flow is a polynomial in AP, whose 

coefficients involve the duration moments. 

We will now combine cash flows. Let Cj(u) be the irh cash flow, whose present value is 

PV,(p) and whose jr” duration moment is &(p). Hence, y;(s) = 2 (_I>’ !i!+~~‘. 

I J=l 

Form cash flow C(U) by combining oi units (e.g., dollars) worth of each CJ(u). Therefore, 

C(U) = X-$-$(U) and, as a check, W(p)= x&PY(p) = Cal . If the 
I I I I I 

moment after the combination the force of interest changes by Ap: 

AVP) = q+-$AW (P) 
i 

c 

kv, (P) = 
I ai W(P) 

= &x,&-1)J YpJ 
I J=l 

&4J(P) 
= g(-‘)’ ’ jr ApJ 

J=l 



An even more aesthetic form follows, in which dj (p) = ’ ~ a, : 
Y ’ 

= J=l 
j! A’/ 

c a, 

APJ 

= &-l)j t!$i!~~J 
J=l 

This demonstrates that the duration moments of a combination of cash flows are equal to 

the present-value-weighted averages of the duration moments of the cash flows. 

Asset/liability matching is a form of combining cash flows. Both the assets and the 

liabilities are packages of cash flows, whose prices are the present values of those cash 

flows. But the purpose of this matching is to create a cash flow whose 
APV(P) . 

Iv(p) lS as 

close as possible to zero. Since is a polynomial in AP, 

“as close as possible to zero” means to set as many dj(p) as possible to zero in ascending 

order of j. Since dJ (p) = ’ 

c 
a, = EV$(P) 2 where the d,s are given, the task 

I 1 



reduces to finding the weights of the assets and liabilities so that as many d,(p) as 

possible are zero. In the usual treatment of asset/liability matching the assets as a whole 

are treated as one cash flow, as are the liabilities as a whole. In this case i = 2, so at most 

only the first duration moment can be zeroed. But in general, i cash flows can be 

weighted so as to zero as many as i - 1 duration moments. 

Note that the expression PV( p) = Jam empU dC(u) is like a moment generating function. 

Hence, claiming that 
AP V(P) 

p V(P) 
is zero because it is zero to an ifh order approximation is 

like claiming that a random variable X is zero because its first i moments are zero. But 

precisely, PV(p) = J: eepu E(u) is the Laplace transform of C’ . Appendix B will 

demonstrate that if for all p PV(C; p) = 0, then C(U) must be constant. Finally, if 

c(u) = un , So the 
0 

gamma function can be useful in certain present value problems. 

5. The Complication of a Non-Flat Yield Curve 

Let v(t) represent the present value of the guaranteed receipt of one unit of value at time t. 

Therefore, one unit now (at time 0) is equal to the guaranteed receipt of a(t) = -!- 
VP) 

units 

at time t. One unit now will accumulate to a(t) at time t, and to a(t+At) at time t+At. 



Therefore, the instantaneous forward rate of return at time t is [9: 5-71: 

(j)(f) = ?;I&& + + $- 44 = - = a’(t) dln(a(t)) aln(v(t)-I) = aln(v(t)) I)’ (4 
a(t) at = at - at = 

-- 
v(t) * 

Until now, it has been assumed that v(t) = emPt , implying that, for all t, 4(t) = p. The 

yield-to-maturity-t is the average forward rate during [0, t], 

flat yield curve is thus equivalent to a constant forward rate. 

so YTM(t) = f j(+)du. A 
0 

Every insight of the previous sections has relied on the assumption of a flat yield curve; 

but real yield curves are not flat.3 Now we will relax this assumption and see how our 

insights are affected by a general v(t). The forward rate will come in handy, so it will be 

useful to remember that v(t)$(t) = -v’(t) . 

As to total return (Section 2), the present value at time t of the future cash flow is 

P v(t) = j v(u - t)dC(u) . P assing over the details, we differentiate: 
t 

p(t) = $jv(u- t)dC(u) 

t 

=~(~v(u-t))dc(u)-v(t-t)cyt) 

m 

3 Malkiel [7] discusses the theories for the non-flatness of yield curves. 



Again, as in Section 2, rearranging terms and dividing by PV(t), we have: 

1 a 
qt> jak-M-W(u) 

~-W(t) + - = l 

PV(t) dt PV(t ) jv(u - t)dC(u) 

= $(t) 

So, by means of capital appreciation and dividends, a differentiable cash flow is always 

earning its weighted-average forward rate of return, the weight being the present value of 

the differential cash flow. 

As to discounting liabilities (Section 3), 

PV = I,mv(u)dC(u) 

= -jam v( u)dL( zi) 

= -v(u)L(u)i; + j; L(u)dv(u) 

= -v(u)L(u)i; + j; L(u)v’(u)du 

= -v(m)L(co) + v(O)L(O) + Jam L(u)(-v(u)~(u))du 

= L(0) - jam v(+b(u)L(+~ 

= L(0) - D 

L(u) is the liability remaining at time U, which earns investment income at the forward 

rate 4(u). So $(u)L(u)du is the investment income earned in [u, u + du], which is present- 

valued by v(u). Therefore, the discount D is the present value of the investment income, 

whatever the yield curve may be. 

Duration (Section 4) involves an instantaneous change in the whole yield curve, from v(t) 

at time 0 to v*(t) an instant later. Let V be the set of all functions v: [0, W) -+ (0, l] that 



are suitable for present-valuing. To be suitable, v(t) must be continuous and strictly 

decreasing, v(0) = 1, and $v(l) = 0. Furthermore, v’(t) should exist, which since v(t) 

VI (4 is strictly decreasing implies that v’(t) < 0. Thus the forward rates 4(t) = -- 

44 
exist 

and are positive. Probably, a realistic $ is continuous from the right, and has at most a 

countably infinite number of discontinuities from the left. It seems that even with all 

these constraints on v(t) the cardinality of V is greater than that of the real numbers 93, 

and hence greater than that of any W. If so, then V cannot be parameterized, which 

means that the change in yield curve cannot be represented as a change in coordinates. 

And even if V could be parameterized, the parameterization would have to be continuous, 

so that a small change in yield curve would correspond with a small change in 

coordinates. 

But one type of change in the yield curve that we can parameterize is the parallel shift. In 

this change Y7”(t) shifts to YEW(t) + p, or equivalently, $(t) shifts to 9(t) + p. Now: 

v(t) = 

Therefore, the present-value 

jdl”(V(U)) -j9(U)dU 
e’++w+(o)) = eo = e 0 

function after a parallel shift of p (a p-shift) is: 

-j(W++ -jeW-rJr 
v(t;p)= e 0 =e 0 =e -“‘v(t) 

So, first let us examine the time of immunity. The future value of the cash flow C at time 

t (the present is time 0) after a p-shift will be: 



1 v(w)dC(u) 
FV(t,p) = O 

v(t; P) 

je-puv(u)dC(u) 
0 

= 

e-%(t) * 

= --$c“~‘-*)v(.)dC(u) 
0 

Differentiating with respect to p, we have: 

= -$(‘~e-puv(u)dC(u)-jic”.v(u)dC(s)) 

0 0 

The situation before the shift is represented by p = 0, and: 

0 

1 uv(u)dC(u) 

So 

J +ww 
0 

Macaulay duration. 



The present value of the cash flow after the p-shift is PI’(p) = jorn P’v( u)dC(u) . The nfh 

derivative is y= PYl”‘(p) = (-l)“~o,un~-Pu~(u)dC(u). Before the shift p = 0, at 

which PYl”l(0) = (-1)” joW u”v(u)dC(u) . So, if we define the general ylfh duration 

moment as d, = 
jam zPv( u)dC( u) 

jr vWdC(4 ’ 

it will remain true in the case of the p-shift that 

d, = (-1)” 
PY[“l(O) 

W(O) * 
Therefore, everything stated in Section 4 about Taylor series and 

asset/liability matching will apply to the case of a parallel shift of a non-flat yield curve. 

Let v(t; p) be the yield curve after some unspecified change. The current state 

corresponds to p = 0, so v(t; 0) = v(t). Then the present value of a cash flow after a p- 

change is W(p) = jv(u;p)dC(u). Therefore, PYl”](p) = Ivrl(u;p)dC(u), and 
0 0 

P Y["] (0) = 1 vll (u; O)dC( u) . Asset/liability matching to the pfh order is theoretically 
0 

justified only if j(-u)“v(u;O)dC(u) = jvp’(u;O)dC(u) for y1 = 1, 2, . . . , p. Only then 
0 0 

will d, = (-1)” 
PV[“l(O) 

PV(0) * 
For this to be independent of the cash flow, 

v~l(u;o) = (-u)“v(u;o). It would seem that the only solution to this partial differential 

equation is v(t;p) = e-P’v(t;O) = eeP'v(t) , implying the p-change to be a p-shift. 



6. Conclusion 

The lack of a calculus-level treatment of finance on the actuarial syllabus impedes 

actuaries from important insights. This paper has presented insights into total return, 

discounting, and duration. The two following appendices will elaborate even more on 

discounting and duration. The more involved actuaries become in financial matters, the 

more beneficial these insights will be. 



REFERENCES 

VI Beard, R. E., Pentikainen, T., and Pesonen, E., Risk Theory: The Stochastic Basis 
of Insurance, Third Edition, London, Chapman and Hall, 1984. 

PI Daykin, C. D., Pentikainen, T., and Pesonen, E., Practical Risk Theory for 
Actuaries, London, Chapman and Hall, 1994. 

PI Eves, Howard, Elementary Matrix Theory, New York, Dover Publications, 1966. 

141 Gray, William S., “Individual Asset Expectations,” Managing Investment 
Portfolios: A Dynamic Process, Edited by John L Maginn and Donald L. Tuttle, Second 
Edition, Boston, Warren, Gorham & Lamont, 1990, chapter 6. 

[51 Halliwell, Leigh J., “Conjoint Prediction of Paid and Incurred Losses,” Casualty 
Actuarial Society Forum, Summer 1997, pp. 241-379. 

PI Holler, Keith D., “Duration, Hiding a Taylor Series,” Casualty Actuarial Society 
Forum, Summer 1994, pp. l-9. 

PI Malkiel, Burton G., “Term Structure of Interest Rates,” The New Palgrave. 
Finance, Edited by John Eatwell, Murray Milgate, and Peter Newman, New York, W. W. 
Norton & Company, 1989,265-270. 

PI Miccolis, Robert S., “An Investigation of Methods, Assumptions, and Risk 
Modeling for the Valuation of Property/Casualty Insurance Companies,” Financial 
Analysis of Insurance Companies, Discussion Paper Program, Casualty Actuarial Society, 
1987, pp. 281-321. 

[91 Rebonato, Richardo, Interest-Rate Option Models, New York, John Wiley & 
Sons, 1996. 

[lo] Rothman, Robert, and Deutsch, Robert V., Discussion of Sturgis: “Actuarial 
Valuation of Property/Casualty Insurance Companies,” PCAS LXIX, 1982, pp. 126- 130. 

[I I] Sturgis, Robert W., “Actuarial Valuation of Property/Casualty Insurance 
Companies,” PCAS LXVIII, 1981, pp. 146-159. 



APPENDIX A 

A Comparison of Valuation Models 

Robert Sturgis introduced casualty actuaries to the subject of valuing an insurance 

company. The value of a company is its economic value, which is “the book value plus 

the present worth (i.e., the capitalized value) of expected future earnings.” [ 11: 1481 He 

continued: 

This general valuation concept [economic value] . . . suggests two alternative formulas: 
1. The discounted value of maximum stockholder dividends; and, 

2. Current net worth plus the discounted value of future earnings less cost of 
capital. [ll: 148f.l 

Miccolis calls the first of these alternatives the cash-flow model (CF”), and the second the 

income (IN> model, and states: 

A cash flow model has also been suggested by Rothman and Deutsch which Sturgis 
shows to be a special case of the income model (when the discount rate equals the 
investment yield). [8: 3011 

Rothman and Deutch themselves agree: 

If the only cash flow available to the investor is the dividend stream, and dividends are 
limited to statutory earnings, then the two definitions of economic value result in 
essentially the same valuation. [ 10: 1271 

The author does not see how Sturgis showed the cash-flow model to be a special case of 

the income model; so he cannot agree with that portion of Miccolis’ statement. 

Nevertheless, all three agree that the two models are equivalent under certain conditions. 

But no one gives a demonstration of the equivalence, and many readers probably feel 

themselves to be missing the point. So this appendix will apply the concepts of this paper 

in order, hopefully, to illuminate the issue. 

We will need some notation: 



4) 
L(t) 
S(t) 
sow 
G(t) 

Prem( t) 

Incd( t) 
Paid(t) 
Unpaid(t) 

Und( t) 

6 
Inv( t) 
Earn(t) 

P 
lc 

Assets at time t ( A = L + S ) 
Liabilities 
surplus(s=so+s~) 
Surplus whose opportunity for investment is not restricted 
Surplus whose opportunity for investment is restricted 
Cumulative Premium (for simplicity, consider premium to be 
collected and earned when written) 
Cumulative Incurred Loss (and Expense) 
Cumulative Paid Loss 
Cumulative Unpaid Loss ( Incd = Paid + Unpaid ) 
Cumulative Underwriting Profit ( Und = Prem - Incd ) 

Instantaneous rate of return on assets 
Cumulative Investment Income ( dInv(t) = GA(t)dt ) 
Cumulative Earnings ( Earn = Und + Inv ) 

Selected present-valuing rate 
Opportunity cost of capital 

Again, for simplicity, assume that the liabilities of the company arise solely from the 

insurance business, so L(t) = Unpaid(t). 

Perhaps a comment is in order about the three rates of return (6, p, K), and the so-called 

“cost of capital” in general. “Capital” just a fancy word for money. The question “How 

much does a dollar cost?” would seem to have an obvious answer: “One dollar.” But the 

real question is, “How much will it cost me to use one of your dollars? When do I have 

to repay you, and how do I compensate you in the meantime?” The answer is expressed 

as an equation: B(t + At) = B(t) + yB(t)At - C(t)At . At time t one has borrowed, or has a 

balance, of B(t). The cost of borrowing this money, or of maintaining this balance, 

during [t, t + At] is rB(t)At, where y is the cost of capital. C(t) is the rate at which 

compensation is made to the lender. In the limit as At + 0 we have the differential 

equation: B’(t) = yB(t) - C(t). If compensation is made at the cost of capital, or 

C(t) = yB(t) , the balance remains constant. If compensation is deferred, or C(t) = 0, 



then B’(t)= yB(t), h’ h w ic means that the balance will grow exponentially at the cost of 

capital. 

“Cost of capital” is a slippery concept, at times referring to either 6, p, or K. The cost of 

the company’s capital to the assets is 6, and the cost of the owners’ capital to the 

company is p. In a risk-free world the two costs would have to be equal.4 But Sturgis 

argues for an additional cost K to the company for that portion of the owners’ capital that 

must be tied up in sub-par investments. However, if the owners were getting their 

desired cost of capital p from the company, why would it matter if certain funds had to be 

tied up? If certain funds were tied up, so as to drag the investment income, say, from 

6A(t)dt to (&4(t) - K&(t))& why could not the Ksi(t)dt be treated as an expense? 

Realistically, insurance regulations place no restriction on a company’s investing in 

treasury securities. So is there even such as thing as tied-up, or sub-par, funds? The 

owners might argue that if it weren’t for regulations they could make more money by 

concentrating the assets of the company in high-return stocks, rather than in low-return 

bonds. So the regulations supposedly deprive them of an opportunity. But this ignores 

that stocks are riskier than bonds. In the words of Miccolis, “unless there is a yield 

differential at the same level of risk, the ‘opportunity’ cost of capital would not be risk- 

neutral.” [S: 2991 So the owners’ argument would be pre-CAPM, and thus ndive. But 

despite these problems, we will keep the three “costs of capital” in this comparison. 

4 This is not to concede that in a risky world cash flows should be discounted at “risk-adjusted” rates of 
return. See the final paragraph of this appendix. 



Now according to the cash-flow model the value of an insurance company equals the 

value of its assets plus the present value of its insurance cash flows: 

w(t) = A(t)+~eP(“_‘)d(Prem(u)-Gary) 

But according to the income model its value equals the value of its surplus plus the 

present value of its earnings minus the costs associated with its surplus: 

IN(t) = s(t) + je-P(“‘%&2rn(u) -jr-P(“-oFS(u)du - jeP(“%$, (U)dU 
, I I 

One might think that the last two terms are erroneous, that the value should consist of just 

the surplus and the subsequent earnings. However, the earnings include all the 

investment income, even the income from the surplus. The subtraction of 
I i” e-pWs( U)dzf 

avoids double counting. The last term is Sturgis’ (opportunity) cost of capital [I 1: 1491, 

whether justified or not. 

Both models ignore whether the cash flows and the earnings are distributable, i.e., they 

assume that later cash flows and earnings do not depend on the reinvestment (plowing 

back) of earlier cash flows and earnings. If a company made $100 in one year and $100 

in the second and final year, but had to use $50 of the first year’s earnings in order to gear 

up for the second year’s earnings, the company should be valued on an earnings’ stream 

of $50 and $100.5 

5 A third model, the “terminal value” model of Miccolis’ [8: 3011, may make the appraiser more aware of 
the plow-back assumptions. But the drawback of this model is that the company’s present value depends 
on the calculation of its value at some future terminus. 












